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ANALYSIS OF SCOLIOSIS TRUNK DEFORMITIES USING ICA

Mathias M. Adankon, Jean Dansereau, Hubert Labelle and Farida Cheriet

Ecole Polytechnique de Montreal, Montreal, Canada

Sainte-Justine Hospital Research Center, Montreal, Canada

ABSTRACT

This paper describes a method for analyzing scoliosis trunk

deformities using Independent Component Analysis (ICA).

Our hypothesis is that ICA can capture the scoliosis defor-

mities visible on the trunk. Unlike Principal Component

Analysis (PCA), ICA gives local shape variation and as-

sumes that the data distribution is not normal. 3D torso

images of 56 subjects including 28 patients with adoles-

cent idiopathic scoliosis and 28 healthy subjects are an-

alyzed using ICA. First, we remark that the independent

components capture the local scoliosis deformities as the

shoulder variation,the scapula asymmetry and the waist

deformation. Second, we note that the different scoliosis

curve types are characterized by different combinations of

specific independent components.

1. INTRODUCTION

Independent Component Analysis (ICA) is a statistical me-

thod which attempts to express the observed data with

a linear combination of mutually independent variables

[8]. ICA finds the independent components, also called

source, by maximizing the statistical independence of the

estimated components. Many approaches are proposed in

order to define independence, and present the basis of ICA

algorithms. The important propositions can be divided

into two main ideas:

1) Minimization of Mutual Information, where measures

like Kullback-Leibler Divergence and maximum-entropy

are used.

2) Maximization of non-Gaussianity, where kurtosis (fourth-

order cumulant) and negentropy are used.

ICA was originally developed to deal with blind source

separation problem. Since the recent increase of interest

in ICA, various applications are designed based on this

statistical technique. Among them, we have feature ex-

traction or data representation, which consist of comput-

ing a small vector representation of data (sound, image,

etc) [11, 18, 4].
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Recently, ICA is used for image segmentation task

[17] and medical image analysis [6, 10, 21]. Boquete et al.

[6] have proposed a thermographic image analysis based

on ICA for automated detection of high tumor risk areas.

Hassen et al [10] used ICA to built cardiovascular disease

diagnosis based on magnetic resonance imaging. ICA in

a high-dimensional space with sparse data was applied

to landmarked 3D shapes resulting from the aortic seg-

mentation. The aortic shape variations were captured by

the independent components which are sorted using prior

knowledge. The simple classification task in the 2D space

spanned by the two first independent components was per-

formed by a simple quadratic classifier. In [21], ICA is

used to construct myocardial contraction shape analysis.

A classification algorithm was built from the ICA compo-

nents in order to automatically detect and localize abnor-

mally contraction regions of the myocardium.

In this work, we propose to analyze 3D image of sco-

liosis trunk based on ICA in order to detect local scolio-

sis deformation on trunk. Adolescent idiopathic scoliosis

(AIS) is a deformity of the spine manifested by asymme-

try and deformities of the external surface of the trunk. It

consists of a complex curvature in the three-dimensional

space where the vertebrae rotation causes the distortion of

the ribcage and the development of a hump on the back.

Human torso shape has many variations, and its anal-

ysis is very challenging. Usually, section decomposition

method is used with cross section modeling [14, 1]. The

3D image of the trunk is divided by cross section and each

section is characterized by mathematical tools in order to

extract some descriptors. Jaremko and al. [15, 16] pro-

posed to compute from each cross-section the indexes de-

scribing back surface rotation, torso centroid line, princi-

pal axis orientation and half-area assymetry. In their stud-

ies, they show that these indexes are correlated to the in-

ternal deformity (spine). Cross-section decomposition is

also used in [3] where each cross section is modeled as

B-spline curve and dominant points are extracted to form

the features vectors. Other technique used in the literature

is orthogonal map. This technique consists to transform

orthogonally the 3D image of the trunk by using certain

3D transform. In [2], the authors compute torso defor-

mation indexes by using four transforms which are axial

line, unfolded cylinder, enclosing cylinder and subtracting

cylinder. Torso shape analysis is also performed by using

machine learning techniques. Self-organizing Neural Net-

works (SNN) is used to parameterize the torso deformity

[13].
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However, many of previous techniques are developed

in order to establish the relationship between the torso de-

formity and the spinal deformity, and the results are miti-

gated.

Our hypothesis is that scoliosis patients have external

deformities which vary from important asymmetries of the

trunk to local subtle deformations. A statistical analysis

method like ICA will be used to detect and recognize lo-

cal scoliosis deformations on the trunk. Also, the scoliosis

trunk analysis proposed in this paper can be used to diag-

nosis scoliosis trunk by building a local probability den-

sity function for each Independent Component.

This paper is structured as follows. In Section 2, we

describe the materials and the methodology used in this

study. In Section 3, we present the experiments and re-

sults. We conclude this paper in Section 4.

2. MATERIALS AND METHODS

2.1. Data acquisition

Since many years, the acquisition of the trunk surface to-

pography is part of the routine evaluation of scoliosis pa-

tients at Sainte-Justine University Hospital Center (SJUHC)

in Montreal (Canada). The acquisition system is com-

posed of four optical digitizers (CREAFORM, Montreal,

Canada). Each optical digitizer contains one color CCD

camera and a structured light projector. The acquisition

process of each digitizer is as follows. Four fringe pat-

terns, obtained by phase-shifting technique, are succes-

sively projected onto the surface. Based on the four result-

ing images and triangulation technique, the system com-

putes the depth of each surface point relative to the refer-

ence plane. A fifth image, with no fringes, acquires the

texture of the surface which is then mapped onto the 3D

reconstruction.

For the reconstruction of the whole trunk, four scan-

ners are placed around the patient (on the front, on the

back and at ±60◦ laterally in front of the patient). Each

digitizer reconstructs a portion of the trunk. During the ac-

quisition, approximately 4 seconds, the patient stands still

in the upright position with the arms slightly abducted in

order not to obstruct the lateral scanners fields of view.

Based on a multi-head calibration of the system that com-

putes the rigid transformations between the digitizers, the

4 portions of the trunk are registered and merged using

EM software. The resulting mesh is constituted of 40,000

to 70,000 nodes, depending on the size of the patient. The

accuracy of this system was evaluated in [20], using mark-

ers placed on a mannequin whose coordinates were previ-

ously recorded by a computer measuring machine. The

results showed a reconstruction accuracy of 1.4 mm over

the whole torso and of 0.56 mm over the back.

2.2. Features Extraction

First of all, some pre-processing steps are performed be-

fore applying ICA, the training trunks have been aligned

in order to remove unwanted variation. In this study, Gen-

eralized Procrustes alignment [9] is used for this task where

a registration is done using isomorphic scaling, transla-

tion, and rotation.

Before alignment, each 3D image of scoliosis trunk is

decomposed into 800 points (20 sections and 40 points per

section) and the vector feature is built with all coordinates

(x, y, z) for each point. Thus, each torso is represented by

one vector whose length is 2400 = 800× 3.

In general, analyzing object based on statistical meth-

ods with an important number of features is not recom-

mended because working in high-dimensional space in-

volves the curse of dimensionality problem. For this pur-

pose, PCA is used to reduce the dimensionality of the data.

Figure 1 illustrate each step of the features extraction pro-

cess from 3D image to features vector with 20 compo-

nents.

2.3. Dimensionality reduction

In this study, PCA is used in order to reduce features di-

mensionality. PCA is a mathematical technique that uses

an orthogonal transformation to convert a number of (pos-

sibly) correlated variables into a (smaller) number of un-

correlated variables. However, PCA focus on the compo-

nents which provide a large variation and has not capacity

to preserve the small variability. Thus, we select 20 com-

ponents which provides the maximum of the total variance

(99%). Moreover, we verify the quality of the information

contained in these components by testing the discrimina-

tion between the scoliosis curve type through cluster anal-

ysis.

Cluster analysis is performed using hierarchical clus-

tering algorithm where the number of classes is not set in

advance. After performing clustering analysis, a hierar-

chy of clusters was built with many levels, we show the

dendrogram in Figure 2. The Distribution of the subjects

among the classes is presented in Table 1. We note that

the selected principal components are efficient to contain

the discriminative information of the different scoliosis

curve type (thoracic major curve, lumbar major curves)

and healthy subjects.

2.4. ICA modeling

Let us consider a dataset D comprising ℓ samples {x1, . . . , xℓ}
with xi ∈ R

d. ICA attempts to find a linear transforma-

tion :

X = As (1)

where the statistical independence between the variables

s = (s1, . . . , sn) is maximized. The random variables s

are called independent components (ICs), with si ∈ R
d,

and A ∈ R
ℓ×n is mixing matrix.

Thus, each sample xi of a dataset D is represented

by a sum of the independent components weighted by the
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Fig. 1. Features Extraction Process: (a) 3D Trunk image; (b) Cloud of 800 points; (c) Vector with 2400 components; (d)

20 Components resulting from PCA.

495056483847522429553031423334463640535143233537412532392628274445 1  5  21922 621 915121720 3  7131114 8  454101618
0

10

20

30

40

50

60

70

Fig. 2. Hierarchical clustering tree.

Table 1. Distribution of the patients among the classes

found by hierarchical clustering analysis. One sample is

viewed like outlier.

Classes Curve type # patients

Class 1 Lumbar major 6/7

Class 2 Thoracic major 9/13

Class 3 Thoracic major 5/7

Class 4 Healthy 3/3

Class 5 Lumbar major 2/2

Class 6 Healthy 18/18

Class 7 Healthy 4/5

elements of the mixing matrix A:

xi =
n∑

k=1

Aiksk (2)

The previous definition is a common classical defini-

tion of ICA. However, it seems impossible to find a lin-

ear transformation that gives strictly independent compo-

nents. Thus, in practice, some assumption is made on the

data with a specific definition of the function that mea-

sures independence.

The following fundamental restrictions (in addition to

the basic assumption of statistical independence) are im-

posed in order to assure the identifiability of the ICA model:

a)All the independent components si with the possible ex-

ception of one component, must be non-Gaussian.

b)The number of observed data ℓ must be at least as large

as the number of independent components n, i.e., ℓ ≥ n.

c)The matrix A must be of full column rank.

The statistical independence is the main key in all the

algorithms design to perform ICA. Usually, an objective

function for ICA is chosen and optimized. In the liter-

ature, we found various methods based on different ob-

jective function like measure of Nongaussianity (principle

used by the FastICA [12]), Minimization of Mutual Infor-
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mation [5], Maximum Likelihood Estimation [7]. Maxi-

mum likelihood estimation is a very popular approach for

estimating the ICA model. This technique is also con-

nected to the infomax principle and it is shown in [19]

that this method is essentially equivalent to minimization

of mutual information.

ICA is applied to training data using the FastICA algo-

rithm [12]. The independent components s = (s1, . . . , sn)
and the projection of the training data (mixing matrix A)

in the ICA space are estimated by maximizing the statisti-

cal independency. FastICA algorithm uses a fixed-point

iteration technique which provides an accurate solution

with a fast convergence. At each iteration, the algorithm

finds one of all nongaussian independent components re-

gardless of their probability distributions. It is 10-100

times faster than the other ICA algorithms which are based

on conventional gradient descent method.

3. EXPERIMENTS

3.1. Dataset and experimental setup

The dataset consisted of 3D torso images of 56 subjects

including 28 patients with adolescent idiopathic scoliosis

(15 thoracic curves and 13 lumbar curves) and 28 healthy

subjects who come to clinic because of their trunk appear-

ance. The 3D trunk image and the radiography have been

acquired at the same visit for each patient. The diagnosis

of each individual is performed by an orthopedic surgeon

from the X-ray images.

3.2. Scoliotic trunk analysis

We ran FastICA algorithm on the 56 samples represented

by 20 features, we obtained 19 independent components

(s1, s2, ..., s19).
ICA decomposes shapes into local shape descriptors

[21]. In Figures 3, we plot ICA modes for pointing out

the ICA capacity to capture local deformation. The k− th

mode of trunk shape variation is defined by:

zk = µ+ skδ (3)

where µ is the mean shape and δ = 3σk is three times the

value of the variance of corresponding weight computed

with the mixing matrix A.

σk = V ar(A1k, A2k, ..., Aℓk) (4)

In this study, we used three different representations of

data corresponding to three spaces: shape space (cloud of

points), PCA space (20 components) and ICA space (19

components). The projection through the three spaces are

done according to the following equations:

XPCA = µICA +XICA ∗ S (5)

XShape = µPCA +XPCA ∗ V (6)

where

S is the matrix of the independent components;

V is the matrix of the principal components;

µICA is the mean vector of ICA model;

µPCA is the mean vector of PCA model;

XShape = (x1, y1, z1, x2, y2, z2, ..., x800, y800, z800).
The local deformation captured by each IC is coded

in color (the mean shape is in blue and the deformation

is in red) with respect to the mean shape value. Figure

3 shows different IC which capture the shoulder varia-

tion,the scapula asymmetry and the waist deformation. Also,

the prototypes trunk that illustrate each local deformation

captured by the ICs are shown. These prototypes are se-

lected by using the mode of the corresponding weight con-

tained in the mixing matrix.

3.3. Analysis of scoliosis curve type with respect to the

independent components

In this section, we analyzed the behavior of each indepen-

dent component according to scoliosis curve type. The

mean value of each IC weight is computed with respect

to the scoliosis curve type (thoracic and lumbar curves).

The results are shown on Figure 4. We note that among

the nineteen components, eleven components (IC#2, 3, 5,

6, 7, 8, 11, 12, 13, 14, 15) are identified as capturing the

deformation of the trunk of the patients who have thoracic

curve and ten components (IC#3, 4, 7, 9, 10, 12, 13, 17,

18, 19) for the deformation of the trunk of the patients who

have lumbar curve. Considering the significance of the

components, the IC#11 which corresponds to the scapula

deformation have a high weight for thoracic curve. In fact,

thoracic curve causes often the ribcage distortion which

produces the scapula deformation.
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Fig. 4. Comparison of the weight of each independent

component w.r.t. scoliosis curve type.

4. CONCLUSION

Scoliosis is a three-dimensional deformity of the spine and

the ribcage. This deformity affects the torso and causes an

apparent deformation of the external trunk surface. The

3D trunk image is constituted of a 55,000 points in aver-

age. Thus, the trunk image analysis using directly the row

data is a challenging task and the design of an efficient

analysis framework could be useful.
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Fig. 3. Illustration of three independent components which capture the shoulder asymmetry,the scapula deformity and the

waist deformation.

In this work, trunk analysis is performed based on ICA

which has the capacity to capture the local deformity. Un-

like PCA, which gives a global shape variation (principal

direction of the data), ICA can be exploited to detect lo-

cal shape deformities. We find that the local scoliosis de-

formities as the shoulder variation,the scapula asymmetry

and the waist deformation are captured by the independent

components.
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Concerning scoliosis diagnosis, it will be interesting to

select the dominant independent components which cap-

ture the scoliosis deformities. Then, the follow up will

be performed by analysing the variation of the weight of

these components based on the assumption that they are

independent statistically. Also in future work, the study

will be extended to the double major curve which analy-

sis is more complex than the simple curve like thoracic or

lumbar curve.
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Rodrı́guez-Ascariz, and R. Blanco. Automated de-

tection of breast cancer in thermal infrared images,

based on independent component analysis. Journal

of Medical Systems, pages 1–9, 2010.

[7] J.F. Cardoso. High-order contrasts for indepen-

dent component analysis. Neural computation,

11(1):157–192, 1999.

[8] P Comon. Independent component analysis, a new

concept ? Signal Processing, Elsevier, 36(3):287–

314, 1994.

[9] J.C. Gower. Generalized procrustes analysis. Psy-

chometrika, 40(1):33–51, 1975.

[10] Michael Hansen, Fei Zhao, Honghai Zhang,

Nicholas Walker, Andreas Wahle, Thomas Scholz,

and Milan Sonka. Detection of connective tissue

disorders from 3d aortic mr images using indepen-

dent component analysis. In Reinhard Beichel and

Milan Sonka, editors, Computer Vision Approaches

to Medical Image Analysis, volume 4241 of Lecture

Notes in Computer Science, pages 13–24. Springer

Berlin / Heidelberg, 2006.

[11] P.O. Hoyer and A. Hyvärinen. Independent com-

ponent analysis applied to feature extraction from

colour and stereo images. Network: Computation

in Neural Systems, 11(3):191–210, 2000.

[12] A. Hyvarinen, J. Karhunen, and E. Oja. Independent

component analysis, volume 26. Wiley-Interscience,

2001.

[13] P. Igwe, M. Emrani, S. Adeeb, and D. Hill. Assess-

ing torso deformity in scoliosis using self-organizing

neural networks (snn). In Machine Learning and Ap-

plications, 2008. ICMLA ’08. Seventh International

Conference on, pages 497 –502, dec. 2008.

[14] J. L. Jaremko. Estimation of Scoliosis Severity from

the Torso Surface by Neural Networks. Ph.D. Thesis,

Dept. Biomed. Eng., Univ. Calgary, 2003.

[15] J L Jaremko, P Poncet, J Ronsky, J Harder,

J Dansereau, H Labelle, and R F Zernicke. Esti-

mation of spinal deformity in scoliosis from torso

surface cross sections. Spine (Phila Pa 1976),

26(14):1583–91, 2001.

[16] Jacob L. Jaremko, Philippe Poncet, Janet Ronsky,

James Harder, Jean Dansereau, Hubert Labelle, and

Ronald F. Zernicke. Indices of torso asymmetry

related to spinal deformity in scoliosis. Clinical

Biomechanics, 17(8):559 – 568, 2002.

[17] J. Koikkalainen and J. Lotjonen. Image segmenta-

tion with the combination of the pca- and ica-based

modes of shape variation. In Biomedical Imaging:

Nano to Macro, 2004. IEEE International Sympo-

sium on, pages 149 – 152 Vol. 1, april 2004.

[18] J.H. Lee, H.Y. Jung, T.W. Lee, and S.Y. Lee.

Speech feature extraction using independent compo-

nent analysis. In Acoustics, Speech, and Signal Pro-

cessing, 2000. ICASSP’00. Proceedings. 2000 IEEE

International Conference on, volume 3, pages 1631–

1634. Ieee, 2000.

[19] E. Oja and A. Hyvarinen. Independent component

analysis: algorithms and applications. Neural Net-

work, 13:411–430, 2000.

[20] V. Pazos, F. Cheriet, L. Song, H. Labelle, and

J. Dansereau. Accuracy assessment of human trunk

surface 3d reconstructions from an optical digitising

system. Medical and Biological Engineering and

Computing, 43(1):11–15, 2005.

[21] A. Suinesiaputra, A.F. Frangi, T. Kaandorp, H.J.

Lamb, J.J. Bax, J. Reiber, and B. Lelieveldt. Auto-

mated detection of regional wall motion abnormal-

ities based on a statistical model applied to multi-

slice short-axis cardiac mr images. Medical Imaging,

IEEE Transactions on, 28(4):595 –607, april 2009.

192


