250 research outputs found

    Biosignal‐based human–machine interfaces for assistance and rehabilitation : a survey

    Get PDF
    As a definition, Human–Machine Interface (HMI) enables a person to interact with a device. Starting from elementary equipment, the recent development of novel techniques and unobtrusive devices for biosignals monitoring paved the way for a new class of HMIs, which take such biosignals as inputs to control various applications. The current survey aims to review the large literature of the last two decades regarding biosignal‐based HMIs for assistance and rehabilitation to outline state‐of‐the‐art and identify emerging technologies and potential future research trends. PubMed and other databases were surveyed by using specific keywords. The found studies were further screened in three levels (title, abstract, full‐text), and eventually, 144 journal papers and 37 conference papers were included. Four macrocategories were considered to classify the different biosignals used for HMI control: biopotential, muscle mechanical motion, body motion, and their combinations (hybrid systems). The HMIs were also classified according to their target application by considering six categories: prosthetic control, robotic control, virtual reality control, gesture recognition, communication, and smart environment control. An ever‐growing number of publications has been observed over the last years. Most of the studies (about 67%) pertain to the assistive field, while 20% relate to rehabilitation and 13% to assistance and rehabilitation. A moderate increase can be observed in studies focusing on robotic control, prosthetic control, and gesture recognition in the last decade. In contrast, studies on the other targets experienced only a small increase. Biopotentials are no longer the leading control signals, and the use of muscle mechanical motion signals has experienced a considerable rise, especially in prosthetic control. Hybrid technologies are promising, as they could lead to higher performances. However, they also increase HMIs’ complex-ity, so their usefulness should be carefully evaluated for the specific application

    An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation

    Get PDF
    This paper proposes an electromyography (EMG)-based method for online force prediction and control of a lower limb rehabilitation robot. Root mean square (RMS) features of EMG signals from four muscles of the lower limb are used as the inputs to a support vector regression (SVR) model to estimate the human-robot interaction force. The autoregressive algorithm is utilized to construct the relationship between EMG signals and the impact force. Combining the force prediction model with the position-based impedance controller, the robot can be controlled to track the desired force of the lower limb, and so as to achieve an adaptive and active rehabilitation mode, which is adaptable to the individual muscle strength and movement ability. Finally, the method was validated through experiments on a healthy subject. The results show that the EMG-based SVR model can predict the lower limb force accurately and the robot can be controlled to track the estimated force by using simplified impedance model

    An EMG-based force prediction and control approach for robot-assisted lower limb rehabilitation

    Get PDF
    This paper proposes an electromyography (EMG)-based method for online force prediction and control of a lower limb rehabilitation robot. Root mean square (RMS) features of EMG signals from four muscles of the lower limb are used as the inputs to a support vector regression (SVR) model to estimate the human-robot interaction force. The autoregressive algorithm is utilized to construct the relationship between EMG signals and the impact force. Combining the force prediction model with the position-based impedance controller, the robot can be controlled to track the desired force of the lower limb, and so as to achieve an adaptive and active rehabilitation mode, which is adaptable to the individual muscle strength and movement ability. Finally, the method was validated through experiments on a healthy subject. The results show that the EMG-based SVR model can predict the lower limb force accurately and the robot can be controlled to track the estimated force by using simplified impedance model

    A survey on bio-signal analysis for human-robot interaction

    Get PDF
    The use of bio-signals analysis in human-robot interaction is rapidly increasing. There is an urgent demand for it in various applications, including health care, rehabilitation, research, technology, and manufacturing. Despite several state-of-the-art bio-signals analyses in human-robot interaction (HRI) research, it is unclear which one is the best. In this paper, the following topics will be discussed: robotic systems should be given priority in the rehabilitation and aid of amputees and disabled people; second, domains of feature extraction approaches now in use, which are divided into three main sections (time, frequency, and time-frequency). The various domains will be discussed, then a discussion of each domain's benefits and drawbacks, and finally, a recommendation for a new strategy for robotic systems

    An Advanced Adaptive Control of Lower Limb Rehabilitation Robot

    Get PDF
    Rehabilitation robots play an important role in the rehabilitation field, and effective human-robot interaction contributes to promoting the development of the rehabilitation robots. Though many studies about the human-robot interaction have been carried out, there are still several limitations in the flexibility and stability of the control system. Therefore, we proposed an advanced adaptive control method for lower limb rehabilitation robot. The method was devised with a dual closed loop control strategy based on the surface electromyography (sEMG) and plantar pressure to improve the robustness of the adaptive control for the rehabilitation robots. First, in the outer loop control, an advanced variable impedance controller based on the sEMG and plantar pressure was designed to correct robot's reference trajectory. Then, in the inner loop control, a sliding mode iterative learning controller (SMILC) based on the variable boundary saturation function was designed to achieve the tracking of the reference trajectory. The experiment results showed that, in the designed dual closed loop control strategy, a variable impedance controller can effectively reduce trajectory tracking errors and adaptively modify the reference trajectory synchronizing with the motion intention of patients; the designed sliding mode iterative learning controller can effectively reduce chattering in sliding mode control and excellently achieve the tracking of rehabilitation robot's reference trajectory. This study can improve the performance of the human-robot interaction of the rehabilitation robot system, and expand the application to the rehabilitation field

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level
    • 

    corecore