1,419 research outputs found

    Connection of renewable energy sources to the power grid

    Get PDF
    Diplomová práce se zabývá obnovitelnými zdroji energie a druhy, které se nejvíce využívají. Teoretická část je věnována obecným informacím o obnovitelných zdrojích energie, typech elektráren a v další části se zaměřuje na fotovoltaické elektrárny. Praktická část ilustruje připojení fotovoltaické elektrárny do sítě vysokého napětí (22kV) ve Středočeském kraji. Dále jsou v práci uvedena pravidla pro připojení rozptýlených výroben elektřiny z obnovitelných zdrojů energie do distribuční sítě, napěťový profil podél vedení před a po připojení FVE do distribuční sítě.This thesis deals with the renewable energy and its main types. The theoretical part is about the general information on renewable energy sources, types of power plants, focusing on photovoltaic power plants. The practical part illustrates the connection of photovoltaic power plant to a medium voltage network (22kV) in Central Bohemia region. The following part is devoted to the rules for connecting dispersed energy sources to the distribution network, voltage profile along the lines before and after connecting the PVPP's into the distribution network

    Doctor of Philosophy

    Get PDF
    dissertationDiffractive optics, an important part of modern optics, involves the control of optical fields by thin microstructured elements via diffraction and interference. Although the basic theoretical understanding of diffractive optics has been known for a long time, many of its applications have not yet been explored. As a result, the field of diffractive optics is old and young at the same time. The interest in diffractive optics originates from the fact that diffractive optical elements are flat and lightweight. This makes their applications into compact optical systems more feasible compared to bulky refractive optics. Although these elements demonstrate excellent diffraction efficiency for monochromatic light, they fail to generate complex intensity profiles under broadband illumination. This is due to the fact that the degrees-of-freedom in these elements are insufficient to overcome their strong chromatic aberration. As a result, despite their so many advantages over refractive optics, their applications are somewhat limited in broadband systems. In this dissertation, a recently developed diffractive optical element, called a polychromat, is demonstrated for several broadband applications. The polychromat is comprised of linear "grooves" or square "pixels" with feature size in the micrometer scale. The grooves or pixels can have multiple height levels. Such grooved or pixelated structures with multilevel topography provide enormous degrees-of-freedom which in turn facilitates generation of complex intensity distributions with high diffraction efficiency under broadband illumination. Furthermore, the super-wavelength feature size and low aspect ratio of this micro-optic make its fabrication process simpler. Also, this diffractive element is not polarization sensitive. As a result, the polychromat holds the potential to be used in numerous technological applications. Throughout this dissertation, the broadband operation of the polychromat is demonstrated in four different areas, namely, photovoltaics, displays, lenses and holograms. Specifically, we have developed a polychromat-photovoltaic system which facilitates better photon-to-electron conversion via spectrum splitting and concentration, a modified liquid crystal display (LCD) that offers higher luminance compared to a standard LCD, a cylindrical lens that demonstrates super-achromatic focusing over the entire visible band, a planar diffractive lens that images over the visible and near-IR spectrum and broadband transmission holograms that project complex full-color images with high efficiency. In each of these applications, a unique figure of merit was defined and the height topography of the polychromat was optimized to maximize the figure of merit. The optimization was achieved with the aid of scalar diffraction theory and a modified version of direct binary search algorithm. Single step grayscale lithography was developed and optimized to fabricate these devices with the smallest possible fabrication errors. Rigorous characterization of these systems demonstrated broadband performance of the polychromat in all of the applications

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Daylighting and Thermo-Electrical performance of an Autonomous Suspended Particle Device Evacuated Glazing

    Get PDF
    Suspended particle device (SPD) glazing is an AC powered switchable glazing. PV powered SPD evacuated (vacuum) glazing was proposed with the potential of reducing the heating demand, cooling demand and artificial lighting demand of a building. To achieve an autonomous SPD vacuum glazing, semi empirical simulation and outdoor characterisation was explored in this thesis. Transmission of SPD glazing (area 0.058 m2) varied from 5% when opaque to 55% when transparent in the presence of 110 V, 0.07 W AC supply was characterised in outdoor test cell in Dublin. The SPD glazing has variable spectral transmission in the presence of variable applied voltage, with high transmission in the near infrared between 700 to 1100 nm. 30% transparent SPD glazing in a particular room configuration provided a constant 4% daylight factor with acceptable glare. Use of a 0.34 m2 vertical photovoltaic (PV) panel was investigated to self-power (autonomous) an SPD glazing system. The dynamic behaviour of the PV-powered SPD glazing gave good switching times that would maintain occupant comfort. It was observed that SPD material inside a glazing unit absorbs solar radiation giving a high glazing surface temperature. For this SPD glazing alone, the overall heat transfer coefficient (U-value) was found to be 5.9 W/m2K typical of a single glazing. A SPD switchable double-glazing, was found to have a U-value of 1.99 W/m2K. A vacuum glazing was attached to the SPD glazing was found to have a U-value of 1.14 W/m2K

    Intelligent windows for electricity generation: A technologies review

    Get PDF
    Buildings are responsible for over 40% of total primary energy consumption in the US and EU and therefore improving building energy efficiency has significant potential for obtaining net-zero energy buildings reducing energy consumption. The concurrent demands of environmental comfort and the need to improve energy efficiency for both new and existing buildings have motivated research into finding solutions for the regulation of incoming solar radiation, as well as ensuring occupant thermal and visual comfort whilst generating energy onsite. Windows as building components offer the opportunity of addressing these issues in buildings. Building integration of photovoltaics permits building components such as semi-transparent façade, skylights and shading devices to be replaced with PV. Much progress has been made in photovoltaic material science, where smart window development has evolved in areas such as semi-transparent PV, electrochromic and thermochromic materials, luminescent solar concentrator and the integration of each of the latter technologies to buildings, specifically windows. This paper presents a review on intelligent window technologies that integrate renewable energy technologies with energy-saving strategies contributing potential solutions towards sustainable zero-energy buildings. This review is a comprehensive evaluation of intelligent windows focusing on state-of-the-art development in windows that can generate electricity and their electrical, thermal and optical characteristics. This review provides a summary of current work in intelligent window design for energy generation and gives recommendations for further research opportunities

    Recent Advances in Adaptive Liquid Crystal Lenses

    Get PDF
    An adaptive-focus lens is a device that is capable of tuning its focal length by means of an external stimulus. Numerous techniques for the demonstration of such devices have been reported thus far. Moving beyond traditional solutions, several new approaches have been proposed in recent years based on the use of liquid crystals, which can have a great impact in emerging applications. This work focuses on the recent advances in liquid crystal lenses with diameters larger than 1 mm. Recent demonstrations and their performance characteristics are reviewed, discussing the advantages and disadvantages of the reported technologies and identifying the challenges and future prospects in the active research field of adaptive-focus liquid crystal (LC) lenses.This work was supported by Comunidad de Madrid and FEDER Program under grant S2018/NMT-4326 and the Ministerio de Economía y Competitividad of Spain (TEC2013-47342-C2-2-R)

    A review of advanced architectural glazing technologies for solar energy conversion and intelligent daylighting control

    Get PDF
    Efficient management of solar radiation through architectural glazing is a key strategy for achieving a comfortable indoor environment with minimum energy consumption. Conventional glazing consisting of a single or multiple glass pane(s) exhibits high visible light transmittance and solar heat gain coefficient, which can be a double-edged sword, i.e., it allows sufficient sunlight to enter the building interior space for passive heating and lighting; on the other hand, it can cause glare discomfort and large cooling energy consumption. Among the various advanced glazing technologies being developed, Building Integrated Photovoltaic (BIPV) glazing has a prominent position due to its ability to reduce cooling load and visual discomfort while simultaneously generating electricity from sunlight. Recent years have witnessed remarkable advances in low-concentration optics such as Dielectric based Compound Parabolic Concentrators (DiCPCs), with a growing interest in the development of Building Integrated Concentrating Photovoltaic (BICPV) glazing to improve light harvesting and electric power output. One of the challenges faced by traditional BIPV glazing systems is the lack of dynamic control over daylight and solar heat transmission to cope with variations in weather conditions and seasonal heating/cooling demands of buildings. A promising solution is to integrate an optically switchable smart material into a BIPV glazing system, which enables dynamic daylighting control in addition to solar power conversion. Thermotropic (TT) hydrogel materials such as poly(N-isopropylacrylamide) (PNIPAm) and Hydroxypropyl Cellulose (HPC) are potential candidates for hybrid BIPV smart glazing applications, due to their unique features such as high visible transparency (in the clear state), strong light-scattering capability (in the translucent state) and large solar energy modulation. This paper reviews various types of electricity-generating glazing technologies including BIPV glazing and BICPV glazing, as well as smart glazing technologies with a particular focus on TT hydrogel integrated glazing. The characteristics, benefits and limitations of hybrid BIPV smart glazing are also evaluated. Finally, the challenges and research opportunities in this emerging field are discussed

    A study of the solar energy systems and storage devices

    Get PDF
    Includes abstract.Includes bibliographical references.Following the 2008 severe electricity shortage in South Africa, domestic and industrial users faced incessant periods of blackouts. It is generally believed to be associated with lack of generation capacity. Since then research efforts have been directed towards boosting the generation capacity of the South African network by investing in a mix of power generation projects which include coal, nuclear and renewable energy schemes such as solar and wind. The renewable energy resources are considered a more viable option because of their many advantages such as lower greenhouse gas emissions, inexhaustible, reliable and even cheaper energy cost on the long term. Africa has huge potentials of solar power because of the abundance of direct sunshine in most days of the year. The rising cost of the fossil electricity has made the solar power an attractive option bearing in mind that the cost of the solar power has plummeted steadily in the past few years. Two main technologies are prevalent in the solar power research. These are photovoltaic (PV) systems and the concentrated solar power (CSP). The PV systems are made of solar panels and power electronic circuits. They are mostly economical in small residential units. The CSPs on the other hand which are made of solar field, thermal storage and steam turbine/generator units are economical only in large scale. In this thesis, a 2.5 kW Residential PV system and a 100 MW Molten Salt Power Tower Concentrated Solar Power were developed. The technical model of the photovoltaic panel and the power electronic circuits that connect it to the grid were also developed with Matlab/Simulink while the economic simulation of the PV, as well as the Concentrated Solar Power were carried out with Systems Advisor Model (SAM) using the climate data of Cape Town. The simulation results of this work compared the cost of PV electricity first with Renewable Energy Feed-in Tariff (REFIT) of National Energy Regulator of South Africa (NERSA), and then with the residential tariff charged by the City of Cape Town. Also the cost of electricity using CSP is compared NERSA`s REFIT. Finally the cost of PV electricity is compared with that of CSP. We therefore conclude that, with government incentives, CSP and PV are viable technologies however electricity produced by CSP is cheaper than that of the PV

    Investigation On PVT Performance Under Low Intensity Irradiation

    Get PDF
    This project is focused on modeling and analyzing photovoltaic thermal water collector. PV solar panel with the solar thermal collector and without thermal collector will be presented and analyzed. This project used water as the coolant of the PV solar panel. Naturally ventilated panels and water cooled panels can provide high efficiency. The first objective of this project is to build PVT water collector and analyzing the model. The second objective of the project is to investigate whether a PV solar panel with thermal has high output than PV solar panel without or not. Microcontroller data acquisition was built to measure the data from the PVT system. All the electrical parameter will be saved on micro SD card for every 5 minutes using data logger developed using Arduino. The data Solar panel testing is conducted to observe the I-V characteristics of solar panel for both PV with and without a thermal collector. System testing is conducted within 5 hours to obtain output current, output voltage and maximum output power of both conditions of PV solar panel. Both performance of PV solar panel with and without thermal collector is compare analyzed. The result from I-V characteristics shown open circuit voltage increase about 4% and short circuit decrease about 2%. The result from system testing shown output power increase about 6% and temperature of solar panel decrease about 6% when water thermal collector have been used as a cooling system

    Low aberration and fast switching microlenses based on a novel liquid crystal mixture

    Get PDF
    In this work, we present a novel kind of LC mixture (5005) for photonic applications, with emphasis on a LC microlens array. This mixture is a nematic composition of three different families of rod like liquid crystals. The key is that frequency dependence of parallel component of electric permittivity is different for each component, resulting in a strongly dependent on frequency dielectric anisotropy. The unique properties of this LC mixture are demonstrated to work in a frequency modulated LC microlens array. A hole patterned structure is used. Thanks to the special characteristics of this mixture, the microlenses are reconfigurable by low voltage signals with variable frequency. This is a first demonstration of a LC lens with tunable focal length by frequency in an analog way. The result of this type of control are microlenses with low aberrations and fast switching (the frequency switching is around 10 times faster than amplitude modulation). The tunability with frequency and the fast switching, makes this liquid crystal of special interest not only for microlenses but for all kind of optical phase modulators.This work was supported by the Research and Development Program through the Comunidad de Madrid (SINFOTON S2013/MIT-2790), the Ministerio de Economía y Competitividad of Spain (TEC2013-47342-C2-2-R) and the funding from Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) for the Project TEC2016-77242-C3-1-R AEI/FEDER,UE. N Bennis and P Kula acknowledge the Polish Ministry of Science and Higher Education the Statutory Activity PBS-654 and PBS-651 of Military University of Technology respectively
    corecore