55,757 research outputs found

    A software framework for automated behavioral modeling of electronic devices

    Get PDF

    Towards Efficient Maximum Likelihood Estimation of LPV-SS Models

    Full text link
    How to efficiently identify multiple-input multiple-output (MIMO) linear parameter-varying (LPV) discrete-time state-space (SS) models with affine dependence on the scheduling variable still remains an open question, as identification methods proposed in the literature suffer heavily from the curse of dimensionality and/or depend on over-restrictive approximations of the measured signal behaviors. However, obtaining an SS model of the targeted system is crucial for many LPV control synthesis methods, as these synthesis tools are almost exclusively formulated for the aforementioned representation of the system dynamics. Therefore, in this paper, we tackle the problem by combining state-of-the-art LPV input-output (IO) identification methods with an LPV-IO to LPV-SS realization scheme and a maximum likelihood refinement step. The resulting modular LPV-SS identification approach achieves statical efficiency with a relatively low computational load. The method contains the following three steps: 1) estimation of the Markov coefficient sequence of the underlying system using correlation analysis or Bayesian impulse response estimation, then 2) LPV-SS realization of the estimated coefficients by using a basis reduced Ho-Kalman method, and 3) refinement of the LPV-SS model estimate from a maximum-likelihood point of view by a gradient-based or an expectation-maximization optimization methodology. The effectiveness of the full identification scheme is demonstrated by a Monte Carlo study where our proposed method is compared to existing schemes for identifying a MIMO LPV system

    The transmission of monetary policy shocks

    Get PDF
    Commonly used instruments for the identification of monetary policy disturbances are likely to combine the true policy shock with information about the state of the economy due to the information disclosed through the policy action. We show that this signalling effect of monetary policy can give rise to the empirical puzzles reported in the literature, and propose a new high-frequency instrument for monetary policy shocks that accounts for informational rigidities. We find that a monetary tightening is unequivocally contractionary, with deterioration of domestic demand, labor and credit market conditions, as well as of asset prices and agents' expectations

    Parameterized macromodeling of passive and active dynamical systems

    Get PDF
    L'abstract ĆØ presente nell'allegato / the abstract is in the attachmen

    Simulation of the spatio-temporal extent of groundwater flooding using statistical methods of hydrograph classification and lumped parameter models

    Get PDF
    This article presents the development of a relatively low cost and rapidly applicable methodology to simulate the spatio-temporal occurrence of groundwater flooding in chalk catchments. In winter 2000/2001 extreme rainfall resulted in anomalously high groundwater levels and groundwater flooding in many chalk catchments of northern Europe and the southern United Kingdom. Groundwater flooding was extensive and prolonged, occurring in areas where it had not been recently observed and, in places, lasting for 6 months. In many of these catchments, the prediction of groundwater flooding is hindered by the lack of an appropriate tool, such as a distributed groundwater model, or the inability of models to simulate extremes adequately. A set of groundwater hydrographs is simulated using a simple lumped parameter groundwater model. The number of models required is minimized through the classification and grouping of groundwater level time-series using principal component analysis and cluster analysis. One representative hydrograph is modelled then transposed to other observed hydrographs in the same group by the process of quantile mapping. Time-variant groundwater level surfaces, generated using the discrete set of modelled hydrographs and river elevation data, are overlain on a digital terrain model to predict the spatial extent of groundwater flooding. The methodology is applied to the Pang and Lambourn catchments in southern England for which monthly groundwater level time-series exist for 52 observation boreholes covering the period 1975ā€“2004. The results are validated against observed groundwater flood extent data obtained from aerial surveys and field mapping. The method is shown to simulate the spatial and temporal occurrence of flooding during the 2000/2001 flood event accurately

    Simulation-based Estimation of Contingent-claims Prices

    Get PDF
    A new methodology is proposed to estimate theoretical prices of financial contingent-claims whose values are dependent on some other underlying financial assets. In the literature the preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic justification but is not necessarily the best method in finite samples. The present paper proposes instead a simulation-based method that improves the finite sample performance of the ML estimator while maintaining its good asymptotic properties. The methods are implemented and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond pricing model, but have wider applicability. Monte Carlo studies show that the proposed procedures achieve bias reductions over ML estimation in pricing contingent claims. The bias reductions are sometimes accompanied by reductions in variance, leading to significant overall gains in mean squared estimation error. Empirical applications to US treasury bills highlight the differences between the bond prices implied by the simulation-based approach and those delivered by ML. Some consequences for the statistical testing of contingent-claim pricing models are discussed.Bias reduction, Bond pricing, Indirect inference, Option pricing, Simulation-based estimation

    Simulation-based Estimation of Contingent-claims Prices

    Get PDF
    A new methodology is proposed to estimate theortical prices of financial contingent-claims whose values are dependent on some other underlying financial assets. In the literature the preferred choice of estimator is usually maximum likelihood (ML). ML has strong asymptotic justification but is not necessarily the best method in finite samples. The present paper proposes instead a simulation-based method that improves the finite sample performance of the ML estimator while maintaining its good asymptotic properties. The methods are implemented and evaluated here in the Black-Scholes option pricing model and in the Vasicek bond pricing model, but have wider applicability. Monte Carlo studies show that the proposed procedures achieve bias reductions overML estimation in pricing contingent claims. The bias reductions are sometimes accompanied by reductions in variance, leading to significant overall gains in mean squared estimation error. Empirical applications to US treasure bills highlight the differences between the bond prices implied by the simulation-based approach and those delivered by ML and the consequences on the statistical tesing of contingent-claim pricing models.Bias Reduction, Bond Pricing, Indirect Inference, Option Pricing, Simulation-based Estimation
    • ā€¦
    corecore