26,342 research outputs found

    Task-Driven Dictionary Learning

    Get PDF
    Modeling data with linear combinations of a few elements from a learned dictionary has been the focus of much recent research in machine learning, neuroscience and signal processing. For signals such as natural images that admit such sparse representations, it is now well established that these models are well suited to restoration tasks. In this context, learning the dictionary amounts to solving a large-scale matrix factorization problem, which can be done efficiently with classical optimization tools. The same approach has also been used for learning features from data for other purposes, e.g., image classification, but tuning the dictionary in a supervised way for these tasks has proven to be more difficult. In this paper, we present a general formulation for supervised dictionary learning adapted to a wide variety of tasks, and present an efficient algorithm for solving the corresponding optimization problem. Experiments on handwritten digit classification, digital art identification, nonlinear inverse image problems, and compressed sensing demonstrate that our approach is effective in large-scale settings, and is well suited to supervised and semi-supervised classification, as well as regression tasks for data that admit sparse representations.Comment: final draft post-refereein

    A GCV based Arnoldi-Tikhonov regularization method

    Full text link
    For the solution of linear discrete ill-posed problems, in this paper we consider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation for the computation of the regularization parameter at each iteration. We study the convergence behavior of the Arnoldi method and its properties for the approximation of the (generalized) singular values, under the hypothesis that Picard condition is satisfied. Numerical experiments on classical test problems and on image restoration are presented

    When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

    Full text link
    Conventionally, image denoising and high-level vision tasks are handled separately in computer vision. In this paper, we cope with the two jointly and explore the mutual influence between them. First we propose a convolutional neural network for image denoising which achieves the state-of-the-art performance. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We demonstrate that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network can generate more visually appealing results. To the best of our knowledge, this is the first work investigating the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online https://github.com/Ding-Liu/DeepDenoising.Comment: the 27th International Joint Conference on Artificial Intelligence (2018

    Deep Graph Laplacian Regularization for Robust Denoising of Real Images

    Full text link
    Recent developments in deep learning have revolutionized the paradigm of image restoration. However, its applications on real image denoising are still limited, due to its sensitivity to training data and the complex nature of real image noise. In this work, we combine the robustness merit of model-based approaches and the learning power of data-driven approaches for real image denoising. Specifically, by integrating graph Laplacian regularization as a trainable module into a deep learning framework, we are less susceptible to overfitting than pure CNN-based approaches, achieving higher robustness to small datasets and cross-domain denoising. First, a sparse neighborhood graph is built from the output of a convolutional neural network (CNN). Then the image is restored by solving an unconstrained quadratic programming problem, using a corresponding graph Laplacian regularizer as a prior term. The proposed restoration pipeline is fully differentiable and hence can be end-to-end trained. Experimental results demonstrate that our work is less prone to overfitting given small training data. It is also endowed with strong cross-domain generalization power, outperforming the state-of-the-art approaches by a remarkable margin

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. â„“1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy
    • …
    corecore