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Abstract

Objective: To determine scoliosis curve types using noasiwe acquisition,
without any prior knowledge on X-ray data.

Methods: Classification of scoliosis deformities accogdio curve type is
used to plan management of scoliosis patients. In this waelpropose a robust
system that can determine the scoliosis curve type from maasive acquisition
of 3D back surface of the patients. The 3D image of back seréddhe trunk
is divided into patches and local geometric descriptorsatttarizing the surface
of the back are computed from each patch and forming theresatiWe perform
the reduction of the dimensionality by using principal cament analysis and
retain 53 components using overlap criterion combined Wightotal variance in
the observed variables. In this work a multi-class classi§ebuilt with least-
squares support vector machine (LS-SVM). The original MdASformulation
was modified by weighting differently the positive and negasamples and a new
kernel was designed in order to achieve a robust classiftes.pfoposed system
was validated using data of 165 patients with differentisstd curve types. A
comparison of the results of a non invasive classificatios dane with those
obtained by an expert using X-ray images.

Results: The average rate of successful classification waguated using
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leave-one-out cross-validation procedure. The overalu@cy of the system
was 95%. Considering the correct classification rate pessclae obtained 96%,
84% and 97% respectively for thoracic major curve, doubl@nwrve and lum-
bar/thoracolumbar major curve.

Conclusion: This study shows that it is possible to find ati@hship be-
tween the internal deformity and the back surface deformiscoliosis with ma-
chine learning methods.The proposed system uses nonuawagjuisition which
is safety for the patient, no radiation. Also, a design ofecHfr kernel improved
classification performance.

Key words: Least-squares support vector machine, 3D trunk modeliegiéd
function, Computer-Aided Diagnosis, Scoliosis.

1. Introduction

Adolescent idiopathic scoliosis (AIS) is a deformity of thigine manifested
by asymmetry and deformities of the external surface ofriinekt[1]. It consists
of a complex curvature in the three-dimensional spaceinaton in the frontal
plane, rotation of vertebrae in the horizontal plane anéision of the curves in
the sagittal plane. This pathology is often visible, but @yypass as unnoticed
during its development for years. There are a wide varietgaddrmities of the
spine, however, a classification of major curve types isiptessThe classifica-
tion of different deformities is used to group similar cusva order to define an
appropriate treatment strategy.

Currently, X-ray exam is performed in order to determinegbeliosis curve
type and its severity. The scoliosis X-ray includes therergpine image, thoracic
part (upper back) and the lumbar part (lower back). Scdiogives are classified
by their location in the spine and the magnitude of the cur@essed by the
Cobb angle [2]. There are four main types of scoliosis cunrescoliosis spine
shape (see Figure 1):

- The thoracic curve type is the most typical of the types of scoliosis csrvi
affects the upper part of the spine which is often bendedéaitfht. Since the
vertebrae are rotated in these cases, this type is accoeaplyithe rib cage de-
formation.

- Thelumbar curve type affects the lower part of the spine. This type ofissis
also tends to the left as opposed to the right. It does noh a#eise noticeable
deformity on the external shape of the trunk.



Figure 1: Scoliosis curve types (a) Thoracic, (b) Thoraoddar and (c) Double major curve.

- Thethoracolumbacurve type can bend left or right and effects area between the
thoracic and lumbar regions of the spine. Small curves abadebelow accom-
pany this long curve. This type is uncommon and can causeesabeand trunk
distortion.

- The double majorcurve type is one of the most serious scoliosis curves. It is
made up of two curves with nearly equal angles and the splileithe letter S in

this case. Usually, one curve occurs on the upper spine anathier on the lower
spine.

While 1 in 25 people have mild scoliosis deformities, onlyn1200 adoles-
cents have deformities that progress to require eitherilgyaar surgical treat-
ment. Since there is as yet no reliable way to predict whidiordaties will
progress, these suspected patients are monitored witles séiX-rays acquired
semi-annually during rapid adolescent growth. Howevemwative exposure to
X-rays radiation significantly increases the risk for certzancer [3].

Thus, during the last 30 years, many optical non invasiveasermeasure-
ment systems have been developed based on a 3D reconstroictiee back or
of the whole trunk. The first technique used for this purpas®loire contour
topography where a light-interference pattern projectechfa fixed grid near the
camera permit to draw contour lines on the back surface [408jer techniques
such as rasterstereography [6, 7], integrated shape ignagstem (ISIS) [8, 9],
Quantec scanner [10], were proposed in order to quantifyosi® deformity from
back surface asymmetry. However, the results obtained fin@warious research
were mitigated because of many problems related to thedimits of the avail-



able technologies. In fact, significant correlations wenend between scoliosis
deformities and Moire fringe deviations, but the false#pos rate was as high
as 50 percent and the Moire fringe is sensitive to small marerof the patient
[4, 7]. New studies were extended to the acquisition and tia¢yais of the entire
trunk in order to take into account the whole trunk asymmfity-16]. However,
human torso shape has many variations and its analysisyigkalenging. Thus,
the main problem is how to extract the relevant featuresdbatd characterize
scoliosis torso shape deformity to perform a good classifinaf scoliosis curve
type without acquiring X-ray images.

To our knowledge, studies on non invasive classificationcofigsis type or
severity using machine learning methods are limited [1T—20 the first work
[17], an artificial neural network combined with geneticaighm is used in order
to estimate the Cobb angle. The results reveal that thersystaluate the Cobb
angle within 5 degrees in 65 percent on the test set. The meptem that oc-
curs in this study is the over-fitting because the machinegyasgood result on
training samples but has poor estimation performance.8p flspinal curve was
assessed based on the trunk surface image. This studyé&mptdd to find a non-
linear correlation between the trunk surface and the gegneétthe underlying
spine. An array of support vector regression machines Istoipredict the spinal
coefficients which constitute comprehensive featuresgorad curve description.
However, the results are moderate with 70-82% of correduatian. In [19],
the authors proposed a system where the subjects werefieldssto 3 severity
groups (mild, moderate, severe) using 3D back shape imagbined with other
indicators like sex, age, etc. And, their system achieve8%% accuracy in test-
ing. In contrast, Lama et al.[20] have proposed for the firseta classification
of the scoliosis curve type using only the 3D image of the kruim this work,
the authors have considered the Lenke classification wiseh also bending test;
thus, the system gave a limited result, 72% of correct diaason.

The previous studies have obtained moderate classificeggrits partly be-
cause of the small number of the available data which is &afiproblem in
biomedical research field. In fact, the performance of maayrling algorithms,
as artificial neural network, are very dependent on the nuwitieaining sample.
An other limitis the model selection problem, optimizat@rthe hyperparamters,
which affects significantly the performance of any desigmaethine.

In this paper, we propose a robust non invasive classificaystem of sco-
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liosis curve types. The objective here is to develop a pattecognition system
which identify scoliosis curve type using 3D back surfacag®a (non invasive
acquisition) instead of X-ray exam. The proposed systenaset on a powerful
classifier, least squares support vector machine (LS-SVNithvhas excellent
capacity of generalization [21]. In this study, the classifiS-SVM formulation
is modified and empowered by a new kernel function [22-25]maed with an
appropriate model selection strategy [26, 27] which yieldgood performance.
In this work, we use a special case of the weighted LS-SVM @sed early in
[28, 29] in order to reduce the effects of noisy data. The 3@gemof the back
surface is divided into patches and local geometric defseg@re computed from
each patch forming the features and classification is pmeédrusing a combina-
tion of LS-SVM classifiers. The proposed system is illugtdah Figure 2.

2. Materials and methods

2.1. Data acquisition

For many years, the acquisition of the trunk surface is gaheroutine eval-
uation of scoliosis patients at Sainte-Justine Univetsigpital Center (SJUHC)
in Montreal (Canada). The acquisition system is composddwofoptical dig-
itizers (Creaform, Montreal, Canada). Each optical digiticontains one color
CCD camera and a structured light projector. The acqurspgiocess of each dig-
itizer is as follows. Four fringe patterns, obtained by ghakifted technique, are
successively projected onto the surface. Based on the ésuiting images and
combined with interferometry and triangulation technigiiiee system computes
the depth of each surface point relative to the referenagepla fifth image, with
no fringes, acquires the texture of the surface which is thapped onto the 3D
reconstruction.

For the reconstruction of the whole trunk, four scannerspdeieed around the
patient (on the front, on the back andiad0° laterally in front of the patient), see
Figure 3. Each digitizer acquires a portion of the trunk. iDgithe acquisition,
approximately 4 seconds, the patient stands still in thegbpposition with the
arms slightly abducted in order not to obstruct the laterahsers fields of view.
Based on a multi-head calibration of the system that consptlte rigid trans-
formations between the digitizers, the 4 portions of th@krare registered and
merged using EM software. The resulting mesh is constitotd®,000 to 70,000
nodes, depending on the size of the patient.
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Figure 2: General overview of the classification system.

The accuracy of this system was evaluated in [30], using eranlaced on a
mannequin whose coordinates were previously recorded bynaater measuring
machine. The results showed a reconstruction accuracy ahfh over the whole
torso and of 0.56 mm over the back.

2.2. Features extraction

The 3D trunk image is divided intb equal parts using horizontal planes as
shown in Figure 4. Using cylindrical coordinatgs ¢, z), each transversal slice
is divided inn patches by varying the azimuth(see Figure 5). Thus, the whole
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Figure 3: Configuration of Creaform digitizers at Saintstihe hospital research center.

3D image is split up inta x h patches and the geometric descriptors are calculated
from each patch. First, we approximate each patch (piedacg)rby a plane and
the normal vectofn,, ny, n,) of this plane is kept as a descriptor. Then, from
each 3D trunk image, we compuieh descriptors.
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Figure 4: Decomposition of trunk into slices.



In this study, we consider the thoracic and lumbar regionydrfebrae) and
seth = 17; and we evaluate only the back surface by fixingpetween0 and
m. The numbem of patches per slide is chosen by evaluating the overlap rate
between classes (classification error rate evaluated witbdrest Neighbor tech-
nigque [31]). Figure 6 shows the variation of the overlap raiin respect to the
number of the patches per slide. Following this procedueesetn = 10 corre-
sponding to the minimum of the overlap rate.

We divided the trunk in two regions: thoracic region and lamiegion. The
back surface has been divided into 17 equal parts usingdrmakplanes. The
first 10 slices from the top represent the thoracic regiontaademaining 7 slices
represent the lumbar regidn Thus, we obtained respectively 300X 10 x 10)
and 2108 x 10 x 7) descriptors for thoracic and lumbar regions. In sum we have
510 descriptors for each 3D image.

Figure 5: Decomposition of transversal slice into patches.

In general, building a classifier based on statistical mddivaith a large num-
ber of features is not recommended because working in higlstsional space
involves the curse of dimensionality problem. Thus, fos thiork, we apply prin-
cipal component analysis (PCA), which is an orthogonaldm@ansformation,
in order to reduce the dimensionality of the data. The nunobeomponents is
selected based on an overlap criterion (classificatiorr eate evaluated with 1-

1Considering T and L respectively the size of the thoraciclambar region; the relationship
between them is approximatively T/L=1.4 according to Jeamv€ilhier, Anatomie descriptive,
Volume 1, 1837, page 49.



Qverlap rate

Number of patches per slide (n)

Figure 6: Variation of overlap rate w. r.t. the number of tla¢ghes per slide.

Nearest Neighbor technique [31]) and the rate of the totaéhmae in the observed
variables retained by the selected principal componenisfadt, we select the
number of components which provides more than 80% of thé vateance and
yield a better overlap rate. In Figure 7, the rate of totalarare in the observed
variables with respect to the number of principal composi@émteach region is
represented and in Figure 8, we plot the variation of thelapaate according to
the number of componentsl (for thoracic region) ana?2 (for lumbar region).
After investigation, we note that the overlap rate is smadl atable fom1 = 23
andn2 = 30. Thus, we retain the first 23 components for the thoracioregnd
30 components for the lumbar region. Therefore, each treinépresented by 53
features.

(a) (b)

Rate of total variance
3

Rate of total variance
3

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Number of principal components Number of principal components

Figure 7: Rate of total variance in the observed variables whe number of principal components
(a)Thoracic region , (b)Lumbar region.
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Figure 8: Variation of overlap rate w. r.t. the number of thmgipal component1 (for thoracic
region) andn2 (for lumbar region).

2.3. Optimization of the classification system

As classifier, we used LS-SVM which is based on the margin mezation
principle[32]. Considering a binary classification prahlénvolving a dataset
{(z1,71),- -, (xe,y0)} Withz; € R and y; € {—1,1}; nonlinear LS-SVM
classifiers use the kernel trick to produce nonlinear boreslaThe decision func-
tion given by an LS-SVM is :

f(x) = sign[w'¢(z) + b] (1)

wherew andb are the classifier parametets,represents transposef ¢ is the
explicit projection function corresponding to the kerhét;, z;) = ¢(z;).6(x;).

The LS-SVM classifier parameters are found by resolving dflewing opti-
mization problem which expresses the maximization of thegm&/||w|| and the
minimization of the training error:

0
: 1 / 1 2
min Sw'w + Qvizlfi @3
subjectto: & =y, — [Wo(x;) +0] Vi=1,...¢ 3)
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LS-SVM is a variant of the standard support vector machinédswhere
the original SVM formulation is modified at two points. Firite inequality con-
straints with the slack variablg are replaced by equality constraints. Second, a
squared loss function is considered in the objective fonctlThese two essential
modifications simplify the problem, which becomes a lingetem.

The Lagrangian of problem (2) is expressed by :

¢ ¢
L= %w'w + %VZ@Q — Z%‘{yz‘ — [w'é(x) + 0] — &}
i—1 i—1

whereq; are Lagrange multipliers, which can be positive or negdireause of
equality constraints.

The system arising from the Karush-Kuhn-Tucker conditisrimear, and the
system of linear equations is expressed in the followingimédrm:

(TE-C) e

whereK;; = é(x;).0(2;); Y = (y1, ..., ) a = (v, ..., op)’; andl = (1., 1).

The decision function of the LS-SVM becomes :
14
(o) = sign[y_ cik(z, ) + 1) (5)
=1

2.3.1. Regularization of LS-SVM with and~,

In this study, the impact of the hyperparametershich controls the tradeoff
between training error minimization and margin maximiaatiis modified in or-
der to balance the training error. We propose tousand~, for balancing the
influence of the number of positive samples with respectéamtimber of negative
samples contained in the training set. Thysand~, penalize respectively the
training error made by the positive samples and the negsdingles. Therefore,
we reformulate the LS-SVM as follows:

1 1 1
min éw’w Tam Z & + 22 Z & (6)
i/yi=1 i/yi=—1
subjectto: & = y; — [w'gp(x;) +b] Vi=1,....4 (7)
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The formulation (6) is the special case of the weighted L349¥9, 33]. In
the previous work, the values of and~, are set using the number of positive and
negative samples; but in this study, these values are gmdduring the model
selection process.

In dual form, we obtain also a system of linear equations esg®d in the
following matrix form:

() ()= (3) ®

WhereK - ¢('TZ) ¢( ) Y = (yla' 7y€) a = (&17" Oég), 1 - (1 1)
andl is dlagonal matrix contamln@+ tImES”yl and/~ tlmes~yg with ¢+ and ¢~

respectively the number of positive samples and negativekes.

2.3.2. Design of a specific kernel

The idea behind kernels is to map training data nonlinearly a higher-
dimensional feature space via a mapping functioand to construct a separat-
ing hyperplane which maximizes the margin. The constractibthe linear de-
cision surface in this feature space only requires the atialo of dot products
o(z:).0(z;) = k(z;, z;), where the applicatiok : R x RY — R is called the
kernel function [22].

When we consider LS-SVM like other kernel classifiers, theiod of the ker-
nel corresponds to choosing a function space for learnihg.Kernel determines
the functional form of all possible solutions. Thus, theickmf the kernel is very
important to construct a good machine. So, in order to olatgood performance
of the LS-SVM classifier, we need first to design or choose a tyfikernel and
then to optimize the hyperparameters for improving the céypaf generalization.
In our context, we design a new kernel derivative from thessan kernel where
the features for the thoracic region and those for the lumdgion are weighted
differently.

Considering two examples = (z(), ..., T(1), T(141), ---» Lr+1)) andy =
(Yys - Y Yty - Yr+n)) Where each element is formed Byfeatures ob-
tained from the thoracic region ardfeatures from the lumbar region, we define
our kernel function by:

T+L

k(z,y) = e:cp[ BTZ )~y =B ) (=g —y<j>)2] )

J=T+1
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wherefSr > 0 andfg; > 0 represent respectively the width of the kernel for the
thoracic and lumbar regions.

The previous kernel can be viewed as the special case of atitoralevance
determination (ARD) method. In fact, ARD adresses the festgelection prob-
lem by using regularisation function which prunes away netéunt or superfluous
features. Therefore, the previous kernel can be considertite extended version
of the Gaussian for ARD and the parameters can be inferrdtkithird level as
presented in [21].

2.3.3. Model selection

Model selection for the LS-SVM consists of selecting the drpgarameters
that yield the best performance of the machine. The LS-SVAdgifier has two
types of hyperparameters: the regularization parameteichveontrol the trade-
off between training error minimization and margin maxiatian, and the kernel
parameters that define the given kernel function.

In this study we have for each LS-SVM two regularization pagtersy; and
~v9 and two kernel parameters- and ;. Since selecting the kernel corresponds
to choosing a function space for learning, we set the couples;) of kernel
parameters equal for all LS-SVM classifiers. In fact, we neebave the same
function space for learning in order to combine the outpuhefthree classifiers
without bias.

Thus, we need to find eight best values for our hyperparas)eiigrfor the reg-
ularization parameters and two for the kernel parameteesp&form model se-
lection for setting the hyperparameters through genextadiz performance. The
details of the model selection procedure are describedsih [2

2.3.4. Classification algorithm

LS-SVM like classical SVM was designed first for two-classlgem where
the labels of the first class samples are assignegltand the labels of the sec-
ond class are assignedtd. Concerning multi-class problem, the classification
task is divided in several two-class problems with adequatabination at the
end. Following this idea, many techniques are proposedanitbrature with
their advantages and their inconvenients. For our mussiproblem, we used
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one-against-altechnique with rejection when all the LS-SVM outputs areazeg
tive. Thus, three LS-SVMs are trained, each separating lass &rom the others.
During the test phase, the label is found by the followingagun:

Yy = argmax[wggb(x) + b;] (10)

wherew; andb; are the corresponding parameters of the LS-SVM trained for
separating the samples of the classom the others.

2.4. Validation

Our classification system is validated on the dataset of 8dtimages of 165
patients with adolescent idiopathic scoliosis with an agfe/een 10-18 years and
Cobb angle measurement of the main curve is greater 36an The 3D trunk
image and the radiography acquisitions have been done aathe visit for each
patient. Based on the common clinical classification, tledigsis curve type (tho-
racic major curves, thoracolumbar major curves, lumbaon@jrves and double
major curves) was determined from the X-ray images by anréxpée number
of lumbar major curves being too small, we mixed them withtti@racolumbar
major curves. The repartition of samples in these diffectasses is shown in
Table 1.

Table 1: Distribution of the patients among the classes

Classes Curve type # patients
Class 1 Thoracic major 102
Class 2 Double major 26
Class 3 Lumbar/thoracolumbar major 37
Total 165

Considering the size of the dataset (N=165) and the smalbeuwf samples
in each class (only 26 samples for class 2), it is not intargdb reduce the
training set in order to form the separate validation seteré&fore, we choose
"leave-one-out” cross-validation (LOOCYV) to estimate {herformance of our
classification system. LOOCYV is used because it is almostased and its error
should be relatively informative about the generalizagmor of the classifier, see
[34, 35].
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The cross-validation procedure is a good technique foruawizlg classifier
generalization performance, the idea being to test thergbknation capacity of
the classifier through unseen data. In k-fold cross-vabdatve divide the avail-
able training data inté subsets. We train the machih¢imes, each time leaving
out one of the subsets from training, and use only the om#itdxdet to compute
the given error criterion. The average error rate obtaines thek operations,
gives an estimation of the classifier generalization capadine variance of the
result is reduced wheh s increased. I equals the size of the training set, the
maximum value, this is called "leave-one-out” cross-vaiidn, or LOO cross-
validation.

Indeed, we used double cross-validation where the LOOC\hoatiogy is
repeated at two stages: first stage for performing modetsahe(selecting the
hyperparameter§ir, 6, 71, 72)) and second stage for evaluating the global sys-
tem performance. See Algorithm 1 for the details.

Algorithm 1 Double LOO cross-validation
fori=1—/¢do
A={(x1,11),- -, (@, y0)} \ { (i, y:) } IIFirst LOO cross-validation
for each(fr, AL, 71, 72) combinationdo
forj=1—¢—-1do
B = A\ {(z;,y,)} //Second LOO cross-validation
Train LS-SVM with B using different value of 37, 8., 71, 72)
Test the classifier on,
end for
end for
Select the optimal value 0B, 3., 71, 72) which gives the minimum average
€rror oNx;(j=1.¢—1)
Train the classifier withd using the optimal value df5r, 5., 71, 72)
Test the classifier on;
end for
Compute the overall performance op;—.,—1)

We validate the proposed system on the previous dataseséssags perfor-
mance. In fact, our system is built by improving many partthef classification
process. First, the data representation is improved byW@GA technique where
the features dimension is reduced. Second, we design a meel kehich makes
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possible to weight differently the different features adoag to their origin (tho-

racic region or lumbar region). Third, we introduce the hakd regularization
parameters for the positive and negative samples in trgifarmulation of the

classifier. Thus, we design experiments where the datasepiation or the clas-
sifier is modified in order to confirm the influence of each sggton the proposed
method:

1) To quantify the effect of the dimensionality reductiomperiments are per-
formed using row data and Wrapper method which is an itexatitnensionality

reduction technique comparative with PCA.

2) To show the influence of the new kernel, a standard Gaukeiael and linear
kernel are tested.

3) To point out the impact of the regularization parametgys., a classical LS-

SVM is tested with equal value for the parametersind-s,.

Finally, we make comparison with other classifiers. The psagl classifier is
compared with the standard LS-SVM, with SVM and with artdlaneural net-

work.

3. Resultsand discussion

3.1. Performance of our system

We perform the LOOCYV procedure through the 165 samples witlctassi-
fication system which give$5% of correct classification. The optimal hyperpa-
rameters value of each classifier are set through the danbgs-validation pro-
cedure. The optimal value of the hyperparameters (meare estimated through
LOOCYV) are shown in Table 2.

Table 2: Hyperparameters value

Kernel RegularizationRegularizationRegularization

parameter parameter for parameter for parameter for
class 1 class 2 class 3

Br =0.0595 =1 ~v1 = 0.05 v =1

Br =0.0190 ~=1 Yo = 0.08 Yo = 2

The interesting result of good classificati®®o, shows that it is possible to
identify the scoliosis curve type using only 3D back surfexcage of the patients.
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Also, the result confirms that the selected features extinaatelevant information
from the 3D image for a scoliosis curve type classificati@kta

In Table 3, we report the correct classification rate peiscl&®nsidering these
results, it is remarkable that the prediction of double mejove is the most dif-
ficult task. Further analysis of the results shows that atrtieesmisclassification
of double major curve samples are predicted as thoracicrnegjpe. Thus, the
major confusion of the classifier is produced between thdldomajor curve and
thoracic major curve. In fact, we know that it is also venryfidiflt for an expert to
separate these two groups using radiographs of the spinetivbenain curvature
of the double major curve is thoracic. Thus, the cliniciamaddition to the dif-
ference of the Cobb angle, develop the classification basédeocurve reduction
between X-ray acquired in standing position and those aedum lateral flexion
position [36]. On the other hand, the moderate predictiy@cay of our classi-
fication system for class 2 comes also from the small numb#reopatients who
have double major curve in the cohort.

Table 3: Classification rate per class

Curve type Classification rate
Thoracic major 96.1%
Double major 84.2%
Lumbar/thoracolumbar major 97.2%

3.2. Impact of the dimensionality reduction

Dimensionality reduction is an interesting preprocessingachine learning.
However, sometimes a sub-optimal result can be observads, e performed a
comparison with row data without any dimensionality redutt Also, we tested
the wrapper method which is an iterative technique usedeiatufe subset selec-
tion [37]. The performances of each system with LOOCYV procedre reported
in Table 4. The results outpoint that the dimensionalityustibn is very useful;
because without any dimensionality reduction, the redagnrates for classes 2
and 3 decrease with respect to the systems using dimenisyaeduction method.
In addition, we noted that PCA outperforms the Wrapper methogiving an in-
teresting results for each class. Therefore, we can coadla PCA is more
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suitable than Wrapper method for our problem.

Table 4: Data representation comparison

Curve type Row data Wrapper method PCA
Thoracic major 96.1% 97.0% 96.1%
Double major 61.9% 68.8% 84.2%
Lumbar/thoracolumbar major 94.4% 96.9% 97.2%

3.3. Impact of the new kernel

In order to quantify the impact of the new kernel with respecthe stan-
dard Gaussian kernel, we evaluate our system using regplgctine two types
of kernels. Table 5 summarizes the results obtained usmgitferent Gaussian
kernel widths. The Gaussian kernel width is varied between (57, 5;) and
maz(Br, 5r) wheresr and 5, are optimal values found for the new kernel. We
note that the recognition rate within the class 2, doubleomajirve, was im-
proved from73.7% to 84.2%. Therefore, the overall recognition rate increased
also. Thus, the results demonstrate that the new kerneliis suitable than the
Gaussian kernel for this problem and permit to amelioragecthssification rate
of the double major curve.

Moreover, the proposed kernel is compared with the stanliaedr kernel
and modified linear kernel. This last kernel is built by weigg differently the
features computed from each trunk region as in the case pbpeal kernel. The
results reported in Table 6 show that the linear kernel isapgropriate for our
problem. This confirms that the classification problem islm#ar. Therefore,
linear classification gives a sub-optimal performance.

3.4. Impact of regularization parametets/ -

In this section, we run two sets of experiments in order tawjiathe impact
of the regularization parameteys and~, on the prediction rate. First, we tested
our proposed system without the regularization parametesad~, (This means
using the same value for the regularization parameijgrs . like in standard
LS-SVM) and we compute the different classification ratescddd, we used the
regularization parameters with the different valuefpand~, for each classifier.
Table 7 shows the summary of the results where the classificedte per class
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Table 5: Prediction rate according to the kernel choice

Curve type: Thoracic  Double Lumbar/thora- Overall
major major columbar major
Gaussian kernel(0.0190):  96.0% 70.6% 99.9% 94.2%
Gaussian kernel(0.0235): 96.0% 73.7% 97.2% 93.6%
Gaussian kernel(0.0280):  96.0% 73.7% 97.2% 93.6%
Gaussian kernel(0.0325): 96.0% 73.7% 97.2% 93.6%
Gaussian kernel(0.0370):  96.0% 73.7% 97.2% 93.6%
Gaussian kernel(0.0415):  96.0% 73.7% 97.2% 93.6%
Gaussian kernel(0.0460):  97.0% 72.2% 97.2% 94.1%
Gaussian kernel(0.0505):  97.0%  73.7% 97.2% 94.2%
Gaussian kernel(0.0550):  97.0% 68.2% 97.2% 93.0%
Gaussian kernel(0.0595):  97.0% 68.2% 97.2% 93.0%
Proposed kernel: 96.1% 84.2% 97.2% 95.0%

(Br = 0.0595; B, = 0.0190)

Table 6: Comparison with linear kernel

Curve type Linear kernel Linear modified kernel Proposedéker
Thoracic major 96.0% 96.1% 96.1%
Double major 52.9% 60.0% 84.2%
Lumbar/thoracolumbar major 94.4% 94.4% 97.2%

and the overall rate are reported. We note that the clagsificate of the class 1,
Thoracic major curve, was increased by one percent; Thergtwe global classi-
fication rate was improved too.

3.5. Comparison with other classifiers

The main goal of this study is to build a strong system of sxiitype predic-
tion based on 3D trunk image. Thus, the comparison with thesatal classifiers
are performed. We tested the multilayer perceptron (MLPcwis an artificial
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Table 7: Impact of regularization parameterg-y.

Curve type Proposed system Proposed system
with 71 = 79 with 71 # 79
Thoracic major 95.1% 96.1%
Double major 84.2% 84.2%
Lumbar/thoracolumbar major 97.2% 97.2%
Overall 94.2% 95.0%

neural network model designed for non linear problems. iswork, MLP with
one hidden layer is used and the number of neurons in the midger is opti-
mized through LOOCYV process. Also, the classical marginékelassifiers SVM
and LS-SVM are tested. The hypeparameters used for thedastvdassifiers are
reported in Table 8.

The comparative results with MLP, LS-SVM and SVM are repwiite Table 9.
The results show that the MLP gives a sub-optimal solutioih wespect to the
kernel classifiers. Our proposed system outperforms gi¢laid classifier. Con-
sidering the good classification on double major curve, tiop@sed system out-
performs all the other classifiers. Therefore, the res@tsahstrate that our sys-
tem yield a good performance comparative with the othesdiass as MLP, SVM
and the standard LS-SVM. This confirms the robustness angtrihieg stringency
of our system.

Table 8: Hyperparameters value of SVM and LS-SVM

Classifier Kernel RegularizatiomRegularizatiofRegularization
parameter parameter parameter parameter
forclass1 forclass2 forclass 3
SVM 0.0370 1 10 1
LS-SVM 0.0505 1 0.05 1
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Table 9: Comparison with other classifiers: classificatite per class

Curve type MLP  SVM LS-SVM Proposed system
Thoracic major 94.1% 97.0% 97.0% 96.1%
Double major 72.0% 80.0% 73.7% 84.2%
Lumbar/thoracolumbar major 91.4% 97.3% 97.2% 97.2%

4. Conclusion

In this work, we proposed to build a computer-aided diagh@SAD) system
which is able to classify the scoliosis curve type using 3bkibsurface images
which are obtained from non invasive acquisitions. Oureysis validated on
165 patients and we obtained promising results. This shbatsttis possible to
find a relationship between the internal deformity and thiedshape deformity
in scoliosis with machine learning methods. Also, the rssuidicate that rele-
vant features based on geometric approach combined witltiattintelligence
techniques can be extracted from 3D torso image in orderitd &ICAD system
with a high capacity of classification.

In addition, our system is very fast during the testing phHassause only 53
principal components are selected and used by the clas3ifiesmall number of
features makes it possible to reduce the complexity stavatfee classifier and to
avoid the curse of dimensionality problem.

However, we note that the classification capacity of ouresystor the dou-
ble major curve could be improved. This part of the proposestiesn could be
ameliorated by including the side-bending acquisitionthwadditional set of de-
scriptors. We expect that further work in this directionlwikld better results and
will improve the performance of the proposed system.
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