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Abstract. In this paper, a new methodology for the prediction of scoliosis curve
types from non invasive acquisitions of the back surface of the trunk is proposed.
One hundred and fifty-nine scoliosis patients had their back surface acquired in
3D using an optical digitizer. Each surface is then characterized by 45 local mea-
surements of the back surface rotation. Using a semi-supervised algorithm, the
classifier is trained with only 32 labeled and 58 unlabeled data. Tested on 69 new
samples, the classifier succeeded in classifying correctly 87.0% of the data. After
reducing the number of labeled training samples to 12, the behavior of the result-
ing classifier tends to be similar to the reference case where the classifier is trained
only with the maximum number of available labeled data. Moreover, the addition
of unlabeled data guided the classifier towards more generalizable boundaries
between the classes. Those results provide a proof of feasibility for using a semi-
supervised learning algorithm to train a classifier for the prediction of a scoliosis
curve type, when only a few training data are labeled. This constitutes a promis-
ing clinical finding since it will allow the diagnosis and the follow-up of scoliotic
deformities without exposing the patient to X-ray radiations.

1 Introduction

Scoliosis is a three-dimensional deformity of the spine and the ribcage that affects the
general appearance of the trunk. In general, one of the first symptoms of scoliosis is the
manifestation of a hump on the back, called the rib hump. It constitutes one of the most
disturbing aspects of the deformity for the patients.

The management of scoliosis depends essentially on the severity, the type and the
risk of progression of the curve. Those parameters are commonly evaluated on standard
frontal and lateral X-rays of the patient’s trunk in upright position. However, there are
several limitations attributed to the radiographic evaluation of scoliosis. First of all, it
provides only bi-dimensional information that is not sufficient to fully evaluate a com-
plex three-dimensional pathology like scoliosis. Second, only the internal deformities
can be evaluated in the radiographs while the patients’ main concern is their external
appearance. And last but not least, as X-ray acquisition is invasive, and considering
the risks associated with radiation exposure from repeated radiographs, its frequency



is limited to every 6 months which represents a long interval for the follow-up of a
progressive scoliosis.

In order to evaluate the scoliosis on a more frequent basis, non invasive imaging
techniques that provide a three-dimensional reconstruction of the trunk surface have
been proposed in the literature. The main challenge currently is to relate the topographic
measurements with the radiographic ones. In this context, several authors have tried to
predict the severity of scoliosis [1-4] or the 3D shape of the spine [5] from metric
evaluations on the surface of the back or of the trunk, using statistical methods [4] or
machine learning techniques like neural networks [2] and supervised support vector
machines [3,5]. To build such classifiers, a large set of labeled samples, called the
training data, is necessary. As the labeling is based on radiographic measurements, the
size of the training database is thus limited by the X-rays acquisition frequency. This
affects negatively the performance of the classifiers.

Since the back surface acquisition is totally non-invasive, it would be advantageous
to complement the training database with topographic data that is not necessarily la-
beled, which means that no X-ray information is available for this data. Training using
both labeled and unlabeled data is called semi-supervised learning. Recently, one such
approach has been proposed in the literature [6] and its effectiveness has been tested on
artificial data as well as on real problems such as the character recognition. The results
have shown the usefulness and the good performance of this method even when the
number of labeled data is too small.

The aim of the current study is to prove the feasibility of using a semi-supervised
learning approach for the prediction of scoliosis curve types by analysing the back
surface of the trunk.

2 3D Back surface analysis

2.1 Data acquisition

Currently, at Sainte-Justine Hospital Research Centre (SJTHRC) in Montreal (Canada),
the back surface of the trunk is acquired using an optical digitizer (InSpeck Inc., Mon-
treal, Canada), comprised of a color CCD camera and a structured light projector. The
acquisition process consists of projecting successively four fringe patterns, obtained by
phase-shifting a set of light fringes, onto the surface. Based on the four resulting im-
ages, the system computes, by interferometry and triangulation, the depth of each sur-
face point relative to the reference plane of the digitizer. A fifth image, with no fringes,
acquires the texture of the surface which is then mapped onto the 3D model (figure 1).

The resulting mesh consists of more than 10,000 nodes, depending on the size of
the patient.The accuracy of this system was evaluated in [7], using markers placed on
a mannequin whose coordinates were previously recorded by a computer measuring
machine. The results showed a reconstruction accuracy of 0.56 mm over the back.

During the acquisition, the patient is in upright position, with his arms slightly ab-
ducted on the sides. Prior to the acquisition, a nurse locates by palpation and places
markers over several anatomic landmarks on the trunk, such as the center of the pos-
terior superior iliac spines (CPSIS) and the vertebral prominence (VP). These markers
are used for clinical measurements and registration.
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Fig. 1. On the left: four fringe patterns are projected on the back surface of a mannequin. In
the center: color representation of depth. On the right: 3D reconstruction of the surface with the
mapped texture.

2.2 Features extraction

To evaluate the scoliosis deformities on the surface of the trunk, local measurements
are computed on horizontal cross-sections of the trunk. More specifically, 50 sections,
equally spaced along the vertical axis of the trunk, are automatically extracted starting
from the CPSIS and going up to the VP (Figure 2). On each of the 50 sections, an auto-
matic algorithm computes the back surface rotation (BSR). This clinical measurement
is related to the amplitude of the rib hump and is defined as the angle, projected onto
the axial plane, between the dual tangent to the section and the X-axis of the acquisi-
tion reference frame. The BSR can be negative or positive depending on the side of the
hump. The accuracy of this measurement computed on a 3D reconstruction of the trunk
surface was previously evaluated at 1.4mm [8].

Thus, each back is characterized by 50 BSR values. In order to filter outliers and
obtain smoother value sets, an averaging window was applied to each set. Moreover,
for each patient, the angle values were normalized between -100 and 100 degrees to
compensate for differences between the patients in term of severity. Finally, the BSR
values corresponding to the upper 5 sections were not considered because they were too
noisy and the values of the BSR are not relevant in this area in the context of scoliosis
assessment.

3 Semi-supervised learning

Pattern recognition problems are solved with classifiers which are designed using pro-
totypes of the data to be recognized. This data, called the training set, consists of the
patterns and their labels (the category of the pattern). This is the supervised learning
where the features extracted from the patterns and their labels are used for modeling
the classifier parameters [9, 10]. However, the labeling process can become extremely
expensive and cumbersome. For instance, the labeling of handwritten documents, im-
ages, or web pages requires both human expertise and insight, whereas in the field of



Fig. 2. On the left: 50 horizontal sections (black lines) of the trunk are extracted between the
CPSIS (black squared marker on the bottom) and the VP (black squared marker on the top). On
the right: the BSR is the angle defined by the dual tangent (red dashed line) to the back section
(black curve) and the projection of the lateral axis onto the axial plane (black line).

medicine or biology, the labeling process may require some data acquisitions that are
limited for ethical reasons. Thus, it may be very difficult, or even impossible, to label all
the available data. The alternative is the semi-supervised learning [11-13], where both
labeled and unlabeled data are used to train the classifier. Hence, it is not necessary to
label all the data collected in order to build the classifier.

In this work, we propose using the least squares support vector machine (LS-SVM)
in order to classify scoliosis curve types. To this end, we have collected labeled and
unlabeled data in order to train our machine in semi-supervised mode.

The LS-SVM is an interesting variant of the SVM proposed by Suykens et al.[14,
15]. The standard Vapnik SVM classifier [16] is modified to transform the QP problem
into a linear one. These modifications are formulated in the LS-SVM definition as fol-
lows, when we consider a binary classification problem with {(x1,y1), ..., (x¢, y¢) } the
training dataset, x; € Rand y; € {—1,1}.

¢
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where w’ denotes the transpose of w, ¢ is the mapping function used implicitly
via the kernel function k(x;, ;) = ¢(x;).¢(z;) for non linear problems, C' is used to
balance the trade-off between maximizing the margin and minimizing the training error
quantified by the variable &.

The original SVM formulation is modified at two points. First, the inequality con-
straints with the slack variable ¢; expressed in SVM formulation are replaced by equal-
ity constraints. Second, a squared loss function is considered in the objective function.
These two essential modifications simplify the problem, which becomes linear.



The Lagrangian of problem (2) is expressed by :
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where «; are Lagrange multipliers.

The Karush—Kuhn—Tucker (KKT)? conditions for optimality yield
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We note that the system coming from the KKT conditions is linear, and that its
solution is found by solving the system of linear equations expressed in the following

matrix form :
K+Cclryr a\ (Y
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where :
Kij = k’(.ﬁi,.ﬁj)
Y = (y1,.,9e)
a=(ag,..,ap)
1=(1,..,1)

In our previous work [6], we have proposed the semi-supervised LS-SVM (S2LS —
SV M) using the following expressions:
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In this equation, the parameters C' and C* balance the error between the labeled
{(z1,y1), .-, (x¢,ye)} and unlabeled data {7, ...,z }.

Considering the combinatorial view of the optimization problem (4), the variables
w, b, &, £ and y* are optimized at different levels. Then, for a given fixed set y7, ..., y.,

3 KKT conditions are necessary conditions for optimality obtained from first derivative.



the optimization over (w, b) is standard LS-SVM training, and we obtain a linear system
in dual space expressed in matrix form by:
where:

(T E)-()
Kij = k(7))

Y = (yl, ---ayfvyfa e y;)/

a=(ag,..,qpaf, ..., ak)

1=(1,..,1)

I' is a diagonal matrix with [;; = 1/C fori = 1,...,4 and I;; = 1/C* fori =
£+1,...,0+n

Two methods are proposed in [6] for solving the semi-supervised problem expressed
in (4). In this paper, we used the second approach which is described as follows.

The unlabeled examples are labeled gradually during the learning process: one sam-
ple is labeled and added to the labeled set. The added sample is chosen in order to obtain
the smallest increase in the objective function. The criterion we use to select this point
is based on the value of o; because considering the equation a; = C*&7, it is clear
that the error is proportional to the value of o*.

First, we identify the label of the point to be labeled according to the objective
W= o if the
identified label is 1 and ag-*l) for the opposite label. As the goal is to find the unlabeled
sample z* with the smallest increase in the objective function, we select, at each step,
the unlabeled sample, the corresponding o7 of which will be the smallest if it is added to
the previous solution. We repeat this procedure until all unlabeled samples are labeled.

function. Next, for each remaining unlabeled sample, we compute a

4 Dataset and experimental setup

This study was conducted on a cohort of 159 adolescents with scoliosis who were can-
didates for surgery. Among the cohort, 101 patients had their topographic and radio-
graphic acquisitions done at the same visit. Based on the radiographic measurements
of each of those patient, the scoliosis curve type was determined according to the com-
mon clinical classification that distinguishes between 4 types of curves: thoracic major
curves, thoracolumbar major curves, lumbar major curves and double major curves.
The number of lumbar major curves being too small (4/101), we mixed them with the
thoracolumbar major curves (18/101), being quite similar. The distribution of the pa-
tients among the three considered classes is illustrated in Table 1. For the remaining 58
patients, their radiographs were not acquired at the same date as the trunk topography,
thus they were considered unlabeled.

For all the patients, the 45 features are automatically extracted according to sub-
section 2.2, and four classifiers are trained distinctly. The classifiers’ performance is
evaluated on the same testing dataset composed of 69 labeled samples chosen quasi-
randomly among the database, under the condition of having a class distribution as
similar as possible to the one of the whole cohort.



Table 1. Distribution of the patients among the classes

Classes Curve type Number of patients
Class 1 Thoracic major curve 45
Class 2 Double major curve 34
Class 3 Lumbar or thoracolumbar major curve 22
Unlabeled Unknown 58
Total 159

A first classifier (C-SSL1) is built using the semi-supervised learning algorithm as
described in section 3 and using a total of 90 training data: the 58 unlabeled samples and
the remaining 32 labeled ones. A second classifier (C-SL1) is trained using a supervised
LS-SVM and a training database made of the same 32 labeled data as for the C-SSLI1.
C-SL1 constitutes the reference case since it is trained with all the available labeled
data.

In order to compare the supervised and the semi-supervised learning when only a
small amount of training data are labeled, a third classifier (C-SSL2) is built using the
semi-supervised learning as described in section 3 and using, for training, only 12 la-
beled data (5 of class 1, 4 of class 2, 3 of class 3) chosen pseudo-randomly (under the
condition of having a class distribution among the retained data as similar as possible
to the one of the whole cohort) and the remaining 78 training samples considered unla-
beled. A fourth classifier (C-SL2) is trained using a supervised LS-SVM algorithm and
the same 12 labeled data as in C-SSL2 are considered for training.

Since, we have a multi-class problem, each classifier is built by training three ma-
chines using the one-against-all strategy. We used a radial basis function (RBF) kernel
and performed model selection with cross validation procedure [17].

5 Results and Discussion

Table 2 presents the prediction rates obtained in testing each of the four classifiers.
These results show first that the performance of the classifiers trained using the semi-
supervised algorithm (C-SSL1 and C-SSL2), compared respectively to C-SL1 and C-
SL2, is significantly improved by the addition of unlabeled data. Second, the perfor-
mance of C-SSL2, trained with only 12 labeled samples tends to be equal to the one of
the ideal classifier C-SL1, that is built using the maximum number of available labeled
samples. The latter outcome answers to the main goal of the semi-supervised learn-
ing: even with a few labeled data (12 among 90 training samples), the generalisation
capacity of the classifier C-SSL2 is similar to the reference case.

Table 3 illustrates the confusion matrices obtained in testing the four classifiers. It
shows first that all the classifiers clearly distinguish between patterns of class 3 and
class 1. The major confusion is between classes 1 and 2 and between classes 2 and 3.
This is also illustrated by the plot of the mean BSR values for each class (figure 3). In
fact, for some double major curves (class 2) the thoracic hump is more accentuated than
the lumbar hump which results in a pattern that is quiet similar to the thoracic major
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Table 2. Learning and testing databases of the four classifiers and the prediction rates in testing

Classifiers Training data Testing data Prediction rate

Lab. Unlab.
CSSL1 32 58 69 87.0%
CSL1 32 - 69 82.6%
CSSL2 12 78 69 79.7%
CSL2 12 - 69 75.4%

curves (class 1). The same logic follows in the case of some double major curves (class
2) where the lumbar hump is more prominent than the thoracic hump which results
in a pattern that is quiet similar to the lumbar major curves (class 3). Nevertheless, it
seems that, with the semi-supervised learning, the unlabeled samples guide the classifier
towards more generalizable boundaries for class 2 (prediction rate of 65.2% for C-SSL2
versus 56.5% for C-SL2 and 73.9% for C-SSL1 versus 65.2% for C-SL1) and for class
3 (prediction rate of 80.0% for C-SSL2 versus 66.7% for C-SL2 and 100% for C-SSL1
versus 93.3% for C-SL1). Furthermore, table 3 illustrates once again how the behavior
of C-SSL2, trained with only 12 labeled samples out of the 90 training samples, tends
to be similar to the reference classifier (C-SL1).

Table 3. Confusion matrices in testing the four classifiers

C-SSLL1 C-SL1 C-SSL2 C-SL2
Target Class Target Class  Target Class Target Class
Predictedclass) 1 2 3|1 2 3|1 2 3|1 2 3

1 28 4 0|28 6 029 8 01|29 9 O
2 3 17 0(3 15 1|2 14 3|2 13 5
3 0o 2 150 2 140 1 120 1 10

Prediction rate

90.3 73.9 100{90.3 65.2 93.3/93.6 65.2 80.0{93.6 56.5 66.7
per class (%)

In this study, we considered the BSR as the only clinical index to describe the back
surface deformity. This choice is based on the clinical observation that the rib hump
generally appears on the convex side of each spinal curve. Our results show that the
BSR, computed on 45 cross-sections of the back, is a good discriminant feature. How-
ever, in future works, other characteristics of the scoliosis deformity will be considered
in order to reduce even more the misclassification rate.

Furthermore, in this work, only the back surface of the trunk is acquired. As demon-
strated in the literature, measurements made on the back surface are sensitive to the pa-
tient’s posture during the acquisition. To overcome this imprecision, the entire trunk’s
surface can be reconstructed using four optical digitizers placed all around the patient
and a registration process [7]. The measurements can thus be computed in a patient spe-
cific coordinates system. Moreover, as the whole shape of the trunk is deformed in 3D,
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Fig. 3. Mean BSR values for each of the 45 sections of the trunk, computed for each class

it could be more interesting to consider inclined cross-sections that follows the general
shape of the trunk to compute local measurements [8].

Finally, in the present paper, the back surfaces are classified in three different classes.
Due to the small number of lumbar curves in the cohort, no distinction is made between
lumbar and thoracolumbar major curves. However, in the presence of more lumbar
curves, we could consider a fourth class in our classification. Furthermore, the current
classification can be considered a high level classification and in future works, we can
refine the classification’s resolution by identifying features on the trunk’s surface that
could define distinct clusters within each class. This would be valuable in clinic since
the actual scoliosis classification systems relies only on the spinal deformity and do not
take into account the general appearance of the trunk which constitutes the patient’s
major preoccupation.

6 Conclusion

In conclusion, this preliminary study constitutes a proof of feasibility of the semi-
supervised learning in the clinical context of classifying the scoliosis curve types based
on the analysis of the back surface of the trunk. With only 12 labeled samples out of
90 training data, it is possible to predict the scoliosis curve type with a success rate
similar to the reference case where 32 labeled data are used for supervised learning.
Moreover, the unlabeled samples improve significantly the definition of the boundaries
between the classes. Unlike supervised learning, there is no need to consider a large set
of labeled data to build a consistent classifier with high generalization performance.
On a more clinical aspect, these results are valuable since it demonstrates that it
is possible to identify the scoliosis curve type without exposing patients to ionizing
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radiation. This is an important finding since it could reduce the frequency of X-ray
acquisitions during the scoliosis progression follow-up.
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