1,537 research outputs found

    Utilizing Compliance To Address Modern Challenges in Robotics

    Get PDF
    Mechanical compliance will be an essential component for agile robots as they begin to leave the laboratory settings and join our world. The most crucial finding of this dissertation is showing how lessons learned from soft robotics can be adapted into traditional robotics to introduce compliance. Therefore, it presents practical knowledge on how to build soft bodied sensor and actuation modules: first example being soft-bodied curvature sensors. These sensors contain both standard electronic components soldered on flexible PCBs and hyperelastic materials that cover the electronics. They are built by curing multi-material composites inside hyper elastic materials. Then it shows, via precise sensing by using magnets and Hall-effect sensors, how closed-loop control of soft actuation modules can be achieved via proprioceptive feedback. Once curvature sensing idea is verified, the dissertation describes how the same sensing methodology, along with the same multi-material manufacturing technique can be utilized to construct soft bodied tri-axial force sensors. It shows experimentally that these sensors can be used by traditional robotic grippers to increase grasping quality. At this point, I observe that compliance is an important property that robots may utilize for different types of motions. One example being Raibert\u27s 2D hopper mechanism. It uses its leg-spring to store energy while on the ground and release this energy before jumping. I observe that via soft material design, it would be possible to embed compliance directly into the linkage design itself. So I go over the design details of an extremely lightweight compliant five-bar mechanism design that can store energy when compressed via soft ligaments embedded in its joints. I experimentally show that the compliant leg design offers increased efficiency compared to a rigid counterpart. I also utilize the previously mentioned soft bodied force sensors for rapid contact detection (~5-10 Hz) in the hopper test platform. In the end, this thesis connects soft robotics with the traditional body of robotic knowledge in two aspects: a) I show that manufacturing techniques we use for soft bodied sensor/actuator designs can be utilized for creating soft ligaments that add strength and compliance to robot joints; and b) I demonstrate that soft bodied force sensing techniques can be used reliably for robotic contact detection

    Novel Configurations of Ionic Polymer-Metal Composites (IPMCs) As Sensors, Actuators, and Energy Harvesters

    Get PDF
    This dissertation starts with describing the IPMC and defining its chemical structure and fundamental characteristics in Chapter 1. The application of these materials in the form of actuator, sensor, and energy harvester are reported through a literature review in Chapter 2. The literature review involves some electromechanical modeling approaches toward physics of the IPMC as well as some of the experimental results and test reports. This chapter also includes a short description of the manufacturing process of the IPMC. Chapter 3 presents the mechanical modeling of IPMC in actuation. For modeling, shear deformation expected not to be significant. Hence, the Euler-Bernoulli beam theory considered to be the approach defining the shape and critical points of the proposed IPMC elements. Description of modeling of IPMC in sensing mode is in Chapter 4. Since the material undergoes large deformation, large beam deformation is considered for both actuation and sensing model. Basic configurations of IPMC as sensor and actuator are introduced in Chapter 5. These basic configurations, based on a systematic approach, generate a large number of possible configurations. Based on the presented mechanisms, some parameters can be defined, but the selection of a proper arrangement remained as an unknown parameter. This mater is addressed by introducing a decision-making algorithm. A series of design for slit cylindrical/tubular/helical IPMC actuators and sensors are introduced in chapter 5. A consideration related to twisting of IPMCs in helical formations is reported through some experiments. Combinations of these IPMC actuators and sensors can be made to make biomimetic robotic devices as some of them are discussed in this chapter and the following Chapters 6 and 7. Another set of IPMC actuator/sensor configurations are introduced as a loop sensor and actuator that are presented subsequently in Chapter 6. These configurations may serve as haptic and tactile feedback sensors, particularly for robotic surgery. Both of these configurations (loop and slit cylindrical) of IPMCs are discussed in details, and some experimental measurements and results are also carried out and reported. The model for different inputs is studied, and report of the feedback is presented. Various designs of these configurations of IPMC are also presented in chapter 7, including their extension to mechanical metamaterials and soft robots

    Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    Get PDF
    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.National Science Foundation (U.S.) (NSF IIS1226883)National Science Foundation (U.S.) (NSF CCF1138967)National Science Foundation (U.S.) (1122374

    Süsinikmaterjalist elektroodidega ioonsed ja mahtuvuslikud elektroaktiivsed laminaadid sensorite ning energiakogumisseadmetena

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Kaasaegses elektroonika- ja robootikatööstuses valitseb suundumus miniatuursete, autonoomsete ja läbinisti pehmete seadmete väljatöötamisele, mis ühtlasi tingib huvi sobivate materjalide arenduse vastu. Käesolevas töös käsitletakse antud valdkonnale huvipakkuvat pehmet ioonset elektroaktiivset polümeerset laminaatmaterjali (IEAP), mis koosneb suure-eripinnalistest süsinikelektroodidest, poorsest polümeermembraanist ning ioonvedelikust, mis täidab nii elektroodi kui polümeermembraani poore. Antud laminaatmaterjal on väga multifunktsionaalne – varasemalt on tuntud selle energiasalvestus- ja täituriomadused. Käesolevas töös uuritakse antud materjaliklassi uudset omadust – elektrilaengu genereerimise võimet. Esmalt rakendati IEAP laminaati konfiguratsioonis, mis vastab selle kasutamisele elektromehaanilise täiturina, kuid seda painutati välise jõuga. Painutamise tulemusena genereeris IEAP elektrilaengut proportsionaalselt painutuse ulatusega. Seega on võimalik sama IEAP-i kasutada vaheldumisi nii pehme täituri kui liigutussensorina. IEAP-d iseloomustab suur tundlikkus õhuniiskuse suhtes, sest IEAP koosneb ülihügroskoopsetest koostisosadest. Elektrokeemilise impedantsspektroskoopia meetodil selgus, et õhuniiskuse pöörduva absorptsiooni tõttu võivad IEAP elektrilised omadused muutuda enam kui ühe suurusjärgu ulatuses. Antud töös rakendati IEAP materjali kõrget niiskustundlikkust uudses, ootamatus konfiguratsioonis – hügroelektrilise rakuna. Kui IEAP paigutada kahe erineva suhtelise õhuniiskusega keskkonna eralduspiirile, tekib IEAP elektroodidel elektrilaeng. IEAP hügroelektriline rakk võimaldab koguda elektrienergiat ümbritsevast õhuniiskusest, kusjuures õhuniiskusest genereeritav elektrilaeng ületab enam kui suurusjärgu võrra painutussensorit. Siinkohal on määrava tähtsusega ka IEAP-i energiasalvestiomadused – IEAP hügroelektriline rakk ei vaja välist energiasalvestuselementi, vaid genereeritud elektrilaeng salvestatakse samasse materjaliossa, mis antud laengu genereeris.The modern electronics and robotics industry is interested in development of miniature, autonomous, and fully soft devices; consequently, the research on compatible materials is promoted. This work considers one class of materials – ionic electroactive polymer laminate (IEAP), perspective for the given field. An IEAP consists of carbonaceous electrodes with high specific surface area, a porous polymeric separator, and ionic liquid, which fills the pores in electrode and separator. IEAP is a multifunctional material – it is known for its energy storage and actuation capability. The work at hand explores a novel property of IEAP – generation of electric charge. First, an IEAP laminate was employed in a configuration that corresponds to its use as an electromechanical actuator, but it was bent using an external force. The IEAP generated electric charge proportional to the bending magnitude. Consequently, the same IEAP could be used intermittently as a soft actuator and as a motion sensor. IEAP consists of highly hygroscopic materials, which is expressed in its high sensitivity to ambient humidity. Electrochemical impedance spectroscopy revealed that reversible absorption of ambient humidity changes the electrical properties of IEAP over one order of magnitude. In this work, humidity-sensitive IEAP is employed in a novel, unexpected configuration – as a hygroelectrical cell. If an IEAP is placed between environments with unequal relative humidities, electric charge is formed between the IEAP’s electrodes. An IEAP can be used to harvest electric energy from the ambient humidity, whereas the magnitude of the generated charge is more than one order of magnitude higher than in the case of the same material as a motion sensor. At this point, the energy storage properties of IEAP are essential – an IEAP hygroelectrical cell does not require additional energy storage units; instead, the generated electric charge is stored in the same part of the material, where it was generated

    Ioonsete elektromehaaniliselt aktiivsete polümeeride deformatsioonist sõltuv elektroodi impedants

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsioone.Elektromehaaniliselt aktiivsed materjalid on polümeeridel põhinevad mitmekihilised komposiitmaterjalid, mis muudavad oma välist kuju, kui neid elektriliselt stimuleerida; tihti nimetatakse neid ka tehislihasteks. Taolistest materjalidest valmistatud täiturid pakkuvad huvi nii mikrolaborseadmetes kui ka loodust matkivas robootikas, sest võimaldavad luua keerukaid ülipisikesi ajameid. Võrreldes tavapäraste elektrimootoritega võimaldavad EAP-d (elektromehaaniliselt aktiivsed polümeerid) helitut liigutust ning neid saab lõigata konkreetse rakenduse jaoks sobivasse suurusesse. EAP-d jagunevad kahte põhiklassi: elektron- ja ioon-EAP. Doktoritöös käsitletakse kahte erinevat ioon-EAP materjali, kus mehaaniline koste on tingitud ioonide ümberpaigutumisest kolmekihilises komposiitmaterjalis. Kuna EAP-de elektromehaanilised omadused sõltuvad lisaks sisendpinge amplituudile ja sagedusele ka tugevasti ümbritseva keskkonna parameetritest (nt niiskus ja temperatuur), siis on nendest materjalidest loodud täiturite juhtimiseks tarvilik kasutada tagasisidet. Täiendav tagasisideallikas võib oma omaduste tõttu aga vähendada EAP-de rakendusvõimalusi ning seetõttu on eesmärgiks luua n-ö isetundlik EAP ajam, mis funktsioneerib samaaegselt nii täituri kui ka liigutusandurina. Doktoritööd esitatakse uuritud materjalide elektroodi impedantsi ja deformatsiooni vaheline seos ning kirjeldatakse vastav elektriline mudel. Eraldamaks andursignaali täituri sisendpingest pakutakse välja elektroodikihi piires täituri ja anduri elektriline eraldamine. Loobudes ainult elektroodimaterjalist säilitab polümeerkarkass täituri ja anduri mehaanilise ühendatuse – seega taolises süsteemis järgib sensor täituri kuju, kuigi need on elektriliselt lahti sidestatud. Elektroodimaterjali valikuliseks eemaldamiseks kasutatakse mitmeid erinevaid meetodeid (freesimine, laserablatsioon jne) ning ühtlasi uuritakse nende kasutusmugavust ja protsessi mõju kogu komposiitmaterjalile.Electromechanically active materials are polymer-based composites exhibiting mechanical deformation under electrical stimulus, i.e. they can be implemented as soft actuators in variety of devices. In comparison to conventional electromechanical actuators, their key characteristics include easy customisation, noiseless operation, straightforward mechanical design, sophisticated motion patterns, etc. Ionic EAPs (electromechanically active polymers) are one of two primary classes of electroactive materials, where actuation is caused mostly by the displacement of ions inside polymer matrix. Mechanical response of ionic EAPs is, in addition to voltage and frequency, dependent on environmental variables such as humidity and temperature. Therefore a major challenge lies in achieving controlled actuation of these materials. Due to their size and added complexity, external feedback devices inhibit the application of micro-scale actuators. Hence, self-sensing EAP actuators—capable for simultaneous actuation and sensing—are desired. In this thesis, sensing based on deformation-dependent electrochemical impedance is demonstrated and modelled for two types of trilayer ionic EAPs—ionic polymer-metal composite and carbon-polymer composite. Separating sensing signal from the input signal of the actuator is achieved by patterning the electrode layers of an IEAP material in a way that different but mechanically coupled sections for actuation and sensing are created. A variety of concepts for pattering the electrode layers (machining, laser ablation, masking, etc.) are implemented and their applicability is discussed

    Integrated microcantilever fluid sensor as a blood coagulometer

    Get PDF
    The work presented concerns the improvement in mechanical to thermal signal of a microcantilever fluid probe for monitoring patient prothrombin time (PT) and international normalized ratio (INR) based on the physical measurement of the clotting cascade. The current device overcomes hydrodynamic damping limitations by providing an internal thermal actuation force and is realised as a disposable sensor using an integrated piezoresistive deflection measurement. Unfortunately, the piezoresistor is sensitive to thermal changes and in the current design the signal is saturated by the thermal actuation. Overcoming this problem is critical for demonstrating a blood coagulometer and in the wider field as a microsensor capable of simultaneously monitoring rheological and thermal measurements of micro-litre samples. Thermal, electrical, and mechanical testing of a new design indicates a significant reduction in the thermal crosstalk and has led to a breakthrough in distinguishing the mechanical signal when operated in moderately viscous fluids (2-3 cP). A clinical evaluation has been conducted at The Royal London Hospital to measure the accuracy and precision of the improved microcantilever fluid probe. The correlation against the standard laboratory analyser INR, from a wide range of patient clotting times(INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the device measured as the percentage coefficient of variation, excluding patient samples tested < 3 times, is equal to 4.00% (n=64). The accuracy and precision is comparable to that of currently available point-of-care PT/INR devices. The response of the fluid probe in glycerol solutions indicates the potential for simultaneous measurement of rheological and thermal properties though further work is required to establish the accuracy and range of the device as a MEMS based viscometer
    corecore