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RÉSUMÉ 

La scoliose idiopathique de l'adolescent (SIA) est une déformation de la colonne vertébrale dans 

les trois plans de l’espace objectivée par un angle de Cobb ≥  10°. Celle-ci affecte les adolescents 

âgés entre 10 et 16 ans. L’étiologie de la scoliose demeure à ce jour inconnue malgré des 

recherches approfondies. Différentes hypothèses telles que l’implication de facteurs génétiques, 

hormonaux, biomécaniques, neuromusculaires ou encore des anomalies de croissance ont été 

avancées. Chez ces adolescents, l'ampleur de la déformation de la colonne vertébrale est 

objectivée par mesure manuelle de l’angle de Cobb sur radiographies antéropostérieures. 

Cependant, l’imprécision inter / intra observateur de cette mesure, ainsi que de l’exposition 

fréquente (biannuelle) aux rayons X que celle-ci nécessite pour un suivi adéquat, sont un domaine 

qui préoccupe la communauté scientifique et clinique. Les solutions proposées à cet effet 

concernent pour beaucoup l'utilisation de méthodes assistées par ordinateur, telles que des 

méthodes d'apprentissage machine utilisant des images radiographiques ou des images du dos du 

corps humain. Ces images sont utilisées pour classer la sévérité de la déformation vertébrale ou 

pour identifier l'angle de Cobb. Cependant, aucune de ces méthodes ne s’est avérée suffisamment 

précise pour se substituer l’utilisation des radiographies.  

Parallèlement, les recherches ont démontré que la scoliose modifie le schéma de marche des 

personnes qui en souffrent et par conséquent également les efforts intervertébraux. C’est 

pourquoi, l'objectif de cette thèse est de développer un modèle non invasif d’identification de la 

sévérité de la scoliose grâce aux mesures des efforts intervertébraux mesurés durant la marche. 

Pour atteindre cet objectif, nous avons d'abord comparé les efforts intervertébraux calculés par un 

modèle dynamique multicorps, en utilisant la dynamique inverse, chez 15 adolescents atteints de 

SIA avec différents types de courbes et de sévérités et chez 12 adolescents asymptomatiques (à 

titre comparatif). Par cette comparaison, nous avons pu objectiver que les efforts intervertébraux 

les plus discriminants pour prédire la déformation vertébrale étaient la force et le couple antéro-

postérieur et la force médio-latérale. Par la suite, nous nous sommes concentrés sur la 

classification de la sévérité de la déformation vertébrale de 30 AIS ayant une courbure thoraco-

lombaire / lombaire. Pour ce faire, nous avons testé différents modèles de classification. L'angle 

de Cobb a été identifié en exécutant différents modèles de régression. Les caractéristiques 

(features) servant à alimenter les algorithmes d'entraînement ont été choisies en fonction des 
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efforts intervertébraux les plus pertinents à la déformation vertébrale au niveau de la charnière 

lombo-sacrée (vertèbres allantes de L5-S1). Les précisions les plus élevées pour la classification 

exécutant différents algorithmes ont été obtenues par un algorithme de classification d'ensemble 

comprenant les “K-nearest neighbors”, “Support vector machine”, “Random forest”, “multilayer 

perceptron”, et un modèle de “neural networks” avec une précision de 91.4% et 93.6%, 

respectivement. De même, le modèle de régression par “Decision tree” parmi les autres modèles 

a obtenu le meilleur résultat avec une erreur absolue moyenne égale à 4.6° de moyenne de 

validation croisée de 10 fois. 

En conclusion, nous pouvons dire que cette étude démontre une relation entre la déformation de 

la colonne vertébrale et les efforts intervertébraux mesurés lors de la marche. L'angle de Cobb a 

été identifié à l'aide d'une méthode sans rayonnement avec une précision prometteuse égale à 

4.6°. Il s’agit d’une amélioration majeure par rapport aux méthodes précédemment proposées 

ainsi que par rapport à la mesure classique réalisée par des spécialistes présentant une erreur entre 

5° et 10° (ceci en raison de la variation intra/inter observateur). L’algorithme que nous vous 

présentons peut être utilisé comme un outil d'évaluation pour suivre la progression de la scoliose. 

Il peut être considéré comme une alternative à la radiographie. Des travaux futurs devraient tester 

l'algorithme et l’adapter pour d’autres formes de SIA, telles que les scolioses lombaire ou 

thoracolombaire. 
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ABSTRACT 

Adolescent idiopathic scoliosis (AIS) is a 3D deformation of the spine and rib cage greater than 

10° that affects adolescents between the ages of 10 and 16 years old. The true etiology is 

unknown despite extensive research and investigation. However, different theories such as 

genetic and hormonal factors, growth abnormalities or biomechanical and neuromuscular reasons 

have been proposed as possible causes. The magnitude of spinal deformity in AIS is measured by 

the Cobb angle in degrees as the gold standard through the X-rays by specialists. The inter/intra 

observer error and the cumulative exposure to radiation, however, are sources of increasing 

concern among researchers with regards to the accuracy of manual measurement. Proposed 

solutions have therefore, focused on using computer-assisted methods such as Machine Learning 

using X-ray images, and/or trunk images to classify the severity of spinal deformity or to identify 

the Cobb angle. However, none of the proposed methods have shown the level of accuracy 

required for use as an alternative to X-rays. Meanwhile, scoliosis has been recognized as a 

pathology that modifies the gait pattern, subsequently impinging upon intervertebral efforts. The 

present thesis aims to develop a radiation-free model to identify the severity of idiopathic 

scoliosis in adolescents based on the intervertebral efforts during gait. 

 To accomplish this objective, we compared the intervertebral efforts computed using a 

multibody dynamics model, by way of inverse dynamics, among 15 adolescents with AIS having 

different curve types and severities, as well as 12 typically developed adolescents. This resulted 

in the identification of the most relevant intervertebral efforts influenced by spinal deformity: 

mediolateral (ML) force; anteroposterior (AP) force; and torque. Additionally, we focused on the 

classification of the severity of spinal deformity among 30 AIS with thoracolumbar/lumbar 

curvature, testing different classification models. Lastly, the Cobb angle was identified running 

regression models. The features to feed training algorithms were chosen based on the most 

relevant intervertebral efforts to the spinal deformity on the lumbosacral (L5-S1) joint. The 

highest accuracies for the classification were obtained by the ensemble classifier algorithm, 

including “K-nearest neighbors”, “support vector machine”, “random forest”, and “multilayer 

perceptron”, as well as a neural network model with an accuracy of 91.4% and 93.6%, 

respectively. Likewise, the “decision tree regression” model achieved the best result with a mean 

absolute error equal to 4.6 degrees of an averaged 10-fold cross-validation. 
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This study shows a relation between spinal deformity and the produced intervertebral efforts 

during gait. The Cobb angle was identified using a radiation-free method with a promising 

accuracy, providing a mean absolute error of 4.6°. Compared to measurement variations, ranging 

between 5° and 10° in the manual Cobb angle measurements by specialists, the proposed model 

provided reliable accuracy. This algorithm can be used as an assessment tool, alternative to the 

X-ray radiography, to follow up the progression of scoliosis. As future work, the algorithm 

should be tested and modified on AIS with other types of spine curvature than 

lumbar/thoracolumbar. 
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CHAPTER 1 INTRODUCTION 

1.1 Background information and problem definition 

Adolescent idiopathic scoliosis (AIS) is an abnormal curvature of the spine higher than 10°	in the 

sagittal plane in “S” or “C” shape, as well as rotation and twist of the spine bones. These 

abnormalities are classified based on the location of the curvature on the spine as thoracic, 

thoracolumbar/lumbar, and double [1] (Figure 1.1). The AIS is the most common form of 

scoliosis in children and adolescents (80% of the scoliosis cases) which affects girls 7 times more 

than boys [2]. The true aetiopathogenesis of this disorder remains unknown with different 

hypotheses such as genetics, growth hormone secretion, connective tissue structure, muscle and 

fibrous tissue, vestibular dysfunction, melatonin secretion, and platelet microstructure [3]. 

However, physiotherapy treatments are aimed at controlling progression of the spinal deformity 

in adolescents with AIS [4]. 

 

 

 

Figure 1.1 Scoliosis types, adapted from [5] 

 

To assess the progression of spine curvature, the magnitude of the spinal deformity is measured 

by the Cobb angle [6] as the gold standard, in degrees, using X-ray images as shown in Figure 

1.2. However, the accuracy of the Cobb angle measurement and repetitive exposure to X-ray 

radiations presents a big challenge. 
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1.2 Research scope and objectives 

This study aims to develop a radiation-free model to identify the severity of idiopathic scoliosis 

in adolescents based on the intervertebral efforts during gait. To achieve this objective, it is 

required to identify the intervertebral efforts associated with the spinal deformity, by comparing 

the intervertebral efforts among the adolescents with AIS and typically developed adolescents 

(TDA). 

 

 

Figure 1.2 Cobb angle measurement, adapted from [7] 

 

1.3 Thesis outline 

This thesis is comprised of nine chapters. Chapter 1 is the introduction of the research project. A 

literature review on AIS gait patterns, effects of physiotherapy treatments on AIS, scoliosis 

evaluation methods and related challenges are presented in Chapter 2. In Chapter 3, the 

problematic, general objective and sub-objectives of the study are summarized. Chapter 4 briefly 
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presents the methodology. Chapter 5 identifies the intervertebral efforts most influenced by 

spinal deformity during gait in AIS (Article 1). Chapter 6 discusses the use of Machine Learning 

algorithms (Article 2) to classify the severity of spinal deformity among AIS based on the 

relevant intervertebral efforts during gait. Chapter 7 uses Machine Learning models to present a 

radiation-free model that identifies the Cobb angles based on the intervertebral efforts in the 

lumbosacral joint (Article 3). Chapter 8 is a general discussion of achievements, limitations, and 

outputs. The final chapter (Chapter 9), consists of the conclusion, suggestions for future studies, 

and recommendations. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Impact of the severity of spinal deformity on gait pattern 

2.1.1 Pre-surgery 

Gait analysis has been known as a non-invasive method used to diagnose different 

musculoskeletal diseases. Studies on the scoliosis gait patterns have confirmed that there are 

some differences between the gait pattern of AIS and typically developed adolescents (TDA). 

AIS experience balance abnormality during the stance phase and asymmetry in the frequency 

characteristics [8]. These differences also depend on the type and severity of scoliosis. For 

instance, the AIS with S (double) curves have demonstrated poorer balance compared to those 

with the C (single) curve type. This, despite a more symmetrical trunk posture [9] among AIS 

with S (double) curves. 

As per Mahaudens et al. [10] findings, a restriction occurs in the frontal pelvis, hip, shoulder and 

transversal hip motion in thoracolumbar and lumbar AIS during gait, even in scoliosis with mild 

severity. It can be explained by the stiffness of the spinal deformity or by the bilateral extended 

activation timing of the pelvic and lumbar muscles. Scoliosis also leads to asymmetry in gait 

patterns in the frontal and transverse planes, resulting in asymmetrical ground reaction forces in 

the mediolateral (ML) direction [11]. The changes in global postural control strategies during gait 

may be the reason for asymmetrical gait. Studies have shown that there is a relationship between 

this asymmetry, neurological dysfunction and spinal deformity. That is, the left side of the spinal 

curve has greater symmetry indices for a left side impulse and vice versa [12]–[14]. 

It has also been found that the severity of the spinal deformity has an influence on the gait 

pattern. Sycxewska et al. demonstrated a direct relationship between the obliquity and Cobb 

angle, and an inverse relationship between the length of the step and the Cobb angle [15]. 

Additionally, they confirmed that the severity of the spinal deformity and the type of pelvic 

misalignment have a correlation with the gait pathology in adolescents with the thoracolumbar 

curve type [16]. 

In terms of investigating kinetic parameters of scoliosis gait patterns, Yazji et al. [17] showed 

that ML forces at the right hip were significantly lower for the AIS with moderate left lumbar and 
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thoracolumbar, compared to TDA. Moreover, the abduction and adduction angles of the hip joint 

in the single support phase are reported to be significantly different than TDA[18]. 

Schizas et al. [19] compared the rate of application, contact time and magnitude of the two peaks 

of the vertical ground reaction forces during gait between right thoracic AIS, left thoracolumbar 

AIS and TDA. Subsequently, they reported no relation between gait asymmetry and curve 

magnitude, aside from the asymmetry of at least one kinetic parameter. In another study, 

Kramers-de Quervain et al. found an asymmetry in hip, knee and ankle motion in the sagittal 

plane, trunk rotational motion in the transverse plane, as well as a ground-reaction-force 

asymmetry of the free rotational movement [20]. As well, the right thoracic spinal curvature leads 

to slower dynamic patterns compared to a straight spine [21]. Scoliosis severity also influences 

the distribution of the center of pressure (CoP) during gait [22]. For instance, it has been reported 

that individuals with moderate scoliosis walk with more foot inversion motion than others [22]. 

The position of the major curve causes asymmetrical trunk kinematics during gait. Trunk motions 

with a single lumbar curve and thoracic curve cause asymmetry in the coronal plane and 

transverse plane, respectively [23].  

In summary, based on previous studies, we conclude that spinal deformity and its severity modify 

the gait pathology characteristics, influencing overall function among those with AIS. Therefore, 

the evaluation of the gait pattern is essential to assess the progression of scoliosis and its 

treatments. 

2.1.2 Post-surgery 

Surgical treatment is recommended for patients with a spine curvature greater than 45° or 50° 

after skeletal maturity or for patients with progressive spinal deformity [24].  Spinal surgery has 

shown improvement in the sagittal plane posture, C7-Pelvic offsets, axial plane motion, center of 

mass displacement and gait phases as compared with TDA [14], [25], [26]. However, no post-

surgery individual has demonstrated a gait pattern exactly similar to that of individuals with a 

healthy spine. Indeed, surgery does not cause any interference in daily functions such as walking. 

According to Mahaudens et al. [27], one year after the reduction of spinal curvature by surgery, 

AIS patients demonstrated kinematics similar to mild AIS and abnormal EMG, and excessive 

energy expenditure compared to TDA. The same research group performed an evaluation 10 

years after spinal surgery to draw comparisons with results one year after the surgery [28]. This 
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showed the Cobb angle reduced by 55% one year post-surgery to have reduced to 37% when 

measured 10 years post-surgery. The Frontal plumb line C7-S1 and lower limb kinematics 

remained stable over 10 years. However, Schimmel et al. [9] did not report any improvement in 

postural balance one year after the surgery in spite of better spinal alignment.  

2.2 The biomechanical effects of physiotherapy and bracing treatments on 

AIS 

Small lateral curvature and misalignment of the spine cause the weight of the body segment 

superior to the curve to generate a lateral bending moment as shown in Figure 2.1. This moment 

exacerbates the spinal deformity during the growth ages [29]–[32]. Furthermore, asymmetry in 

muscle activation leads to greater asymmetries in the biomechanical force patterns of body 

postures and body motions than the etiology factor of spinal curvature [33], [34].Therefore, the 

goal of scoliosis treatment strategies is to eliminate or reduce the lateral bending moment by the 

spine alignment [35]. 

To treat scoliosis through physiotherapy treatments, the biomechanical principles of axial and 

transverse forces are taken into account. The axial forces are the main factors in correcting the 

bending moment, while transverse loads are responsible for correcting function.  The 

combination of these two loads presents the most effective way for postural correction for all 

severity types of scoliosis [36].  

Physical exercise has been demonstrated as an effective method to treat AIS in terms of reducing 

the progression of the spine curvature, neuromotor control, respiratory function, biomechanical 

reduction of postural collapse, mobility, and balance [37]–[43]. Physiotherapy treatment also 

enables patients to correct their posture using their trunk muscles. Manual help by the therapists 

in the form of dynamic passive forces and static forces is also required [44]. Postural correction 

in AIS should account for the interactions between the central nervous system (CNS) and body 

biomechanics from a globally functional and systematic perspective [45]. The type of scoliosis 

should also be considered in global postural correction - a single thoracic curve causes 

asymmetrical trunk movement in the transverse plane while a single lumbar curve causes 

asymmetrical trunk movement in the coronal plane [23].  
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Bracing is recommended for AIS with the Cobb angle between 25° and 45° and the skeletal 

maturity index smaller or equal to 2, or for those with the Cobb angle less than 25° showing 5° 

progression at the 4 to 6 months follow-up stage [46]. The mechanical compression on the spine 

in AIS reduces the number of new cells in the proliferative zone of the growth plate. Meanwhile, 

bracing treatment aims to unload the growth plate by applying the corrective forces on the spine, 

releasing the load on the concave (inner) part of the spine curvature, and increasing the load on 

the convex (outer) part of the spine curvature [47], [48]. 
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Figure 2.1 Schematic diagram of the produced moment on the scoliosis spine due to spine 

curvature. 

τ: Moment of the force at the apex level due to the lateral offset (τ = f × r), f: Body weight of the 

segments above the apex level, r: Lateral translation of the apical vertebrae from the body 

midline  
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2.3 Scoliosis assessment 

The initial evaluation for scoliosis is based on screening programs that are performed by physical 

examination with Adam’s forward bending test (Figure 2.2) [49] and a scoliometer measurement 

(Figure 2.2) [50]. In Adam’s forward bending test the patient is asked to bend forward as far as 

possible. In this position, should one side of the rib cage be higher than the other, the protruding 

side of the spine is convex. The scoliometer is a tool used to measure the angle of trunk rotation 

(ATR). A patient with an ATR greater than 10° is referred for an immediate orthopedic 

evaluation. An ATR of less than 5° is dismissed, while patients with an ATR between 5° and 9° 

are referred for two subsequent screenings conducted within 6 months of each other, during the 

year following the first screening [51]. Upon screening, to diagnose scoliosis, the Cobb angle 

should be measured using spinal X-rays in the standing postero-anterior position. The Cobb 

angle, i.e. the magnitude of the spinal curvature, is considered the gold standard measurement to 

determine and track the progression of scoliosis [6]. This is measured by considering a line 

parallel to the upper end of the upper vertebra and the lower end of the lowest vertebra of the 

curve and the angle between two perpendicular lines to these two lines (Figure 2.3). As proposed 

by Cobb, the measurement is carried out in degrees [6]. The severity of scoliosis is categorized 

based on the value of the Cobb angle. A Cobb angle between 10° and 25° is categorized as mild 

scoliosis, one between 25° and 45° as moderate scoliosis, and one greater than 45° as severe 

scoliosis [52]. However, there are challenges in measuring the Cobb angle in terms of accuracy 

and exposure to X-rays. It has been reported that there is a 5-10° measurement error due to the 

intra-observer, which may be further increased due to inter-observer measurement variations 

[53]–[55]. Radiography acquisition and measurement methods may also cause measurement 

variation of up to 7° [56]. This underscores the importance of replacing manual measurement 

methods with automated methods to measure the Cobb angle. These methods necessitate repeated 

exposure of the entire spine to X-ray radiations so as to monitor the progression of the spine 

curvature. The frequency of such exposure in adolescents presents growth challenges and 

increases health risks such as cancer [57]. The accuracy of the evaluation is important for 

determining the appropriate treatments. Initial treatments are physiotherapy exercises and 

bracing, whereas the most invasive form of treatment used to correct curvature in severe and 

progressive cases of scoliosis is spine surgery.   
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To minimize radiation exposure, several studies have been performed to propose radiation-free 

methods to evaluate scoliosis. Sections 2.3.1 and 2.3.2 review and draw comparisons between the 

accuracy levels of proposed automated methods using X-ray images and radiation-free methods 

to identify the Cobb angle. 

 

 

Figure 2.2 Scoliosis screening using Adam’s forward bending test and scoliometer, 

 adapted from [58], [59]  
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Figure 2.3 Cobb angle measurement on the X-ray image (frontal plane of the spine) 

2.3.1 Computer assisted methods to measure the Cobb angle using 

radiography images 

The manual measurement of the Cobb angle requires considerable time and effort by physicians. 

Even so, as mentioned in 2.3, this may lead to variations in measurements. Meanwhile, the 

accuracy of this measurement is crucial to avoiding misdiagnosis and failure in determining the 

appropriate treatment method. To overcome this problem, automated and computer-assisted 

methods have been proposed to measure the Cobb angle on radiography images. For instance, 

Sardjono et al. [60], proposed a curve fitting algorithm to fit the spine curvature and tested three 

curve fitting methods   (piece-wise linear, splines, and polynomials) for the best fit. Among these, 

the most accurate result was obtained using the polynomial method (6th degree), with a mean 

absolute error (MAE) equal to 3.91°. Samuvel et al. [61] presented a mask-based segmentation 

method applied on X-ray images to measure the Cobb angle. Samuvel et al. developed an 

algorithm that divides the X-ray image into segments, and proceeds to measure the angle between 

the lower and upper end vertebras, i.e. the Cobb angle. In this method, the Cobb angle measured 

provided a tolerance of 3-4° as compared with the manual measurement by an expert physician. 

Other studies have focused on automated detection of the upper-end and lower-end vertebrae to 
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decrease the variation in measurements carried out by clinicians. Results show that computer-

assisted methods are clinically advantageous and more reliable than manual measurement, with 

average error values ranging from 1.7° to 6.5°. The proposed computer-assisted methods, 

therefore, showed the potential to obviate the measurement variation problems, with an average 

error of 4°. However, such methods continued to expose patients to X-ray radiations. 

2.3.2 Computer-assisted methods to measure the Cobb angle using 3D 

reconstruction of the trunk or from topography as less invasive methods 

To minimize the frequency of radiation exposure, which lead to increased health risks, 

researchers have tried to replace radiography images with radiation-free methods to assess 

scoliosis. In doing so, they report that these measurement techniques cannot be used in clinical 

recordings. Pearsal et al. [62] compared the performance of three different methods: scoliometer; 

back counter device; and topographic images to measure the Cobb angle.  Patias et al. [63], used 

a multi-camera system setup to view the trunk from different views and then computed the 3D 

coordinates of a large number of surface points using automatic image matching. As a result, they 

proposed a number of indices linked to the spine shape to assess scoliosis. Findings from this 

study [64] and another by Goldberg et al. [65] showed that, although the back surface image data 

cannot substitute for radiographs in the diagnosis of scoliosis, it can be used as  additional 

quantitative data to complement the radiologic study.  Frerich et al. [66] used a Formetric 4D 

surface topography system to project stripes of white light on the back of a person in the standing 

position, whereby the system captures a digital photo to evaluate surface asymmetry and to 

identify bony landmarks. The value of the Cobb angle, however, cannot be measured using this 

device. 

Although several studies have been conducted to develop radiation-free Cobb angle measurement 

by using back images and topography, still more improvement is required in this field. The 

existing solutions have been recognized as complementary to X-ray images. That is, the value of 

the Cobb angle cannot be measured with the accuracy required to be proposed as a radiation-free 

solution for treatment purposes. Therefore, the need for radiation-free solutions with promising 

accuracy that could be used as a reliable measurement method for treatment strategies is still 

valid.  
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2.4 Use of Machine Learning algorithms to assess the severity of scoliosis 

In addition to the mentioned computer-assisted methods to measure the Cobb angle and severity 

of scoliosis, researchers have found that Machine Learning and Deep Learning algorithms are 

reliable and interesting methods to assess scoliosis. Zhang et al., developed a fuzzy Hough 

transform technique to detect the vertebral endplates and measure the Cobb angle automatically 

to decrease the variability in measurement [67]. They used a deep neural network (DNN) to 

determine the slopes of vertebrae and reported a mean absolute difference of up to 5° for intra-

observer measurement variations. In [68]–[70], different models were developed using the 

convolutional Neural Network (CNN) algorithm to segment the X-ray images. The results 

obtained were subsequently used to calculate the Cobb angle. In one instance, Wu et al., [77] 

segmented the spine on the X-ray images and removed the outlier features to minimize the 

intraclass variance of the feature space and reported a mean squared error of 0.0046 on 50 test 

images. They also proposed [78] a multi-view Correlation Network architecture that provided an 

MAE of 4° in Cobb angle estimation. Horng et al. [79] segmented the vertebrae by using a CNN, 

which was then reconstructed into a complete segment to determine the Cobb angle with an MAE 

of 2°. They believed that their model was a robust automated tool to assess scoliosis for clinical 

purposes. Vergari et al. used a CNN with discriminant analysis to classify the treatment of 

scoliosis. In this study, [71],  brace use, spinal implant, or neither together with radiography 

images as the dataset with an accuracy score of 98.3% .  Tu et al. [72] segmented the radiography 

images by removing unrelated regions by way of programming the DU-Net network to segment 

the spine in contours. Therefore, the spine curve could be fitted by the spine contour and the 

Cobb angle could be automatically measured by the tangent line of the spine curve, with an 

average error of 2.9°, compared to the manual measurement by a specialist. Zhang et al. used a 

Deep Neural Network with vertebral patches extracted from spinal radiography images to 

identify the Cobb angle based on the vertebral slopes which resulted in an MAE of less than 3° 

[73]. Wu et al. reported Artificial Neural Network (ANN) as a promising technique to define the 

scoliosis progression. They used four values of the Cobb angle and lateral deviations at the apex 

level of the patients for six and twelve month intervals (coronal plane) as features to train their 

algorithm. In doing this, [74] used the scan of the entire torso surface of each patient by an 

optical imaging system and X-ray images of the whole spine for the mathematical 3D 

reconstruction of the spine and rib cage. They reported 0.99 and 0.97 for R-values of the linear 
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regression. Although the aforementioned methods eliminated the inconvenience of manual 

measurements, they cannot be considered as radiation-free methods. 

Ramirez et al. [75] classified the severity of scoliosis (Cobb angle inferior to 30° or superior to 

30°) based on the surface topographic images of patients with idiopathic scoliosis and their 

clinical data, using a support vector machine (SVM) classifier with an accuracy between 69-85% 

in the testing dataset. In fact, the treatment strategies are not the same for all individuals with the 

Cobb angle inferior to 30°, and for all of the individuals with the Cobb angle superior to 30°. The 

treatments strategies are based on the severity of scoliosis that is divided into three categories, as 

explained in section 2.3. Therefore, the proposed classifier cannot be used as a scoliosis 

evaluation tool even if the accuracy was promising. Ajemba et al. [76] proposed an SVM 

classifier algorithm on the basis of preoperative standing Lenke indicators measured from AP and 

ML radiographs, to predict the risk of progression in moderate AIS. They reported 100% 

accuracy in training and 65-80% accuracy in testing.  

Seo et al. [77] trained multiple regression analysis by feeding standing posture parameters 

correlated with spine deformity as features and tested the proposed method on five patients. The 

reported errors were approximately 5°. Recently, Cho et al. [18] (2018), developed a gait 

recognition method based on the kinematic parameters (72 gait features) during gait to recognize 

scoliosis and non-scoliosis gait patterns and severity of scoliosis using an SVM classifier with 

accuracy scores of 95.2% and 85.7%, respectively. 

The complexity of AIS geometry and progression calls for accurate assessment of treatment and 

evaluation. However, radiation exposure is also an important factor, which should be seriously 

considered. The mentioned methods in sections 2.3 and 2.4 show that there is interest and 

potential in utilizing automatic radiation-free methods based on Machine Learning algorithms as 

a follow-up tool in AIS. However, to our knowledge, there is no model with acceptable accuracy, 

which could be used for clinical purposes. 

The majority of proposed Machine Learning methods reviewed in this section, have used the X-

ray images to train their learning algorithms. Those, which have used other types of data, have 

not provided reliable or promising results for clinical assessments. Therefore, the challenge of 

developing a radiation-free method to identify the severity of idiopathic scoliosis as an alternative 

to X-rays remains an active field of research. 
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2.5 Multibody dynamics applied to AIS 

Scoliosis has been recognized as a parameter that modifies the gait pattern and therefore leads to 

the modification of the intervertebral efforts during gait i.e. three-dimensional (3D) forces and 

torques during gait resulting from the mechanical modulations, according to the Hueter-

Volkmann Law [47]. Furthermore, an increase of 30% of the energy consumption was detected 

during gait in AIS. This is explained due to the excessive postural muscle contractions to control 

the posture and maintain the spine [10].  Therefore, the understanding and quantification of the 

intervertebral efforts are crucial for posture correction and scoliosis evaluation[78]. To obtain the 

intervertebral forces and torques, a multibody dynamics model (MBD) is required. An MBD 

system is a mechanical system, consisting of solid or flexible bodies, linked to each other by 

joints, which restrict their relative motions (Figure 2.4). The MBD model calculates the required 

forces to make the system move with the inverse dynamics [79]. 

 

Figure 2.4 Schematic representation of a multibody system [80] 

 

The quantification of joint efforts has been known as an essential tool to develop rehabilitation 

techniques for patients with musculoskeletal pathologies such as scoliosis [81]. An MBD model 
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of the human body can quantify the efforts of all human body articulations including the 

intervertebral efforts along the spine [17], [82]. In this study, we used two previous studies, 

which developed an MBD model to calculate the intervertebral joint efforts. The principle of 

inverse dynamics to calculate the joint efforts has been shown in Figure 2.5.   

 

 

 

Figure 2.5 Procedure of joint efforts quantification using inverse dynamics in the multibody 

model [17] 

 

To obtain the joint efforts by using an MBD model, a motion capture system, including cameras 

and force platforms/treadmill are required. The force platforms/treadmill are equipped with strain 

gauges to measure the 3D ground contact forces and the motion capture system records the 3D 

joint coordinates by placing markers on the specific anatomical joints of the human body. The 
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model is customized to each individual with measurements taken on them i.e. the mass, height, 

width of the knees and ankles, as well as the feet length. Then, the Cartesian coordinates i.e. the 

center of each joint is calculated as proposed by Davis et al. [83]. The segments inertia 

parameters, i.e. the mass of the segments (M), segments moments of inertia (I) and center of mass 

(CoM) for each body segment, are computed from the inertia tables from de Leva [84] by using 

the total mass,  height, and gender. The inertial parameters of the vertebrae are computed 

following Kiefer et al. [85]. 

Then the joints’ coordinates 𝑞 are numerically defined by a global optimization method [86] that 

estimates the joint coordinates of the MBD model that best fit the position of the experimental 

joint centers [17]. For each data frame, the optimal position of the MBD model is computed 

based on globally minimizing the least square distance between the marker coordinates of the 

experimental and the model-defined. Finally, with applying a numerical derivative the 

corresponding velocities 𝑞  and accelerations 𝑞  are computed from 𝑞  using cubic splines. To 

obtain the dynamical equations, the Newton-Euler formalism is used [87]. As shown in Equation 

2-1, this algorithm provides the vector 𝑄 of the internal interaction forces and torques at the joints 

for any configuration of the multibody system, in the form of an inverse dynamical model, 

generated with Robotran software [88] as shown in Figure 2.5. 

 

𝑄 = 𝑓 𝑞, 𝑞, 𝑞,𝐹!"# ,𝑔                    Equation 2-1 

 

Where 𝑄 is the vector of forces and torques between each vertebra, 𝑞 is the vector of joint 

relative coordinates, 𝑞  are the corresponding joint velocities, 𝑞  the corresponding joint 

accelerations, 𝐹!"# is the vector of the external forces and 𝑔 is the gravity field. 
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CHAPTER 3 RATIONALE 

3.1 Problematic 

To assess the spinal deformity in adolescents with idiopathic scoliosis, it is generally required to 

measure the Cobb angle through radiography images. To perform that, on the one hand, the 

patients are exposed to radiation at least every six months, during the growth ages. On the other 

hand, the variations in measurement due to the measurement errors reduce the accuracy of 

identification of the Cobb angle. The cumulative exposure to radiation increases the risk of 

certain types of cancer and organ tissue damage and the variability in the Cobb angle 

measurement decreases the accuracy of treatments and the reliability of surgical decisions. 

Consequently, a radiation-free computer-assisted method with reliable and promising accuracy 

would mitigate these deficiencies. 

3.2 Objectives 

3.2.1 General objectives 

The general objective of this research project is to develop a radiation-free model to identify the 

severity of idiopathic scoliosis in adolescents based on the intervertebral efforts during gait. To 

achieve the general objective, the following sub-objectives are required to be accomplished. 

3.2.2 Sub-objectives 

SO1: Define the intervertebral efforts among the six intervertebral forces and torques i.e. 

anteroposterior (AP), mediolateral (ML) and vertical (V) forces and torques during gait, which 

are relevant to the spinal deformity. 

SO2: Define the relevant features from the intervertebral efforts during gait cycles to feed the 

training algorithms. 

SO3: Classify the severity of scoliosis and identify the Cobb angle in AIS with 

lumbar/thoracolumbar scoliosis based on the lumbosacral joint efforts during gait using Machine 

Learning algorithms. 
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CHAPTER 4 GENERAL METHODOLOGY 

This chapter briefly explains the methodology since the details are presented in chapters 5 to 7. 

Spinal deformity modifies the kinematics parameters during gait, causes postural asymmetry, 

asymmetrical loading on the spine and progression of the spine curvature. To quantify the 

intervertebral efforts, kinematics identification is required. Additionally, different muscle 

function patterns due to the spinal deformity compared to a healthy spine may result in different 

behaviour in intervertebral efforts. Studies have been shown that an increase in the Cobb angle 

impacts on apical vertebral rotation, apical vertebral wedging and intervertebral discs wedging. It 

has also been reported that the deformation of the apical intervertebral disc is an important 

parameter in the progression of spinal deformity. Concluding mentioned observations and 

studies on intervertebral efforts in AIS during gait[89], confirm that intervertebral efforts during 

gait can be used as a parameter to be affected by the spinal deformity and therefore the Cobb 

angle. To identify the Cobb angle based on the intervertebral efforts during gait, first we defined 

the intervertebral efforts that are being influenced by scoliosis. The intervertebral efforts during 

gait along the spine were computed using an MBD model [82] for 15 adolescents with AIS with 

different types of scoliosis and severity and 12 TDA. The intervertebral efforts of the adolescents 

with AIS in the level of the apex (the vertebra with the greatest rotation or farthest deviation 

from the center of the spine) were compared to the average of intervertebral efforts of TDA at 

the same level to define the intervertebral efforts sensitive to the spinal deformity. The details are 

presented in chapter 5 (Article 1). The specifications of the participants are presented in Table 

4.1.  

 

Table 4.1 Specification of the participants in SO1 (article 1) 

 Age (y) 
mean (SD) 

Weight (kg) 
mean (SD) 

Height (m) 
mean (SD) 

Cobb angle (°) 
mean (SD) Scoliosis type 

Adolescents 
with AIS 
(5 males) 

14.1 (1.3) 48.9 (9.4) 1.6 (0.1) 26 (7) 
Range (12-37) 

Thoracic (6) 
Lumbar/ 

thoracolumbar 
(6) 

Double (3) 
TDA 

(5 males) 13.4 (1.8) 44.4 (13) 1.55 (0.1) NA NA 
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To proceed with the training of the classification algorithm, we focused on the AIS with 

lumbar/thoracolumbar scoliosis, choosing a longitudinal database, including 30 adolescents, that 

was collected in [10], [17], presented in Table 4.2. Based on the results obtained from the first 

part of the present study (SO1), [17], [82], we defined the features using the lumbosacral (L5-S1) 

joint efforts during gait, associated the most with the spinal deformity i.e. ML force and torque 

and AP torque to feed the classification training algorithm. 

Different supervised Machine Learning classification algorithms were run to achieve the model 

that provides the most accurate result to classify the severity of scoliosis, as explained in detail in 

chapter 6 (Article 2). The features used to feed the classification algorithms are presented in 

Table 4.3. 

 

Table 4.2 Specification of the participants in SO2 and SO3 (Article 2 and Article 3) 

 No. Age (y) 
mean (SD) 

Weight (kg) 
mean (SD) 

Height (m) 
mean (SD) 

Cobb angle (°) 
(lumbar 
region) 

mean (SD) 
Mild scoliosis 

10° < Cobb angle < 25° 9 14 (2) 45 (9) 1.58 (0.1) 20 (3) 

Moderate scoliosis 
25° < Cobb angle < 45 14 15 (2) 52 (8) 1.63 (0.08) 36 (4) 

Severe scoliosis 
Cobb angle > 45° 7 16 (1) 53 (8) 1.67 (0.09) 52 (7) 

 

 

 

 

 

Table 4.3  Features used to train the classification algorithms (SO2 and SO3 (Article 2)) 

NO. Features fed to classification algorithms 
Mediolateral force Anteroposterior torque Mediolateral torque 

1 Maximum (|Maximum-mean|,|Minimum-mean|) 
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2 Maximum (|Variance-mean|,|Variance+mean|) 
3 Maximum (|Max|,|Min|) 
4 |mean| 
5 Standard deviation 

 

To identify the value of the Cobb angle, the same database, presented in Table 4.2 was used, as 

explained in detail in chapter 7 (Article 3). The features fed to train the regression algorithms are 

presented in Table 4.4. 

 

Table 4.4   Features to train the regression algorithms (SO3 (Article 3)) 

No. Features 
Mediolateral force Anteroposterior torque Mediolateral torque 

1 Maximum (|Maximum-mean|, |Minimum-mean|) 
2 Maximum (|Variance-mean|, |Variance+mean|) 
3 Maximum (|Max|, |Min|) 
4 |mean| 
5 Standard deviation 
6 |Max-Min|     

 

To estimate the performance of algorithms on unseen data and in general due to the limited 

number of data, k-fold cross-validation was applied. The value of k refers to the number of 

groups that a dataset is to be split into. The value of k for both classification and regression was 

chosen based on the size of the dataset to give each test sample the opportunity of being used in 

the hold out dataset. Generally, a larger value of k leads to a decrease in the bias, since the 

difference in size between the training set and the resampling subsets gets smaller [90].  
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5.1 Abstract 

Introduction: The intervertebral efforts, i.e. forces and torques, during gait have been recognized 

as influencing the progression of scoliosis, due to the mechanical modulations according to the 

Hueter-Volkmann Law. Therefore, these efforts are key variables for posture correction and to 

control the progression of scoliosis. Using the intervertebral efforts during gait for the clinical 

follow-ups has never been performed. For this, it would be necessary to identify amongst all 

these efforts the most relevant ones, which is the objective of this study. Methods: A previously 

developed dynamical model of the human body was used to compute the 3D intervertebral efforts 

during the gait of 15 participants with adolescent idiopathic scoliosis (AIS) and 12 typically 

developed adolescents (TDA). Kolmogorov-Smirnov and Two-sample t-test were applied on the 

calculated intervertebral efforts and the graphs of intervertebral efforts were studied. Results: 

Anteroposterior (AP) forces and torques and mediolateral (ML) forces are the most relevant 

intervertebral efforts amongst the other efforts in adolescents with AIS during gait. Discussion: 

Gait analysis in adolescents with AIS based on the relevant intervertebral efforts could be an 

effective means to follow-up and evaluate the progression of scoliosis during their treatment 

period. Conclusion: This study highlights the most relevant intervertebral efforts of individuals 

with AIS during gait. As future work, the identified intervertebral efforts could be implemented 
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in a quantified and visual feedback tool for therapeutic and performance evaluation or interactive 

sessions in physiotherapy, e.g. via video games for dynamic posture self-correction. 

Keywords: musculoskeletal model, Idiopathic Scoliosis, intervertebral efforts, visual feedback, 

gait pattern, inverse dynamics 

5.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is a pathology characterized by a complex three-

dimensional (3D) deformation of the spine and rib cage of 10 degrees or more, which is prevalent 

in 1-3% of the adolescents aged between 10 and 16 years [91]–[93]. The Trunk 3D deformities of 

the spine are referred to as any abnormality in the alignment or shape of the spine, which lead to 

posture asymmetries, asymmetric loading on the spine and disharmony during gait [94]. The 

repetitive asymmetric movements during gait may increase the deformity of the spine and affect 

the whole body structure, change the position and the performance of other organs in the body 

such as lungs and heart in more severe cases [95], [96]. Gait studies on AIS have shown the 

presence of asymmetry in kinematics and kinetics parameters such as reduced shoulder, hip and 

pelvis motion in frontal plane, hip motion in transversal plane and knee motion in the sagittal 

plane in adolescents with AIS compared to healthy controls [93], [97], [98]. Additionally, 

adolescents with AIS displayed reduced step length, stance phase, increased energy expenditure 

and changes in load distribution during gait [93], [97]–[99]. 

The true etiology and aggravation of the AIS mechanism remain unclear and are categorized 

widely as abnormalities at the genetic level, hormonal and central nervous system during growth 

[91].Thus, controlling the progression of  scoliosis is the main challenge. It is well accepted that 

early clinical interventions help to control the progression of scoliosis and improve the functional 

performance of the AIS population in their daily motions [100]. Therefore, re-education of gait 

pattern is one of the therapeutic challenges in rehabilitation, as this movement is involved in the 

main daily activities. 

Several studies [17], [81], [82], [101], [102] are consistent with the fact that intervertebral efforts 

i.e. the three components of forces and torques (Figure 5.1) are crucial variables for AIS gait 

analysis since they have a significant impact on the progression of the Cobb angle and spine 

deformity. According to the “Hueter-Volkmann Law” vertebral growth is slowed by mechanical 



 

 

24 

compression [103]. Additionally, the intervertebral efforts quantification is based on the 

kinematics, geometric and inertial parameters of the individuals with AIS, which are very 

sensitive to these parameters. Consequently, the quantification of the intervertebral efforts of the 

spine would provide an effective means for rehabilitation and instrumentation purposes in AIS. 

 

Figure 5.1 Directions of 3D efforts components on the vertebrae, Fx: Anteroposterior 

force, Fy: Mediolateral force, Fz: Vertical force, Mx: Anteroposterior torque, My: Mediolateral 

torque, Mz: Vertical torque. 

 

Raison et al. (2008, 2012) developed a method to quantify the intervertebral efforts, enabling the 

reporting of different intervertebral efforts between a healthy adolescent and one with AIS, and 

that adolescent with AIS after arthrodesis [104], [105]. Furthermore, Yazji et al. (2015) 

demonstrated that there are differences in calculated intervertebral efforts between healthy and 

pre-operative individuals with AIS. However, following spinal surgery, these efforts were more 

similar between healthy and postoperative individuals with AIS [17]. In their model, Yazji et al., 

assumed that the spine 3D reconstruction is fixed during gait [17], however; spinal gait 

kinematics is a critical factor for adolescents with AIS [106]. Abedrabbo et al. (2012) quantified 

the efforts of L5-S1 of one adolescent with AIS by proposing a multibody biomechanical model 

based on kinematics and kinetics parameters and muscle activities [107]. Recently, Guilbert et al. 

(2019) developed a multibody model paired with the kinematics model of the spine to identify 

the intervertebral efforts in real-time of one healthy adolescent, and one with AIS [82]. They 

reported a higher amount of mediolateral force and torque in the adolescent with AIS compared 
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to the healthy one. They revealed that the pathological efforts are distributed along the spine and 

are not only concentrated around critical points [82].   

These findings may help determine the effect of conservative treatment in AIS. Self-correction 

exercises used in specific physiotherapy approaches for scoliosis treatments showed promising 

results to momentarily correct or prevent scoliosis progression [108], [109]. Therefore, providing 

a therapeutic tool based on the intervertebral effort indicators would allow a better understanding 

of the effect of these exercises on the spine deformity and would have a strong potential of 

interest in the follow-up and control of the scoliosis progression.  

To achieve this goal, one of the main problems is to identify the most relevant efforts, among the 

90 possible indicators; i.e. 6 force and torque components in 15 levels of vertebrae (L3-L2 to T1-

C7), a task that has never been carried out. These components are along the anteroposterior, 

mediolateral and vertical directions, which are referred to the walking direction (X-axis), the 

perpendicular direction to the walking direction (Y-axis) and the direction along the spine (Z-

axis), respectively (Figure 5.1). 

These efforts can show how they are distributed along the spine during gait when comparing 

adolescents with AIS and different curve types to typically developed adolescents (TDA). This 

could help to discern and evaluate the progression of scoliosis during their treatment periods.  

Therefore, the objective of this study is to identify the most relevant indicators among the 3D 

intervertebral efforts along the spine (L3-L2 to T1-C7) between different curve types of AIS and 

TDA to be used as a follow-up for the scoliosis progression. The motivation is to enable the 

possibility of implementing these indicators in therapeutic and feedback tools for rehabilitation, 

such as virtual reality and visual feedback for posture self-correction, clinician guide and 

therapeutic follow-up in AIS.  

5.3 Methods 

5.3.1 Multibody model 

This section briefly presents the multibody model used in this paper, called model hereafter, 

developed by Guilbert et al. (2019)[82]. This model quantifies the intervertebral efforts in real-

time using the kinematics of the spine. It does not assume that the spine is fixed during gait, 
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enabling one to study the impact of spinal deformity on the produced efforts along the spine. 

The model is composed of 25 rigid bodies (the lower limbs (6), pelvis (1) and spine (18)), as 

shown in Figure 5.2a. The Cartesian coordinates of the anatomical landmarks, and the ground 

reaction forces during gait were obtained in a motion laboratory equipped with a motion-capture 

system and force platforms, respectively. However, to compute the intervertebral efforts, the 

force platforms are not required, but they remain essential to obtain the lower limb efforts. To 

obtain the joint kinematics from recorded Cartesian coordinates, an inverse kinematics process 

using the Levenberg-Marquardt (LM) optimization algorithm developed by ALGLIB®[110] with 

a global optimization [111] was applied. The LM algorithm developed in the early 1960’s to 

solve non-linear least square problems which combines the gradient descent and Gaussian-

Newton minimization methods. This algorithm is an iterative procedure, acts more like a 

gradient-descent method when the parameters are far from their optimal value, and acts more like 

the Gauss-Newton method when the parameters are close to their optimal value (Equation 5-2) 

[112]. In the inverse kinematics, the error-damped factor of the LM method prevents the 

algorithm from escaping a local minimum [113]. It improves the convergence performance and 

the numerical accuracy and robustness of the optimization algorithm [114].   

  

𝐽!𝑊𝐽 +  𝜆𝐼 ℎ!"! 𝐽!𝑊(𝑦 − 𝑦)                  Equation 5-2 

 

Where 𝐽 is the m×n Jacobian matrix, W is the weighting matrix, 𝜆, is the damping parameter, 𝐼 is 

the identity matrix, ℎ!"is the parameter update of Levenberg-Marquardt optimization algorithm,  

𝑦 is the measured data, 𝑦 is the predicted value for y. 

The efforts, i.e. forces and torques between each vertebra based on a dynamical equation system 

(inverse dynamics) were then computed from a Newton-Euler equation (Equation 5-3). To 

generate the symbolic equations, Robotran software was used [115] (Figure 5.2.a.). 

 

𝑄 = 𝑓 𝑞, 𝑞, 𝑞,𝐹!"# ,𝑔         Equation 5-3 
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Where 𝑄 is the forces and torques between each vertebra, 𝑞 is the joint angles, 𝑞 is the joint 

speeds, 𝑞  is the joint accelerations, 𝐹!"#  is the external forces and 𝑔  is the gravity.	 Six 

components of efforts, i.e. three forces (N/kg) and three torques (Nm/kg), are computed in the 

anteroposterior (AP), mediolateral (ML) and vertical (V) directions (Figure 5.1 and Figure 5.2.b). 

 

 

Figure 5.2  (a) The proposed method and the fundamental of inverse dynamics to quantify 

the efforts in the multibody model of the human body [116], [117] (b) The future motivation of 

the proposed method. 
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5.3.1.1 Equipment and measurements  

The participants were asked to walk with their own preferred pace without targeting their steps in 

a motion lab. The motion lab was equipped with 12 cameras (Vicon, UK) to capture the 

movements and three separate force platforms (AMTI, USA) embedded in the floor in the middle 

of the walkway in the lab to measure the applied ground reaction forces to each foot. Data from 

one complete cycle was retained for this study. The cycle started when the first foot hit the first 

platform and ended at the last frame before the same foot hit the floor for the second time.  

5.3.1.2 Data collection procedure 

To perform the data collection procedure, 15 adolescents with AIS (5 males, mean (SD)- age: 

14.1 y (±1.3) (range: 12-16 years), weight: 48.9 kg (±9.4), height: 1.60 m (±0.1) and 12 TDA as 

the control group (5 males, mean (SD) age: 13.4 y (±1.8) (range: 11-16 years), weight: 44.4 kg 

(±13), height: 1.55m (±0.10) were recruited in this study. The AIS group included six thoracic, 

six lumbar/thoracolumbar and three double curve types, with a Cobb angle between 12 to 37 

degrees (mean(±SD): 26 (±7)). Inclusion criteria: the participants with AIS with a Cobb angle of 

more than 10 degrees and fewer than 50 degrees were recruited. The healthy participants with 

less than 5 degrees of trunk asymmetry measured by the scoliometer [118] and without any 

neuro-musculoskeletal conditions were included. All of the participants/parents signed the 

written consent approved by the research ethics committee of Sainte-Justine University Hospital 

Centre (UHC) prior to the test. 

5.3.1.3 Data analysis 

For each participant, the model is customized with the measurements taken by a physiotherapist 

prior to the data collection. These measurements include mass, height, foot length, knee and 

ankle width. The centre of rotation of each articulation is then calculated on the basis of Davis 

III’s model [119]. The body and vertebrae inertia parameters were obtained from de Leva’s table 

[120] and Kiefer et al. [121], respectively. 

All data were synchronized at 100 Hz and were fed to a C++ real-time routine [116] to calculate 

the intervertebral forces and torques along the spine. The duration of the gait cycle was 

normalized between 0 and 100 and the efforts were normalized to the body weight to have the 
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same scale for all of the participants. To verify the normality of the distribution of 3D 

intervertebral efforts, i.e. to compare the curve pattern of each intervertebral effort during a 

complete gait cycle, a Kolmogorov-Smirnov (K-S) test [122] was performed. The K-S is 

sensitive to differences in both location and shape of the empirical cumulative distribution 

functions of the two samples. We compared the components of efforts of each adolescent with 

AIS at the apex level (the vertebra with the greatest rotation or farthest deviation from the center 

of the spine, shown in Figure 5.3) to the average efforts of TDA. After testing the equality of the 

variances on the intervertebral efforts at the apex level, to compare the means during a gait cycle, 

a t-test [123] was applied. For each participant with AIS, we obtained the mean during one gait 

cycle, which is continuous data. For the TDA group, first we obtained the mean of each gait cycle 

for each participant and then we calculated the mean of the group. Finally, we performed a t-test 

comparing the mean of one gait cycle (continues data) for each participant with AIS and the 

mean of the TDA. The reason behind applying both K-S and t-test is that the position of the 

major curve on the spine influences the trunk kinematics parameters leading to asymmetrical 

trunk movements [124], [125], which affects their gait pattern. Therefore, considering only the 

means during the gait cannot be representative of the whole duration of a cycle and all types of 

scoliosis.  

Visual analysis plays an important role in exploring, analyzing and presenting data, detecting the 

expected and discovering the unexpected results [126].   Therefore, to visually analyze the curve 

pattern of the intervertebral efforts, we compared the graphs of the intervertebral efforts for each 

individual with AIS i.e. forces and torques along the three axes, with the graphs of average 

±standard deviation of the same efforts of TDA during one gait cycle. To enhance the 

understanding of the impact of spinal deformity on the pattern of the intervertebral efforts curves, 

the radiography of the spine of each participant with AIS is provided.  

5.4 Results 

The obtained p-values applying t-test and Kolmogorov-Smirnov to compare the differences 

between each participant with AIS and average of TDA are presented in Table 5.1. The 

parameters with the p-value less than 0.05 are considered as the ones with the significant 

differences between the adolescents with AIS and TDA. 

 



 

 

30 

 

 

Table 5.5   P-value for t-test and Kolmogorov-Smirnov (K-S) test of the 3D forces and torques of 

AIS at the apex level and mean of TDA 

 P-value  

 Anteroposterior 

Force (line 1) 

Torque (line 2) 

Mediolateral 

Force (line 1) 

Torque (line 2) 

Vertical 

Force (line 1) 

Torque (line 2) 

Participants (P) 
with  

AIS (type) 

t-test K-S test t-test K-S test t-test K-S test 

P1  

(Thoracic) 

0.000 

0.066 

0.000 

0.069 

0.000 

0.481 

0.000 

0.005 

0.241 

0.000 

0.000 

0.000 

P2  

(Thoracic) 

0.000 

0.020 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.536 

0.448 

0.344 

0.005 

P3 

(Thoracic) 

0.004 

0.000 

0.008 

0.000 

0.000 

0.000 

0.000 

0.000 

0.014 

0.000 

0.013 

0.000 

P4 

(Thoracic) 

0.000 

0.001 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.872 

0.905 

0.794 

0.193 

P5 

(Thoracic) 

0.000 

0.000 

0.000 

0.000 

0.000 

0.004 

0.000 

0.005 

0.600 

0.982 

0.314 

0.000 

P6 

(Lumbar) 

0.000 

0.000 

0.000 

0.000 

0.000 

0.472 

0.000 

0.005 

0.034 

0.139 

0.000 

0.099 

P7 

(Lumbar) 

0.000 

0.000 

0.000 

0.000 

0.000 

0.935 

0.000 

0.001 

0.000 

0.717 

0.000 

0.021 

P8 

(Thoracolumbar) 

0.000 

0.000 

0.000 

0.000 

0.650 

0.169 

0.047 

0.193 

0.202 

0.000 

0.000 

0.000 

P 9 

(Thoracolumbar) 

0.000 

0.000 

0.000 

0.000 

0.036 

0.415 

0.003 

0.008 

0.066 

0.000 

0.069 

0.000 
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P10 

(Thoracolumbar) 

0.001 

0.000 

0.003 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.0000 

P11 

(Thoracolumbar) 

0.000 

0.000 

0.031 

0.000 

0.000 

0.001 

0.000 

0.001 

0.000 

0.018 

0.000 

0.000 

P12 

(Thoracolumbar) 

0.000 

0.424 

0.000 

0.099 

0.000 

0.448 

0.000 

0.069 

0.000 

0.147 

0.000 

0.000 

P13 

(Double) 

0.000 

0.000 

0.000 

0.000 

0.000 

0.039 

0.000 

0.047 

0.294 

0.029 

0.013 

0.047 

P14 

(Double) 

0.000 

0.000 

0.000 

0.000 

0.000 

0.094 

0.000 

0,001 

0.028 

0.000 

0.000 

0.000 

P15 

(Double) 

0.000 

0.000 

0.000 

0.000 

0.002 

0.000 

0.000 

0.000 

0.531 

0.461 

0.140 

0.008 

 

Table 5.6 is the summary of Table 5.5 showing the intervertebral efforts with significant 

differences in distribution and average comparing the entire two groups included in this study. As 

seen, all of the intervertebral efforts show significant differences in terms of distribution and 

significant differences of AP forces and torques and ML forces in terms of means comparing the 

efforts during one complete gait cycle. 

Table 5.6   Kolmogorov-Smirnov (K-S) test and t-test results of intervertebral efforts of all 

participants with AIS 

Test                                

Efforts (Apex) 

Kolmogorov-Smirnov Two sample t-test 

Anteroposterior force Significant difference in 
distribution 

Significant difference 
between the means  

Mediolateral force Significant difference in 
distribution 

Significant difference 
between the means  

Vertical force Significant difference in 
distribution (< 68%) 

No significant difference 
between the means (< 68%) 

Anteroposterior torque Significant difference in 
distribution 

Significant difference 
between the means 

Mediolateral torque Significant difference in 
distribution 

No significant difference 
between the means (< 68%) 
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Vertical torque Significant difference in 
distribution 

No significant difference 
between the means (< 68%) 

Figure 5.3. a to f show the intervertebral efforts i.e. ML, AP and V forces and ML, AP and V 

torques respectively, of one individual with thoracic scoliosis chosen as a sample, along the spine 

and the mean ± SD of TDA. As demonstrated, black curves and gray areas indicate the mean ± 

standard deviation related to intervertebral forces/torques of TDA, blue curves are related to the 

intervertebral forces/torques of AIS along the spine and red curves show the forces/torques of the 

AIS at the apex level. These figures present the impact of spinal deformity and spine right or left 

curve on the intervertebral efforts curve pattern of the adolescents with AIS. Figure 5.4 is the 

enlargement of Figure 5.3 at the apex level and one level higher and lower than it the apex level. 
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Figure 5.3 Above, left to right: a. mediolateral (ML), b. anteroposterior (AP) and c. 

vertical (V) force along the spine (N/kg). Below, left to right: d. anteroposterior, e. 

mediolateral and f. vertical torque along the spine (Nm/kg). Black line and Gray area: 

Mean ± Standard deviation for the typically developed adolescents, Blue line: An 

individual with thoracic idiopathic scoliosis, Red line: An individual with thoracic 

idiopathic scoliosis at the apex level. 

a. b. c.
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d. e. f. 

Figure 5.4 Enlargement of Figure 5.3 in the level of apex (above) Above left to right: a. 

ML, b. AP and c. V force along the spine (N/kg). Below, left to right: d. AP, e. ML and f. 

V torque along the spine (Nm/kg). Black line and Gray area: Mean ± Standard deviation 

for the typically developed adolescents, Blue line: An individual with thoracic idiopathic 

scoliosis, Red line: An individual with thoracic idiopathic scoliosis at the apex level. 

To compare the differences and similarities in participants with different types of AIS to the 

mean of TDA, Figure 5.5a to f present the graphs of ML force and AP torque of one thoracic, one 

lumbar and one double scoliosis, respectively. The curves of the intervertebral efforts show 

different patterns compared to the TDA during walking. 
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Figure 5.5 Mediolateral force of a. thoracic scoliosis, b. lumbar scoliosis, c. double 

scoliosis, and anteroposterior torque of d. thoracic scoliosis, e. lumbar scoliosis f. double 

scoliosis.  Black/ Red line: The intervertebral efforts of an adolescent with AIS: along the 

spine / at the apex level, Blue area: The mean of intervertebral efforts of TDA group 

5.5 Discussion 

The objective of this study was to identify the most relevant intervertebral efforts as indicators 

during gait of adolescents with idiopathic scoliosis. The participants recruited in this study were 

chosen from all types of AIS (i.e. thoracic, lumbar/thoracolumbar and double scoliosis) and a 
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wide range of severity, since to our knowledge there is no study that compared the intervertebral 

efforts along the spine for all types of AIS. In the literature there are comprehensive studies on 

lumbosacral joint efforts during gait in lumbar/thoracolumbar AIS as presented in [17], [81], 

[127] but not other types. Comparing one gait cycle of the adolescents with AIS and mean of 

TDA demonstrates that the distribution of all efforts except the vertical force and the mean of AP 

and ML force and AP torque respectively, differ significantly between these two groups (Table 

5.1 and 5.2).  

Figure 5.3a. illustrates the ML force along the spine during one gait cycle of an adolescent with 

AIS. This could be observed that the ML force curve of the individual with AIS is out of the ±SD 

area of the mean of TDA when there is a curvature between the two adjacent vertebrae.  For 

instance, at the apex level, it is fully out of the ±SD area of the mean of TDA. However, the 

curvature side of the spine, i.e. right or left curvature seems to make the AIS ML force curve shift 

to the top or below the mean TDA of ML force curve, respectively. The ML force is the lateral 

force on the spine, which is perpendicular to the walking direction. It could be explained by the 

greater muscle activity found on the convex side of the spine compared to the concave side 

[33][32] and it confirms the necessity of 3D correction of the spine to decrease the asymmetry as 

proposed in physiotherapeutic scoliosis-specific exercises approaches [100], [108], [109] . 

The graph of AP force (Figure 5.3b) shows that the differences are eventually more in the lower 

part (L2 to T9) of the spine than the upper part. It could be due to the multifidus muscle function 

that stabilizes the lumbar spine [129]. This may also explain the higher amount of energy use 

found during gait in adolescents with thoracolumbar or lumbar curves compared to controls 

[130]. 

Figure 5.3c exhibits that the spinal deformity does not influence the vertical force during gait. It 

could be explained by the correlation between the vertical force to the mass of the participants 

[131], [132]. The average weight among the two groups has similar values (mean weight (SD): 

adolescents with AIS: 48.9 kg (±9.4), TDA: 44.4 kg (±13)), therefore it could explain the 

similarity of the curve pattern of vertical force between adolescents with AIS and TDA. The 

same results could be noticed in Figures 5.3d and 5.3f, i.e. the graphs of ML torque and V torque. 

They look similar when comparing the scoliosis and the healthy spine. However, they differ at 

the lower part of the spine. In terms of AP torque curves (Fig. 5.3e), the scoliosis spine has an 



 

 

39 

impact on the curve pattern and the AP torque curve of the participants with AIS is mostly out of 

the ±SD area of the mean of TDA. It seems that by studying the graphs of intervertebral efforts, 

similar results to the statistical tests could be obtained, i.e. the ML and AP forces and AP torque 

are the most relevant ones, compared to the rest to be used as indicators for treatment purposes.  

These findings are similar to the results reported by Guilbert et al. (2019)[82] and Raison et al. 

(2008) tested on only two individuals [105], whereas the current study includes a larger 

population to validate the previous studies.  

There are also differences in curve patterns observed in the graphs among the individuals with 

different scoliosis types due to the dissimilarity of spinal deformity as shown in Figure 5.5a-f.  

For instance, in thoracic scoliosis, the curve of ML force at the apex (Figure 5.5a) is partly below 

and partly above the mean TDA curve. In lumbar scoliosis, the curve of ML force (Figure 5.5b) 

is above the curve of mean TDA. In the double scoliosis (Figure 5.5c) at the apex level of the 

lumbar part of the spine, the ML force curve is below the curve of the mean TDA and at the 

thoracic part of the spine, the curve of ML force is above of the mean TDA curve. In terms of AP 

torque, for thoracic scoliosis (Figure 5.5d), all curves are above the mean TDA curve. However, 

in lumbar (Figure 5.5e) and double scoliosis (Figure 5.5f), the curves are mostly under the mean 

TDA curves. Fuji et al. (2007) also reported that, the thoracic scoliosis produces more movement 

in rotation than the lumbar scoliosis [133].  

Studies also show that adolescents with AIS have different gait patterns compared to the TDA 

[97], [134], [135]. This may be due to the type and severity of the scoliosis creating different 

impacts on trunk kinematics parameters during gait [136], [137]. This difference is also due to 

the sensitivity of the intervertebral efforts to the kinematics parameters [104], [134], [138]. 

Syczewska et al. (2006) showed that scoliosis changes body orientation and mechanics of the 

pelvis at least in one plane [98]. These indicators can be implemented in a biofeedback tool. 

Therefore, it may help clinicians to optimize their treatments by providing feedback while 

undertaking the manual posture correction, i.e. they would be able to visualize the impact of their 

treatment on the intervertebral efforts and consider different strategies for adolescents with AIS 

according to their type or severity of the scoliosis [100].  
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5.6 Conclusion 

The objective of this study was to identify the most relevant intervertebral effort indicators during 

the gait of adolescents with AIS. The main results showed ML forces and AP forces and torques 

(Figure 5.3b) are the most relevant indicators to be used as a therapeutic tool due to their 

significant differences when compared to the typically developed adolescents. It is worth noting 

that, due to the differences between the intervertebral efforts among different scoliosis types 

(Figure 5.5 a-f); the strategies for their treatment should be personalized based on the scoliosis 

classification. Therefore, these efforts are essential variables for posture correction and may be 

useful to monitor scoliosis progression when comparing to typically developed adolescents as the 

reference. In fact, the proposed method could be used as an evaluation tool to assess the 

efficiency of the treatments during the specific time interval while the patients follow the 

treatment process. 

As future work, the identified intervertebral efforts could be implemented in a quantified and 

visual feedback tool in a virtual reality environment such as GRAIL[139]  for clinical evaluation 

or interactive sessions in physiotherapy, e.g. via video games for posture self-correction. For 

example, this could be carried out, during gait, presenting the graphs of intervertebral efforts 

indicators in real-time, considering the mean ± SD of efforts of the healthy individuals as the 

reference for the clinicians. The patients would adapt their posture during gait with visual 

feedback and aid of the physiotherapist, as shown schematically in figure 52.b. This should make 

the treatment sessions more interactive and interesting to follow for the individuals and for 

avoiding repetitive and incorrect exercises. 
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6.1 Abstract 

Introduction: To assess the severity and progression of adolescents with idiopathic scoliosis 

(AIS), radiography with X-rays is usually used. The methods based on statistical observations 

have been developed from 3D reconstruction of the trunk or from topography. Machine Learning 

has shown great potential to classify the severity of scoliosis on imaging data, generally X-ray 

measurements. However, it is also known that AIS leads to the development of gait disorder. To 

our knowledge, Machine Learning has never been tested on spine intervertebral efforts during 

gait as a radiation-free method to classify the severity of spinal deformity in this clinical 

population. Purpose: Develop automated Machine Learning algorithms to classify the severity of 

spinal deformity on AIS based on the lumbosacral joint (L5-S1) efforts during gait. Methods: 

The lumbosacral joint efforts of 30 individuals with AIS were used as distinctive features fed to 

the Machine Learning algorithms. Several tests were run using various classification algorithms. 

The labeling consisted of three classes reflecting the severity of scoliosis using the Cobb angle 

(10° to 25° Cobb angle, 25° to 45° Cobb angle and more than 45° Cobb angle) performing six 
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walking cycles. Results: The ensemble classifier algorithm including K-nearest neighbours, 

support vector machine, random forest and multilayer perceptron, and a Neural Networks model 

achieved the most promising results, with accuracy scores of 91.4% and 93.6%, respectively. 

Conclusion: This study shows lumbosacral joint efforts can be used to classify the severity of 

spinal deformation in AIS. This algorithm can be used as an assessment tool to follow-up the 

progression of AIS as a radiation-free method, alternative to the X-ray radiography.  

 

Key Words: Idiopathic scoliosis, Cobb angle, Radiation-free scoliosis assessment, Machine 

Learning classification algorithms, Gait analysis, Lumbosacral joint efforts. 

 

6.2 Introduction 

Adolescent idiopathic scoliosis (AIS) is a progressive spinal growth disease resulting in the 

occurrence of one or more coronal curvatures of the spine exhibiting a Cobb angle equal to or 

greater than 10° with spinal rotation [141], [142]. It affects up to 4% of schoolchildren worldwide 

[142] without any known etiology. The Lenke classification has been created to group similar 

curves into clusters enabling appropriate treatment recommendations and allowing comparison of 

different treatment strategies [1]. These curves are classified by their location along the spine and 

the magnitude of the coronal deviation of the curve which is expressed by the Cobb angle as the 

gold standard to evaluate AIS [6].  

To support physicians and surgeons to follow-up and evaluate the progression of spinal 

deformation more accurately and efficiently, patients are monitored with large a series of 

radiographs i.e. at least every six months, during their growth years [143]. However, these 

cumulative roentgenograms represent a real risk of increase in organ carcinogenic due to x-ray 

radiation as reported in [144], [145]. For this reason, and due to the three-dimensional (3D) 

deformation of the spine in AIS, many researchers have tried to develop alternative methods to 

evaluate the severity of the deformation in a radiation-free manner as a robust follow-up tool. Up 

until now, mainly optical surface measurement systems have been developed based on static 3D 

models of the spine. Adankon et al. [146] showed that it was possible to perform follow-ups on 

AIS patients using 3-D trunk image analysis combined with a genetic algorithm. Tabard-Fougère 
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et al.  [147] introduced rasterstereography as an automatic, fast, and system capable of 

monitoring the progression of AIS with an acceptable validity compared to X-Rays. Liu et al.  

[148] used the Quantec spinal image system to quantify and classify the spinal deformity. Weisz 

et al.  [149] used the integrated shape imaging system (ISIS), a surface shaped method capable of 

identifying the curve growth of the spine. However, the results obtained from these mentioned 

research works reported prediction accuracy levels ranging from 63.5% to 87.5%. 

In [75], a support vector machine (SVM) classifier assessed the severity of idiopathic scoliosis 

(AIS) based on surface topographic images of human backs with the accuracy of between 69% to 

85%. Seoud et al. [150] proposed a semi-supervised classifier algorithm with an accuracy of 87% 

to predict the scoliosis curve types. More recently (2019), Roy et al. [151] presented an ionizing 

radiation- free method to estimate the trajectory of the spine with good results in the estimations 

of the lateral deviation of the spine for mild and moderate scoliosis. However, their proposed 

method was not intended to replace the X-ray radiography, but as complimentary to X-ray 

images. 

Most measurement techniques are only applied for a static posture of the patient and based on the 

trunk surface images. However, it is known that AIS also affects spino-pelvic mobility and can 

consequently modify human locomotion [10]. Therefore, it seems promising to investigate the 

impact of scoliosis severity on gait patterns. To our knowledge, very few studies have 

investigated the effect of scoliosis on walking ability, which is a prior effect of AIS. Two studies 

[127], [152] evaluated the impact of brace wearing on gait in AIS, respectively on the very short 

term and on the long term. In both cases, the quality of frontal pelvis and hip motion were 

affected. Another study [10] analyzed the effect of scoliosis and scoliosis severity on kinematic 

and electromyographic (EMG) gait variables, compared to an able-bodied population. Scoliosis 

patients showed significant but slight modifications in gait, the pelvic frontal motion being 

reduced, as was the motion in the hips and shoulder. Similarly, a comparison of lumbosacral 

joints efforts during gait was made between healthy and individuals with scoliosis [81]. 

Participants with severe idiopathic scoliosis presented higher mobility resulting in higher joint 

efforts at the lumbosacral level than healthy adolescents, i.e. the lumbosacral joint is the most 

mobile part of the spine during gait [10], [81]. Two recent studies (2019 and 2020) [78], [82] by 

Guilbert et al. and Samadi et al., respectively, presented the differences of intervertebral efforts 

along the spine by comparing adolescents with AIS and typically developed ones. All these 
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studies attest to the major impact of AIS on mobility; therefore, dynamical intervertebral efforts 

acting between vertebrae are affected by the spinal deformity. 

Therefore, in this paper, we propose a radiation-free method, based on the lumbosacral joint 

efforts during gait, which uses Machine Learning algorithms to classify the individuals with AIS 

with different curve severity without the need for image or topography of patients’ bodies. 

6.3 Materials and methods 

6.3.1 Patient samples and data acquisition 

The gold standard mean to define the severity and progression of scoliosis is measuring the Cobb 

angle. Therefore, we considered it as the parameter to identify the severity of scoliosis. The data 

set used in this paper as longitudinal data was obtained from a previous study conducted in [10] 

which has been collected and tracked since 2009. A total of 30 individuals with similar location 

of spine curvature (Lenke 5-6 [1]: main thoracolumbar/lumbar curves) with no spine surgery 

were included in this study. Thirty individuals in three different classes in terms of severity of the 

spinal deformity i.e. mild scoliosis (10° < Cobb angle < 25°), moderate scoliosis (25° < Cobb 

angle < 45°) and severe scoliosis (Cobb angle > 45°) as shown in Table 6-1 participated in this 

study. The dataset includes six successive gait cycles on a treadmill for each participant.    

 

 
Table 6.1 Specification of participants 

 Mild scoliosis Moderate scoliosis Severe scoliosis 

Number 9 14 7 

Age, years 
mean(SD) 

14(2) 15(2) 16 ( 1) 

Weight, kg 
mean(SD) 

45(9) 52 ( 8) 53 ( 8) 

Height, cm 
mean(SD) 

158(10) 163 ( 8) 167 ( 9) 
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This study takes ground on a precedent study [17] that evaluated intervertebral joints efforts by 

inverse dynamics. These efforts were determined as features for the learning algorithm. The 

participants were asked to walk at 4 km/h on an instrumented treadmill in a motion lab with 

reflective markers attached to their skin on different anatomical joints of their body during gait. A 

motion capture system composed of optokinetic sensors measured the kinematics of 26 

anatomical landmarks, and a treadmill equipped with force sensors measured the ground reaction 

forces (GRF) applied to each foot. The intervertebral forces and torques in the lumbosacral joint 

were calculated using a dedicated three-dimensional or inverse dynamics model of the human 

body, through  ROBOTRAN software [17], [88] as shown in Figure 6.1. 



 

 

47 

 

 
 

Figure 6.1 Process of quantifying the intervertebral joint efforts by inverse dynamics 
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6.3.2 Feature selection 

As presented by Mahaudens et al.[10] and Raison et al. [81], adolescents with severe idiopathic 

scoliosis showed higher mobility resulting in higher joint efforts in the lumbosacral joint (L5-S1) 

than healthy adolescents. Therefore, the efforts at the lumbosacral joint that are produced while 

walking could be relevant indicators for classification of the severity of spinal deformity. 

Based on previous studies [78], [81], [101] as well as observation of the data as shown in Figure 

6.2 and 6.3 , mediolateral (ML) forces and torques and anteroposterior (AP) torques at the 

lumbosacral joint were chosen as features due to the greater influence of the spinal deformity on 

these mentioned efforts . AP is the axis along with the walking direction and ML is the axis 

perpendicular to the walking direction, when participants are walking during the data collection 

sessions. The impact of the spinal deformity on the mentioned efforts could be explained due to 

the asymmetry between the left and right side of the body in AIS and the impact of the lumbar 

curve on asymmetrical trunk movement in the coronal plane. In fact, the adaptive dynamic 

strategies in AIS have been distinguished by an asymmetry between right and left limbs for 

lateral and forward initiation due to the impact of spinal deformity on dynamic motions [153]. 

These mentioned efforts of one adolescent with AIS and one healthy adolescent chosen from the 

database collected in [10] (Height: 164 cm, weight: 65kg, age: 17 years) during a complete gait 

cycle are presented in Figure 6.2, as an example. 
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Figure 6.2 left: Lumbosacral joint effort of an adolescent with AIS during one complete gait 

cycle, right: Lumbosacral joint effort of a healthy individual during one complete gait cycle 

 

The 15 parameters from six gait cycles shown in Table 6.2 were considered as features for the 

learning algorithms. We considered the fact reported in [81] that magnitude, maxima and minima 

of ML force and torque and AP torque  efforts are being influenced by the severity of spinal 

deformity  and defined the features. To have a better understanding of the chosen features, Figure 

6.3 was prepared. As demonstrated in Figure 6.3, the chosen parameters as features show 

significant differences between healthy individuals and those with scoliosis. 

 

Table 6.2 Features to feed classification algorithms 

NO. Features 

Mediolateral force Anteroposterior torque Mediolateral torque 

1 Maximum (|Maximum-mean|,|Minimum-mean|) 

2 Maximum (|Variance-mean|,|Variance+mean|) 

3 Maximum (|Max|,|Min|) 

4 |mean| 

5 Standard deviation 
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Figure 6.3 top: Mediolateral force, middle: Mediolateral torque, bottom: Anteroposterior torque 

features, comparison between an adolescent with AIS and a typically developed adolescent 

6.3.3 Sampling process 

Following the feature selection step, to maintain the compatibility between the features, 

StandardScaler [154] was applied to arrange the data in a standard normal distribution as a pre-

processed step. The features were calculated over the 6 complete gait cycles i.e. 12 steps for each 

individual. 

6.3.4 Model selection 

Several supervised classifier methods, as listed in Table 6.3, were implemented, since our 

training dataset is labeled. Gridsearch was used to automatically tune the hyperparameters for 

each learning algorithm. Grid search methodically builds and evaluates the model for each 

combination of algorithm parameters specified in a grid, by performing a cross validation process 

through a given list of parameters and the range of values for each parameter. It finds the optimal 

hyperparameters that provide the best accuracy for each model. 

Three different classes based on the surgeons measurement of the Cobb angle on radiography 

images were considered as the labels [155]: Individuals with the Cobb angle between 10° and 25° 
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(class 1), 25° and 45° (class 2) and superior to 45° (class 3), respectively. To select the learning 

model, a comparative study was carried out in terms of the accuracy score of different learning 

algorithms on a cross-validation set. To evaluate the performance of each model on unseen data 

we performed the k-fold cross validation process. K-fold cross validation separates the data to k 

folds and each time it holds one fold for a test and training the model on the rest of the folds. It 

means that every data point has the chance to be in a test dataset once and to be in the training 

dataset k-1 times. The overall performance of the model then calculates based on the average of 

all folds over each time training process.  

To improve the accuracy score, we implemented an ensemble of learning methods using the 

voting classifier algorithm adding several models. The developed models with their 

hyperparameters are summarized in Table 6.3.  

 

Table 6.3 Parameters used in each algorithm 

No. Classifier Algorithm Parameters 

1 K-nearest neighbours [156] Number neighbours=3 

(Number of the nearest neighbours in the 
dataset to include in the voting process) 

2 Radius neighbours [157] metric=chebyshev 
(The distance metric to use for the tree, 

Chebyshev distance: 
The maximum distance between two 

vectors) 
 

radius=3.0 
(The given radius of a point or points to 

find neighbours within it) 
 

 weights=distance 
(Weight function used in prediction, when 
distance is chosen, closer neighbours of a 
query point have a greater influence than 
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neighbours which are further away) 

3 SVM with Polynomial (degree 3) Kernel 
[158] 

C = 0.9 

(Regularization parameter, to avoid 
overfitting) 

4 SVM with Gaussian Kernel [158] C = 100 
(Regularization parameter, to avoid 

overfitting) 

5 Random forests [159]    criterion=entropy 

(The function to measure the quality of a 
split, “entropy” criteria calculates the 
information gain by making a split) 

 

max_depth=20 
(The maximum depth of the tree) 

 
 max_features=auto 

(The number of features to consider when 
looking for the best split. If “auto” is 

chosen, it means that it is equal to square 
root of number of features) 

6 Logistic regression [160] penalty=L2 
(Regularization parameter, to avoid 

overfitting, L2 (Ridge regression), adds 
“squared magnitude” of coefficient as a 

penalty term to the loss function) 
 

solver = lbfgs 
(Chosen algorithm for the optimization, 

“lbfgs” for multiclass problems) 
C = 0.09 

Inverse of regularization strength 

7 Gaussian process [161] kernel = 10.0 * RBF(1) 

(To specify the covariance function. 
RBF: squared exponential kernel)  
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8 Multilayer perceptron [162] activation= ReLU 

(The function to activate the hidden layer, 
ReLU f(x) = max(0, x)), rectified linear 

unit function) 
 

hidden_layer_sizes=(60) 
(Number of hidden neurons) 

 
learning_rate=constant 

(updates the weight) 
learning_rate_init=0.003 

(It controls the step-size in updating the 
weights) 

 
max_iter=500 

(Number of epochs when the solver is 
“adam”) 

 
n_iter_no_change=10 

(Number of iterations with no 
improvement to wait before termination 

training procedure) 
 

solver=adam 
(Optimizes the weight, “adam”: stochastic 

gradient-based optimizer) 

9 AdaBoost [163] n_estimators=500 

(The maximum number of estimators at 
which boosting is terminated) 

 
learning_rate=0.01 

(Shrinks the contribution of each 
classifier) 
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algorithm=SAMME.R 
(SAMME.R for fast convergence) 

10 Gaussian naïve Bayes [164] var_smoothing=3 
(Portion of the largest variance of all 
features that is added to variances for 

calculation stability) 

11 Linear discriminant analysis [165] solver = lsqr 
(Least squares solution) 

12 Bootstrap aggregating (Bagging) [166] KneighboursClassifier 
(The used algorithm) 

13 Extra trees [167] criterion=gini 
(It measures the quality of a split, 

Gini Impurity is a measurement of the 
likelihood of an incorrect classification of 

a new instance of a random variable, if that 
new instance were randomly classified 

according to the distribution of class labels 
from the dataset) 

 
max_depth=None 

(The maximum depth of the tree, “None”: 
nodes are expanded until all leaves are 

pure or all leaves contain less than 
min_samples_split samples) 

 
max_features=auto 

(max_features=square root of (n_features)) 

14 Ensemble methods [168] 

 

K nearest neighbours 

SVM 
Random forest 

multilayer perceptron 

15 Neural Network model [169] 6 hidden layer 

 
Activation function of input and hidden 
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layers: tanh(x) = (!
!!!!!

!!!!!!
) 

 
Activation function of output layer:  

Softmax = !"# !!
!"# !!!

) 

(Exponential and enlarges differences - 
push one result closer to 1 while another 

closer to 0) 
 

Dropout [170] = 0.2 
(It is used to avoid overfitting by randomly 

dropping out nodes during training) 
 

Optimizer: Stochastic gradient descent 
(SGD) 

(Computation is performed on a small 
subset or random selection of data example 

instead of whole dataset) 
 

 Learning rate=0.001  
 

Momentum=0.4 
(Regularization parameter when optimizer 

is SGD) 

6.3.5 Classifier algorithms 

Ensemble method and Neural Networks models showed the best results; therefore we explain 

these mentioned algorithms in the following section and the related parameters in Table 6.3: 

• Ensemble voting classifier [168] is a combination of a set of classifiers which uses a 

majority vote to predict the class labels : 

- K nearest neighbours (KNN): it stores all of the available possibilities and 

classifies new data based on a similarity to the stored data [171]. The label is 

predicted as the class with the highest frequency from the most similar samples. 
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Each sample in the training dataset votes for the class of the sample in the test and 

the class with the most votes is the final prediction [172]. 

 - SVM (Gaussian kernel) [173], [174]: finds the hyper plane in an N-dimensional 

space which N is the number of features that classifies the data points. Its classification algorithm 

is based on finding an optimal boundary between the possible outputs.  

 - Random forest: consists of many decision trees. The parameters are the variables 

and thresholds, which are used to split each node that is learned during training. It consists of 

several decision tree models that split on a subset of features on each split. 

 - Multilayer perceptron (MLP) [170], [175]: is a feed forward artificial Neural 

Network that generates a set of outputs from a set of inputs. It uses the backpropagation 

technique for training, which is based on the calculation of loss. The loss between the model 

predicted and the real label is calculated and then the value of all the weights is calculated from 

the last layer to the first layer aiming to decrease the loss over the network.  

• Neural Networks model [176]: is a series of algorithms to recognize underlying 

relationships in a set of data through a process that mimics the way the human brain 

operates. We implemented a sequential Neural Network densely connected with six 

hidden layers, i.e. each neuron in a layer receives an input from all neurons of the	

previous layer and all the neurons in a layer are connected to the neurons in the next 

layers. 

 

We developed different classification algorithms to have a comprehensive observation on 

performance of different methods as shown in Table 6.3. To account for the randomness of the 

splitting of the dataset, we launched seven simulations based on the size of the database and then 

averaged the results to obtain the final result.  
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6.4 Results 

6.4.1 Performance of the classifiers 

The performance of each model has been shown by presenting the accuracy score, precision, 

recall (sensitivity) and F1-score in Table 6.4. The equation for each of the evaluation methods is 

shown in equations 6-1 to 6-4. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑠𝑐𝑜𝑟𝑒: !"#$%&'()'&&%)*+&%,-)*-'./
!"#$%&'()*+",-+*./0#/"&1

      Equation 6-1 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: !"#$%&'()&"%*'+,),-%+
!"#$%&'()&"%*'+,),-%+!!!"#$%&''()*$+&*,-,.$*

    Equation 6-2 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 : !"#$%&'()&"%*'+,),-%+
!"#$%&'()&"%*'+,),-%+!!"#$%&'(()*+%,%-)./0%+

   Equation 6-3 

𝐹1𝑆𝑐𝑜𝑟𝑒: !∗!"#$%&%'(.!"#$%%
!"#$%&%'(!!"#$%%

        Equation 6-4 

 

 

Table 6.4 Performance of each classification algorithm for AIS severity classification (cross-

validation) 

No. Classifier Algorithm Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

1 K-nearest neighbours 77.9 67.9 77.9 71.7 

2 Radius neighbours 60  40.1  60.7  47.3 

3 SVM with Polynomial (degree 3) Kernel 57.1  36.6  57.1  43.7 

4 SVM with Gaussian Kernel 84.3  78.2  84.3  79.6 

5 Random forests 83.6  80.1  83.6  80.2 

6 Logistic regression 77.9  70.2  77.9  73.1 

7 Gaussian process 77.1  65.7  77.1  69.3 
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8 Multilayer tron 87.9  83.6  87.9  84.3 

9 AdaBoost 85.7  85.1  85.7  83.1 

10 Gaussian naïve Bayes 67.9  52.0  67.9  57.8 

11 Linear discriminant analysis 77.9  72.6  77.9  74.5 

12 Bootstrap aggregating (Bagging) 57.1  78.2  71.4  65.0 

13 Extra trees 80.7  75.8  80.7  75.8 

14 Ensemble methods 

(K nearest neighbours, SVM, Random forest, 

Multilayer perceptron) 

91.4  89.5  91.4  89.3 

 

The accuracy score obtained by the sequential Neural Networks model was 93.6%. Figure 6.4 

shows the accuracy score (left) and categorical cross entropy (right) as the loss function (see 

equation 6-5) of one of the folds of the cross-validation for the training and test as an example.  

𝐿𝑜𝑠𝑠: −  𝑦!
!"#$"# !"#$
!!!  . log𝑦!         Equation 6-5 

where, 

𝑦! is the ith scalar value in the model output, 𝑦! is the target value, and n is the number of scalar 

values in the output of the model. 

Loss function is the measurement of distinguishability of two discrete probability distributions 

from each other. The categorical cross entropy defines the probability of each data point belonging 

to a specific category (class) in classification tasks, which the model must decide. 
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Figure 6.4 left: Accuracy score, right: Loss function of one fold of Neural Network model for 

training and test dataset 

 

6.5 Discussion 

Gait pattern provides useful information to assess and follow-up musculoskeletal diseases. AIS as 

a disease that affects trunk symmetry and anatomy of spine can modify human locomotion. 

Significant differences have been reported in kinematics [177]and ground reaction forces during 

gait in AIS with different levels of severity[178] . Therefore, the intervertebral efforts as 

variables, which are computed by using kinematics and ground reaction forces, can provide 

valuable information to assess and follow-up scoliosis. Raison et al. reported that the magnitude, 

maxima and minima of intervertebral efforts normalized to the body mass are being influenced 

by the severity of spinal deformity and we considered that as a feature of the engineering process 

to train the classification algorithms[81]. Consequently, in the current study, we developed a 

Machine Learning algorithm based on the lumbosacral (L5-S1) joint efforts during gait as an aid 

for clinicians to follow-up and assess the progression of scoliosis. The proposed method 

classified the severity of scoliosis (Cobb angle) in 30 patients without any spinal fusion surgery 

within the Lenke 5-6 (left lumbar and thoracolumbar scoliosis). Three different classes based on 

the treatments strategies were considered: AIS individuals with a Cobb angle between 10° and 

25° (mild scoliosis), between 25° and 45° (moderate scoliosis) and superior to 45° (severe 

scoliosis). It is worth noting that the lumbosacral joint is the most mobile part of the spine in 

lumbar and thoracolumbar scoliosis. Additionally, mediolateral force and torque as well as 
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anteroposterior torque, in this part of the spine, have shown differences between healthy 

individuals and the individuals with different severity as shown in Figures 6.2 and 6.3 and studies 

presented in [10], [78], [81], [82]. Therefore, these mentioned efforts in the lumbosacral joint are 

promising parameters to be chosen as features for the classifier algorithm. It can be explained by 

the fact that spinal deformity causes the AIS to compensate on the opposite limb to that of the 

curve. Furthermore, it has been reported that lumbar curve causes asymmetrical trunk movement 

in the coronal plane [23] .Therefore the efforts related to the lateral direction, i.e. ML force and 

torque and AP torque are influenced the most by the spinal deformity during gait, compared to 

the other components of the intervertebral efforts [178].  

To account for the randomness of splitting the data, a k-fold cross-validation was chosen to 

evaluate the algorithm. To perform a comprehensive observation, we first applied several 

supervised classification algorithms and then implemented the Ensemble algorithm combined 

with the ones with higher accuracy scores amongst the others, i.e. KNN (accuracy score: 77.9%), 

SVM with Gaussian kernel (accuracy score: 84.3%), random forest (accuracy score: 83.6%) and 

multilayer perceptron (accuracy score: 87.9%). The accuracy score equal to 91.4% was obtained 

by implementing the Ensemble methods. A Neural Networks (NN) model was also designed to 

classify the dataset with an accuracy score equal to 93.6%, the highest accuracy score, compared 

to others as shown in Table 6.4.  

KNN is used when the data points are separated into several classes to predict the class of a new 

data point. It is usually one of the first chosen classification algorithms when there is a lack of 

knowledge about the distribution of the dataset [172]. It works better than SVM when the number 

of features is greatly higher than the number of samples. Therefore, the accuracy score of KNN 

was relatively high. The obtained accuracy score of SVM is higher than KNN since SVM 

performance in handling the outliers is better than KNN and in this study, the number of features 

is not higher than the number of samples. Random forest is known as a fast, simple and 
flexible model. Its good performance among the others can be explained by its ability to search 

for the best feature among a random subset of features. It is also capable to handle an unbalanced 

dataset, i.e. a larger class will get a low error rate while a smaller class will have a larger error 

rate and can provide high accuracy through cross-validation [179]. The higher performance of the 

NN model compared to the others can be justified by the ability of NN models to solve non-linear 

and complex problems. Furthermore, NN models are capable of generalizing the model and 
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predict unseen data once they learn from the initial inputs and their relationships. They can learn 

hidden relationships in the data without imposing any fixed relationship in the data. The designed 

NN model in this study includes sequential dense layers. A densely connected layer provides 

learning features from all the combinations of the features of the previous layer to provide an 

accurate prediction. 

Observing the performance of other models, shows that the performance of linear models were 

not as good as others. It confirms that the dataset does not have completely linear relationships. 

The performance of the models such as AdaBoost (adaptive boosting) and extra trees, which are 

based on the combination of multiple models, i.e. multiple weak classifiers and many decision 

trees respectively, are better than the others in terms of the accuracy score. 

The value of calculated precision, recall and F1-score are high and close to the accuracy score. It 

means that the proposed ensemble model has provided a low number of false positives due to the 

high precision (exactness), few false negatives, due to the high recall (completeness) and also 

there is a balance between the precision and recall as the F1-score shows.  

In previous studies, [75], [146]–[150] the focus was  on the static posture parameters to assess the 

severity of AIS. However this survey developed a classification model by using Machine 

Learning algorithms based on a simple activity like walking. It is worth mentioning that Cho et 

al. [18] used 72 gait features based on kinematic gait parameters (the Euler angles and 3D 

acceleration components) to train an SVM model to classify the severity of scoliosis in two 

classes, i.e. the Cobb angle less and more than 25°. The accuracy score of the classifier was 

85.7%, however, considering the 25° as a threshold to classify the severity of AIS, cannot 

provide required information to make appropriate decisions for treatment strategies. The ones 

with a Cobb angle more than 45° are subjected to the spinal surgery and the ones with a Cobb 

angle between 25° and 45° are prescribed to wear bracing. Therefore, the need for radiography 

images remained valid. Consequently, for the first time we proposed a radiation-free method that 

classified the severity of AIS, in three classes, i.e. mild, moderate and severe scoliosis with an 

accuracy score of 93.6%. By using the proposed classifier, the radiation exposure for the follow-

up of the progression of the spinal curvature can be limited. 

The adolescents with AIS included in this research had similar spinal deformities: Lenke 5-6 

corresponding to thoracolumbar and lumbar curves, impacting the pelvis motion. It would be 
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required to validate the model on AIS with thoracic curves (Lenke 1-2), since the location of the 

spine curvature is in the middle or thoracic part of the spine.  

 

6.6 Conclusion 

For the first time, we developed an efficient radiation-free Machine Learning method to assess 

the severity of spinal deformity into mild, moderate and severe classes, which corresponds to the 

related treatments, i.e. physiotherapy exercises, bracing and surgery, respectively. The proposed 

classifier showed an accuracy score equal to 93.6% for thoracolumbar/lumbar AIS with 7.4% 

increase in performance compared to the highest reported accuracy score (85.7%) in the state of 

the art. 

The solution presented in this paper is a promising alternative to current follow-up methods i.e. 

using X-ray images, which only requires performing a gait evaluation session and implementing 

Machine Learning algorithms. 

As future work, the proposed classifier should be tested and modified on other types of spinal 

curvature located on the middle and/or top of the spine.  Furthermore, an algorithm should be 

developed to identify the value of the Cobb angle to improve the purpose of replacement of this 

radiation-free method to the radiography images.  
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7.1 Abstract 

Background Context: Adolescent idiopathic scoliosis (AIS) is an abnormal curvature of the 

spine, which affects up to 4% of children between the ages of 10 and 16 years old. To quantify 

the magnitude of spinal deformities, the Cobb angle in degrees as the gold standard is used based 

on the radiography with an X-ray of the spine. The amount of continuous exposure to X-ray 

radiation to follow-up the progression of scoliosis may lead to negative side effects on patients. 

Furthermore, manual measurement of the Cobb angle needs time and effort and could lead to up 

to 10° or more of a difference due to intra/inter observer variation. Therefore, recent studies have 

focused on using computer-assisted, Machine Learning methods, and statistical observations to 

assess the evolution of scoliosis. However, identification of the Cobb angle by automated 

radiation-free methods with the accuracy compatible with radiological data is still a challenge in 

scoliosis treatment and follow-up. Purpose: To develop an automated algorithm based on 

Machine Learning methods to identify the Cobb angle of the spine based on the intervertebral 

efforts on the lumbosacral (L5-S1) joint during gait.  Study Design: The participants included in 

this study are 30 AIS in the lumbar/thoracolumbar category with the Cobb angle between 15° and 
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66° who performed 6 complete gait cycles. Methods: The lumbosacral joint efforts during six 

walking cycles of participants were used as features to feed training algorithms. Several tests 

were run using various regression algorithms. Results: The decision tree regression algorithm 

among 15 different regression models achieved the best result with the mean absolute error 

(MAE) equal to 4.6° of averaged 10-fold cross-validation. Discussion and conclusion: This study 

shows that the lumbosacral joint efforts during gait as radiation-free data are capable of 

identifying the Cobb angle by implementing Machine Learning algorithms. The proposed model 

can be used as an alternative, radiation-free method to X-ray radiography to assist the clinicians 

in Cobb angle identification and treatment strategies. 

 

Key Words: Spinal deformity, Idiopathic scoliosis, Cobb angle, Radiation-free scoliosis 

assessment, Prediction, Machine Learning regression algorithms, Gait analysis, Lumbosacral 

joint efforts. 

 

7.2 Introduction 

Adolescent idiopathic scoliosis (AIS), which is the most common form of scoliosis, affects up to 

4% of adolescents between ages 10 to 16 years old. It is defined by a deformation of the spine 

and trunk greater than 10 degrees [144], [180], [181]. The etiology is not clear; but various 

theories such as biomechanical, neuromuscular, genetic, and environmental origins exist [57], 

[182] . The preliminary diagnosis is performed by screening with Adam’s forward bend test and a 

scoliometer [183]. Although an ultimate diagnosis and assessment cannot be made without 

measuring the Cobb angle [184] as a gold standard. Cobb angle is the degree of spine curvature 

on the coronal plane, measured by using spinal radiography in a standing position. The accuracy 

of the measurement of the Cobb angle is an important basis for selecting therapeutic methods and 

following the progression of scoliosis. However, it requires submitting the patients to sequential 

radiographic images i.e. at least every 6 months during their growth stage to measure it. 

To define the Cobb angle, two main challenges exist; on the one hand, accurate Cobb angle 

measurement, utilizing the information of X-rays, requires considerable time and effort, along 

with associated problems such as inter/intra observer variations [70]. On the other hand, 
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convolutional exposure to X-ray radiations in growing ages represents a real risk of an increase in 

organ carcinogenic and can cause tissue damage [57], [144], [180]–[182]. 

The problem in the accuracy of the measurement is due to the difficulty in visualizing the 

vertebrae or to poor selection of terminal vertebrae or variations in goniometers [62], [185]. 

These problems increased the interest of using automated measurements methods such as 

Machine Learning and radiation-free data such as kinematics parameters instead of manual 

measurement and using radiographic data.  

Jaremko et al. [186] used an Artificial Neural Network (ANN) to analyze the asymmetry of 

360° torso surface cross-sections to estimate the Cobb angle without the use of X-rays but using 

torso surface topographic coordinates. They reported a mean absolute error (MAE) equal to 1.9° 

(SD=5°). Choi et al. [187] estimated the Cobb angle by applying a convolutional Neural Network 

(CNN) on the merged images of moiré and spine radiography with an MAE of 3.42° 

(SD=2.64°).   

Wu et al. showed that the SurgimapSpine measurement, a surgical planning software 

platform [188], is an equivalent measuring tool to the traditional manual measurement in the 

coronal Cobb angle [64]. Wang et al. used Deep Learning to measure the Cobb angle on X-ray 

images with an MAE of 7.81°[189] in comparison with the manual measurement. Tu et al. [72] 

developed a Deep Learning algorithm that estimated the Cobb angle with an average error of 2.9° 

compared to the reference Cobb angle which was measured manually by a specialized 

orthopaedist. 

Watanabe et al. [185] compared the back morphometric data of moiré images, with radiologic 

data, using a CNN and achieved an MAE of  3.42°(SD=2.64°) for the Cobb angle. Pearsall et al. 

[62] compared three noninvasive methods including scoliometer, back counter device and moiré 

topographic imaging to assess scoliosis and the obtained results suggested that these 

measurement techniques cannot be used in clinical recordings. Pino-Almero et al. believed that, 

even with back surface images, data cannot substitute for radiography images in the diagnosis of 

scoliosis, they can however offer additional quantitative data that may complement radiologic 

study[64]. According to the state of the art methods, identifying the Cobb angle on X-ray images 

using computer-assisted methods and Machine Learning algorithms have been shown more 

accurate results compared to the manual measurement by specialized clinicians. However, using 



 

 

67 

the topographic images of the back of the body has been proposed as a complementary method to 

the radiography images or to evaluate surface asymmetry. 

Consequently, it would be more interesting to develop an accurate radiation-free method without 

the need for topography and X-ray images, which could be an alternative to radiography. Seo et 

al. [77] predicted the Cobb angle with an MAE of 5° by applying multiple regression analysis on 

posture parameters in the standing position. They trained their model over 85% of the dataset (27 

individuals) and tested it on 15% (5 individuals). 

Gait analysis studies show that spinal deformity affects spino-pelvic mobility and can 

accordingly modify human locomotion and walking patterns [17]. Therefore, it is interesting to 

study the relationship between spinal deformity and gait pattern to identify the Cobb angle. 

According to Mahaudens et al. research, [10] scoliosis modifies the gait pattern and reduces the 

pelvic frontal motion.  Similarly, Raison et al. [81] showed that severe spinal deformity in AIS 

presented higher mobility resulting in higher joint efforts in the lumbosacral (L5-S1) joint than of 

healthy adolescents, i.e. the lumbosacral joint is the most mobile part of the spine during gait. 

Two recent studies (2019 and 2020) by Guilbert et al. and Samadi et al., [78], [82] respectively, 

presented the differences of gait patterns among adolescents with AIS and TDA by comparing 

the intervertebral efforts along the spine. All these studies attest to the major impact of scoliosis 

on mobility. 

Accordingly, the aim of this study is to propose a radiation-free method, to identify the Cobb 

angle in AIS based on the lumbosacral joint efforts during gait, by using Machine Learning 

algorithms. 

7.3 Data acquisition and patient samples 

7.3.1 Dataset 

Thirty AIS with main thoracolumbar/lumbar spine curvature (Lenke 5-6 [1]) with a Cobb angle 

between 15 and 66 degrees, without any history of spine surgery, participated in a previous study 

[10] and were included in this study, as shown in Table 7.1.  

Table 7.1 Specification of the participants 
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Cobb angle, degree 

(mean ± SD) 

Age, years 

(mean ± SD) 

Weight, kg 

(mean ± SD) 

Height, cm 

(mean ± SD) 

35° ± 13° 
(Range: 15-66°) 

15 ± 2 50 ±9 163 ±9 

 

This study takes ground on a previous study [10], which calculated lumbosacral joint efforts 

utilizing inverse dynamics. This longitudinal dataset is a collection that was started in 2009. The 

features to train the Machine Learning models have been selected based on the lumbosacral joint 

efforts, using reflective markers attached to specific anatomical joints on the skin of the 

participants performing gait cycles. A motion capture system composed of optokinetic sensors 

measured the kinematics of 26 anatomical landmarks, and ground reaction forces applied to each 

foot measured with an equipped treadmill with force sensors. The intervertebral forces and 

torques in the lumbosacral joint were calculated using a precise 3D inverse dynamic model of the 

human body, through ROBOTRAN software [17], [88] as shown in Figure 6.1. 

 

7.3.2 Feature selection 

According to the studies of the impact of the spinal deformity on gait patterns and intervertebral 

efforts, presented in previous studies. [10], [17], [81] severe lumbar/thoracolumbar scoliosis 

presents higher mobility on the lumbosacral joint and therefore led to different joint efforts in the 

lumbosacral joint, compared to the non-scoliosis spine. Furthermore, a single lumbar curve 

causes asymmetry in trunk motion in the coronal plane. As a result, the produced efforts during 

gait at the lumbosacral joint could be considered as significant parameters to define the scoliosis 

severity and to identify the Cobb angle. 

As shown in Figure 7.1 and 7.2 and presented in [10], [78], [81], among the 3D intervertebral 

efforts, mediolateral (ML) forces and torques and anteroposterior (AP) torques are the ones 

which are affected the most by spinal deformity, therefore the features have been chosen based 

on these efforts. To have a better understanding and comparison, Figure 7.1 presents these efforts 

in the lumbosacral joint during gait for two AIS with different severity. 
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Figure 7.1 Lumbosacral joint effort of one AIS with severe scoliosis (filled line) and one AIS 

with moderate scoliosis (dashed line) 

The 18 parameters from six gait cycles shown in Table 7.2 were considered as features to train 

the model. As presented in Figure 7.2, these parameters show different behaviors based on the 

severity of spinal deformity. 

 

Table 7.2 Features to feed regression algorithms 

No. Features 

Mediolateral force Anteroposterior torque Mediolateral torque 

1 Maximum (|Maximum-mean|, |Minimum-mean|) 

2 Maximum (|Variance-mean|, |Variance+mean|) 

3 Maximum (|Max|, |Min|) 

4 |mean| 

5 Standard deviation 

6 |Max-Min| 
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a. 
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b. 
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c. 

Figure 7.2 a: Mediolateral force, b: Anteroposterior torque, c: Mediolateral torque features, 

comparison between three AIS with different severities 

7.3.3 Sampling process 

To avoid any of the features dominating the model and learning algorithm as well as enabling the 

learning process to learn equally from all features, StandardScaler [190] was applied to the 

features. StandardScaler aligns the features in the same range of variance. The features were 

calculated over 360 steps i.e. 12 steps (6 complete successive gait cycles) for each participant. To 

account for the randomness of the splitting of the data and to evaluate the performance of each 

model on unseen data, k-fold cross-validation with 10 folds was applied on the algorithm [191]. 

K-fold cross validation splits the data to k groups and each time it holds one group for the test 

and it trains the model on the rest of the groups. It means that every data point once is located in a 

test dataset and k-1 times are located in a training dataset. The overall performance of the model 

is calculated on the basis of the average of all groups over each time of the training process. The 
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value of k is chosen based on the size of the dataset. Generally, the larger value of k, decreases 

the bias, due to the decrease of the difference between the training set and the resampling [90]. 

 

7.3.4 Model selection 

Several regression models, listed in Table 7.3, were developed to identify the Cobb angle by 

feeding 18 features to the learning algorithms. To improve the accuracy of each model, Grid-

search hyperparameter tuning was used. Hyperparameters are specified parameters to control the 

behaviour of Machine Learning algorithms by tuning and Grid Search chooses the 

hyperparameters by going through all possible combinations of hyperparameters to obtain better 

prediction [192]. Table 7.3 presents the developed models with related parameters. The undefined 

parameters are the default parameters by scikit-learn software, which is a free Machine Learning 

library in Python [193]. The model with the smallest MAE, which is the average MAE over the 

10 folds, is the selected model to identify the Cobb angle.  

 

Table 7.3 Parameters used in each algorithm 

No. Regression Algorithm Parameters 

1 K-nearest neighbours [194] Number neighbours=3 
(Number of the nearest 

neighbours in the dataset) 

2 Radius neighbours [195] metric= minkowski 

(The distance metric to use for 
the tree, 

Minkowski distance: 

𝐷 𝑋,𝑌 = 𝑥! − 𝑦! !
!

!!!

!
!

 

 

𝑋 = 𝑥!, 𝑥!,… , 𝑥! 𝑌
= 𝑦!,𝑦!,… ,𝑦!
∈ 𝑅! 
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𝑝 = 2 

 

 
radius=6.0 

(The given radius of a point or 
points to find neighbours within 

it) 
 

 weights=distance 
(Weight function used in 

prediction, when distance is 
chosen, closer neighbours of a 

query point have a greater 
influence than neighbours which 

are further away) 

3 SVM with linear Kernel [196] C = 100 

(Regularization parameter, to 
avoid overfitting) 

4 Random forests [197]    criterion=mae 
(The function to measure the 
quality of a split. mae : mean 

absolute error) 

 
max_depth=15 

(The maximum depth of the tree) 
 

 max_features=log2 
(The number of features to 

consider when looking for the 
best split. If “log2” is chosen, it 
means that it is equal to log2 of 

number of features) 

5 Linear regression [198]  

6 Linear ridge regression [199] alpha=0.1 

(To define the regularization 
strength) 



 

 

75 

7 Lasso regression [200] alpha=0.1 

 
max_iter=10000 

(The maximum number of 
iteration) 

 
selection=random  

(It accelerates the convergence) 
 

tol=0.0001 
The tolerance for the optimization 

8 Gaussian process [201] kernel = DotProduct() + 
WhiteKernel() 

 (To specify the covariance 
function)  

9 Multilayer Perceptron [37] activation= logistic 

(The function to activate the 
hidden layer, 

The logistic sigmoid function: 

𝑓 𝑥 =
1

1+ 𝑒𝑥𝑝 −𝑥  

 
hidden_layer_sizes=(60) 

(Number of hidden neurons) 
 

learning_rate=constant 
(updates the weight) 

 
learning_rate_init=0.003 

(controls the step-size in updating 
the weights) 

 
max_iter=1000 
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(number of epochs when the 
solver is “adam”) 

 

n_iter_no_change=10 
(number of iterations with no 
improvement to wait before 

termination training procedure) 

 
solver=adam 

(Optimizes the weight, “adam”: 
stochastic gradient-based 

optimizer) 

10 AdaBoost [202] n_estimators=250 
(The maximum number of 

estimators at which boosting is 
terminated) 

 
learning_rate=1.1 

(Shrinks the contribution of each 
regressor) 

 

loss=linear 
(To update the weights after each 

boosting iteration) 

11 Decision Tree [203] max_depth = 4 
The maximum depth of the tree 

 
Criterion = “mse” 

(The function to measure the 
quality of a split. 

“mse” for the mean squared error, 
which is equal to variance 

reduction as feature selection 
criterion and minimizes the L2 

loss using the mean of each 
terminal node) 
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12 Bayesian Ridge [204] Fit a Bayesian ridge model 

 

13 Bootstrap aggregating (Bagging) [205] base_estimator=Decision Tree 
(The base estimator to fit on 

random subsets of the dataset) 
 

n_estimators=20 
(The number of base estimators 

in the ensemble) 

14 Extra trees [206] criterion=mae 

(The function to measure the 
quality of a split) 

 
n_estimators=200 

(The number of trees in the 
forest) 

 
max_depth=None 

(The maximum depth of the tree, 
“None”: nodes are expanded until 

all leaves are pure or all leaves 
contain less than 

min_samples_split samples) 
 

max_features=None 
(max_features=n_features) 

15 Gradient Boosting [207] alpha=0.85 
 

criterion=mae 
 

learning_rate=1 
learning rate shrinks the 

contribution of each  
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loss=huber 

(Huber loss is a combination of 
both Mean Square Error and 

Mean Absolute Error) 
 

 max_depth=3 
(maximum depth of the 

individual regression estimators 
that limits the number of nodes in 

the tree) 

 

7.3.5 Decision Tree regression algorithm 

As presented in Table 7.4, the decision tree model, presented the best result, therefore in this 

section, we go through the details of this model. 

The decision tree regression model has an empirical tree structure that breaks down the dataset 

into smaller subsets by applying a series of simple rules learned from features, and at the same 

time, a related decision tree is gradationally grown. The gained information t is then used to 

predict the target through a repetitive process of dividing [203], [208]. To maximize the 

information gain (IG) at each split, an objective function is defined to optimize via the learning 

algorithm. The IG of a random variable X obtained from an observation of a random 

variable AA taking value AA = a is defined in equation 7-1 [208]: 

 

𝐼𝐺!,! 𝑋,𝑎 = 𝐷!" 𝑃! 𝑥 𝑎 𝑃! 𝑥 ∨ 𝐼                Equation 7-1 

where,  

𝐷!" : Kullback–Leibler divergence which is a directed divergence between two distributions [209] 

𝑃! 𝑥 ∨ 𝐼  : Prior distribution 

𝑃! 𝑥 𝑎  : Posterior distribution 
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7.4 RESULTS  

7.4.1 Performance of regression models 

The MAE (Equation 7-2) of each method which is the average MAE of 10 folds cross-validation 

between the measured Cobb angle by the surgeons using the radiography images and the ones 

predicted by each algorithm are shown in Table 7.4. The lowest MAE of 4.6° was obtained by 

implementing a decision tree model. 

𝑀𝐴𝐸 = !!!!!∨
!
!!!

!
                 Equation 7-2 

where, 

𝑦! : Prediction 

𝑥! : True value 

𝑛 : Total number of data points 

 

Table 7.4    Mean absolute error (MAE) of Cobb angle, average of 10-fold cross validation for 

each model 

*Algorithm with the best result 

No. Regression Algorithm 
Cross-Validation 

MAE (SD) degrees 

1 K-nearest neighbours 9.9 (5.1) 

2 Radius neighbours 10.5 (4.6) 

3 SVM with linear Kernel 10.6 (3.6) 

4 Random forests 9.0 (5.3) 

5 Linear regression 11.9 (7.5) 

6 Linear ridge regression 10.5 (3.5) 

7 Lasso regression 9.4 (3.5) 

8 Gaussian process 8.9 (4.9) 
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9 Multilayer perceptron 8.8 (2.4) 

10 AdaBoost 6.9 (3.9) 

11 *Decision Tree 4.6 (3.5) 

12 Bayesian Ridge 9.0 (3.4) 

13 Bootstrap aggregating (Bagging) 7.8 (5.3) 

14 Extra trees 7.9 (3.2) 

15 Gradient Boosting 8.6 (5.6) 

  

7.5 DISCUSSION 

This study proposed a radiation-free method based on Machine Learning models, which is able to 

identify the Cobb angle by implementing the lumbosacral joint efforts during gait as features. 

The reason behind choosing ML force and torque and AP torque in the lumbosacral joint is the 

mobility of this part of the spine in lumbar and thoracolumbar scoliosis as reported in [10], [78], 

[81] and presented in Figures 7.1 and 7.2.  

Therefore, the choice of features allowed the algorithm to identify the Cobb angle with an MAE 

(SD) equal to 4.6°(3.5°) which is the lowest error compared to the previous studies. Observing 

the value of obtained MAE from different models and compared to the variations in manual 

measurements which is up to 10° shows that as a preliminary study, the model has the potential 

of being used as an alternative to X-ray images. In fact, it has been reported that most of the 

manual measurement variations occur due to the difficulties in selection of the upper and lower 

end-plate vertebrae [210] . 

The value of the MAE in linear models is higher than the other models due to the fact that our 

data set does not have a fully linear relationship. The models which are the combination of other 

regression models i.e. AdaBoost (Adaptive Boosting), Bootstrap aggregating (Bagging) and extra 

trees have provided more accurate predictions as the ensemble model intends to improve the 

accuracy by reducing the variance. The decision tree provided the lowest value for MAE 

compared to the others. It can be explained due to its ability in feature selection automatically. In 

decision tree models, the accuracy of the model is not affected by the presence of 

multicollinearity (the presence of features that depend on each other) of the features [211]. 
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Most of the previous studies [72], [73], [77], [185], [212]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      

that used Machine Learning models to identify the Cobb angle have chosen radiography or body 

images for feeding the learning algorithm, which still keeps the need for radiation exposure . 

However, cumulative radiation exposure, i.e. 10 to 25 spinal X-rays during growth ages, 

increases the risk of cancer [213]. As reported by Simony et al. (2016) [214], the overall rate of 

cancer on 215 AIS patients was five times higher than the aged matched population and  

endometrial and breast cancer was most frequent. The dose of radiation applied to the patients in 

this mentioned study was comparable to modern equipment [214]. 

Therefore, this underlines the interest of decreasing radiation exposure by developing radiation-

free methods to assess the spinal deformity without decreasing the accuracy of the Cobb angle 

measurement. In fact, using a systematic method would also eliminate the problems of the Cobb 

angle measurement variations. However, there are still very few studies proposing automated 

radiation-free methods as an alternative to X-ray. Seo et al. [12] proposed a multiple regression 

analysis model using 21 static posture parameters to predict the Cobb angle with an MAE of 5° 

tested on only 5 patients without performing any cross-validation, however it is also known that 

spinal deformity affects  mobility and locomotion. Cho et al.  [212] reported 85.7% accuracy to 

classify the severity of scoliosis to less and more than 25° of the Cobb angle by applying the 

support vector machine method on 72 kinematic parameters during gait. Our proposed method as 

an automated radiation-free method, succeeded in identifying the Cobb angle with an MAE lower 

than similar studies during gait as a main daily activity.  

This method would allow the clinicians and physiotherapists to evaluate the progress of spinal 

deformity and improve the efficiency of treatments. Therefore, the amount of exposure to 

radiation could be limited. As shown in Figure 7.3, manual measurement of the Cobb angle based 

on the radiography images of the spine may decrease the accuracy in measurement of the Cobb 

angle up to 10° due to the difficulty in visualizing the vertebrae, poor selection of terminal 

vertebrae and variations in goniometers. For instance, as reported in [53]–[55] an error of 5-10° 

may occur due to intra-observer and can exceed due to inter-observer variations, measured by the 

clinicians. Furthermore, radiographic acquisition and measurement methods could also lead to 2° 

to 7° error [56]. Therefore, an automatic method based on the gait pattern with an MAE of 4.6° 

could be considered as a reliable model with the potential of improving and implementing in 

determination of treatments strategies. 
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Figure4 

 
 
Figure 7.3 Comparison between the Cobb angle measurement errors and the error of the proposed 

model [53]–[56], [77], [215] 

 

The accuracy of the performance of the algorithm supports that spinal deformity modifies the gait 

pattern. Therefore, this study also shows the relation between the AP and ML torques and ML 

force at the lumbosacral joint with the Cobb angle for scoliosis with lumbar/thoracolumbar spine 

curvature. It can be interpreted by the asymmetry loading on the spine due to the left/right 

curvature of the spine and its impact on the lateral efforts, and the impact of a lumbar curve on 

asymmetrical trunk movement in the coronal plane. Furthermore, it proves the fact that the 

lumbosacral joint is the most mobile part of the spine. 

The dataset included in the present work were obtained from adolescents with AIS with 

thoracolumbar/lumbar curves. Therefore, it is required that the performance of the algorithm be 

verified on the other patterns of spinal deformity and be adapted for other types of scoliosis 

where the location of the spinal deformity is not on the lumbosacral (L5-S1) joint. 
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7.6 CONCLUSION 

For the first time, we developed an efficient Machine Learning tool to identify the Cobb angle of 

AIS with lumbar/thoracolumbar spine curvature with an MAE of 4.6° which can assess the 

progression of scoliosis with an accuracy compatible with manual radiography measurement. 

Additionally, the required information for the learning algorithm is provided by a radiation-free 

method, which is a simple gait analysis evaluation session. The process of Cobb angle 

identification is performed in a dynamic situation, i.e. walking which is a crucial activity of daily 

life. The required features are the components of only three efforts in the lumbosacral joint i.e. 

ML force and torque and AP torque. Consequently, it is not required to have several 

measurements to feed the learning algorithms and the time of execution for all of the tested 

algorithms with the cross-validation and only the decision tree algorithm is 30.20s and 0.02s, 

respectively. 

As future work, the algorithm could be implemented as a tool synchronized with the multibody 

human model and the motion capture system. The multibody model calculates the efforts in real-

time and the motion capture system feeds the required information to the multibody human 

model. It provides the possibility of identification of the Cobb angle in real-time to assist the 

clinicians and surgeons.  

 

 

 

 

 

 

 

 

 

 



 

 

84 

CHAPTER 8 GENERAL DISCUSSION 

8.1 Objective accomplishments 

The general objective defined by this thesis was achieved. A radiation-free model to identify the 

severity of idiopathic scoliosis in adolescents based on the intervertebral efforts during gait was 

developed. This process revealed a relation between intervertebral efforts and spinal deformity. 

Moreover, it was confirmed that spinal deformity modifies the gait pattern and intervertebral 

efforts during gait. The severity and the location of the curvature on the spine were also shown to 

affect the gait pattern and intervertebral efforts. Finally, it was attested that Machine Learning 

algorithms are capable of identifying the Cobb angle as an automated method. 

To accomplish the main objective, first we defined the most relevant intervertebral efforts, which 

are associated with spinal deformity during gait (SO1/article 1) by comparing 15 AIS with 

different types and severity of scoliosis to 12 TDA. Mediolateral force and torque and 

anteroposterior torque, were chosen to be used as indicators to identify the severity of the AIS. 

These indicators were then utilized to obtain the features to feed Machine Learning algorithms 

and identify the severity of scoliosis focusing on AIS with lumbar/thoracolumbar curve type 

(SO2). Achieving the promising results in classification, we continued to identify the Cobb angle 

of AIS during gait (SO3/article 2 and 3). 

The steps to accomplish the general objective are summarized in Figure 8.1.   
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Figure 8.1 Procedures to achieve the general and sub-objectives 
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The developed model in this study provided an MAE equal to 4.6° (SD: 3.5°) in the identification 

of the Cobb angle. The performance of the model, in comparison with the classical method i.e., 

manually measuring the Cobb angle on X-ray images by specialists, is promising since the 

intra/inter observer measurement variations are between 5° and 10° [53]–[55].   The state of the 

art method shows that previously, the smallest MAE to identify the Cobb angle using a radiation-

free method [77] was 5°, tested on 5 patients only in the static standing position. In the current 

study, several algorithms were trained and the performance of each algorithm was tested by 

cross-validation on over 30 samples. Additionally, in comparison with an average error of 4° 

obtained by automated Cobb angle measurement methods on X-ray images, our proposed method 

represented less than 5° for MAE as a radiation-free solution. Furthermore, the developed 

classification model provided an accuracy score of 93.6% categorizing the AIS into three classes 

of severity, i.e. mild, moderate and severe. To our knowledge, this is the first radiation-free 

model, capable of classifying the severity of scoliosis into three groups with promising accuracy. 

It is worth noting that clinicians and surgeons make their decisions for treatments strategies based 

on the three mentioned classes, devising different treatment procedures for each one. Therefore, 

our developed methods in both identification of the severity and the Cobb angle have 

demonstrated the potential for use as a radiation-free method alternative to X-ray images to 

assess AIS progression and follow-up. 

8.2 Limitations 

The proposed classification and regression models have been developed only on adolescents with 

lumbar/thoracolumbar AIS. Given that the location of the spine curvature influences on the lower 

part of the spine and vertebrae in the lumbosacral joint, the model has yet to be tested and 

modified for patients with other types of curvature where the deformity is positioned on the upper 

part of the spine.  

8.3 Research Output 

The outcomes of this research are published (or submitted for publication) in peer-review 

journals and conference proceedings. The list of author’s contributions and related publications 

are shown below: 
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1- Comparison of intervertebral efforts along the spine between adolescents with idiopathic 

scoliosis and typically developed adolescents: 

- B. Samadi, M. Raison, S. Achiche, C. Fortin, “Identification of the most relevant 

intervertebral effort indicators during gait of adolescents with idiopathic scoliosis”, 

Computer Methods in Biomechanics and Biomedical Engineering, vol. 23, no. 10, pp. 

664–674, Jul. 2020, doi: 10.1080/10255842.2020.1758075 [78]. 

- B. Samadi, M. Raison, S. Achiche, C. Fortin, “Development of an Avatar for the 

rehabilitation of the trunk and pelvis movements during gait in adolescents with 

idiopathic scoliosis”, Congrès étudiant du CRCHU Ste-Justine June 2018, Montréal, 

Québec, Poster presentation. 

- B. Samadi, M. Raison, S. Achiche, C. Fortin, “Development of an Avatar for the 

rehabilitation of the trunk and pelvis movements during gait in adolescents with 

idiopathic scoliosis”, Journée scientifique et assemblées annuelles REPAR-INTER May 

2018, Québec, Québec, Poster presentation. 

2- Classification of the severity of spinal deformity in adolescents with AIS: 

 - B. Samadi, M. Raison, P. Mahaudens, C. Detrembleur, S. Achiche, “Classification of the 

severity of spinal deformity in adolescents with idiopathic scoliosis using Machine 

Learning algorithms based on lumbosacral joint efforts during gait”, Spine Journal, 

Submission ID: SPINE 162757,2020. 

3- Identification of the Cobb angle in adolescents with AIS: 

 - B. Samadi, M. Raison, P. Mahaudens, C. Detrembleur, S. Achiche, “Development of 

Machine Learning algorithms to identify the Cobb angle in adolescents with lumbar 

idiopathic scoliosis based on lumbosacral hinge efforts during gait”, Spine Journal, 

Submission ID: SPINE 162763,2020. 

8.4 Computer implementations 

The algorithms and methodologies proposed in this study have been implemented in Python, by 

using Scikit-learn and Keras libraries. Both are open-source libraries for programming in the 

Python. Scikit-learn is a Machine Learning library that features various classification, regression 
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and clustering algorithms [216]. Keras provides a Python interface for Artificial Neural Network 

[217]. To facilitate applying the proposed model to a similar clinical population for researchers, 

practitioners and clinicians, all parameters and data are available on a Google drive and will be 

shared by the author of this thesis as per request.  
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CHAPTER 9 CONCLUSION AND RECOMMENDATIONS 

9.1 Summary of the thesis 

In this thesis, we proposed novel approaches toward accomplishing the main objective, which 

was to develop a radiation-free model to identify the severity of idiopathic scoliosis in 

adolescents based on the intervertebral efforts during gait. First, a comprehensive and systematic 

literature review on the challenges related to the main objective and the targeted clinical 

population was performed.  The performed research works and proposed solutions were 

subsequently reported. Investigating the available proposed methods, the recommendations, and 

the limitations were helpful in identifying gaps in the field and achieving effective solutions for 

this challenge. We began with accomplishing the first sub-objective (SO1) through studying the 

impacts of spinal deformity and posture imbalance on the gait pattern of the AIS and 

intervertebral efforts along the spine. We included scoliosis with different types of spine 

curvature and severity to achieve a comprehensive conclusion. The developed multibody 

dynamics model in [82] was used for this purpose, considering it was designed to compute the 

intervertebral efforts along the spine. In addition to highlighting the most relevant intervertebral 

efforts among 3D forces and torques, we concluded that the results could be used to develop an 

avatar in real-time and be implemented in physiotherapy treatments for adolescents with AIS. 

This was based on the idea that such a model could serve as a tool to assist clinicians, providing 

real-time feedback to correct the trunk and pelvis posture during gait. The visual feedback during 

physiotherapy treatments could subsequently improve the treatment’s efficiency based on the 

postural correction. 

To pursue the second and third sub-objectives (SO2/SO3), we utilized the results of SO1, to 

consider the intervertebral efforts, associated with the spinal deformity as features for training 

algorithms. To achieve a robust classification algorithm, we focused on one type of scoliosis, i.e. 

lumbar/thoracolumbar (Lenke 5-6) and selected a database including the lumbosacral 

intervertebral efforts of these individuals during gait cycles. Our focus on the 

lumbar/thoracolumbar curvature necessitated the use of the developed multibody model proposed 

in [17] to compute the efforts at the lumbosacral joint as the most mobile part of the spine [81]. 

Based on the previous studies [10], [81] and our extensive data analysis, we selected the 

appropriate parameters as features to feed the training algorithms (SO2). This led to the 
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development of a model that classified the severity of scoliosis  (mild, moderate, severe) with 

promising accuracy (SO3).  

Following the success in the classification model, we considered our results through 

classification to design a regression model that identifies the value of the Cobb angle measured in 

degrees. We selected the appropriate features and tested several models to achieve a model with 

acceptable performance that could be used as an alternative to X-rays for clinical and treatment 

purposes. Finally, a model to identify the Cobb angle with acceptable accuracy as compared with 

classical methods was developed based on the radiography images and existing computer- 

assisted models using both radiology and radiation-free data. Implementing different 

classification and regression Machine Learning models enabled us to explore the behaviour of 

each model on our dataset to achieve the best model. Furthermore, it could be used as a guideline 

for future studies, implementing the method on other types of AIS. 

Therefore, our developed method has demonstrated the potential for being used as a radiation-

free method alternative to X-ray images that allows for assessing idiopathic scoliosis progression 

and follow-up. 

9.2 Future work and Recommendations 

The present model should be tested and modified for other types of scoliosis with the curvature 

positioned on the middle or thoracic (upper) part of the spine. This is due to the fact that 

intervertebral efforts on the lumbosacral joint may not be the most relevant indicators of scoliosis 

for other types of spine curvature.  

The proposed model in this study could be synchronized with the multibody dynamics model and 

motion capture system in the motion labs to identify the Cobb angle in real-time during the gait 

analysis session. 
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