173 research outputs found

    Prediction of scoliosis curve type based on the analysis of trunk surface topography

    Get PDF
    Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.CIHR / IRS

    Non invasive classification system of scoliosis curve types using least-squares support vector machines

    Get PDF
    Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.IRSC / CIH

    Towards Non Invasive Diagnosis of Scoliosis Using Semi-supervised Learning Approach

    Get PDF
    Collection : Lecture notes in computer science ; vol. 6112In this paper, a new methodology for the prediction of scoliosis curve types from non invasive acquisitions of the back surface of the trunk is proposed. One hundred and fifty-nine scoliosis patients had their back surface acquired in 3D using an optical digitizer. Each surface is then characterized by 45 local measurements of the back surface rotation. Using a semi-supervised algorithm, the classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new samples, the classifier succeeded in classifying correctly 87.0% of the data. After reducing the number of labeled training samples to 12, the behavior of the resulting classifier tends to be similar to the reference case where the classifier is trained only with the maximum number of available labeled data. Moreover, the addition of unlabeled data guided the classifier towards more generalizable boundaries between the classes. Those results provide a proof of feasibility for using a semi-supervised learning algorithm to train a classifier for the prediction of a scoliosis curve type, when only a few training data are labeled. This constitutes a promising clinical finding since it will allow the diagnosis and the follow-up of scoliotic deformities without exposing the patient to X-ray radiations.CIHR / IRS

    Scoliosis curve type classification from 3D trunk image

    Get PDF
    Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.IRSC / CIH

    Scoliosis Follow-Up Using Noninvasive Trunk Surface Acquisition

    Full text link
    Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.IRSC / CIH

    Identifying the Severity of Adolescent Idiopathic Scoliosis During Gait by Using Machine Learning

    Get PDF
    La scoliose idiopathique de l'adolescent (SIA) est une déformation de la colonne vertébrale dans les trois plans de l’espace objectivée par un angle de Cobb ≥ 10°. Celle-ci affecte les adolescents âgés entre 10 et 16 ans. L’étiologie de la scoliose demeure à ce jour inconnue malgré des recherches approfondies. Différentes hypothèses telles que l’implication de facteurs génétiques, hormonaux, biomécaniques, neuromusculaires ou encore des anomalies de croissance ont été avancées. Chez ces adolescents, l'ampleur de la déformation de la colonne vertébrale est objectivée par mesure manuelle de l’angle de Cobb sur radiographies antéropostérieures. Cependant, l’imprécision inter / intra observateur de cette mesure, ainsi que de l’exposition fréquente (biannuelle) aux rayons X que celle-ci nécessite pour un suivi adéquat, sont un domaine qui préoccupe la communauté scientifique et clinique. Les solutions proposées à cet effet concernent pour beaucoup l'utilisation de méthodes assistées par ordinateur, telles que des méthodes d'apprentissage machine utilisant des images radiographiques ou des images du dos du corps humain. Ces images sont utilisées pour classer la sévérité de la déformation vertébrale ou pour identifier l'angle de Cobb. Cependant, aucune de ces méthodes ne s’est avérée suffisamment précise pour se substituer l’utilisation des radiographies. Parallèlement, les recherches ont démontré que la scoliose modifie le schéma de marche des personnes qui en souffrent et par conséquent également les efforts intervertébraux. C’est pourquoi, l'objectif de cette thèse est de développer un modèle non invasif d’identification de la sévérité de la scoliose grâce aux mesures des efforts intervertébraux mesurés durant la marche. Pour atteindre cet objectif, nous avons d'abord comparé les efforts intervertébraux calculés par un modèle dynamique multicorps, en utilisant la dynamique inverse, chez 15 adolescents atteints de SIA avec différents types de courbes et de sévérités et chez 12 adolescents asymptomatiques (à titre comparatif). Par cette comparaison, nous avons pu objectiver que les efforts intervertébraux les plus discriminants pour prédire la déformation vertébrale étaient la force et le couple antéro-postérieur et la force médio-latérale. Par la suite, nous nous sommes concentrés sur la classification de la sévérité de la déformation vertébrale de 30 AIS ayant une courbure thoraco-lombaire / lombaire. Pour ce faire, nous avons testé différents modèles de classification. L'angle de Cobb a été identifié en exécutant différents modèles de régression. Les caractéristiques (features) servant à alimenter les algorithmes d'entraînement ont été choisies en fonction des efforts intervertébraux les plus pertinents à la déformation vertébrale au niveau de la charnière lombo-sacrée (vertèbres allantes de L5-S1). Les précisions les plus élevées pour la classification exécutant différents algorithmes ont été obtenues par un algorithme de classification d'ensemble comprenant les “K-nearest neighbors”, “Support vector machine”, “Random forest”, “multilayer perceptron”, et un modèle de “neural networks” avec une précision de 91.4% et 93.6%, respectivement. De même, le modèle de régression par “Decision tree” parmi les autres modèles a obtenu le meilleur résultat avec une erreur absolue moyenne égale à 4.6° de moyenne de validation croisée de 10 fois. En conclusion, nous pouvons dire que cette étude démontre une relation entre la déformation de la colonne vertébrale et les efforts intervertébraux mesurés lors de la marche. L'angle de Cobb a été identifié à l'aide d'une méthode sans rayonnement avec une précision prometteuse égale à 4.6°. Il s’agit d’une amélioration majeure par rapport aux méthodes précédemment proposées ainsi que par rapport à la mesure classique réalisée par des spécialistes présentant une erreur entre 5° et 10° (ceci en raison de la variation intra/inter observateur). L’algorithme que nous vous présentons peut être utilisé comme un outil d'évaluation pour suivre la progression de la scoliose. Il peut être considéré comme une alternative à la radiographie. Des travaux futurs devraient tester l'algorithme et l’adapter pour d’autres formes de SIA, telles que les scolioses lombaire ou thoracolombaire.----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a 3D deformation of the spine and rib cage greater than 10° that affects adolescents between the ages of 10 and 16 years old. The true etiology is unknown despite extensive research and investigation. However, different theories such as genetic and hormonal factors, growth abnormalities or biomechanical and neuromuscular reasons have been proposed as possible causes. The magnitude of spinal deformity in AIS is measured by the Cobb angle in degrees as the gold standard through the X-rays by specialists. The inter/intra observer error and the cumulative exposure to radiation, however, are sources of increasing concern among researchers with regards to the accuracy of manual measurement. Proposed solutions have therefore, focused on using computer-assisted methods such as Machine Learning using X-ray images, and/or trunk images to classify the severity of spinal deformity or to identify the Cobb angle. However, none of the proposed methods have shown the level of accuracy required for use as an alternative to X-rays. Meanwhile, scoliosis has been recognized as a pathology that modifies the gait pattern, subsequently impinging upon intervertebral efforts. The present thesis aims to develop a radiation-free model to identify the severity of idiopathic scoliosis in adolescents based on the intervertebral efforts during gait. To accomplish this objective, we compared the intervertebral efforts computed using a multibody dynamics model, by way of inverse dynamics, among 15 adolescents with AIS having different curve types and severities, as well as 12 typically developed adolescents. This resulted in the identification of the most relevant intervertebral efforts influenced by spinal deformity: mediolateral (ML) force; anteroposterior (AP) force; and torque. Additionally, we focused on the classification of the severity of spinal deformity among 30 AIS with thoracolumbar/lumbar curvature, testing different classification models. Lastly, the Cobb angle was identified running regression models. The features to feed training algorithms were chosen based on the most relevant intervertebral efforts to the spinal deformity on the lumbosacral (L5-S1) joint. The highest accuracies for the classification were obtained by the ensemble classifier algorithm, including “K-nearest neighbors”, “support vector machine”, “random forest”, and “multilayer perceptron”, as well as a neural network model with an accuracy of 91.4% and 93.6%, respectively. Likewise, the “decision tree regression” model achieved the best result with a mean absolute error equal to 4.6 degrees of an averaged 10-fold cross-validation. This study shows a relation between spinal deformity and the produced intervertebral efforts during gait. The Cobb angle was identified using a radiation-free method with a promising accuracy, providing a mean absolute error of 4.6°. Compared to measurement variations, ranging between 5° and 10° in the manual Cobb angle measurements by specialists, the proposed model provided reliable accuracy. This algorithm can be used as an assessment tool, alternative to the X-ray radiography, to follow up the progression of scoliosis. As future work, the algorithm should be tested and modified on AIS with other types of spine curvature than lumbar/thoracolumbar

    The use of artificial intelligence algorithms to guide surgical treatment of adolescent idiopathic scoliosis

    Get PDF
    La scoliose idiopathique de l’adolescent (SIA) est une déformation tri-dimensionelle du rachis. Son traitement comprend l’observation, l’utilisation de corsets pour limiter sa progression ou la chirurgie pour corriger la déformation squelettique et cesser sa progression. Le traitement chirurgical reste controversé au niveau des indications, mais aussi de la chirurgie à entreprendre. Malgré la présence de classifications pour guider le traitement de la SIA, une variabilité dans la stratégie opératoire intra et inter-observateur a été décrite dans la littérature. Cette variabilité s’accentue d’autant plus avec l’évolution des techniques chirurgicales et de l’instrumentation disponible. L’avancement de la technologie et son intégration dans le milieu médical a mené à l’utilisation d’algorithmes d’intelligence artificielle informatiques pour aider la classification et l’évaluation tridimensionnelle de la scoliose. Certains algorithmes ont démontré être efficace pour diminuer la variabilité dans la classification de la scoliose et pour guider le traitement. L’objectif général de cette thèse est de développer une application utilisant des outils d’intelligence artificielle pour intégrer les données d’un nouveau patient et les évidences disponibles dans la littérature pour guider le traitement chirurgical de la SIA. Pour cela une revue de la littérature sur les applications existantes dans l’évaluation de la SIA fut entreprise pour rassembler les éléments qui permettraient la mise en place d’une application efficace et acceptée dans le milieu clinique. Cette revue de la littérature nous a permis de réaliser que l’existence de “black box” dans les applications développées est une limitation pour l’intégration clinique ou la justification basée sur les évidence est essentielle. Dans une première étude nous avons développé un arbre décisionnel de classification de la scoliose idiopathique basé sur la classification de Lenke qui est la plus communément utilisée de nos jours mais a été critiquée pour sa complexité et la variabilité inter et intra-observateur. Cet arbre décisionnel a démontré qu’il permet d’augmenter la précision de classification proportionnellement au temps passé à classifier et ce indépendamment du niveau de connaissance sur la SIA. Dans une deuxième étude, un algorithme de stratégies chirurgicales basé sur des règles extraites de la littérature a été développé pour guider les chirurgiens dans la sélection de l’approche et les niveaux de fusion pour la SIA. Lorsque cet algorithme est appliqué à une large base de donnée de 1556 cas de SIA, il est capable de proposer une stratégie opératoire similaire à celle d’un chirurgien expert dans prêt de 70% des cas. Cette étude a confirmé la possibilité d’extraire des stratégies opératoires valides à l’aide d’un arbre décisionnel utilisant des règles extraites de la littérature. Dans une troisième étude, la classification de 1776 patients avec la SIA à l’aide d’une carte de Kohonen, un type de réseaux de neurone a permis de démontrer qu’il existe des scoliose typiques (scoliose à courbes uniques ou double thoracique) pour lesquelles la variabilité dans le traitement chirurgical varie peu des recommandations par la classification de Lenke tandis que les scolioses a courbes multiples ou tangentielles à deux groupes de courbes typiques étaient celles avec le plus de variation dans la stratégie opératoire. Finalement, une plateforme logicielle a été développée intégrant chacune des études ci-dessus. Cette interface logicielle permet l’entrée de données radiologiques pour un patient scoliotique, classifie la SIA à l’aide de l’arbre décisionnel de classification et suggère une approche chirurgicale basée sur l’arbre décisionnel de stratégies opératoires. Une analyse de la correction post-opératoire obtenue démontre une tendance, bien que non-statistiquement significative, à une meilleure balance chez les patients opérés suivant la stratégie recommandée par la plateforme logicielle que ceux aillant un traitement différent. Les études exposées dans cette thèse soulignent que l’utilisation d’algorithmes d’intelligence artificielle dans la classification et l’élaboration de stratégies opératoires de la SIA peuvent être intégrées dans une plateforme logicielle et pourraient assister les chirurgiens dans leur planification préopératoire.Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spine. Management of AIS includes conservative treatment with observation, the use of braces to limit its progression or surgery to correct the deformity and cease its progression. Surgical treatment of AIS remains controversial with respect to not only indications but also surgical strategy. Despite the existence of classifications to guide AIS treatment, intra- and inter-observer variability in surgical strategy has been described in the literature. Technological advances and their integration into the medical field have led to the use of artificial intelligence (AI) algorithms to assist with AIS classification and three-dimensional evaluation. With the evolution of surgical techniques and instrumentation, it is probable that the intra- and inter-observer variability could increase. However, some AI algorithms have shown the potential to lower variability in classification and guide treatment. The overall objective of this thesis was to develop software using AI tools that has the capacity to integrate AIS patient data and available evidence from the literature to guide AIS surgical treatment. To do so, a literature review on existing computer applications developed with regards to AIS evaluation and management was undertaken to gather all the elements that would lead to usable software in the clinical setting. This review highlighted the fact that many applications use a non-descript “black box” between input and output, which limits clinical integration where management based on evidence is essential. In the first study, we developed a decision tree to classify AIS based on the Lenke scheme. The Lenke scheme was popular in the past, but has recently been criticized for its complexity leading to intra and inter-observer variability. The resultant decision tree demonstrated an ability to increase classification accuracy in proportion to the time spent classifying. Importantly, this increase in accuracy was independently of previous knowledge about AIS. In the second study, a surgical strategy rule-based algorithm was developed using rules extracted from the literature to guide surgeons in the selection of the approach and levels of fusion for AIS. When this rule-based algorithm was tested against a database of 1,556 AIS cases, it was able to output a surgical strategy similar to the one undertaken by an expert surgeon in 70% of cases. This study confirmed the ability of a rule-based algorithm based on the literature to output valid surgical strategies. In the third study, classification of 1,776 AIS patients was undertaken using Kohonen Self-Organizing-Maps (SOM), which is a kind of neural network that demonstrates there are typical AIS curve types (i.e: single curves and double thoracic curves) for which there is little variability in surgical treatment when compared to the recommendations from the Lenke scheme. Other curve types (i.e: multiple curves or in transition zones between typical curves) have much greater variability in surgical strategy. Finally, a software platform integrating all the above studies was developed. The interface of this software platform allows for: 1) the input of AIS patient radiographic measurements; 2) classification of the curve type using the decision tree; 3) output of surgical strategy options based on rules extracted from the literature. A comparison of surgical correction obtained by patients receiving surgical treatment suggested by the software showed a tendency to obtain better balance -though non-statistically significant - than those who were treated differently from the surgical strategies outputted by the software. Overall, studies from this thesis suggest that the use of AI algorithms in the classification and selection of surgical strategies for AIS can be integrated in a software platform that could assist the surgeon in the planning of appropriate surgical treatment

    Analysis of scoliosis trunk deformities using ICA

    Get PDF
    This paper describes a method for analyzing scoliosis trunk deformities using Independent Component Analysis (ICA). Our hypothesis is that ICA can capture the scoliosis deformities visible on the trunk. Unlike Principal Component Analysis (PCA), ICA gives local shape variation and assumes that the data distribution is not normal. 3D torso images of 56 subjects including 28 patients with adolescent idiopathic scoliosis and 28 healthy subjects are analyzed using ICA. First, we remark that the independent components capture the local scoliosis deformities as the shoulder variation, the scapula asymmetry and the waist deformation. Second, we note that the different scoliosis curve types are characterized by different combinations of specific independent components.CIHR (Canadian Institutes of Health Research
    • …
    corecore