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Abstract

We develop an algorithm for solving the stochastic convex program �SCP�
by combining Vaidya�s volumetric center interior point method �VCM� for solv�
ing non�smooth convex programming problems with the Monte�Carlo sampling
technique to compute a subgradient� A near�central cut variant of VCM is
developed� and for this method an approach to perform bulk cut translation�
and adding multiple cuts is given� We show that by using near�central VCM
the SCP can be solved to a desirable accuracy with any given probability� For
the two�stage SCP the solution time is independent of the number of scenarios�
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� Introduction

In this paper we develop an algorithm for solving the general stochastic convex prob�
lem ���� ��� �SCP	


min c��x	 � E�r��x� ��	�

s�t� ci�x	 � E�ri�x� ��	� � �� i  �� � � �m�
x � X � �n

where �� is a random vector de�ned on the probability space ���F � P 	�F is a ��algebra
of subsets of �� and P is a probability measure on F � The set X is a compact con�
vex set� and we assume that it is given explicitly by a set of deterministic convex
inequality constraints whose subgradient can be calculated� Additional assumptions
are made at appropriate places� A particular realization of �� is represented by �� The
functions ri 
 �n � � � �� i  �� � � �m are proper normal convex integrands� i�e��
ri��� �	 is proper and the epigraph of ri��� �	
 f�x� �	jri�x� �	 � �� x � �n� � � �g
is closed� measurable in � and convex� Moreover� we assume that for any � � �
�� � ri�x� �	 ��� i�e�� ri�x� �	 are �nite valued for i  �� � � �m� The expected value
function is given by

E�ri�x� ��	� �
Z
�

ri�x� �	P �d�	

for i  �� � � �m� and it is also �nite� We are interested in problems for which a
subgradient of E��� can be computed either exactly or stochastically� In an important
class of two�stage SCP we will show how this can be accomplished� We will study
this problem in more details� Next we brie�y summarize the developments for solving
SCP and background for the work presented in this paper to give it a context�

��� Background Review

The SCP has been studied extensively since it�s linear case was �rst introduced by
Dantzig ���� and Beale ��� in ����� Studies in the ���s focused primarily on the linear
stochastic program ���� ��� ��� ���� These years also saw simultaneous development
of the theory of subdi�erention and integration of convex functions ���� ��� ��� ����
Subsequent to this development� in the seventies� Rockafellar and Wets ���� ��� ��� ���
developed extended duality theory for SCP and gave conditions under which SCP is
well de�ned� Hiriart�Urruty ���� and Rockafellar and Wets ���� studied the proper�
ties of the mean value function E�r��	� and its subdi�erential set� �E�r��	�� These
works and several additional theoretical properties of SCP and general stochastic
programming problem together with several applications are well surveyed in Wets
����� A comprehensive reference list of books and collections of papers on Stochastic
Programming appear in �����
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It is easy to see that in general ci�x	 are �non�smooth	 convex functions ����
Proposition ����� Hence methods for non�smooth convex optimization are immedi�
ately applicable for solving SCP provided that an exact subgradient of ci�	 can be
computed� This is well recognized in the case of two�stage stochastic linear pro�
gramming problems with �nite number of scenarios �SLPF	� For this problem several
algorithms are designed that directly or indirectly use the subgradient information
���� �� ��� ���� Lemma � gives a way to compute a subgradient of ci�x	 for the two
stage SCP� As a result all known methods for solving non�smooth convex programs
become available to solve the convex case� The use of non�smooth techniques have
received greater attention for handling coupling constraints in the multi�stage SCP
�for example see Chun and Robinson ����	 or stabilizing traditional cutting plane
methods �for example see Ruszczy�nski ����	� The interested reader can �nd methods
for non�smooth convex optimization in the literature� Here we mention the main
methods and some recent references�

The general methods for non�smooth convex optimization can be broadly classi�ed
in the following six categories
 �i	 subgradient methods� �ii	 ellipsoid method� �iii	
classical cutting plane methods� �iv	 bundle methods� �v	 proximal point methods
and �vi	 volumetric and analytic center �interior�point	 methods� Subgradient and
ellipsoid method are described in Shor ����� An excellent survey of ellipsoid method
is by Bland� Goldfarb and Todd ����� Zangwill ���� gives a uni�ed treatment of
classical cutting plane methods� The book by Hiriart�Urruty and Lemar�echal ���� is a
comprehensive source for bundle methods� For more recent developments on proximal
point and bundle methods see Mi�in ����� Birge� Qi and Wei ����� G�uler ����� The
convergence results of analytic and volumetric center cutting plane methods are more
recent� For development of methods based on analytic center recent references are
Andersen� Mitchell� Roos and Terlaky ���� Go�n� Luo and Ye ���� and Nesterov and
Vial ����� A good source for developments on volumetric center method of Vaidya
���� is Anstreicher ����

For SLPF the non�smooth convex optimization approach has lead to the develop�
ment of cutting plane algorithms using decomposition� These include the widely used
L�shaped method of Van Slyke and Wets ����� which can also be seen as an appli�
cation of Bender�s decomposition method� Regularization of L�shaped method using
ideas of bundle method for non�smooth convex optimization have been suggested and
implemented �see for example� Ruszczy�nski ���� ���	� Ariyawansa and Jiang ��� have
given algorithms for SLPF based on ellipsoid method� Vaidya�s ���� volumetric center
method� and the analytic center method ����� In particular� they have shown that
the complexity of the volumetric center method grows only linearly with the number
of scenarios� K�

In addition to methods based on non�smooth convex programming� several addi�
tional approaches have been proposed to solve SLPF� This problem can also be for�
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mulated as a large deterministic problem ����� methods for large scale linear program�
ming are used to directly solve the deterministic equivalent �Wets ����	� Although
the initial attempts were to specialize simplex method to exploit the structure of
the problem����� more recently primal�dual interior point methods have been applied
�Carpenter� Lustig and Mulvey ����	 to the deterministic equivalent and it has been
found that in practice the computational time for solving the deterministic equivalent
grows only linearly in the number of scenarios �Czyzyk� Fourer and Mehrotra ����	�
The interior point methods have been found to be more e�cient than the simplex
based methods ����� An interior point method was also analyzed by Birge and Qi
����� showing that the block�angular structure of SLPF can be exploited to get an
algorithm whose complexity grows as O�K���	� Parallel implementations have also
been developed which show near linear reduction in computing time with the number
of processors �Czyzyk� Fourer and Mehrotra ���� and Yang and Zenios ����	�

An important property of the non�smooth methods using subgradient calculation
is that the computation of subgradient for SCP decomposes in scenarios� A subgra�
dient can be computed by solving a linear �convex	 program for each of the scenario�
This is important because it allows for subgradient computation in a distributed com�

puting environment� where individual processing nodes may be unreliable� We note
that decomposition is also possible in interior point methods that solve the determin�
istic equivalent� however� here the decomposition is in matrix factorization�

Scenarios in stochastic programs are generated as an approximation to some un�
derlying distribution� The number of scenarios quickly get very large even when the
distribution of each random data element is determined by just a small number of
discrete points� For example� with �� random data elements with each taking � possi�
ble values we get approximately ���� scenarios �Infanger ���� Section ����	� Problems
of such size can not be handled by deterministic decomposition algorithms� This has
lead to the development of stochastic subgradient and decomposition algorithms� For
a discussion on stochastic subgradient methods see Ermoliev ����� Ruszczy�nski and
Syski ����� and Au� Higle and Sen ���� Stochastic decomposition algorithms embed
sampling into the cutting plane methods� There are two such approaches� First
approach is based on using large samples to compute �accurate� subgradients which
are used to generate cuts� Dantzig and Glenn ����� Dantzig and Infanger ���� and
Infanger ���� give such an algorithm based on the L�shaped method of Van Slyke and
Wets ����� The other approach is based on using samples whose size grow as the
algorithm progress� Algorithms based on this approach are developed by Higle and
Sen ���� ��� ���� In Higel and Sen decomposition algorithms information from a new
scenario is added at each iteration and previously added cuts are updated using this
information progressively�

An alternative approach for problems with very large number of scenarios is to
directly approximate the stochastic programs using Monte�Carlo samples� In partic�
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ular� ci�x	 	 �
N

PN
j�� r

i�x� �j	 for i  �� � � �m� and N is the sample size� For this
approach the rate of convergence of the distance of an optimal solution of the ap�
proximate problem� �xN � to an optimal solution of the true problem are given in King
and Rockafellar ���� and Shapiro ����� Under certain regularity� twice di�erentiability
assumption on the Lagrangian function associated with SCP� and second order su��
ciency condition �implies uniqueness of the optimal solution	 at the optimal solution�
King and Rockafellar ���� show that the rate of convergence is Op�N

���	� where Op��	
notation means that the bound is in probability� A similar bound is achieved by
Shapiro ���� under di�erent assumptions� For this approach using the large deviation
principle Kaniovski� King and Wets ���� have shown that the probability of an event
where k�xN � x�k 
 � � �� x� � C� tends to zero exponentially fast as N � �� Here
C� is the set of optimal solutions� More recently using this approach� Shapiro and
Homem�de�Mello ���� have shown that the approximate stochastic program gives an
optimal solution of SCP for su�ciently large N � Using the large deviation principle
Shapiro and Homem�de�Mello have shown that the probability of not �nding this

solution goes to zero exponentially fast with N �

��� Contributions of this paper

The algorithm of this paper combines the �accurate subgradient� approach with a
variant of VCM� We call this variant a near�central cut VCM� This algorithm is
analyzed using the large deviation principle� In the context of convex feasibility
problems we show that near�central cut VCM allows for addition of multiple cuts and
bulk cut translation with relative ease� The development of near�central cut VCM
is motivated primarily because of its suitability for solving SCP� Using this variant
we develop an algorithm for SCP that generates cuts using sampling� An important
aspect of the proposed algorithm is that it gives performance bounds for �nding an
optimal solution of SCP with any desirable probability� This type of performance
guarantee is not currently known for other cutting plane methods� The developed
algorithm enjoys all the properties of a decomposition algorithm� In particular� this
algorithm is naturally suitable for distributed computing environment and gives a
linear speed up in subgradient computation for two�stage SCP� As a result one can
�nd a solution of two�stage SCP with any desirable probability in �polynomial time��
possibly using exponential number of processors�

��� Organization of this paper

In order to motivate our subsequent development� in the next section we introduce the
two stage stochastic convex program� describe its various properties and show how a
subgradient can be computed for this problem� In Section � we develop near�central
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cut VCM� The VCM is designed for solving a convex feasibility problem� After an
introduction and review of the VCM this section is divided into seven subsections� We
summarize various properties of the volumetric barrier function and the volumetric
center and some technical results in Section ���� We use these properties to analyze
the progress in near�central cut VCM� In Section ��� we give a result on the progress
towards computing volumetric center after a damped Newton�like step is computed�
In Section ��� we analyze the change in the value of volumetric barrier after a cut is
added� In Section ��� we analyze the change in the value of volumetric barrier after a
constraint is dropped� This is su�cient to complete the analysis of a basic version of
near�central cut VCM� We analyze this method in Section ���� In Sections ��� and ���
we give conditions that allow bulk constraint translation and multiple cut addition
while maintaining the overall computational complexity of the algorithm�

We return to the two�stage SCP in Section �� In this section we adapt the near�
central cut VCM for solving two�stage SCP� In Section ��� we give an algorithm
for solving two�stage SCP with �nite number of scenarios using exact subgradient
computation� In Section ��� we give an analysis for two�stage SCP� where subgradient
computations are performed using sampling� Here we also discuss some practical ways
of estimating the number of samples� In Section � we state the extension of the method
for two�stage SCP to the general SCP under the assumption that subgradients can
be computed in SCP� The two subsequent short sections contain concluding remarks
and acknowledgements� The notation and abbreviations scattered through out the
paper are summarized below�

��� Notation

Abbreviations
 Stochastic Convex Program �SCP	� Volumetric Center Method �VCM	�
two�stage Stochastic Linear Program with Finite number of scenarios �SLPF	� Second
Stage Problem �SSP	� two�stage SCP �TSSCP	� k	�� k � � is taken to be � for any
k 
 �� All vectors are column vectors� and T denotes the transpose of a vector� The
convex objective function is given by c��	 and c���	 which are used interchangeably�
�c�x	 denotes the subdi�erential set of c��	 at x� kxk represents the two�norm of a
vector x and kxkQ represent the norm with respect to a positive de�nite matrix Q�
i�e�� kxkQ �

p
xTQx� S��x� �	 � fx j kx� �xk � �g� e denotes and exponential func�

tion� Prob��	 denotes the probability of an event� E��� represent the expected value
of a random variable� det��	 represent the determinant of a matrix� diag�x	 denotes
a matrix whose diagonal elements are xi� The notation Q � V mean that V � Q is
a positive de�nite matrix� C denotes a general convex set� C� denotes the �rst stage
feasible set in TSSCP� C��x� �	 denotes the second stage feasible set for a given x
and �� C� denotes the set of optimal solutions and C� denotes the set of ��optimal
solutions� g��	 is used to denote the gradient of volumetric barrier in Section � and
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it represents a subgradient of an appropriate function in other sections� Additional
notation is de�ned at appropriate places�

� Two Stage Stochastic Convex Program

��� Problem De�nition

The two�stage SCP �TSSCP	 with recourse is described as


min c��x	 � �c�x	 � E�r�x� ��	�
s�t� x � C� � fxjci�x	 � �g� i  �� � � �m�

where x � �n� ci�x	 
 �n � �� i  �� � � �m are �nite valued convex functions� The
variables x are called �rst stage decision variables� The random vector �� is de�ned on
the probability space ���F � P 	 de�ned as in the introduction� A particular realization
of �� is represented by �� The objective is to minimize the sum of �rst stage costs
and the expected recourse costs of taking a decision� For a given  x and � a recourse
action is found by solving a second stage problem SSP� x��	� which is given as


r�x� �	 � min f ��x� y� �	
s�t� y � C��x� �	 � fxjf i�x� y� �	 � �� i  �� � � �m��  x� x  �g�

where y � �n� and for any �� f i�x� y� �	 
 �n�n� � �� i  �� � � �m�� are �nite valued
normal convex integrands� Variables y are second stage variables which give a recourse
action taken after a value of the random parameters is realized� We associate Lagrange
multipliers 
� x� �	 � �m�

� with the inequality constraints in SSP� x��	� and a� x� �	 �
�n with the equality constraints  x � x  �� The reason for including � x � x  ��
constraints� instead of removing x variables from SSP� x��	� becomes clear in Lemma �
below� We discuss the possibility of explicit substitution of x   x after this lemma�
An optimal solution of SSP� x��	 is denoted by y�� x� �	� and the corresponding optimal
Lagrange multipliers are denoted by 
�� x� �	 and a�� x� �	� respectively�

��� Technical Assumptions

We make following additional assumptions on the problem


A�� The set C� is compact� and it has a non�empty interior� Furthermore� C� �
B � fxjxli � xi � xui � i  �� � � � ng� where xli and xui are known� Moreover� to
simplify discussion we assume that xui  �xli  �

	L�

A�� The set C��x� �	 is non�empty and bounded for all x in an open set� C�o � contain�
ing C��
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A�� The �bounded	 optimal Lagrange multipliers 
�� x� �	 and a�� x� �	 satisfying
KKT conditions are computed together with y�� x� �	 while solving SSP� x� �	�

In practice� the feasibility assumption can be ensured by introducing an arti�cial
variable with large cost in the �rst and second stage problems� Also� boundedness
can be ensured by introducing a large bound on the �rst and second stage variables�
Assuming that C� is bounded� the bounds for the set B can be obtained by solving
�n �rst stage convex optimization problems minx�C� xi and maxx�C� xi for i  �� � � � n�
The assumption that xui  �xli can be ensured by a simple shift of origin� and
xui  �xli  �

	L� i  �� � � � n� can be ensured by a simple scaling after the origin is
shifted� Assumption A� requires that for all possible �rst stage decisions a recourse
action is always possible� This type of assumption is common in the stochastic pro�
gramming literature even for the linear and quadratic case �for example� Rockafellar
and Wets ���� and Higle and Sen ���� ���	� Assumption A� is needed for subgradient
calculations�

��� Properties of the Recourse Function

From Proposition � in ���� we know that r�x� �	 is also a normal convex integrand�
Hence� for any x � C�o � we write the expected recourse cost of taking a decision as


R�x	 � E�r�x� ��	� �
Z
�

r�x� �	P �d�	�

Note R�x	 is a convex function ����� We call g to be a subgradient of convex function
f�x� �	 at  x � C� if

f� x� �	 � f��x� �	� gT ��x�  x	 ��	

for all �x � C�� Furthermore� from Rockafellar and Wets ���� and Hiriart�Urruty
���� II����� ����� Proposition �����	� under Assumption A� for all x � C�� �R�x	 
E��r�x� �	�� The following lemma gives a way to compute an element of �a subgradi�
ent	 �R�x	�

Lemma � Let 
�� x� �	 � �m�

� and a�� x� �	 � �n be the optimal Lagrange multipliers
associated with the inequality and equality constraints � x�x  �	 in SSP� x���� Let u 
�x� y	� and by gi�u� �	 denote a subgradient vector of f i��� �	 at u� for i  �� � � � � m��

Then� a subgradient of r�x� �	 and R�x	 at  x � C� is given by a�� x� �	 andR
�
a�� x� �	P �d�	� respectively� Also if the number of scenarios is �nite �say K� and

�i is the probability for scenario �i� i  �� � � �K� then a subgradient of R�x	 at  x can
be computed as

PK
i�� �

ia�� x� �i	�
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Proof� For  x� �x � C�� let  u  � x� y�� x� �		 and �u  ��x� y���x� �		� For SSP� x� �	 the
optimal multipliers 
�� x� �	 
 � and a�� x� �	 satisfy

g�� u� �	 �
m�X
i��


�i � x� �	g
i� u� �	 �

� �a�� x� �	
�

�
 � ��	

for some gi� u� �	 � �f i� u� �	� and


�i � x� �	f
i� u� �	  �� i  �� � � �m�� ��	

Now�

r� x� �	  f �� u� �	

 f �� u� �	 �
m�X
i��


�i � x� �	f
i� u� �	 �using ��		

� f ���u� �	� g�� u� �	T ��u�  u	 �
m�X
i��


�i � x� �	
�
f i��u� �	� gi� u� �	T ��u�  u	

�
�using ��		

 f ���u� �	 �
m�X
i��


�i � x� �	f
i��u� �	� a�� x� �	T ��x�  x	 �using ��		

� f ���u� �	� a�� x� �	T ��x�  x	 �since f i��u� �	 � �	

 r��x� �	� a�� x� �	T ��x�  x	�

This shows that a���x� �	 � �r� x� �	� Now to see
R
�
a�� x� �	P �d�	 � �R�x	 note that

R� x	 

Z
�

r� x� �	P �d�	

�
Z
�

�r��x� �	� a�� x� �		T ��x�  x	P �d�	



Z
�

r��x� �	P �d�	�
Z
�

a�� x� �	T ��x�  x	P �d�	



Z
�

r��x� �	P �d�	�
�Z

�

a�� x� �	P �d�	

�T

��x�  x	�

Here the last equality follows because a�� x� �	� a subgradient of r� x� �	� is a measurable
function of � �Rockafellar ���� Corollary ����	� and for measurable vector functions
the equality above holds ����� Section �����	� The case where the number of scenarios
is �nite is just a special case� �

We note that if f i�x� y� �	 are di�erentiable convex functions� then x   x can be
explicitly substituted in the second stage problem de�nition� The vector a�� x� �	 can
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be recovered from ��	� by computing the gradients of f i�x� y� �	 at � x� y�� x	� �	 and
using the non�negative multipliers from the reduced problem� This can also be done
in the non�di�erentiable case if there is a way to extend a subgradient of f i� x� y� �	
at y�� x� �	 to a subgradient of f i�x� y� �	 at � x� y�� x� �		 while keeping the components
corresponding to y variable unchanged�

In the case where � has �nitely many elements� Lemma � gives a way to compute
an exact subgradient of R�x	� This means that any method for �nding a solution of
non�smooth convex program can be used to solve TSSCP� However� for many practical
situations either the number of elements in � is very large� or � is continuous� In
such situations we resort to Monte�Carlo sampling to estimate R�x	 and �R�x	 �see
discussion in ���� Section ����	� We will study the use of Monte�Carlo sampling in
Section ���� In this approach the calculated subgradient will be approximate� For
this reason in the next section we develop a near�central cut variant of volumetric
center method�

� Volumetric Center Cutting Plane Method

The volumetric center cutting plane method of Vaidya ���� is designed for the convex
feasibility problem� Assuming that a convex set C is contained in a hypercube kxk� �
�
	L� the convex feasibility problem is to �nd a point in C or conclude that the volume

of C is less than that of a n�dimensional sphere of radius ��L for some given L � ��
Unless a point in C is found� VCM maintains a polyhedral set containing C�

Let P  fx � �njAx 
 bg� where A � �m�n� and b � �m� Let s�x	  Ax� b� and
S�x	  diag�s�x		 be a diagonal matrix whose diagonal elements are si�x	� Let aTi
represent the ith row of A� The volumetric barrier for P is the function

V �x	 � �

�
ldet�H�x		� where H�x	 � ATS���x	A 

mX
i��

�

s�i �x	
aia

T
i �

and ldet��	 � ln�det��		� The matrix H�x	 is the Hessian of the log�barrier function
Pm
i�� ln�a

T
i x� bi	� The minimizer of V ��	 is called the volumetric center of P�

Vaidya�s VCM method has three ingredients
 �i	 Newton�like steps used to reduce
the value of the volumetric barrier and �nd an approximate volumetric center� �ii	 add
a cut at approximate volumetric center to reduce the region of uncertainty� and �iii	
delete a constraint if it is no longer desirable� and it satis�es certain criterion� The
convergence in the method is measured by the value of the volumetric barrier� The
method stops with an iterate when the value of the volumetric barrier is su�ciently
large� Vaidya�s main result is that the complexity of his volumetric cutting plane
method is O�n�L � �L	T � n
�L � �L		 compared to O�n��L � �L	T � n
�L � �L		
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operations for the ellipsoid method ����� Here T is the cost of computing a cut �an
oracle	� Vaidya proved the bound in his method by showing that his method will
terminate in O�n�L � �L		 iterations� while each iteration requiring O�n�	 �oating
point computation� In theory� the work at each iteration of Vaidya�s method can
be reduced to O�n����	 using fast matrix multiplications� which can not be applied
to ellipsoid method� The total number of outer iterations of Vaidya�s algorithm are
inversely proportional to a quantity !V � which is the di�erence of the minimum
increase in the value of the volumetric barrier when a cut is added and the maximum
decrease in the value when a constraint is removed� Inner iterations in Vaidya�s
algorithm are performed using Newton�like steps� At a point near the volumetric
center� Vaidya generates a cut and backs o� this cut by a signi�cant amount ���x	 
� � ���
 below	� Such cuts are called shallow cuts� In addition� his analysis results
in very large constants hidden in O��	 notation �see Anstreicher ��� Section �� and ���
Section �� for detailed discussion	� Ramaswamy and Mitchell ���� analyze a central�
cut variant of volumetric center algorithm� where the new cut is passed through the

point at which it is generated� while an a�ne step is used to generate a new iterate
to start recomputation of the volumetric center of the new polytope� In Ramaswamy
and Mitchell�s central cut variant analysis the order of outer iterations remain the
same� while it requires O�

p
n	 Newton�type iterations to recompute the volumetric

center� The central cut variant is preferable because� instead of O�
p
n	� in practice

one expects it to take very few Newton�type iterations for recomputing the volumetric
center� while the number of outer iterations is reduced by a larger factor�

Another aspect of Vaidya�s algorithm is the maximum number of constraints it
carries� Very careful analysis by Anstreicher ��� �� has reduced the number from ���n
in Vaidya�s analysis for the shallow cut version to ��n for the central cut version of
the algorithm� Moreover� Anstreicher�s analysis ��� has shown that !V in Vaidya�s
algorithm can be increased from ���� ���� to ���� ����� a gain of more than ��
�

The volumetric method proposed and analysed in this section is a method in
which the amount by which we back o� a cut is much smaller ���x	  � instead of
�����
	� We call this a near�central cut version� Our main reason for proposing this
variant is our context of stochastic programming problems� As seen in the previous
section� the subgradient used to generate the cut at a given point can be computed
only approximately when the number of scenarios is large �in�nite	� By backing o�
we can absorb the error in subgradient computation� In particular� we increase the
probability of not cutting away the optimum solution� Although the cuts in the
near�central cut variant do not go through the current iterate� they are still deep�
For example� the slack at the current iterate in the added cut is about the same as
the slack at the iterate obtained by moving along the a�ne direction in the central
cut version of the algorithm analyzed by Anstreicher ���� An important aspect of the
near�central version of the algorithm is that it naturally allows for addition of multiple

��



cuts� a feature that seems di�cult to get for the central cut version �see Anstreicher
��� Conclusions�	�

We now study these aspects of near�central cut variant of VCM in details� The
next section collects several known results obtained by Vaidya���� and Anstreicher���
�� ��� and proves some additional results needed in the subsequent analysis� The �rst
time reader may jump ahead to Section ��� and then return to next four subsections�

��� Properties of the Volumetric Barrier

The volumetric barrier function V �x	 is a strictly convex function� and we denote its
unique minimizer by w� Let x be such that s�x	 � ��

P �x	 � S���x	A�ATS���x	A	��ATS���x	

and

�i�x	 � aTi �A
TS���x	A	��ai
s�i �x	


aTi H�x	��ai

s�i �x	
� i  �� � � �m�

where ai
T is the ith row of A� Let D�x	  diag���x		� The gradient and Hessian of

V ��	 at x are given by �see Anstreicher ��� Lemma A���A��� or Vaidya ���� Lemma ����	

g�x	 � rV �x	  �ATS���x	��x	  �
mX
i��

�i�x	

si�x	
ai�

r�V �x	 � ATS���x	��D�x	� �P ���x		S���x	A�

where P �� denotes the Hadamard product of P with itself� i�e�� P
��
ij  �Pij	

�� Let

Q�x	 � ATS���x	D�x	A 
mX
i��

�i�x	

s�i �x	
aiai

T �

Q�x	 is a positive de�nite matrix and it is a good approximation of r�V �x	 in that

Q�x	 � r�V �x	 � �Q�x	� ��	

The notation Q � V means that V �Q is a positive semi�de�nite matrix� The above
bound is due to Anstreicher ��� Lemma A���� A weaker bound was proved in Vaidya
���� Lemma ���

In order to measure progress in VCM we need to know �i	 the amount of reduction
in V ��	 after a Newton�like step is taken� �ii	 the change �increase	 in V��	 after a cut
is added� �iii	 the change �decrease	 in V��	 after an undesirable constraint is deleted�
The di�erence in the V��	 while adding and dropping cuts measures the convergence

��



of the algorithm� The Newton�like step analysis ensures that worst case complexity
for recentering after cuts are added or dropped� For this purpose� in Anstreicher�s
analysis ���� the following expansion of V ��	 plays a fundamental role� Let x�  x � P�
then

V � x	  V �x	 � gT �x	p�

Z �

�

Z �

�

pTr�V �x � p	p dd�� ��	

The following six propositions collect various results from Anstreicher��� �� �� and
Vaidya����� We call them propositions because they are all stated without proof�
even though some of the proofs are challenging� The following proposition is proved
by Vaidya ���� Claim ���

Proposition � Let H and �H be n � n symmetric positive de�nite matrices� Let
� � �� Then for all p � �n� if pTHp 
 �pT �Hp� then pTH��p � pT �H��p	�� �

The following proposition gives a condition which ensures boundedness of a polyhedral
set� It is proved by Anstreicher ��� Theorem ��� and Corollary �����

Proposition � Let x � P� s�x	 � �� suppose that column of A are linearly inde�
pendent and p is given by Q�x	p  g�x	� Then� kS���x	Apk� � � implies that P is
bounded� Furthermore� if ��x	kg�x	kQ���x � �� then P is bounded� �

Proposition � shows that kpkQ can be used to bound kS��Apk� and kS��Apk�� The
�rst bound in Proposition � is due to Anstreicher ��� Lemma ���� and ��� Theorem �����
The proof of the second bound is straight forward and it appears during the analysis
in ���� �� �� ���

Proposition � Let x � P� and s�x	 � �� �min�x	 � minif�i�x	g�
���x	 � ��

p
�min�x	� �min�x		

����� and ��x	 � minf��� �pm		������ ���x	g�
Then for any p � �n�

kS���x	Apk� � ��x	kpkQ�x� ��	

Also�

kpkH�x  kS���x	Apk� � �p
�min�x	

kpkQ�x � ��	

Proposition � bounds the change in various quantities as we move from x in some
direction p� In particular� ��	 is proved by Vaidya���� Claim �� and in Anstreicher���
Lemma A���� The bounds in ��"��	 are proved in Vaidya ���� Lemma �� and in
Anstreicher��� Lemma ����� Inequalities ���	 and ���	 follow from noting that ����	 is
a decreasing function of �min�

��



Proposition � Let x � P� and s�x	 � �� Then�

� � �i�x	 � �� i  �� � � �m� and
mX
i��

�i�x	  n� ��	

Let  x  x� p� with kS���x	Apk� � � � �� Then�

�� � � si� x	

si�x	
� � � ��

��� �	�

�� � �	�
� �i� x	

�i�x	
� �� � �	�

��� �	�
� i  �� � � � � m� ��	

and

��� �	�

�� � �	

Q�x	 � Q� x	 � �� � �	�

��� �	

Q�x	� ���	

Furthermore� if x  w and  x  w � p� kS���w	Apk� � � � �� then

�
��

s
�min� x	

�
� � �

�� �

��

� �min� x	

�
� � �

�� �

��
�
A
����

� ���w	� ���	

���w	 �
�
��

s
�min� x	

�
�� �

� � �

��

� �min� x	

�
�� �

� � �

��
�
A
����

� ���	

The next two propositions are used for bounding the error in the expansion of V ��	
in equation ��	� Proposition � is proved during the proof of Theorem ��� in Anstre�
icher ����

Proposition � For � � � � ��

� � ��

���� �	�


Z �

�

Z �

�

��� �	�

�� � �	

dd� 
 �

��� � �	�
� ���	

Anstreicher��� Theorem ���� proved the following bounds on the second order term in
��	 using equations ��	� ���	� and ���	�

Proposition � Let x � P� p � �n� and kS���x	Apk� � � � �� Then�

pTQ�x	p

��� � �	�
�
Z �

�

Z �

�

pTr�V �x� p	p dd� � � � ��

���� �	�
pTQ�x	p � ���	

��



The following two lemmas show that the ellipsoidal norm k�kQ used to measure the
distance from the volumetric center is related to the di�erence in the value of the
volumetric barrier to its optimal value� In addition� the next lemma shows that if the
gradient at the current point is small� then we are su�ciently close to the volumetric
center� Lemma � is a restatement of Anstreicher ��� Theorem �����

Lemma � Let x � P� s�x	 � �� and ��x	kg�x	kQ���x � � � �	�� Then�

kw � xkQ�x � �kg�x	kQ���x� ���	

and

V �w	� V �x	 
 min
�����

�

���x		�

�
��� �

��

��� � �	�

�
� �

The following lemma shows that if the value of the volumetric barrier at a point is
close to its optimal value� then this point should be close to the volumetric center in
Q�norm�

Lemma � Let x � P� s�x	 � �� and w be the volumetric center of P� Let � �
V �x	� V �w	 � ��

���������w�
� � � � � �� then ��w	kw� xkQ�w � ��

Proof� Assume that ��w	kw � xkQ�w � �� Then� we have  x  x � ��w � x	 
�w� ��� �	x� � � � � �� for which ��w	kw�  xkQ�w  �� Due to convexity of V ��	�
V � x	 � �V �w	� ��� �	V �x	� hence V � x	� V �w	 � ����	�V �x	� V �w		 � V �x	�
V �w	 � ��

���������w�
� Let p   x � w� From Proposition � we have kS���w	Apk� �

��w	kpkQ�w  �� In ��	 using g�w	  �� we get

V � x	� V �w	 

Z �

�

Z �

�

pTr�V �w � p	p dd�


 pTQ�w	p

��� � �	�
�using ���		


��

��� � �	����w		�
�using kpkQ�w  �	��w		�

This is a contradiction� hence the claim follows� �

Before we conclude this section we give a result on the property of the volumetric
center which is used in Section � while analyzing our method for two�stage SCP� This
lemma give an ellipsoid that contains the set P�

Lemma �	 Let w be the volumetric center of P� Then for any x � P

kw � xkQ�w � np
�min�w	

� ���	

��



Furthermore� for an  x � P such that ��w	kw�  xkQ�w � � � �� we have

k x� xkQ��x � �� � �	

��� �	�

�
np

�min�w	
� �

�
� ���	

In particular� for � � ���� �min� x	 
 ���� we have �min�w	 
 ������ and

k x� xkQ��x � ���n and k x� xkH��x � ����n� ���	

Proof� In order to show ���	 �rst note that g�w	  �� i�e��
Pm

i��
�i�w
si�w

ai  � which
for all x � P implies that

mX
i��

�i�w	

si�w	
aTi �x� w	  � and

mX
i��

�i�w	si�x	

si�w	


mX
i��

�i�w	  n� ���	

where the last equality follows from ��	� For any x � P�
mX
i��

�i�w	�a
T
i �x� w		�

s�i �w	


mX
i��

�i�w	

�
si�x	

si�w	
� �

��


mX
i��

�i�w	� �
mX
i��

�i�w	si�x	

si�w	
�

mX
i��

�i�w	s
�
i �x	

s�i �w	

 n� �n�
mX
i��

�i�w	s
�
i �x	

s�i �w	
�using ��	

� �n �
�

�min�w	

mX
i��

��
i �w	s

�
i �x	

s�i �w	
�using �i�w	 
 �	

� �n �
�

�min�w	

�
mX
i��

�i�w	si�x	

si�w	

��

 �n �
n�

�min�w	
�

This proves ���	� Now observe that

k x� xkQ��x  k x� w � w � xkQ��x � k x� wkQ��x � kw � xkQ��x� ���	

Under the hypothesis and using Proposition � we have kS���w	Apk� � �� hence from
��	 in Proposition � we have

�� � � si� x	

si�w	
� � � �� and

��� �	�

�� � �	�
� �i� x	

�i�w	
� �� � �	�

��� �	�
�

hence

kw � xk�Q��x 
mX
i��

�i� x	�a
T
i �w � x		�

s�i � x	
� �� � �	�

��� �	


mX
i��

�i�w	�a
T
i �w � x		�

s�i �w	
�

��



which gives kw � xkQ��x � ����
�����

kw � xkQ�w� Similarly�

kw� xk�Q��x 
mX
i��

�i� x	�a
T
i �w �  x		�

s�i � x	
� �� � �	�

��� �	


mX
i��

�i�w	�a
T
i �w �  x		�

s�i �w	
� �� � �	�

��� �	

��

���w	
�

which implies kw�  xkQ��x � �����
�������w

� �����
�����

� since ��w	 
 �� By using the last two

inequalities in ���	� and using ���	 we obtain

k x� xkQ��x � �� � �	

��� �	�

�
np

�min�w	
� �

�
�

which gives the desired result in ���	� Also from ��	 in Proposition � we have k x �
xkH��x � k x � xkQ��x	

p
�min� x	� This together with the choice of constants in ���	

gives the desired bounds in ���	� �

Corollary �� Let �x � P and assume that S��x� ��L	 � P� Let  x be as in Lemma ��
and take the same value of parameters� Then� kpkQ��x�� � ���n�Lkpk� and kpkH��x�� �
����n�Lkpk� for any p � �n�

Proof� From Lemma ��� P � E� x	 � fx j k x�x	kQ��x � ���ng� Since� S��x� ��L	 �
P� S��x� ��L	 � E� x	� furthermore� S� x� ��L	 � E� x	 because the largest sphere that
can be inscribed in E� x	 is centered at  x� Hence� S��� ��L	 � E��	� Which means
that for any p satisfying kpk  ��L� kpkQ��x � ���n  ���n�Lkpk� The inequality
holds for any p because both sides scale linearly� The bound on kpkH��x follows from
��	� �

��� Newton�like Steps

At a given point x � P� s�x	 � �� the search direction d is computed by solving

Q�x	d  � �

��x	kg�x	kQ�x��

g�x	� ���	

and a new iterate is generated as

x��	  x � �d� ���	

here � is a step length parameter� Note that kdkQ�x  kgkQ�x��� We would like to
know the improvement in V ��	 at the new iterate x��	 for a speci�c choice of �� The
following theorem accomplishes this� The bound in ���	 in this theorem was proved
in Anstreicher��� Lemma �����

��



Theorem �� If d is computed from ���� and x��	 is given by ����� then�

V �x��		� V �x	 � �

���x	

�
����x	kg�x	kQ�x�� �

�� � ��	��

���� �	�

�
� ���	

Furthermore� if ��x	kg�x	kQ�x�� 
 �� then for �  �� we have V �x��		 � V �x	 �
���	pm� Otherwise� ��x	kg�x	kQ�x�� � �� and for �  ����x	kg�x	kQ�x�� we have
V �x�	� V �x	 � ���kg�x	k�Q�x�� �

Proof� We let Q  Q�x	� g  g�x	� �  ��x	� Clearly� ��kdk�Q  �� hence from
Proposition �� kS��Adk� � �� Therefore� x��	 is feasible for all values of � � � � ��
Now from ��	 and ���	� we have

V �x��		� V �x	 � �gTd�
�� � ��	��

���� �	�
dTQd

 ��kgkQ��

�
�

�� � ��	��

���� �	���
�

This proves ���	� From ���	 we see that whenever �kgkQ�� 
 �� for �  �� we
have V �x���		 � V �x	 � ���	�� � ���	pm� Now consider the case �kgkQ�� � ��
In this case �  ���kgkQ�� � ��� Hence� by substituting this value of � and using
��x	kg�x	kQ�� � � in ���	 we have

V �x�	� V �x	 � ���kgk�Q�� � kgk�Q��

����� � ���	

���� ��	�
� ���kgk�Q�� �

Corollary �� Let d be computed as in ���� and x��	 be given by ����� Also let
� be chosen as in Theorem ��� Then� starting from a x � P� s�x	 � �� satisfying
V �x	 � V �w	  O��	� we can obtain a  x satisfying �� x	kg� x	kQ����x � ���	� in
O�
p
m	 iterations�

Proof� Let  g  g� x	�  Q  Q� x	� and  �  �� x	� where  x is an iterate after O�
p
m	

Newton�like iterations� If k gk �Q�� 
 ����

�m��� � then from Theorem �� we know that at

all Newton�like iterations V ��	 is decreased by at least ����

��m��� � and we can not have
more than O�

p
m	 iterations like this� Otherwise�  �k gk �Q�� � ���	�� since  � � m��
�

Hence the corollary follows� �

We point out that in Theorem �� we have used values of � that would give good
choices in practice� This is important since evaluation of V ��	 is expensive� which
makes performing line searches expensive�

��



��� Adding A Cut

Let �P � fxjx � P� aTm��x 
 bm��g be the new region obtained after adding an

inequality to P� Let �A �
�

A
aTm��

�
� �b �

�
b

bm��

�
� Note that x � �P  x � P� For

x � �P� let �s�x	 � �Ax � �b� and �S�x	 � diag��s�x		� Clearly� �s�x	  �s�x	� sm���x		�
where sm���x	  aTm��x� bm��� Let

��x	 � aTm���A
TS�x	��A	��am��

s�m���x	


aTm��H�x	��am��

s�m���x	
� ���	

Let �V ��	 be the volumetric barrier function for �P and �w be its volumetric center� Let
�H�x	 � �AT �S�x	�� �A� For x � �P �

�V �x	 
�

�
ldet� �H�x		


�

�
ldet�H�x	 �

�

s�m���x	
am��a

T
m��	


�

�
ldet

�
H�x	

	
I �

�

s�m���x	
H�x	��am��a

T
m��


�

 V �x	 �
�

�
ln

�
� �

aTm��H�x	��am��

s�m���x	

�
� ���	

where the last equality uses the fact that det�I � uvT 	  � � vTu�

The following theorem shows that the quantity �V � �w	�V �w	 has a constant lower
bound� i�e�� the value of volumetric barrier increases by su�ciently large amount
after adding a cut� We use it in establishing the global convergence of the volumetric
method�

Theorem �� Let x � P� s�x	 � � be such that ��x	kg�x	kQ���x � ��	�� � � �� � ��
and ��x	 be given by ��	�� Then�

�V � �w	� V �w	 
 min
������

�
���

��� � ��	����w		�
�

�

�
ln

�
� � ��x	

��� ��	���� ��	�

�� � ��	�

��
�

���	

where �� is de�ned in �
	� below�

Proof� From ���	 we have

�V � �w	  V � �w	 �
�

�
ln

�
� �

aTm��H� �w	��am��

s�m��� �w	

�
�

��



which gives

�V � �w	� V �w	  V � �w	� V �w	 �
�

�
ln

�
� � ��x	

	
s�m���x	

s�m��� �w	


 	
aTm��H� �w	��am��

aTm��H�x	��am��


�
�

���	

If V � �w	 � V �w	 
 �
����w�

� then the result follows immediately from ���	 by taking

��  � in ���	� so without loss of generality assume that V � �w	� V �w	 
���

����������w�
�

� � �� � �� We lower bound the term inside ln��	 in ���	� From Lemma �� we have
��w	kw� �wkQ�w � ��� This from ��	 in Proposition � gives kS���w	A� �w�w	k� � ���
and thus from ��	 in Proposition � we have

�� �� � si� �w	

si�w	
� � � ���

��� ��	�

�� � ��	�
� �i� �w	

�i�w	
� �� � ��	�

��� ��	�
� i  �� � � � � m� ���	

For any x � P satisfying ��x	kg�x	kQ���x � ��	� from ���	 in Lemma � we have

��x	kw � xkQ�x � ���x	kg�x	kQ���x � ��� This from ��	 in Proposition � gives

kS���x	A�w � x	k� � ��� and thus from ��	 in Proposition � we have�

�� �� � si�w	

si�x	
� � � ���

��� ��	�

�� � ��	�
� �i�w	

�i�x	
� �� � ��	�

��� ��	�
� i  �� � � � � m� ���	

Now using ���	 and ���	 for any p � �n�

pTH�x	p 
mX
i��

�pTai	
�

s�i �x	

 ��� ��	���� ��	�

mX
i��

�pTai	
�

s�i � �w	
 ��� ��	���� ��	�pTH� �w	p�

Hence from Proposition �� for all p � �n we have

pTH�x	��p � �

��� ��	���� ��	�
pTH� �w	��p�

which for p  am�� gives

aTm��H� �w	��am��

aTm��H�x	��am��

 ��� ��	���� ��	�� ���	

Towards bounding sm���x		sm��� �w	 �rst note thatsm��� �w	

sm���x	
� �

 
aTm��� �w � x	

sm���x	

 � kam��kH�w�� k �w � xkH�w

sm���x	
� ���	

��



We now bound the two terms in ���	� Using ���	 we have

kam��k�H�w 
mX
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�ai
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which from Proposition � gives

kam��k�H�w�� � �� � ��	�kam��k�H�x�� � ���	

The triangular inequality gives k �w�xkH�w � k �w�wkH�w�kw�xkH�w� From ��	 in

Proposition � we have k �w�wkH�w � k �w�wkQ�w�
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� since ��x	kw� xkQ�x � ��� Hence�
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���	���x�
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Substituting ���	 and ���	 in equation ���	 and using ���	 gives�
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Now using inequalities ���	 and ���	 in ���	 we get

�V � �w	� V �w	 
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The theorem follows� �

Corollary �� Let x � �P with ��x	kg�x	kQ���x � ��	�� ��  ���� Let ��x	  �� and
��x	 
 ���� Then�

�V � �w	� V �w	 
 ������ ���	

Also�

�V �x	� �V � �w	 � ��� ���	

��



Proof� From Proposition �� and ���� ��	 we know that ����� � �min�w	 � ����
and straight forward calculation gives ����� � ��w	 � ������ The bound in ���	 is
obtained from a numerical calculation� which shows that the minimum in ���	 occurs
at �� 	 ����� with the value 	 ������ Now to show ���	 �rst observe that from ���	
we have�

�V �x	� �V � �w	  V �x	� V �w	 � V �w	� �V � �w	 �
�

�
ln�� � ��x		�

Now from Lemma � for �  ���	� numerical calculations show that for �  ������
V �x	� V �w	 � �� ����� Using ���	 and the value of ��x	  � we obtain the result�
�

��� Dropping a Constraint

Without loss of generality assume that �min�x	  �m�x	� and assume that mth con�

straint is dropped� Let �P � fxjaTi x 
 bi� i  �� � � �m � �g� and A 

�
�A
aTm

�
� b �

�b
bm

�
� For x � �P� let �s�x	 � �Ax � �b� Note that s�x	  ��s�x	� sm�x		� and

x � P  x � �P� Let �H�x	 � �AT �S���x	 �A� and �V �x	 � �
�
ldet� �H�x		 be the volumetric

barrier for �P and �w be its volumetric center� Let ��i�x	 � aTi
�H�x��ai
�s�i �x

� i  �� � � �m � �

and de�ne �Q�x	� ��min�x	� ���x	� ����x	 similarly� For any x � P
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�� aTmH�x	��am

s�m�x	
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 V �x	 �
�

�
ln��� �m�x			 ���	

where the second last equality uses the fact that det�I �uvT 	  �� vTu� We need to
bound �V � �w	� V �w	� This is accomplished in Corollary ��� which uses the following
theorem due to Anstreicher��� Lemma ���� Theorem �����

Theorem �� Suppose that �P is obtained by deleting themth constraint and �min�x	 
�m�x	� Then�

�i�x	 � ��i�x	 � �i�x		��� �min�x		� i  �� � � �m� ��

��



and

k�g�x	k �Q�x�� � �p
�� �min�x	

�
kg�x	kQ�x�� � �min�x	

�
� �

�p
�� �min�x	

��
� �

Corollary �� Let x � P with ��x	kg�x	kQ���x � ��	�� ��  ���� Assume that we
have chosen a constraint for deletion for which �i�x	 � ���� Then�

V �w	� �V � �w	 � ������ ���	

Also�

�V �x	� �V � �w	 � ����� ���	

Proof� The proof of this corollary follows the steps in the proof of Anstreicher
��� Theorem ����� From Theorem �� we have �min�w	 � �i�w	 � ��i�w	� for i 
�� � � �m � �� hence we have �min�w	 � ��min�w	� Therefore� since ����	 is a decreasing
function of �min� we have ����w	 � ���w	� Furthermore� ���w	 � ��w	� since we have
reduced the number of constraints by one� By taking x  w in Theorem ��� noting
that g�w	  �� and multiplying both sides by ���w	 we have�

���w	k�g�w	k �Q�w�� � ���w	�min�w	p
�� �min�w	

�
� �

�p
�� �min�w	

�
�

From Proposition �� and ��"��	 we have ����� � �min�w	 � ���� and ����� � ��w	 �
������ Using this in above it is easy to see that

���w	k�g�w	k �Q�w�� � ����
���w	

��w	
� �����

This from Proposition � shows that �P is bounded� First consider the case where
���w	 � �����w	� In this case� ���w	k�g�w	k �Q�w�� � ���� and in Lemma � taking � 

���� and using numerical calculations it is seen that �V � �w	� �V �w	 
 � ���
����w


 ����
�minimum at � 	 ����	�

Now consider the case where ���w	 
 �����w	� We still have ���w	k�g�w	k �Q�w�� �
���� and ���w	 
 ����� Once again from Lemma � by using numerical calculations it
is seen that �V � �w	� �V �w	 
 ���� �minimum at � 	 ��	� Hence� in all cases we have

�V � �w	� �V �w	 
 �����
From ���	 for x  w we have

�V � �w	� V �w	  �V � �w	� �V �w	 �
�

�
ln��� �min�w		


 �V � �w	� �V �w	 �
�

�
ln��� ���	


 ����� �����  ������

��



Now from ���	 we have

�V �x	� �V � �w	  V �x	� V �w	 � V �w	� �V � �w	 �
�

�
ln��� �min�x		� ���	

From Lemma � �for �  ���	�	 numerical calculations show that V �x	 � V �w	 �
�� ����� Hence� �V �x	� �V � �w	 � �� ���� � ����� � �

�
ln��� ���	 � ���� �

��� Near�Central Cut VCM and its Convergence�

We now describe the near�central cut version of the volumetric center method and
provide a convergence analysis for this algorithm� At the start of each iteration
k 
 �� we have a bounded polyhedron Pk which contains the optimal solution� The
hypercube containing C is taken as a starting polyhedron� It is straight forward to
show that x�  � is the volumetric center of P�� The algorithm is described below�

Algorithm �� �Near�Central Cut Volumetric Center Method�

Input� x�� P�� m�� L� �  ���� ��  ���� �  �

Step �� �Termination Check	 If V k�xk	 
 ��nL�n ln�mk	� then STOP� Else go to Step ��

Step �� �Decide if we should add or drop a constraint	 If �min�x
k	 
 �� go to Step ��

else go to Step ��

Step �� �Add a Cut	 Call the oracle to check if xk � C� If yes� STOP� Otherwise the
oracle returns a vector a � �n such that aTx 
 aTxk for all x � C� Let
sk  Akxk � bk� Sk  diag�sk	� Add the constraint aTx 
  to the existing

constraint system� Here   aTxk� �aT �AkT �Sk	��Ak	��a	�	���� Represent the
new constraint system by �Ak��� bk��	� mk  mk � �� Go to Step ��

Step �� �Delete a Constraint	 Suppose that �min�x
k	  �j�x

k	 � �� Let �Ak��� bk��	 be
the constraint system obtained by removing the jth row of �Ak� bk	�mk  mk���
Go to Step ��

Step �� �Centering Steps	 Let  x�  xk� Starting from  x� take a sequence of damped
Newton�like steps of the form  xj��   xj � �Q��� xj	g� xj	� j 
 �� until
�� xJ	kg� xJ	kQ����xJ  � ��	�� Let xk��   xJ � k  k � �� and go to Step �

The following Lemma from Anstreicher ��� Lemma ���� shows that if the algorithm
terminates in Step �� then the volume of C is su�ciently small�

Lemma �� Consider the volumetric cutting plane algorithm with ��	� � ��� and as�
sume that L 
 �� and let V k

max  ��nL�n ln�mk	� Then� termination in Step � proves
that the volume of C is less than that of an n�dimensional sphere of radius ��L �

��



The next result is on the number of iterations after which we meet the termination
criterion in Step ��

Theorem �� For �  ���� �  �� ��  ��� in the volumetric cutting plane algorithm
the termination criterion in Step � is satis�ed after O�nL	 major iterations� while
performing O�

p
n	 Newton�like steps at each major iteration� The total number of

calls to the oracle are O�nL	�

Proof� At a major iteration we either add a cut or drop a constraint and recenter�
Since

Pmk

i�� �i�x
k	  n� and a constraint is added only when �i�x

k	 
 �  ����
the total number of constraints can not exceed n	� � �� i�e�� mk � ��n � �� Also
since Pk is bounded mk 
 n � �� Therefore� the di�erence of the number of added
cuts and deleted constraints is bounded by ��n� If we add a cut at iteration k from
Corollary ��� V k���wk��	� V k�wk	 
 ������ If we delete a constraint at an iteration
from Corollary �� we have V k���wk��	�V k�wk	 
 ������� Hence� V k�wk	�V ��w�	 

��
��k��
n

�
���������n� Note that V ��x�	 � �n�L� Hence� after O�n�L��L		 iterations

V k�wk	 
 ��nL � n ln�mk	 � �� ����� Since at each iteration for ��  ���� V k�xk	 �
V k�wk	 � �� ���� the termination check in Step � is satis�ed after at most O�n�L�
�L		 iterations� Corollary �� together with Theorem �� shows that the number of
Newton�like iterations required to recenter after a cut is added is O�

p
n	 because

mk  O�n	� Similarly� Corollary �� together with Theorem �� shows that the number
of Newton�like iterations required to recenter after a constraint is dropped is also
O�
p
n	� The calls to the oracle are O�nL	 because we only call the oracle at a major

iteration in the case of adding a cut� ��

��� Translating Cuts

In the context of optimization problem it is often possible to translate �strengthen	
a previously generated objective cut� This can help speed up the algorithm� It is
therefore important to analyze the e�ect of cut translations� The analysis for such a
modi�cation was done in Ariyawansa and Jiang ��� for Vaidya�s VCM in the context
of using this method for solving SLPF� Our analysis here is for the near�central cut
variant and it is considerably simpler than the analysis of Ariyawansa and Jiang ����
Furthermore� we allow for translation of more than one previously generated cuts
simultaneously� Our main purpose is to derive conditions that can be easily checked
and that ensure that we can recenter in O�

p
n	 Newton�like iterations� as in the case

of adding new cuts and dropping a constraint� In order to simplify notations we
assume that all constraints are being translated� by changing the constraint right
hand side from bi to �bi� �bi 
 bi�

Let �P � fxjaTi x 
 �bi� i  �� � � �mg� be the new region obtained after translation�
Let �b � ��bi	 and let �s�x	 � Ax��b and �S�x	 � diag��s�x		� Note that x � �P  x � P

��



and s�x	� �s�x	  �b� b 
 �� Let �V ��	 be the volumetric barrier function for �P and �w
be its volumetric center� Let �H�x	 � AT �S���x	A and let H�x	  L�x	L�x	T � where
L�x	 is the Cholesky factor of H�x	� Let
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ln�det�L�x		det�LT �x			 �
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�
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 V �x	 �
�

�
ldet�M�x		� ���	

Since all singular values of M�x	 are larger than �� ldet�M�x		 
 �� Hence� from ���	�
�V �x	 
 V �x	 for all x � �P� In particular� �V � �w	 
 V � �w	� Also from ���	 we have

�V �x	� �V � �w	  V �x	� V �w	 � V �w	� V � �w	 � V � �w	� �V � �w	 �
�

�
ldet�M�x		

� V �x	� V �w	 � V �w	� V � �w	 �
�

�
ldet�M�x		

� V �x	� V �w	 �
�

�
ldet�M�x		� ���	

where the last inequality follows because w is the minimizer of V ��	� Since the Newton�
like iterations terminate when ��x	kg�x	kQ���x � ���	�� ensuring V �x	 � V �w	 �
�� ����� in order to have an O��	 bound on �V �x	� �V � �w	 it is su�cient to have an
O��	 bound on ldet�M�x		� We now give conditions that ensure this bound� We need
the following proposition for this purpose�

Proposition �	 Let u�� � � � um � �n� �i 
 �� and let
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�
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kX
i��

�iuiu
T
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�
� k  �� � � �m�

Then� det�Mm	 �
Qm

i���� � �iu
T
i ui	�

��



Proof� The bound is satis�ed with equality for m  �� Assume that it is true for
k � m� Now�

det�Mk��	  det�Mk � �k��uk��u
T
k��	
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�
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I � �k��M
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k uk��u

T
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��
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T
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here the last inequality follows from noting that pTMkp 
 pTp for all p � �n and
using Proposition �� �

Since ln��	 is an increasing function� an immediate consequence of Proposition ��
is that
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where the last equality used the de�nition of �i�x	� The following theorem is now
immediate�

Theorem �� Assume that the constraints are translated so that

mX
i��

ln

�
� �

�
s�i �x	

�s�i �x	
� �

�
�i�x	

�
 O��	�

then �V �x	� �V � �w	  O��	� �

��	 Generating Multiple Cut

Recall that a cut at each iteration is generated from using subgradient information at
the current iterate� Since the set of subgradients �subdi�erential set	 at the current
iterate may have more than one elements� or multiple constraints may be violated at a
given iterate� it may be possible to generate more than one cuts at the current iterate�
It is therefore important for us to allow the possibility of adding multiple cuts at the
cut addition step of a volumetric algorithm� Algorithm � needs a straight forward

��



modi�cation to allow for multiple cut addition in Step �� It is however important
that after adding multiple cuts� we can quickly recompute the approximate center
in Step � of the algorithm� For this reason in this section we give a condition that
guarantee that the number of iterates needed in Step � is of the same order �O�

p
m		

as in the case of single cut addition� This condition is similar to the conditions in
the cut translation situation of Section ���� The addition of multiple cuts appears to
be more di�cult in the central cut variant of VCM� This is because the central cut
method requires generation of a #good new feasible solution$ after adding cuts �see
Anstreicher ��� Conclusions�	� This is not needed in the near�central cut variant�

We assume that t new constraints are added and we let �P � fxjx � P� aTm�jx 

bm�j� j  �� � � � tg be the new region obtained after adding these t inequality to P�
Let

�A 

�
BBB�

A
aTm��
���

aTm�t

�
CCCA � �b 

�
BBB�

b
bm��
���

bm�t

�
CCCA �

Note that x � �P  x � P� For x � �P � let �s�x	  �Ax � �b� and �S�x	  diag��s�x		�
Clearly� �s�x	  �s�x	� �sm���x	� � � � � �sm�t�x		� where �sm�j�x	  aTm�jx � bm�j � j 
�� � � � � t� Let

�j�x	 
aTm�j�A

TS���x	A	��am�j

�s�m�j�x	


aTm�jH�x	��am�j

�s�m�j�x	
� j  �� � � � t�

Let �V ��	 be the volumetric barrier function for �P and �w be its volumetric center� Let
�H�x	  �AT �S���x	 �A� The following theorem and its proof is similar to Theorem ���

Theorem �� Assume that t constraints are added as above� and let

tX
i��

ln�� � �i�x		  O��	�

then �V �x	� �V � �w	  O��	�

Proof� Following the steps used to arrive at ���	 we can see that �V �x	  V �x	 �
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ldet�M�x		� where M�x	 � I �
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Cholesky factor of H�x	� Also using arguments similar to those used to arrive at
���	 we can show that �V �x	 � �V � �w	 � V �x	 � V �w	 � �

�
ldet�M�x		� Next� using

Proposition ��� and V �x	� V �w	 � �� ����� we have
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� An Algorithm for Two Stage Convex Stochastic

Program

We now use the volumetric center algorithm of the previous section to solve two stage
convex stochastic programs� The modi�cations are straight forward for the case where
the number of scenarios are �nite and the subgradient of R�x	 is calculated exactly�
We cover this case in the next subsection� We then modify the algorithm using exact
subgradients to an algorithm which calculates these subgradients approximately in
Section ����

��� Near�Central Cut Volumetric Algorithm for Two Stage

Convex Stochastic Programs with Exact Subgradients

In this section we assume that an oracle can compute an exact subgradient of ci��	� i 
�� � � �m� for all x � B� Another oracle can compute a subgradient of R��	� �c��	 for all
x � C�� It is easy to see ���� that a subgradient of c��	 is available by adding the
available subgradients of �c��	 and R��	� For a given � � �� let

C� � C� � fxjc�x	 � c�x�	 � �g�
The next well known proposition� which follows immediately from the de�nition of a
subgradient� is used for generating cuts�

Proposition �� Let  x � B�  x �� C�� and assume that the ith inequality is violated�
Let gi be a subgradient of ci�x	 at  x� Then�

C� � fxjgiTx � gi
T
 x � ci�x	� ci� x	g�

Now let  x � C��  x �� C�� and assume that g� is a subgradient of c��x	 at  x� then

C� � fxjg�Tx � g�
T
 x � c��x�	 � �� c�� x	g�

where x� is an optimal solution of TSSCP� �

Since c��x�	 and ci�x�	 are not known� the following weaker inequalities obtained from
the above proposition are used


gi
T
x � gi

T
 x �feasibility cut	 ���	

g�
T
x � g�

T
 x �optimality cut	� ���	

The inequality ���	 is valid because ci�x�	 � �� and ci� x	 � � since  x is infeasible�
Inequality ���	 is valid because if c�� x	 � c��x�	� �� then we have a desired solution�

��



otherwise� c��x�	��� c�� x	 � �� Since ci� x	 � �� the feasibility cut can be translated
as the algorithm progresses� The optimality cut can be translated as better estimates
of optimal objective value become available� The approach used for translating these
cuts was discussed in Section ����

We now modify the near�central cut VCM of Section ��� for TSSCP� We state
the algorithm without cut translation and multiple cuts� These modi�cations can be
easily incorporated in the algorithm�

Algorithm � �Near�Central Cut VCM for TSSCP��

Input� x�� P�� m�� L� �  ���� ��  ���� �  �

Step �� �Termination check	� If V k�xk	 
 ��nL�n ln�mk	� then STOP� Else go to Step
��

Step �� �Decide if we should add or drop a constraint	 If �min�x
k	 
 �� go to Step ��

else go to Step ��

Step �� �Feasibility Test	 Check if xk � C�� If no� go to Step �a� otherwise go to Step
�b�

Step �a� �Feasibility cut subgradient	� Call the oracle which returns a vector gi � �n

such that gi
T
x � gi

T
xk for all x � C�� Let a  �gi and go to Step ��

Step �b� �Optimality cut subgradient	� Call the oracle which returns a vector g� � �n

such that g�
T
x � g�

T
xk is satis�ed by x�� Let a  �g� and go to Step ��

Step �� �Add a cut	� Let sk  Akxk� bk� Sk  diag�sk	� Add the constraint aTx 
  to

the existing constraint system� Here   aTxk � �aT �AkT �Sk	��Ak	��a	�	����
Represent the new constraint system by �Ak��� bk��	� mk  mk��� Go to Step
��

Step �� �Delete a constraint	� Suppose that �min�x
k	  �j�x

k	 � �� Let �Ak��� bk��	 be
the constraint system obtained by removing the jth row of �Ak� bk	�mk  mk���
Go to Step ��

Step �� �Centering steps	� Let  x�  xk� Starting from  x� take a sequence of damped
Newton�like steps of the form  xj��   xj � �Q��� xj	g� xj	� j 
 �� until
�� xJ	kg� xJ	kQ����xJ  � ��	�� Let xk��   xJ � k  k � �� and go to Step �

It is straight forward to see that an analogue of Lemma �� and Theorem �� is also
true for Algorithm �� The following theorem follows from these results�

��



Theorem �� Let parameters for Algorithm � be chosen as in Theorem �� �� 
���� �  �� ��  ����� Algorithm � either �nds a point in C� or it proves that the
volume of C� is smaller than that of a n�dimensional sphere of radius ��L� The
overall complexity of the algorithm is O�n�L� �L	KC � n
���L� �L		� where C is the
cost of solving an instance of second stage problem� and K is the number of scenarios�

Proof� The feasibility cuts do not cut away a point in C�� The only way an
optimality cut can cut away a point in C� is if it is generated at a feasible point where
the objective value is lower than c�x�	 � �� in which case we have found a desired
point� Now assume that all cuts are generated at points that are not in C�� in which
case they are valid for C�� From Lemma �� we have that at termination the volume
of C� be smaller than that of a n�dimensional sphere of radius ��L� �

Theorem �� states that Algorithm � correctly solves the problem if C� contains a
n� dimensional ball of radius ��L� For proper choices of � and L such an assumption
is justi�ed if the set C� has a non�empty interior� As discussed in Section ���� this
can be ensured by introducing an arti�cial variable with a large unknown cost� In
practice we guess this large cost� The cost is increased it if the arti�cial variable is
not su�ciently small at the solution available at termination�

��� Algorithm for Two Stage Convex Stochastic Programs

Using Sampling

As discussed in Section ��� for many practical problems either the number of scenarios
is too large or the probability space is continuous� In these situations computation of
exact subgradient is not practical� and we need to resort to Monte�Carlo simulation�
For developing an algorithm the natural idea is to replace the exact subgradient with
the subgradient computed through simulation when computing optimality cuts in Al�
gorithm �� Since we can not compute a subgradient exactly� we relax the optimality
requirements by requiring a solution of desired accuracy with any desirable proba�
bility� but not with probability one� The analysis of this section gives two ways to
accomplish this
 �i	 a probability arbitrarily close to one is achieved in one single run
of the algorithm� �ii	 the algorithm is run repeatedly from randomly �independently	
generated starting points� with each run having a positive probability of producing a
solution with desirable accuracy �see Remark � below	�

Recall that when an optimality cut is generated in Algorithm �� instead of passing
the cut through the point at which it is generated� it is made weaker� In particular�
at a point  x at which the cut is generated� instead of adding a constraint aTx 
 aT  x
in Step � we added aTx 
 � where   aT  x � �aT �ATS� x	��A	��a	�	���� We use
this property of the algorithm with exact subgradients to develop an algorithm with
approximate subgradients computed by sampling� Now assume that a subgradient

��



was computed approximately� so instead of g�� we have an estimate  g� and g� 
 g � �� for some � � �n� In our context the estimate  g is obtained from Monte�Carlo
simulation� Clearly� � g � �	Tx � � g � �	T  x is a valid cut� i�e��

 gTx �  gT  x � �T � x� x	

is satis�ed by all �x � C�� unless a point in C� is already found� This means that the
cut

 gTx �  gT  x � � gT �ATS� x	��A	�� g	�	���

added in Step � of Algorithm � does not cut away any point in C� as long as

max
	x�C�

�T � x� �x	 � � gT �ATS� x	��A	�� g	�	���� ���	

We would like to know the probability with which ���	 is satis�ed as  g is obtained with
increased sample size� We obtain this probability using the large deviation principle�

Let � i� i  �� � � � N be independent and identically distributed observations of a
random variable ��� Assume that j��j � �� and E����  �� Let �N  �

N

PN
i�� �

i� and
observe that limN�� �N  �� The next lemma shows a bound on Prob��N 
 �	 as
an exponential function of N�

Lemma �� Let �N be the sample mean of a random variable �� using N samples� and
j��j � �� then

Prob��N 
 �	 � e
�N��

��� �

Proof� Let ��N���� be an indicator function which is � if �N � � 
 � and zero
otherwise� For any � 
 � and � � �� following the steps of the proof of Theorem �����
in Dembo and Zeitouni ���� and Shapiro and Homem�de�Mello ���� we have�

Prob��N 
 �	  E���N�����

� E�eN	��N���

 e�N	�
NY
i��

E�e	�
i

�

 e�N �	����	��

where %��	 � lnE�e	� �� The inequality above is a Chebyche��s inequality� and the

second equality above uses independence of � i� Note that %��	 is the log of moment
generating function of ��

Clearly� %��	  �� and

%���	 
E��e�	�

E�e�	�
 %���	  E���  ��

��



and

j%����	j 
E���e	� �

E�e	� �
�
�
E��e	��

E�e	� �

��
 � ���

Since for any � � ��

%��	  %��	 � �%���	 �
��

�
%�����	� for some �� � � � � ��

hence we have %��	 � 	�
�

�
� Hence by taking �  �	��� we have the desired result�

�

We now work towards generating a bound for the right and left hand side in ���	�
The following proposition says that if the di�erence between the objective value at
the current iterate�  x� and the optimal objective value is large� then a subgradient at
 x should be su�ciently large in magnitude�

Proposition �� Let  x � C��  x �� C�� and x� � C�� Let g be a subgradient of c���	 at
 x� and let g   g � �� where  g is an estimate of g� Then�

k gk �H�� 
 �� �T � x� x�	

kx� �  xk �H

� ���	

where  H  ATS� x	��A�

Proof� Since c��	 is a convex function� for any  x � C�� and  x �� C� and x� � C� we
have

� � c� x	� c�x�	 � �gT �x��  x	  �� g� �	T �x��  x	 � k gk �H��kx��  xk �H� �T �x��  x	�

hence the inequality in ���	 follows� �

We are now in a position to prove the following result� which shows that the
probability of not cutting away the set C� can be made arbitrarily small when using
a cut generated from sampling�

Lemma �� Assume that the subgradient is estimated by taking the sample mean of
N samples� The probability of C� � Pk�� after adding a cut in Step 	b is given by

Prob�C� � Pk��	 
 ��� e�N��ln��n	Prob�C� � Pk	�

where

� � ��

���� ���n���L��
� ���	

��



Proof� Let �z  max	x�C� �
T � x � �x	� For  x � C�� and  x �� C�� from Proposition ��

we have

Prob

�
�z � k gk �H��

� ���

�

 Prob

�
�z � �� �T � x� x�	

� ���k x� x�k �H

�

 Prob

�
�z �

�T � x� x�	

� ���k x� x�k �H

� �

� ���k x� x�k �H

�


 Prob

�
�z � �

� � � ���k x� x�k �H

�
�

where the last inequality uses that �z 
 �T � x � x�	� since x� � C�� For  x as in
Lemma �� �near�center point at termination in Step � of Algorithm �	� if x� � Pk� then
k x�x�k �H � ����n� and ��� ���k x�x�k �H � ��n� Also if C� � Pk� then for any �x � C��
�T � x��x	 � k�k �Q��k x��xk �Q � ���nk�k �Q��� hence �z  max	x�C� �

T � x��x	 � ���nk�k �Q���
Furthermore� from Corollary �� we have �z � ����n	��Lk�k� Hence we have�

Prob�C� � Pk��	  Prob�C� � Pk��jC� � Pk	Prob�C� � Pk	


 Prob

�
�z � k gk

� ���
C� � Pk

�
Prob�C� � Pk	


 Prob��z � �

��n
	Prob�C� � Pk	


 Prob�k�k � �

����n��L
	Prob�C� � Pk	�

Let ��  �
����n��L

� Clearly the event k�k 
 �� implies the event j�ij 
 ��	
p
n for some

i� Hence� Prob�k�k 
 ��	 � nProb�j�ij 
 ��	
p
n	 � �ne

�N��
�

�n�� � where the bound in
the last inequality follows from Lemma �� and observing that the random vector �
is bounded� �N  g� �PN

i�� g
i � � as N � � and E���  �� Here gi is a sampled

subgradient� and without loss of generality we have taken � to be the bound on all
j�ij� �

The following corollary follows immediately from Lemma ���

Corollary �� After k iterations of Algorithm � using subgradients estimated from
sampling� either an x � C� has been found� or

Prob�C� � Pk	 
 �� e�N��ln��nk

Proof� In k iterations of Algorithm � at most k cuts are added� From Lemma ���
we have

Prob�C� � Pk	 
 ��� e�N��ln��n	k 
 �� ke�N��ln��n  �� e�N��ln��nk� �

We now have the following theorem regarding the convergence of Algorithm �
using sampled subgradients�

��



Theorem �� Let parameters for Algorithm � be chosen as in Theorem �� �� 
���� �  �� ��  ����� Assume that an estimate of a subgradient of c���	 is obtained

by using N  ��ln��n��L�	L�ln����
�

� �� de�ned in �	�� and � is log of constant in

O�n�L � �L			 samples at each iteration to generate a cut in Step 	b of Algorithm ��
Then� with probability greater than � Algorithm � �nds a point in C� or it proves that
the volume of C� is smaller than that of a n�dimensional sphere of radius ��L in
O�n�L� �L		 iterations� The overall complexity of the algorithm is O�n�L� �L	NC �
n
���L� �L		� where C is the cost of solving an instance of second stage problem�

Furthermore� if N processors are used and each second stage problem can be solved
in polynomial time �in n� L� �L�� then the two stage stochastic program can be solved
in time which is polynomial in n� L� �L� ln��	 and ln��	�

Proof� The proof of the �rst part of Theorem �� follows from Corollary ��� To
see the second part it is su�cient to observe that each of the N processors can be
used to generate an observation of the subgradient� Using these processors the sum
�
N

PN
i�� g

i can be computed in O�lnN	 steps �see ��� Section ����	� �

Remark � �Measure of Problem Di�culty�� While �nding the number of sam�
ples N to ensure that C� � Pk at termination with probability �� we have a factor
ln�O�n�L � �L			  � � ln�n � �L � �L		 from the total number of iterations after

with the algorithm is stopped� We expect that the number of iterations after which
the algorithm is stopped will be much smaller than O�n�L� �L		� most likely O�n	 or
smaller� Also for most practical situations we expect that � and �L will be a constant�
as � to � digits of accuracy in the solution will be su�cient� Similarly � will also be a
constant� i�e�� for most practical problems we will be required to have a solution say
with probability �  ����� This implies that the computational di�culty in solving
TSSCP will largely depend on the value of ��

Remark � �Sample Size in Practice�� The parameter � is di�cult to estimate
in advance� and the analysis above does not suggest a practical value of sample size�
However� in practice we can estimate Prob��z � k�gk �H��

���
	� using Monte�Carlo simulation

as follows� The constant k gk �H��	� ��� can be computed directly in the implementation�
and we need not use a bound as used in the analysis� After a constant number of
samples� � will have a near multi�variate normal distribution whose co�variance matrix
can be estimated� Using this distribution we can generate instances of �� say �i� and
solve maxx�Pk �

iTx� The desired probability is estimated by recording the number of
instances that satisfy ���	 and dividing it by the total number of instances generated�

Remark � �Computing Environment�� It is possible to have a computing en�
vironment having clusters of processors� where the cost of communicating among
processors in a cluster is small compared to cost of communicating across clusters�
For example� we may have separate clusters of processors available at two geographi�

��



cally distant locations� where the cost of communicating over network between these
two locations is large� In this situation the analysis suggests an alternative imple�
mentation strategy� Instead of making the probability of C� � Pk large by using
large number of scenarios while generating cut at each iteration of near�central cut
VCM� we may generate cuts ensuring C� � Pk with smaller probability� Next we can
independently solve our problem a �xed number of times� making large the proba�
bility that one of these runs give the desired solution� In particular� assume that a
particular run of our algorithm ensures that x � C� is found with probability  � and

the desirable probability is ��  � � �� Then� after d ln����
ln��� ��

e independent runs we will
have the desired solution with probability � in at least one of the runs�

� Algorithm for General Convex Stochastic Pro�

gram

We now apply the ideas of previous section to develop an algorithm for general convex
stochastic programs� For  x �� X let aTXx 
  represent an inequality that is generated
so that X � fxjaTXx 
 �g� Also� for a given  x � X� we assume that a subgradient of
ci�x	 is estimated with increasing accuracy using sampling� A subgradient of ci�x	 is
represented by gi and its estimate by  gi� The following algorithm is a modi�cation
of Algorithm � where subgradient is estimated to generate feasibility and optimality
cuts�

Algorithm � �Near�Central Cut VCM for SCP��

Input� x�� P�� m�� L� �  ���� ��  ���� �  ��

Step �� �Termination check	� If V k�xk	 
 ��nL � n ln�mk	� then STOP� Else go to
Step ��

Step �� �Decide if we should add or drop a constraint	� If �min�x
k	 
 �� go to Step ��

else go to Step ��

Step �� �Feasibility tests	� Check if xk � X� If no� go to Step �a� If yes� �nd if any of the
constraints ci�x	 � �� i  �� � � �m is violated at xk by checking  ci�xk	 � �� where
 c��	 represents an estimate of c��	 generated by using Monte�Carlo simulation�
If  ci�xk	 � � for i  �� � � �m� go to Step �b� otherwise go to Step �c�

Step �a� �Compute subgradient for feasibility cut	� Call an oracle which returns a vector
gX � �n such that gX

Tx � gX
Txk for all x � X� Let  a  �gX and go to Step

��

��



Step �b� �Compute subgradient for optimality cut	� Call the oracle which returns an
estimate�  g�� of subgradient vector g� � �n� Let  a  � g� and go to Step ��

Step �c� � Compute subgradient for expected value constraint	� Let  gi be an estimate of
subgradient vector gi � �n of the constraint satisfying  ci�xk	 � �� Let  a  � gi

and go to Step �

Step �� �Add a cut	� Let sk  Akxk� bk� Sk  diag�sk	� Add the constraint  aTx 
  to

the existing constraint system� Here    aTxk � � aT �AkT �Sk	��Ak	�� a	�	����
Represent the new constraint system by �Ak��� bk��	� mk  mk��� Go to Step
��

Step �� �Delete a constraint	� Suppose that �min�x
k	  �j�x

k	 � �� Let �Ak��� bk��	 be
the constraint system obtained by removing the jth row of �Ak� bk	�mk  mk���
Go to Step ��

Step �� �Centering steps	� Let  x�  xk� Starting from  x� take a sequence of damped
Newton�like steps of the form  xj��   xj � �Q��� xj	g� xj	� j 
 �� until
�� xJ	kg� xJ	kQ����xJ  � ��	�� Let xk��   xJ � k  k � �� and go to Step �

The analysis of Algorithm � is similar to the analysis in Section ���� except for
Step �c followed by Step �� In this case we need to account for the possibility of error
in estimating ci��	 together with the error in its subgradient estimate� Below we show
how this can be accomplished� Let gi be an exact subgradient of ci�x	 at  x� Recall
from Proposition �� that

gi
T
x � gi

T
 x � ci�x	� ci� x	

is a valid inequality� Let gi   gi � �i and ci� x	   ci� x	 � �ic� where �i is error in
estimation of gi and �ic  ci�x	�  ci�x	 is error in the estimation of constraint function
value� Since for �x � C�� ci��x	 � ��

 gi
T

x 
  gi
T

 x � �i
T
� x� x�	� �ic

gives a valid cut� We add the feasibility cut if  ci� x	 � �� This means that in this case
the cut added in Step � is valid as long as

max
	x�C�

�i
T
� x� �x	� �ic � � gi

T

�ATS� x	��A	�� gi	�	���� ���	

We can now take our error vector ��	 to be

�
�i

�ic

�
and perform an analysis similar to

that in Section ���� A theorem similar to Theorem �� can be stated for Algorithm ��
We leave this to the reader�
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� Conclusions

We developed a variant of Vaidya�s volumetric center cutting plane method that is
suitable for stochastic convex programming problems where the subgradient to gener�
ate a cut is computed using sampling� For this variant we showed how multiple cuts
and bulk cut translation can be done� We showed how a subgradient used to generate
cuts in our algorithm is computed for the two�stage stochastic convex program� For
the two�stage and general stochastic convex programming problem we showed that the
proposed variant ensures certain performance guarantees� In particular� we provided
an estimate of the sample size needed to generate a cut ensuring that the near�central
cut variant of VCM will give an optimal solution of the stochastic convex program
with any desirable probability� It is also possible to analyze the cutting plane algo�
rithm using the analytic centers instead of the volumetric centers� The computations
at each iteration in the analytic center approach are simpler� however� in the worst
case analysis the algorithm requires O�nL�	 calls to the oracle ����� as compared with
O�nL	 calls for the volumetric center method� The practical evaluation of the two
approaches� and their overall e�ciency require a computational study� which we are
currently undertaking�
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