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Rehabilitation robots play an important role in the rehabilitation field, and effective

human-robot interaction contributes to promoting the development of the rehabilitation

robots. Though many studies about the human-robot interaction have been carried

out, there are still several limitations in the flexibility and stability of the control

system. Therefore, we proposed an advanced adaptive control method for lower limb

rehabilitation robot. The method was devised with a dual closed loop control strategy

based on the surface electromyography (sEMG) and plantar pressure to improve the

robustness of the adaptive control for the rehabilitation robots. First, in the outer

loop control, an advanced variable impedance controller based on the sEMG and

plantar pressure was designed to correct robot’s reference trajectory. Then, in the

inner loop control, a sliding mode iterative learning controller (SMILC) based on the

variable boundary saturation function was designed to achieve the tracking of the

reference trajectory. The experiment results showed that, in the designed dual closed

loop control strategy, a variable impedance controller can effectively reduce trajectory

tracking errors and adaptively modify the reference trajectory synchronizing with the

motion intention of patients; the designed sliding mode iterative learning controller can

effectively reduce chattering in slidingmode control and excellently achieve the tracking of

rehabilitation robot’s reference trajectory. This study can improve the performance of the

human-robot interaction of the rehabilitation robot system, and expand the application

to the rehabilitation field.

Keywords: lower limb rehabilitation robot, motion analysis, dual closed loop control, advanced variable impedance

control, sliding mode iterative learning control

INTRODUCTION

Recently, the rehabilitation robots have shown great advantages and have attracted more attention
in rehabilitation field, which can assist patients in rehabilitation training and effectively alleviate
the work pressure of the therapist (Lo et al., 2010). Currently, according to the training mode
in the rehabilitation process, the rehabilitation robots are mainly divided into two types: passive
training and active training. The former has been widely applied in clinic, and has brought some
effects for patients, but it lacks active participation of patients and may leads to unreasonable and
insufficient recovery. The latter can provide appropriate assistance according to patients’ active
motion intention and state, which contributes to the recovery of motor nerves and accelerate
the rebuilding of motor function. Evidence-based medicine also shows that active rehabilitation
training has better recovery effects on patients (Costandi, 2014). In the active rehabilitation training
process, the control strategy can be adjusted adaptively according to motion state of the patient.
Many studies on this have been done as following:
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In order to realize the active control of rehabilitation robot,
effective motion intention recognition and motion state analysis
is very important. Surface electromyography (sEMG), as an
information which can reflect the muscle status (Wu et al., 2010),
has been used in motion intention recognition (Amsüss et al.,
2014; He et al., 2015) and interaction control of human-robot
system (Meng et al., 2014). Human motion intention recognition
methods are mainly divided into discrete action classification
and continuous motion analysis (Kawase et al., 2014; Hou et al.,
2016). The discrete action classification method can be used in
the rehabilitation robot control system of early rehabilitation
training for patients, but the human-robot interaction level is
low, while the continuous motion analysis method can be used
in adjusting the rehabilitation robots’ degree of assistance in real-
time according to the patients’ motion intention and motion
ability. For example, the skeletal muscle model is used to predict
the multi-joint angle, but it is not suitable for interaction control
of the human-robot system since the model has many unknown
parameters and low accuracy (Buchanan et al., 2004; Meng
et al., 2015). The musculoskeletal model is simplified in some
researches, for example, joint-angle model was established by
introducing the muscle activity and time domain features (Koo
and Mak, 2005); the k-order dynamic model was designed by
using the LS-SVR method to predict the joint angle (Tang et al.,
2016). By establishing the regression model between sEMG and
joint angles, the prediction accuracy is significantly improved,
but the modeling takes long time, which may cause patient
muscle tired. Relevant studies have shown that the prediction
errors may significantly increase under the condition of muscle
fatigue, and it is difficult to guarantee the interaction control
security of the human-robot system (Li Z. et al., 2015). In
addition, in some studies, the sEMG signal was applied to predict
the muscle strength of the limb in order to realize the active
control of the rehabilitation robot (Duschau-Wicke et al., 2010),
but the prediction accuracy of muscle strength still need to be
improved. Therefore, it is necessary to comprehensively consider
the sEMG, joint angle and human-robot interaction force to
realize an accurate motion state analysis.

Furthermore, many studies concentrates on how to design
the adaptive control strategy of rehabilitation robot in the
active training process. The impedance control method, as a
commonly intelligent control method for rehabilitation robot,
have been introduced into rehabilitation robot control (Jezernik
et al., 2004; Xie et al., 2016), which can improve the interaction
performance of the human-robot system by adjust the assistance
level according to patients’ motion intention and motion state.
However, there are some limitations on the traditional constant
coefficient impedance control method because the parameters
of the human-robot system are preset and cannot be adjusted
according to the changes of the patient’s motion state in real time.
Therefore, the variable impedance control method was proposed
to adjust the gait training speed within the virtual channel
according to the plantar pressure (Kiguchi and Hayashi, 2012),
but the virtual channel varies from person to person. Because the
sEMG signals can describe the motion state and reflect changes
of human damping and stiffness in the human-robot system
(Rahman et al., 2014), it has been introduced to the impedance

control model in some researches. For example, muscle activity
information has been used in the rehabilitation robot control
system to adjust the control speed (Rahman et al., 2013), but
the performance of control method still need to be improved
when patient’s motion intention and human-robot interaction
force are variable. Therefore, it will be helpful to improve the
adaptive ability of rehabilitation robot control if the impedance
parameters of the control system are adjusted considering the
sEMG, joint angle and human-robot interaction force together.

In this paper, we proposed an advanced adaptive control
method for lower limb rehabilitation robot, which was designed
with a dual closed loop control strategy based on the sEMG
and plantar pressure. Firstly, we carried out motion analysis of
human lower limbs with least squares extreme learning machine
(LS-ELM) algorithm to obtain the desired trajectory of patients.
Then, the designed variable impedance control was used to
adaptively correct the desired trajectory according to patients’
active motion intention and obtained the reference trajectory of
the rehabilitation robot. Finally, the designed SMILC was used to
track the reference trajectory and realize the adaptive control of
rehabilitation robot, which can enhance the compliance and the
robustness of the lower limb rehabilitation robot control system
in training. This study can effectively improve the performance
of the human-robot interaction and the robustness of control in
the rehabilitation robot system.

HUMAN-ROBOT SYSTEM MODELING

To verify the adaptive control method of the lower limb
rehabilitation robot proposed in this study, we first established
a human-robot system model as the control object for further
study.

In this study, we chose the lower limb rehabilitation robot with
one degree of freedom as the object, which could complete the
horizontal extension and flexion movement through the rod and
the pedal, Figure 1 showed the model and simplified diagram of
the lower limb rehabilitation. In order to reduce the modeling
complexity, the rehabilitation robot and human lower limb are
considered to be a single unit and simplified as a two-link series
mechanism.

The Cartesian coordinate system is established with the hip
joint as the origin, as shown in (Figure 1B). The coordinate of
robot’s end point B is calculated through kinematics:

X =

[

L1 cos q1 + L2 cos(q1 + q2)
L1 sin q1 + L2 sin(q1 + q2)

]

(1)

where Li is the length and qi is the deflection angle of the i-th bar.
The deflection angle of the joint can be solved through inverse
kinematics:

q =











arcsin(
−L2s2

√

x2B + y2B

)+ arctan(
yB

xB
)

arcos(
L21 + L22 − x2B − y2B

2L1L2
)











(2)

Considering the influence of human movement on the human-
robot system, the mapping torque of the human active power in
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FIGURE 1 | Lower limb rehabilitation robot. (A) Lower limb rehabilitation robot model. (B) Diagram of lower limb rehabilitation robot.

FIGURE 2 | Adaptive control principle of the human-robot system.

robot space is used as part of the drive torque of the human-robot
system, and the dynamic model of the human-robot system can
be described as:

τ r + τ h
hr = M(q)q̈ + H (q, q̇) + G(q) (3)

where q =
[

q1 q2
]T

is the angle of hip joint and knee joint,M(q)
is the positive definite inertia matrix of the human-robot system,
H(q, q̇) is the Coriolis force and the centrifugal correlation
matrix, G(q) is the gravity matrix, τ h

hr
is the equivalent torque of

human active moment in robot space, and τr is the driving torque
provided by the robot.

The human active force and gravity are both considered in the
process of human-robot systemmodeling, which can improve the
accuracy of the human-robot system modeling and interaction
performance for the human-robot system. In this paper, a dual
closed loop control strategy based on the sEMG signals and
plantar pressure was proposed to realize the adaptive control of
the human-robot system.

ADAPTIVE CONTROL OF HUMAN-ROBOT
SYSTEM

Control Strategy of Human-Robot System
To improve the performance of human-robot interaction and
compliance control of rehabilitation robot, a dual closed loop
control strategy based on sEMG signals and the human-robot
interaction force (plantar pressure) is designed for the human-
robot system, which is consist of the variable impedance control
in the outer loop and the position control in the inner loop.
The variable impedance control model based on sEMG and the

plantar pressure is designed to obtain the reference trajectory
that reflects the patient’s motion intention and motion ability by
correcting the patient’s desired trajectory. Then, the sliding mode
iterative learning control algorithm based on a variable boundary
saturation function is designed to track the reference trajectory,
which performs steady trajectory tracking and improves the
robustness of the control system, as shown in Figure 2.

Desired Trajectory Generation Based on
Human Motion Intention
To obtain the desired trajectory of rehabilitation robot
synchronizing with the human motion intention, we established
a nonlinear motion analysis model between sEMG and the joint
angle. In order to ensure the real-time performance, the desired
trajectory was generated by using the least squares extreme
learning machine (LS-ELM) algorithm (Li Q. L. et al., 2015), as
shown in Figure 3.

The WL (Wave Length) is extracted as the sEMG feature:

WL =

N−1
∑

i=1

|ξi+1 − ξi| (4)

where ξi is the pretreated sEMG signal and N is the number of
sampling point over a period. The signals were filtered with a 1Hz
low-pass Butterworth filter, and then were normalized.

Taking the lower limb hip joint angle as an example. The
inputs of LS-ELM network are the sEMG features xj of the tibialis
anterior muscle and vastus rectus muscle, and the outputs are the
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hip joint angle θh◦

{

θh = [θ1, · · · , θi, · · · , θn]
xj =

[

xj,1, · · · , xj,i, · · · , xj,n
]

, j = 1, · · · , k
(5)

where n is the number of training sample and the k is the number
of input channels.

The hidden layer excitation function is sigmode function:

G(z) =
1

1+ e−z
(6)

FIGURE 3 | Principle of the desired trajectory generation of the human-robot

system.

The desired output model is:

θh =

L
∑

i=1

βiGi(αi × xi + bi) (7)

where L is the number of hidden layer nodes, ai =

[αi1,αi2, · · · ,αin]
T is the weight between the i-th hidden layer

node and input node, bi is the threshold of the i-th hidden
layer node, and βi = [βi1,βi2, · · · ,βiL]

T is the connection
weight between the output layer node and i-th hidden layer node.
Deforming the formula (7) with the existing methods (Huynh
et al., 2008; Xie et al., 2016; Du et al., 2017; Li et al., 2017) as:

θh = (x · a) · β (8)

According to the generalized inverse matrix theory of Moore-
Penrose: x×α = θhθh

+G−1(θhβ
+), set that Z = θh

+G−1(θhβ
+),

and we can obtain that:

x · α = θhZ (9)

According to the least squares principle, when Z is randomly
generated, the input weight α, offset b and output weight β are
obtained.

We conducted lower limb motion analysis by using the
LS-ELM (Least squares extreme learning machine) algorithm,
and obtained the desired trajectory of rehabilitation robot
synchronizing with the patient’s motion intention. The desired
trajectory was then used in the variable impedance control of
human-robot system to generate the reference trajectory.

Adaptive Compliance Control of the
Human-Robot System
To realize human-robot interaction and compliance control of
rehabilitation robot control system, we proposed an advanced

FIGURE 4 | Principle of variable impedance control.
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adaptive control method for lower limb rehabilitation robot.
The method was a dual closed loop structure with variable
impedance control in the outer loop and position control based
on SMILC in the inner loop, as shown in Figure 4. In the
outer loop, the variable impedance controller was designed with
impedance coefficients corrected in real-time by the lower limb
sEMG activity and muscle contribution rate, which can realize
the adaptive adjustment of reference trajectory of the robot
according to human stiffness and damping. In other words,
the desired rehabilitation robot trajectory was corrected by the
lower limb sEMG and human-robot interaction force, and the
reference trajectory was obtained synchronizing with patient’s
motion intention and ability. In the inner loop, a sliding mode
iterative learning control algorithm based on variable boundary
saturation function is designed for position controller to realize
the tracking of reference trajectory. The design of the algorithm
could reduce the sliding mode chattering effectively and improve
the robustness of the control system.

The Variable Impedance Control
The impedance control is a second order model that can
denote the ideal dynamic relationship between the robot terminal
position and human-robot interaction force. In other words, the
desired trajectory of rehabilitation robot is adjusted according to
the changes of the plantar pressure, and the reference trajectory
is generated according to patients’ motion ability. The specific
model is designed as follows:

Fint − Fd = Md(ẍd − ẍr)+ Bd(ẋd − ẋr)+ Kd(xd − xr) (10)

τ h
hr = JTFint (11)

whereMd, Bd, andKd are the inertia matrix, dampingmatrix and
stiffness matrix respectively; xd and xr are the terminal position
desired trajectory and reference trajectory of the rehabilitation
robot respectively; J is the Jacobian matrix; Fd is the ideal static
balance force of human-robot; Fint is human-robot interaction
force.

Since the lower limb active force of patient was small, the
effect of acceleration was neglected, and by only considering the
damping and stiffness coefficients, we could get that:

Fd − Fint = Bd(ẋd − ẋr)+ Kd(xd − xr) (12)

Formula (13) was obtained by the s transforming:

xe =
Fd − Fint

Bd·s+ Kd
(13)

where xe = xd − xr is the desired trajectory correction of the
rehabilitation robot. Therefore, the reference trajectory in joint
space xr = xd − xe was obtained by inverse kinematics as qr .

In rehabilitation training, the damping and stiffness of the
lower limb changes with human active movement, showing that
the change of muscle activity makes the traditional impedance
control model unable to meet the requirement of the active
compliance control of human-robot system. Therefore, muscle
activity was introduced to establish the nonlinear mapping

function and adjust the impedance parameters according to
human motion (Lloyd and Besier, 2003), making the reference
trajectory of rehabilitation robot more in line with the patient’s
movement ability.

The muscle activity is expressed as:

aj =
eAj

uj(t)
− 1

eAj − 1
(14)

where uj(t) is the sEMG signals after preprocessing and
normalization, and Aj is the nonlinear coefficient of the model
between sEMG and muscle activity, whose scope is−3 ∼ 0.

Lower limb activity η is defined as:

η =

N
∑

j=1

ωj·aj (15)

ωj =
RMSi(j)
N
∑

j=1
RMSi(j)

(16)

where ωj is the contribution rate of the j-th muscle, and RMSi(j)
is the mean square root of the sEMG signals.

The damping and stiffness coefficients of the impedance
equation can be adjusted:

Bd = sig(λB·η)·B0 (17)

Kd = sig(λK·η)·K0 (18)

where λB and λK are the damping coefficient and stiffness gain
coefficient respectively; B0 and K0 are the initial impedance
coefficients; Bd and Kd are the modified impedance coefficients;
and sig(∗) is the sigmoid function that limits Bd and Kd in the
scope of B0

2 ∼B0 and
K0
2 ∼K0.

The variable impedance control model, established based on
human lower limb sEMG, can adaptively adjust the impedance
parameter according to the changes of lower limb activity, and
correct the desired trajectory of the rehabilitation robot and
generate a reference trajectory, which is in greater agreement with
patients’ motion ability. Then, adaptive control of the human-
robot system is performed according to reference trajectory
tracking.

The Position Control Based on SMILC
Involuntary tremble of lower limb and periodic interference
caused by repetitive training may induce some unknown
uncertainties in the human-robot system model, which affect
the accuracy and stability of reference trajectory tracking of
the rehabilitation robot. Therefore, the sliding mode iterative
learning control algorithm based on the variable boundary
saturation function is proposed in position control. This
algorithm combines iterative learning control and sliding mode
variable structure control to suppress the inhibitory periodic and
non-periodic disturbances, and replaces the symbol function in
iterative learning control algorithm with a variable boundary
saturation function to improve the performance of rapidity and
robustness of the control system, as shown in Figure 5.
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Considering factors such as the modeling errors and
parameters variation of the human-robot system, the dynamic
model is corrected as:

M(q)q̈ + N(q, q̇) = u + τ h
hr +τd (19)

where N(q, q̇) = H (q, q̇) + G(q), u is the robot control torque,
and τ d is the repetitive and non-repetitive disturbance caused by
rehabilitation robot vibration and human tremble.

The overall control law of the k-th iteration is:

u(k) = u(k− 1)+ 1u(k) (20)

where 1u(k) is the sliding mode controller output in the k-th
iteration, u(k− 1) is the control variable of the (k-1)-th iteration,
and u(k) will be stored in memory as the input for the next
iteration.

The k-th error and error ratio of the control system are set as:

e =
[

qr1 − q1 qr2 − q2
]

T =
[

e1 e2
]

T (21)

ė(t) =
e(t)− e(t − 1)

1t
(22)

FIGURE 5 | Principle of inner loop position control.

where 1t is the time interval between two sampling points, and
the sliding mode function is designed as:

s = Ce+ ė =

[

c1e1 + ė1
c2e2 + ė2

]

(23)

where c1 and c2 are the sliding mode coefficients.

ṡ =

[

c1ė1 + ë1

c2ė2 + ë2

]

=

[

c1ė1

c2ė2

]

+

[

q̈r1
q̈r2

]

−M−1(u + τ h
hr + τ d − N) (24)

To reduce the chattering in sliding mode control, saturation
function based on nonlinear feedback is used to replace the
function based on linear feedback in the boundary layer, which
can enable the system state to reach the sliding surface in limited
time and improve the system robustness. Therefore, we defined
the exponential approach law with the saturation function based
on the nonlinear feedback:

ṡ = −εsat(s)− ks =

[

−ε1sat(s1)− ks1
−ε2sat(s2)− ks2

]

(25)

where ε1 and ε2 are strictly positive real numbers.

sat(s) =

{

sgn(s) |s| > Φ
(

s
Φ(s)

)α

|s| ≤ Φ
(26)

whereΦ is the boundary layer thickness,Φ > 0, 0 < α =
p
q < 1,

p and q are positive odd numbers. We combined formula (24)
with (25) and designed the control law:

u = M

([

c1ė1
c2ė2

]

+

[

q̈d1
q̈d2

]

+ εsat(s)+ ks

)

+ N − τ h
hr − τd (27)

Setting τ dc as the estimated value to replace τ d, whose upper and
lower bounds to τU and τL, and then put them into the formula
(25), we could get:

ṡ = −ε · sat(s)− ks− (τ̄d − τ̄dc) (28)

FIGURE 6 | Experimental paradigm and collection points.
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sṡ = −εs · sat(s)− ks− s(τ̄d − τ̄dc) (29)

where τ̄ d = M−1τ d and τ̄ dc = M−1τ dc. The Lyapunov function
was set:

V =
1

2
s2 (30)

For the stabilization of sliding mode control system, lim
t→0

sṡ < 0,

that is:

τ̄ dc =

{

τ̄L, s > 0
τ̄U , s < 0

(31)

Setting τ̄m =
τ̄U−τ̄L

2 , τ̄ p =
τ̄U+τ̄L

2 , and the sliding mode control
law is that:

u
(

k
)

= u
(

k− 1
)

+M

([

c1ė1

c2ė2

]

+

[

q̈r1
q̈r2

]

+ εsat(s)+ ks

)

+N − τ h
hr −M(τ̄ p − τ̄msgn(s)) (32)

The sliding mode iterative learning control algorithm, based on
the variable boundary saturation function, was used in tracking
the reference trajectory of the rehabilitation robot. By sensing
the human-robot interaction force and suppressing periodic
and non-periodic disturbances, we can quickly complete the
tracking of reference trajectory and improve system control
robustness, realizing adaptive compliance control of the human-
robot system.

RESULTS AND DISCUSSION

Subjects
Seven healthy subjects (aged 25 ± 2 years old) without any
previous history of neural or physiological disorders participated
in this experiment. Before the experiments, each subject provided
informed consent and was informed of the experimental
requirements. The experiment was approved by the ethical
review board of Yanshan University. To avoid the influence of
fatigue, all subjects were in a good state of mind and had not
undergone strenuous exercise with lower limb recently.

Experimental Protocol
In order to verify the effectiveness of the proposed method,
the horizontal extension and flexion movement of the lower
limb was chosen as the experimental paradigm. And seven
healthy subjects (S1∼S7, five males, two females, 25 ± 2 years
old) were selected for analysis to avoid secondary injuries in
patients by accident. The extension period was set to 5 s, and
the American Delsys company TrignoTM Wireless EMG system
was used to synchronously capture the subject’s right leg muscle
sEMG signals and joint angles, as shown in Figure 6. We chose
the Vastus Rectus Muscle (VR), Vastus Lateralis Muscle (VL),
Vastus Medialis Muscle (VM), Semitendinosus Muscle (SM),
Biceps Muscle (BM), and Tibialis Anterior Muscle (TA) as data
collection points. The researched method was conducted to
analyze the adaptive compliance control of the human-robot
system for all the subjects.

FIGURE 7 | Results of the joint angle and motion analysis based on sEMG.

Experimental Results
The Prediction of Joint Angles Based on sEMG
The joint angle in lower limb extension motion of the 7 subjects
was predicted by sEMG signals with the LS-ELM algorithm to
realize the continuous motion analysis. The sEMG signal and
the predicted joint angle of subject S2 in one training process
was shown in Figure 7. The sEMG signals of the VR and TA
showed obvious periodicity, and the predicted joint angle were
consistent with the actual joint angle. Table 1 shows the results
of predicted joint angles of the seven subjects, including the
training time, testing time and analysis errors. The average
training time of seven subjects’ motion is 6.9ms, the time for
motion recognization is 2.9ms, and the RMSE of hip joint and
knee joint angle are respectively 7.55◦ and 7.26◦, which meet the
requirement of the desired trajectory generation in real-time and
accuracy performance.

The Adjustment of Lower Limb Activity and

Impedance Coefficients
The curves of the lower limb activity and impedance coefficients
was computed according to formulas (15), (17), and (18)
separately, as shown in Figure 8. The curve of lower limb activity
indicated the motion state of the subject, and the tendency of
the impedance coefficients Bd and Kd were in similar with that
of the lower limb activity. For example, the value of lower limb
activity decreased in the duration of 1.8∼4 s, and the value of
the impedance coefficients Bd and Kd decreased also. Therefore,
the impedance coefficients can be adjusted according to human
motion activity and then can be used to correct the desired
trajectory. In this paper, the initial impedance coefficients were
set as B0 = 20 and K0 = 270, the gain coefficients were λB = 5
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TABLE 1 | The average time and RMSE results of motion analysis.

Subjects The average time (s) The RMSE of joint angle (deg)

Training time Analysis time The RMSE of hip joint angle The RMSE of knee joint angle

S1 0.0032 0.0022 7.59 8.01

S2 0.0114 0.0067 7.94 8.12

S3 0.0108 0.0039 6.56 6.64

S4 0.0106 0.0031 6.85 6.23

S5 0.0046 0.0015 8.66 8.34

S6 0.0012 0.0005 8.15 8.16

S7 0.0062 0.0026 7.12 7.45

Average 0.0069 0.0029 7.55 7.26

FIGURE 8 | Lower limb activity and impedance coefficients.

and λK = 10, and the impedance coefficients Bd and Kd were set
in (10, 20) and (134, 235) respectively.

The Correction of Desired Trajectory Based on

Impedance Controller
In this simulation experiment, the plantar pressure was set as
Fint = 9 ∗ sin(2π f · t) + 13, where f = 1.26, and the static
balance force is 10N. As shown in Figure 9, the plantar pressure
is less than the static balance force over 0∼2 s and the plantar
pressure is greater than the static balance force over 2∼5 s.
To verify the validity of the reference trajectory corrected by
variable impedance controller and compare it with the constant
impedance controller, the impedance coefficients were set as K
= 220, B = 14, as shown in Figure 10. From 0.8 to 2.5 s, the
subject’s lower limb is in the transition state from extension
to flexion, the plantar pressure is less than the static balance
force, and the value of reference trajectory is less than the
desired trajectory. From 3.5 to 4.5 s, the subject’s lower limb
is in the transition state from flexion to extension, the plantar
pressure is more than the static balance force, and the value
of the reference trajectory is higher than the desired trajectory.
Combining Figures 8, 10, we can find that from 1.5 to 2.5 s,
the lower limb activity is significantly enhanced, the stiffness

FIGURE 9 | Plantar pressure and static balance force.

coefficient is more than 220, the damping coefficient is more than
14, and the reference trajectory modified by variable impedance
controller is more closer to the desired trajectory compared with
that of the constant coefficients impedance control. In other
words, subjects are encouraged to perform a flex movement.
From 2.5 to 5 s, the subject’s lower limb activity decreased
and the stiffness and damping coefficients became smaller. The
deviation of trajectory correction is increased, which indicates
the compliance performance of the rehabilitation robot system,
and provides rehabilitation assistance that matches the subject’s
motion ability.

The Reference Trajectory Tracking of Rehabilitation

Robot
To verify the effectiveness of the sliding mode iterative learning
control based on the variable boundary saturation function, we
designed a controller to realize the terminal trajectory tracking
of the lower limb rehabilitation robot and compared it with
the PD iterative learning control algorithm (PDILC). In this
paper, the SMILC algorithm parameters are set as c1 = c2 = 50,

τ̄U =
[

2 2
]T
, τ̄L =

[

−2 −2
]T
, p = 1, q = 3, ε =

[

0.5 0.5
]T
,

and k = 10 and the number of iterations is i =15; the PDILC
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algorithm parameters are respectively set as kp =

[

50 0
0 50

]T

,

kp =

[

50 0
0 50

]T

, and the number of iterations is set as 15. The

tracking trajectory obtained by SMILC and PDILC algorithms are
shown in Figure 11 and the tracking errors of the algorithms are
shown in Figure 12.

FIGURE 10 | Trajectory of the rehabilitation robot.

FIGURE 11 | Tracking trajectory of the rehabilitation robot.

FIGURE 12 | Tracking errors of the rehabilitation robot.

As shown in Figure 11, with the change of the plantar pressure
and impedance coefficients, the controller can adaptively correct
the desired trajectory to obtain the reference trajectory, and
both the SMILC and PDILC algorithms can achieve stable
terminal trajectory tracking of the lower limb rehabilitation
robot. However, the SMILC algorithm tracking error is kept
within ±0.013m and the convergence time is 0.33 s, while
the tracking error of PDILC algorithm is ±0.025m and its
convergence time is 0.52 s, as shown in Figure 12, which indicate
that the SMILC algorithm proposed in this paper can track
the terminal trajectory with less time and smaller errors. Three
abnormal jitters can be seen in the trajectory tracking process,
which are related to the lower limb transition state from flexion
to extension.

The Statistical Analysis of the Trajectory Tracking

Error
To further validate the feasibility and effectiveness of SMILC,
we made a statistical analysis of the trajectory tracking error of
PDILC and SMILC. The statistic result of tracking errors were
shown in Figure 13. In Figure 13A, the statistic of tracking error
of SMILC was performed, which came from the 7 subjects’ lower
limb training with rehabilitation robot. Each subject’s tracking
trajectory was repeated 10 times with SMILC. As it can be seen,
all of 7 subject’s tracking errors [F(6, 3) = 1.49, p= 0.191] vary up

FIGURE 13 | The statistic result of tracking errors for PDILC and SMILC.

(A) The tracking error of 7 subjects for SMILC. (B) Comparison of tracking

error between PDILC and SMILC.
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or down at zero and have little significant difference each other,
which means that based on the proposed SMILC algorithms, the
terminal trajectory tracking can be realized with little error for
different subjects. In Figure 13B, taking subject S2 as an example,
the mean and variance of the absolute value of the tracking errors
were calculated separately for PDILC and SMILC. As it can be
seen, there is significant difference between PDILC and SMILC
[F(1, 18) = 13.71, p= 0.000], which is represented by “∗”, as shown
in Figure 13B, and the mean and variance of the absolute value
of the tracking errors for PDILC are obviously bigger than that
for SMILC, which means that more stable trajectory tracking is
realized based on the SMILC.

CONCLUSION

In this paper, we proposed an advanced adaptive control method,
which was devised with a dual closed loop control strategy based
on the sEMG and plantar pressure. The variable impedance
controller was designed to obtain the reference trajectory of
the rehabilitation robot, making the reference trajectory more
closer to the desired trajectory of patients. And the sliding
model iterative learning control was designed with the variable
boundary saturation function to track the terminal trajectory
of rehabilitation robot. The results showed that the proposed
control strategy could adjust the reference trajectory according
to the motion intention of subject and realize the trajectory
tracking more effectively. The advanced adaptive control method

can improve the performance of the human-robot interaction

and the robustness of the control system for lower limb
rehabilitation robot. In addition, the proposed strategy could
also be applied in the upper limb rehabilitation robots and
others. Our future work will focus on the application of the
proposed adaptive control method to the rehabilitation robot for
patients.
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