For the solution of linear discrete ill-posed problems, in this paper we
consider the Arnoldi-Tikhonov method coupled with the Generalized Cross
Validation for the computation of the regularization parameter at each
iteration. We study the convergence behavior of the Arnoldi method and its
properties for the approximation of the (generalized) singular values, under
the hypothesis that Picard condition is satisfied. Numerical experiments on
classical test problems and on image restoration are presented