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Notation

In the following, we denote with N, R, and C the fields of natural, real and
complex numbers, respectively. The symbol s is reserved for the Laplace variable,
and j =

√
−1 is the imaginary unit. Scalars are denoted with a plain lowercase

font x, while uppercase fonts denote matrices X, whose size is specified if not clear
from the context. The i, j-th element of a matrix X is denoted either as Xi,j or
as X i,j, depending on the context. Given a complex number z, the notation z∗

denotes the conjugate of z. Matrix transpose and Hermitian transpose are denoted
with X⊤ and X⋆, respectively. The set of symmetric matrices of size n is denoted
as Sn; accordingly, Sn

− (resp. Sn
−−) denotes the set of negative semi-definite (resp.

negative definite) matrices of size n; positive definite and semi-definite sets will
be denoted with the same notations using the subscript + instead of −. A given
rational function of the complex variable s is denoted as H(s), and IP is reserved
for the identity matrix of size P. The symbol ⊗ is the Kronecker product.

The dependency of a (vector or matrix) function f(·) on its arguments will be
omitted whenever it does not introduce ambiguity; the notation ẋ(t) will be used
to denote the time derivative of the function x(t).

We define a multi-index as a d-dimensional collection of indices i = (i1, . . . , id) ∈
Nd. Given two multi-indices j and k, we write j ≤ k meaning j1 ≤ k1, . . . , jd ≤
kd. The sum operation j + k between two multi-indices returns a multi-index
i = (j1 + k1, . . . , jd + kd). The max(j,k) [resp. min(j,k)] function returns the
component-wise maximum (resp. minimum) for each entry of its arguments.
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Summary

The increasing trends of device integration and miniaturization, combined with
the ubiquity of high frequency components and low power applications, pose major
challenges in robust design of electronic systems. First-pass designs are only pos-
sible through extensive and repeated simulation-driven verification at any stage of
product development, aimed at validating both the functional and electrical perfor-
mance of the system at different levels of granularity. Therefore, Electronic Design
Automation (EDA) tools have rightly become one of the pillars that sustain semi-
conductor industries against the pressing challenges imposed by technological and
economic requirements.

A direct approach for system-level verification based on numerical simulations
of physics-based descriptions is not realistic. Especially in high-frequency and high-
speed applications, the interplay between complex electromagnetic interactions and
device/transistor-level descriptions may drive complexity to levels that cannot be
handled even with powerful computing hardware. Some model simplification or
approximation is in order to enable fast numerical simulations.

Behavioral macromodels provide one of the most effective solutions to this prob-
lem. Such models are intended to replace highly complex descriptions through
simplified reduced-order equivalents, given an acceptable level of approximation.
A macromodel is constructed to accurately mimic the input-output response of a
given reference system based on a minimal set of descriptive equations, which (de-
sirably) can be cast as an equivalent reduced-order circuit. Beyond accuracy, the
equivalents must reflect fundamental structural properties of the reference devices,
such as stability and passivity. Numerical simulations based on certified stable and
passive macromodels provide a major speedup and are now regarded as the method
of choice in practically all commercial EDA tools.

Parameterized macromodels further extend the potential of this approach by
explicitly incorporating the dependence of the target structure response on a num-
ber of physical or design parameters. This allows the user to explore different
device configurations to perform fast optimization, what-if analyses and statistical
assessments.

The generation of guaranteed stable and passive parameterized macromodels is
still an open research field. This problem has been addressed in the literature in
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two main directions. One approach imposes a model structure that is inherently
stable and passive by construction; alternatively, an initial unconstrained model
is constructed and is successively perturbed to correct any stability or passivity
violations. Both approaches have pros and cons. The former is extremely robust
at the price of reduced accuracy due to the conservativity of the constrained model
structure. The latter enables better accuracy but may be unreliable due to lack of
convergence in the perturbation process.

The first technical contribution of this dissertation fills the gap between these
two competing approaches. A general model structure for linear parameterized
passive structures is introduced, based on a rational multivariate Bernstein poly-
nomial expansion. Then, a set of numerically tractable conditions on the model
coefficients is derived. These are imposed as convex constraints during model ex-
traction, leading to guaranteed stable and passive models for any combination of
the parameters, without need of any post-processing. Further, the particular form
of these constraints enables a user-defined trade off between identification time and
accuracy, a highly desirable feature for designers.

The above convex formulation is exploited to support a second set of techni-
cal contributions, aimed at constructing reduced-order models of nonlinear analog
circuit blocks. A first extension involves mildly nonlinear devices designed to op-
erate under small-signal assumptions given a predefined bias level, such as inte-
grated voltage regulators. We show that bias-dependent small-signal models with
guaranteed stability can be derived in case of programmable, uncertain, and even
time-varying bias conditions. The key enabling factors include an affine linear time-
varying model structure for which we are able to prove strong quadratic stability.
This implies unconditional asymptotic stability under any possible time-varying
bias trajectory. The most notable impact of this results is a dramatic speedup in
transient simulations, which can reach up to three orders of magnitude on realistic
test cases.

The last contribution of this thesis further extends the macromodeling frame-
work to approximate or identify local dynamics of systems for which data samples
are available only via real-time monitoring. The result is always a small-signal
bias-dependent reduced-order model, whose identification is performed in time do-
main using samples that possibly include the contribution of non-vanishing (and
unknown) initial conditions. The resulting algorithm that we denote as Real-Time
Vector Fitting (RTVF) is demonstrated on two applications belonging to power sys-
tem modeling and even to haemodynamic modeling of the human cardiovascular
system, by exploiting the analogy between electric and fluid dynamics variables.

In summary, this dissertation provides a unifying framework and a set of numer-
ical algorithms for the data-driven reduced-order modeling of some wide classes of
dynamical systems. Improvement of the state of the art is demonstrated both under
theoretical standpoints thanks to the stability and -if required- passivity conditions,
and under the practical standpoint through extension in scope and applicability.
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Chapter 1

Introduction

This thesis presents novel technical solutions for the generation of macromodels
of complex linear and nonlinear dynamical systems. The presented techniques
return reduced order descriptions that are at the same time accurate, compact,
and coherent with the fundamental physical principles governing the underlying
systems. These three features make the models suitable to be exploited in computer
aided design tools, enabling fast simulation and optimization of large scale systems
of engineering interest, that would be otherwise computationally intractable. This
chapter discusses the context and the motivations for this research and provides an
overview of the organization of this thesis

1.1 Motivations
Mathematical models and simulations are a cornerstone for modern techno-

logical development and industrial manufacturing. The possibility of accurately
predicting the behavior of a given design allows engineers to perform preliminary
testing and verification stages without relying on the construction of physical pro-
totypes, which is highly consuming in terms of strategical assets. The industrial
interest for mathematical models is therefore motivated not only by their effec-
tiveness in predicting physical phenomena, but also by their potential for saving
resources in terms of manpower and time-to-market.

In this context, reduced order models, also called macromodels or surrogate
models, gained an increasing importance in the field of Computer Aided Design
(CAD). The rationale behind such models is to predict the behavior of a given sys-
tem with minimal computational efforts, by accurately reproducing those physical
quantities that are of interest within a specific simulation [117, 27, 98] . The intrin-
sic complexity of the first-principle physical laws (e.g. Maxwell’s equations) can
be reduced to a small set of explanatory instrumental variables, that are sufficient
to predict the input-output relationship of interest. This motivated an enormous
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amount of research efforts by both academia and private companies (CAD tool
vendors mainly) towards the development of model order reduction tools and al-
gorithms. A comprehensive review of the state of the art is available in the recent
series of monographs [12, 11, 10].

The broad field of electronics is probably the application area that exploited
model order reduction tools and methods to the largest extent, fostering several
key developments during the last few decades. In fact, the verification of electrical
performance of a complete electronic system requires extensive system-level sim-
ulations, in which all relevant system parts are characterized and represented by
mathematical models. The presence of thousands or millions of elementary com-
ponents and structures in close proximity calls for an accurate representation of
all electromagnetic interactions. The latter are often neglected in the early design
(concept) stages, yet they may have an enormous impact on the compliance of sig-
nal and power supply levels with design specifications. A direct electromagnetic
simulation of all such effects on the complete system is not feasible. Hence the need
of representing all interactions through simpler and compact representations.

Behavioral models enable system-level simulations by drastically reducing their
overwhelming complexity, providing also the possibility to perform design opti-
mization, what-if and worst-case analyses, based on global performance assessment.
Generation of behavioral models involves a first characterization step, in which a
detailed (circuit or electromagnetic) analysis at the component level is carried out.
The results of this characterization are then used to build a behavioral model that
retains only the dominant features of interest, disregarding or approximating the
fine details that are not relevant.

The applications considered in this thesis will mostly fit in the Electronic De-
sign Automation (EDA) domain. Two main classes of structures are considered as
targets for proposed algorithms, namely passive components described by Linear
and Time Invariant (LTI) differential equations, and analog circuit blocks generally
described by nonlinear large-scale differential equations. Under proper conditions,
we will see that both classes can be represented by compact macromodels having a
similar structure, for which a unifying framework is proposed in this work. A fur-
ther description of these structures follows, emphasizing the advantages of reduced
order macromodels through some practical examples.

1.1.1 Passive components

Passive components are prominent in every electrical and electronic system.
To this class belong all the standard electrical components, such as discrete or
integrated capacitors, inductors, transformers and antennas. Any electrical inter-
connects such as Printed Circuit Boards (PCBs), Power Distribution Networks
(PDNs), circuit packaging and layouts, or individual transmission lines, are passive
components.
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Accurate characterizations of passive components are often based on system-
atic electromagnetic analyses, requiring the numerical solution of the full-wave or
quasi-static Maxwell’s equations. Electromagnetic field solvers can be employed to
perform such analyses, via differential (e.g. finite elements [64, 108]) or integral
methods (e.g. method of moments [45]), which perform space discretization via
suitable meshes in order to describe the continuous time (or frequency) domain
evolution of the electromagnetic field. Although very accurate, these analyses may
require extremely expensive computations to be performed.

As an example, Fig. 1.1 shows the voltage distribution on a PCB power distri-
bution network (segmented power planes) excited by harmonic sources operating
at frequencies 800 MHz (left panel) and 3 GHz (right panel), obtained by means of
a full-wave simulation. For such complex geometry, solving the full-wave problem
requires handling an extremely large number of unknowns. Even for simple struc-
tures, this number easily grows beyond millions [100]. Nonetheless, the frequency
response of this structure depicted in Fig. 1.2 can be represented by a model de-
scribed by much less degrees of freedom. For this particular example, two rational
functions having order 80 are sufficient to fit and represent the behavior of the
original structure at the considered ports with excellent accuracy. This example
shows that first-principle descriptions based on (discretized) field equations include
a large extent of unnecessary details and complexity, which can be safely removed
without compromising accuracy.

1.1.2 Analog circuit blocks

Analog circuit blocks can be classified as those functional units including elec-
tronic components (i.e. generally speaking, semiconductors) involving continuously
varying signals. They implement a variety of functionalities including signal am-
plification [RF amplifiers of Low Noise Amplifiers (LNA), for instance] and genera-
tion (oscillators), voltage regulation [Low DropOut (LDO) regulators], and control
(phase-locked loops, feedback networks). They are essential in modern electronics,
and, in particular, in mixed Digital-Analog RF systems.

The detailed description of analog circuit blocks require transistor models [111,
96] catching nonlinear solid-state electronic phenomena. Such models are available
at different levels of detail, depending on the required trade-off between descrip-
tion compactness and reliability. Additionally, the influence of the actual device
layout and packaging (i.e. the passive interconnects entering the design) must be
taken into account by means of circuit extraction procedures. These procedures
translate the physical topology of the system into an equivalent circuit, in which
parasitic electrical phenomena such as unwanted capacitive or inductive couplings
are described in terms of suitable lumped elements [7, 1].

Equivalent circuits are usually made available in the form of SPICE [80] netlists,
that represent the standard description format for any circuit simulation software.
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Figure 1.1: Voltage distribution on a PCB power distribution network, when excited
by unitary harmonic sources. Left panel: 800 MHz excitation. Right panel: 3 GHz
excitation. (courtesy: Prof. M. Swaminathan, Georgia Institute of Technology,
Atlanta GA, USA, reproduced with permission from [51])

Figure 1.2: Frequency response of the PDN structure depicted in Fig. 1.1 at two
reference ports (solid lines). Dashed lines depict the responses of two behavioral
models with only 80 poles. Reproduced with permission from [51].

As the number of lumped elements required to describe non-ideal parasitic effects
is large, the size of these equivalent circuits can be very large. This is particularly
true when the circuits are integrated in a single System-on-a-chip (SoC), in which
many components interact together at high frequencies in a miniaturized space.

As an example, Fig. 1.3 depicts the realization of an LDO circuit, that will
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Figure 1.3: A low dropout voltage regulator. left panel: transistor level schematic.
right panel: actual circuit implementation including layout, described in terms of
a 30 MB equivalent netlist. Reproduced from [18] © 2019 IEEE.

be further analyzed in chapter 5. The left panel shows a schematic description
including only transistor models, while the right panel represents the post-layout
circuit implementation. The equivalent netlist including all the parasitics from a
layout extraction has a size of more then 30 MB. This netlist complexity translates
into high computational requirements during any successive simulation stage for
power integrity analysis. One of the topics covered in this thesis is the derivation
of more compact circuit block representations, with the objective of reducing this
complexity. For this specific example, a speedup in transient simulation of almost
3 orders of magnitude was achieved, see below for details.

1.1.3 A reference system example

The following example provides a more complete picture of an entire system
where multiple components and subsystems coexist in close proximity, and for
which availability of compact macromodels can dramatically boost efficiency in de-
sign verification. Consider the structure depicted in Fig. 1.4, representing a Power
Distribution Network (PDN) including distributed on-chip Low DropOut voltage
regulators (LDOs). The system transfers the supply power from the outer envi-
ronment to a set of functional circuits embedded within their packages. After the
external DC voltage level is transformed to the value required by each load circuit
via switching voltage regulator modules (not shown in the picture), it must be kept
as constant as possible by the LDOs circuitry, that mitigate voltage drops and
fluctuations arising from the parasitic electromagnetic interaction between the load
circuits, the on- and off-chip power distribution networks, and the chip packages.

Designers need to carry out a number of transient simulations of the complete
system, making sure that all physical phenomena having an effect on voltage and
current signals in all system locations are correctly represented. Moreover, the
presence of nonlinear components such as the LDOs may trigger instabilities not

24



1.1 – Motivations

LDO LDO LDO LDO

regulated
domain

regulated
domain

regulated
domain

regulated
domain

 DC 
Supply

Package Model 

PCB

Global Vdd Grids

Global Ground Grids

load circuit load circuit load circuit load circuit

Figure 1.4: A power distribution network system with distributed low dropout
voltage regulators.

only in the numerical simulations, but also on the real hardware. It is therefore
mandatory to assess system stability by capturing in the models any factor that
has an influence.

The system can be decomposed into a number of functional blocks interacting
only through well-defined ports. We recognize passive structures (all electrical
interconnects, power planes and grids at chip, package and board level), decoupling
capacitors (not shown in the picture), and localized LDO regulators (active circuit
blocks). A direct simulation of the entire system using first-principle models would
require a (transient) multiscale electromagnetic solver coupled with a transistor-
level circuit solver. Although feasible in principle, this approach would require
enormous computational resources. A better alternative is offered by a macromodel-
based system-level approach, which

• characterized each individual component or subsystems using first-principle
descriptions;

• uses such descriptions to derive low-complexity reduced-order models;

• connects all reduced-order models in a global simulation deck, which is then
solved in reduced time.
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1.2 Surrogate modeling and model order reduction
Several and possibly very different approaches are available for constructing

low complexity models for large-scale dynamical systems. These approaches can be
generally classified in two main classes, denoted in the following as “classical” Model
Order Reduction (MOR) and surrogate (behavioral) modeling or macromodeling.
Note that usage of these terms is not always consistent in the literature.

Although the two approaches share the same goal, they perform the simplifi-
cation process in different ways when dealing with dynamical systems. Classical
MOR schemes perform the simplification by relying on the availability of a refer-
ence device mathematical description, provided in the form of a set of differential
equations (either partial or ordinary). This initial system is processed by an ap-
proximation or truncation algorithm to remove the unnecessary variables or states.
For this reason, these methods are said to be intrusive, since they need a full detail
description as a starting point. The interested reader is referred to [12, 11, 10] for
a comprehensive overview of MOR techniques and applications.

On the other hand, macromodeling approaches perform complexity reduction
indirectly, by means of non-intrusive techniques. In the macromodeling framework
the behavior of the target system is reconstructed starting from data samples of the
input-output responses (time or frequency domain), obtained through high fidelity
simulations or measurements. This approach allows to construct reduced order
models of reference systems for which a closed form description is not available,
either due to lack of information, or due to industrial secrets. For this reason,
macromodeling techniques are commonly referred to also as “data-driven model
order reduction methods”. A reference macromodeling flow is reported in Fig. 1.5.

Surrogate models are most commonly provided in form of equivalent netlists of
small complexity, compatible with SPICE circuit simulation environments. These
netlists allow electrical and electronic engineers to assemble large system intercon-
nections, composed of functional black-box units interacting with the environment
by means of prescribed electrical ports. Behavioral models will be the main subject
of all the following discussions.

1.2.1 Requirements on macromodels

In order to be reliable for general use by designers, macromodels must fulfill a
number of mandatory requirements, discussed below.

• Model compactness. Effective macromodels should be able to catch the re-
quired level of information to reproduce the input-output behavior by keeping
at minimum the complexity of the model representation. Figure 1.6 shows
how a compact behavioral model represented by 9 linear ordinary differential
equations can replace the post-layout circuit of Fig 1.3 in a transient simula-
tion, guaranteeing a speed-up factor of almost three orders of magnitude in
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Figure 1.5: A standard data-driven macromodeling flow for passive components.
Reproduced from [51] with permission.

Figure 1.6: Black solid line: the regulated voltage of the post-layout LDO depicted
in Fig. 1.3 when the circuit is subject to a sequence of voltage pulses at Port 1.
Red dashed line: the corresponding output of a behavioral model derived by means
of the techniques presented in chapter 5. When the native 30 MB circuit netlist is
replaced by the behavioral model, the speed-up factor amounts at 675×, see [18].
Reproduced from [18] © 2019 IEEE.

transient simulation.

• Physical consistency. When behavioral models are used to represent dynam-
ical systems, they must be compliant with their fundamental physical prop-
erties. The main structural property that the surrogate must retain is the
stability of the dynamics. This requirement is crucial, since any unstable
model will potentially lead to totally unreliable simulation results, in which
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all the involved numerical quantities undergo divergence or unexpected be-
haviors.

Closely related to stability, passivity is another structural property that must
be reflected by surrogate models of physically passive components, which are
unable to generate energy on their own. The importance of this property
stems from the fact that the interconnection of passive systems always results
in stable dynamics. When behavioral models that violate this property are
used in a larger system simulation, they may compromise the validity of the
results, by introducing spurious instabilities. In the worst case scenario, the
root cause of the instability may not be immediately identified in the model
inconsistency, and may lead engineers to draw wrong conclusions about the
quality of an actually correct design.

• Automated generation. An attractive macromodeling flow should be carried
out in an automated way in all of its stages, in order to be exploitable by
non-expert users.

• Parameterization. Advanced macromodeling schemes also provide surrogates
that embed in a compact representation the dependency on a set of external
physical or design parameters. Using parameterized macromodels in place
of their standard counterparts may dramatically improve the efficiency of the
design flow, by avoiding the need to interpose modeling stages with additional
simulations when a parameter is modified to obtain some kind of performance.
This enables the possibility to exploit macromodels in statistical assessments
and automated optimizations. In Fig. 1.7 a practical design application of
parameterized macromodels is reported. A high speed PCB interconnection
is represented by a parameterized macromodel, and the eye diagram resulting
from the transmission of a pseudo-random bit-sequence is derived for two
different design parameter configurations. The simulation is easily performed
via parameterized transient analysis on a freeware SPICE engine.

In order to be fully reliable and effective, parameterized macromodels must
retain all the features of their univariate counterparts (including compact-
ness of the representation and reflection of the underlying system physical
property) for all of the considered parameters configurations.

Whereas in the last decades surrogates of passive components have become well-
established in several applications, a number of open issues remain. The technical
results proposed in this thesis extend applicability of macromodels, focusing on
novel techniques for passive parameterized macromodeling and for the generation
of surrogates of nonlinear systems. All these developments are enabled by a unified
framework, that is cast in different formulations depending on the class of systems
under modeling.
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Figure 1.7: The eye-diagram resulting from the transmission of a pseudo-random
bit-sequence through a high-speed interconnect. The simulation is performed in
a SPICE engine by replacing the native system description with a parameterized
macromodel, which allows to perform the transient simulations for different val-
ues of the design parameter a (i.e. the interconnect via radius, see Sec. 4.6.3).
Reproduced with permission from [53] © 2017 IEEE.

1.3 Technical contributions
The technical contributions of this dissertation are organized and presented as

follows. Chapter 2 recalls the background topics that are necessary to derive the
novel technical results presented in this work. The concepts of convex optimization,
state space models, transfer functions, electrical multiport representations, systems
stability and passivity are briefly summarized.

Chapter 3 introduces rational fitting and its extension to the multivariate case.
Three rational fitting algorithms, constituting the core of the proposed model-
ing framework, namely the Generalized Sanathanan-Koerner, the Parameterized
Sanathanan-Koerner and the Vector Fitting iterations, are described. Most of this
material should be considered as background, although the presented material in-
cludes some novel technical solutions to increase the efficiency of the fitting process
when dealing with rational matrix functions of large size.

Chapter 4 presents our novel contributions for the generation of parameterized
macromodels of passive devices. The presented results improve the state-of-the-art
by allowing for the first time the synthesis of parameterized macromodels that are
concurrently

1. theoretically guaranteed to be stable and passive by construction, for all of
the prescribed parameters configurations,

2. generated via deterministic convex optimization approaches,

3. of minimal complexity and generated automatically by setting a desired trade-
off between accuracy and training time.
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The performance of proposed algorithms is thoroughly analyzed experimentally in
Sec. 4.6, using a set of representative test cases belonging mainly to the domain of
passive integrated components and interconnects.

Chapter 5 presents new research findings in the context of behavioral modeling
of nonlinear systems. By inheriting model structures and algorithms from chapter 4,
a new approach for generating surrogates of analog circuit blocks is discussed.
The resulting models can seamlessly replace the underlying circuits in system-level
small-signal analyses and

1. can be used under constant (Sec. 5.1.2) or non-stationary (Sec. 5.2) operating
conditions, guaranteeing the stability of the dynamics in both cases;

2. are generated via robust and automated multivariate rational fitting algo-
rithms;

3. are characterized by a compact model structure that can be represented either
as a set of linear differential equations with time-varying coefficients or as an
equivalent SPICE netlist.

Thanks to the above features, the proposed models are expected to be reliable and
robust in any system-level simulation. Our results document up to 100× speed-
up in the runtime of complex simulations characterized by time-varying operating
conditions. This performance is documented in Sec. 5.3.

Keeping the focus on the approximation nonlinear systems local dynamics,
Chapter 6 introduces a novel macromodeling scheme specifically designed to per-
form real-time data-driven model order reduction. The proposed approach allows
to generate macromodels based on time domain input-output data obtained via
real-time monitoring. The considered modeling setting proves to be useful for appli-
cations in which the underlying system can be observed but not directly controlled.
This situation occurs in a number of scenarios of practical interest, belonging e.g.
to the domains of of power systems modeling and even computational haemody-
namics. These applications will be discussed in Sec. 6.2.

Finally, Chapter 7 draws the conclusions and discusses some of the open prob-
lems and challenges that may drive future research efforts.
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Chapter 2

Background

This chapter provides a summary of the main theoretical background that sup-
ports the developments in this thesis. First, the basic definitions of the convex op-
timization problems involved in the macromodeling procedures presented in Chap-
ters 4, 5 are presented. Then, a brief overview of the mathematical representations
used to describe the dynamical systems of interest is given, together with a charac-
terization of stability and passivity. Additionally, a discussion about the immittance
and scattering representations for electrical multiports is provided.

All the statements and the definitions provided in this Chapter are classical and
well-established in the fields of systems theory, optimization, and macromodeling.
The presentation will thus include a minimum level of details, and all results will
be stated without proofs.

2.1 Elements of convex optimization problems and
LMIs

This section provides some concepts related to mathematical optimization, that
are needed for successive derivations. A prototype optimization problem is intro-
duced in a general setting; then the focus is moved to convex programs and, in
particular, to the classes of convex programs that are of interest for the presented
research, namely least-squares problems and semi-definite programs. An extensive
presentation of these topics is available in [16], [26]

2.1.1 Optimization problems and convex programs

Consider a generic optimization problem with decision variables x ∈ Rn, objec-
tive function f0(x) : D ⊆ Rn → R and feasible set X ⊆ D

min
x∈X

f0(x); (2.1)
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The problem is said to be feasible if X is non-empty, infeasible otherwise. The
optimal value p⋆ for problem (2.1) is defined as

p⋆ = inf{f0(x), x ∈ X}. (2.2)

When a point x⋆ is feasible and f0(x
⋆) = p⋆, then x⋆ is an optimal point, which

solves problem (2.1). Optimal points may be non-unique; the set of all the optimal
points is the optimal set

Xopt = {x : x ∈ X , f0(x) = p⋆}. (2.3)

A feasible point x is locally optimal if there exists R > 0 such that

f0(x) = inf{f0(z) : z ∈ X , ||z − x||2 < R}. (2.4)

Problem (2.1) is a convex optimization problem whenever f0(x) is a convex function
and X is a convex set, according to the following definitions.

Definition 2.1. A set X is convex if for any z,y ∈ X and any 0 ≤ α ≤ 1 it holds

αz + (1− α)y ∈ X . (2.5)

Definition 2.2. A function f : D → R is convex if D is a convex set and ∀ z, y ∈
D, 0 ≤ α ≤ 1 it holds

f(αz + (1− α)y) ≤ αf(z) + (1− α)f(y). (2.6)

In this dissertation, we will consider only convex sets with elements belonging to
finite dimensional vector-spaces.

In most applications, the feasible set X can be expressed in terms of explicit
constraints, leading to the standard form of a convex optimization problem

min
x
f0(x),

subject to
fi(x) ≤ 0, i = 1,2, . . . ,m

w⊤
j x = bj j = 1,2, . . . , p

(2.7)

where all the functions fi are convex and the equality constraints are affine in
the decision variables. The interest for convex optimization problems stems from
two facts; first, every locally optimal point for problem (2.7) is also globally op-
timal. Second, efficient numerical methods are available to determine a globally
optimal solution of a convex optimization problem in polynomial time. See [16] for
an overview. Thus, once a problem is formulated in a convex fashion, it can be
considered as numerically solvable. The same desirable properties do not hold for
problems like (2.1) in which either f0(x) or X are not convex.
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The techniques developed in this dissertation are based on the solution of convex
optimization problems in which the cost function is quadratic and the feasible set
is described in terms of Linear Matrix Inequalities (LMI). In this case, the convex
optimization problem can be cast into a semi-definite program (SDP); the following
sections recall the basic notions that are necessary to define the problem of interest.

2.1.2 Least-squares and quadratic programs

The least-squares problem is an unconstrained optimization problem with ob-
jective function defined as:

f0(x) = ||Ax− b||22 =
k∑︂

i=1

(a⊤i x− bi)2, (2.8)

being each ai a row of the matrix A ∈ Rk×n with k ≥ n, and bi one element of the
vector b ∈ Rn. We assume in the following that A is full column rank.

The (unique) optimal point of the least-squares problem can in principle be
found analytically as by means of the pseudo-inverse matrix; the numerical solution
of a least-squares problem exhibits in general a time complexity proportional to n2k.
However, it is customary to apply ad-hoc problem transformations or simplifications
based on the sparsity pattern of the matrix A in order to reduce such complexity
in case the dimensions of the problem are huge. An example of this kind will be
given in Sec 3.2.1.

A particular case occurs when b = 0, so that

f0(x) = ||Ax||22. (2.9)

In this case the least-squares is said to be homogeneous and it must be usually
solved by ruling out the trivial solution x = 0. For instance, this can be done by in-
troducing the (non-convex) constraint ||x||2 = 1. The solution of the homogeneous
least-square subject to this constraints can be obtained based on the singular value
decomposition

A = UΣV ⊤. (2.10)

The optimal solution is x⋆ = vn, being vn the last column of V , i.e. the right
singular vector associated with the least singular value of A.

Least-squares problems are special instances of the more general class of convex
programs involving quadratic cost functions; this can be verified by recalling that

f0(x) = x⊤Px+ q⊤x+ r (2.11)

with P ∈ Sn
+ is a convex quadratic function and that

||Ax− b||22 = x⊤A⊤Ax− 2b⊤Ax+ b⊤b (2.12)
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belongs to this class of functions, as A⊤A ∈ Sn
+.

When the least-squares problem is subject to some constraints on the decision
variables, then no closed-form solutions are available, and the problem must be
solved numerically. According to definition (2.7), when each fi(x) is an affine func-
tion of the decision variables, the convex optimization problem is called quadratic
program. When instead the functions fi(x) are all convex quadratic like (2.11), then
the problem falls into the class of the quadratically constrained quadratic programs.

2.1.3 Linear matrix inequalities and semidefinite programs

Consider an affine matrix function F : Rn → Sk of the form

F (x) = F0 +
n∑︂

i=1

xiFi (2.13)

with symmetric matrix coefficients, Fi ∈ Sk, i = 0,1, . . . , n. A linear matrix
inequality in standard form is a constraint on the variables x ∈ Rn which enforces
the following condition

F0 +
n∑︂

i=1

xiFi ⪰ 0. (2.14)

This constraint requires that F (x) is a positive semi-definite matrix, with nonneg-
ative eigenvalues. The set of all the admissible values

X = {x ∈ Rn : F (x) ⪰ 0} (2.15)

is a convex set. Indeed, F (x) is positive semi-definite if and only if y⊤F (x)y ≥
0, ∀y ∈ Rk; by expanding this condition one obtains

y⊤F (x)y = y⊤F0y + xi

n∑︂
i=1

y⊤Fiy = b(y) + a(y)⊤x ≥ 0; (2.16)

for a given vector y, the above condition reduces to an affine inequality, which
describes an half-space in Rn. As the half-space is parameterized by y, the set (2.15)
can be interpreted as the intersection of an infinity of half-spaces, which is convex.
The feasible set X of an LMI is also referred to as spectrahedron.

Another description of the feasible set X can be given explicitly in terms of
polynomial inequalities. It is known that F (x) is positive semi-definite if and only
if all the associated principal minors are non-negative. As each principal minor
of order j is a polynomial gj(x) of order j, the spectrahedron can be equivalently
rewritten as

X = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , k}. (2.17)
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The above description shows that, in terms of the standard convex problem formula-
tion (2.7), enforcing a LMI condition means that the functions fi(x), i = 1,2, . . . ,m
involved in the constraints definition are polynomials of degree at most k.

Of course, even if the standard form of a LMI requires the positive semi-
definiteness of F (x), the condition F (x) ⪯ 0 is still an LMI, obtained from the
standard form by simply inverting the sign of all the involved matrix coefficients.
Additionally, enforcing two linear matrix inequalities at the same time is equiva-
lent to enforcing one single LMI of larger size. For two affine matrix functions of
arbitrary dimensions, F1(x), F2(x) the following relation holds

F1(x) ⪰ 0, F2(x) ⪰ 0 ⇐⇒
[︃
F1(x) 0
0 F2(x)

]︃
⪰ 0, (2.18)

as the eigenvalues of a block-diagonal matrix are the union of the eigenvalues of
the diagonal blocks. This fact can be extended to handle an arbitrary number of
LMIs.

It is customary to express an LMI in terms of matrix variables in place of
the vector variables x. Consider the following condition enforced on the unknown
matrix P ∈ Sn, being A ∈ Rk×k a known coefficient matrix

G(P ) = A⊤P + PA+ Ik ⪰ 0. (2.19)

Defining ei ∈ Rk as the i-th component of the canonical basis, P is rewritten as

P =
k∑︂

i=1

k∑︂
j=1

pi,jeie
⊤
j , pi,j = pj,i (2.20)

Plugging the above into (2.19) shows that the matrix inequality can be expressed in
standard form with scalar variables pi,j and matrix coefficients A⊤(eie

⊤
j )+(eie

⊤
j )

⊤A,
i, j = 1, . . . , k.

We will make use of the following result, which is a consequence of the Schur
complement. Consider the symmetric block matrix

X =

[︃
A B
B⊤ C

]︃
, (2.21)

then if C ≺ 0 the following implication holds

X ⪯ 0 ⇐⇒ A−BC−1B⊤ ⪯ 0. (2.22)

A semidefinite program (SDP) in standard form is a convex optimization problem
with variables x ∈ Rn, linear objective function and LMI constraint

min
x
c⊤x

subject to
F (x) ⪰ 0.

(2.23)
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It can be shown that affine inequalities and (convex) quadratic inequalities, admit
an equivalent representation in terms of suitable LMIs, so that this kind of con-
straints represent a very general way to describe convex feasible sets. Imposing the
linearity of the cost function does not represent a limitation for the class of prob-
lems that can be represented as a SDP in standard form. For instance, consider
the convex optimization problem

min
x
||Ax− b||2

subject to
F (x) ⪰ 0,

(2.24)

The problem can be rewritten in the following equivalent epigraph form by intro-
ducing the auxiliary variable t ∈ R

min
x,t

t

subject to
||Ax− b||2 ≤ t

F (x) ⪰ 0,

(2.25)

where the new objective is linear and a second order cone constraint is introduced.
This latter admits a LMI representation1, since

||Ax− b||2 ≤ t ⇐⇒
[︃

tI Ax− b
(Ax− b)⊤ t

]︃
⪰ 0. (2.26)

Semidefinite programs can be solved in polynomial time by means of suitable in-
terior point algorithms [3], that are nowadays implemented in most off-the-shelf
convex optimization solvers.

2.2 Dynamical system representations
This section recalls the notions of state space representations for the classes

of dynamical systems that are of interest for this dissertation. The definition of
equilibrium points and system linearization are outlined. For linear time invariant
systems, the concepts of transfer function and impulse response are revised with
the required level of detail. For further discussions the reader is referred to [65],
[9], [51], [24]

1From a practical perspective, translating a second order cone constraint into a LMI is often
computationally inconvenient. This transformation is reported only to show how the reference
problem admits the standard SDP formulation
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2.2.1 Non-linear systems

The state space representation is a powerful tool that allows to describe math-
ematically a dynamical system governed by ordinary differential equations. When
the state space model is employed to explain the time domain evolution of a dynam-
ical system, it is assumed that the relevant quantities that determine the system
evolution can be grouped in 3 sets that retain qualitatively different interpretations,
namely the system input, output, and internal state.

In its most general formulation, a state space representation for a system of
dynamical order (i.e. number of involved differential equations) N is

ẋ(t) = F (x(t), u(t), t),

y(t) = G(x(t), u(t), t);
(2.27)

where x(t) ∈ RN is the state vector, u(t) ∈ RQ is the input vector (also referred to as
control) and y(t) ∈ RP is the output vector. F and G are generic non-linear maps,
that in the context of this dissertation will be assumed to be C1 differentiable.

In (2.27), it is assumed that the maps F and G are time-dependent, so that the
above state space formulation is suitable to represent any non-linear, time-varying
dynamical system that evolves according to a N-th order system of differential
equations.

When the mapping induced by F and G does not change in time, then the
underlying dynamical system is time-invariant ; in such a case, the state space
simplifies to

ẋ(t) = F (x(t), u(t)),

y(t) = G(x(t), u(t)).
(2.28)

According to the state space representation (2.28), at each time instant, the evolu-
tion of both the system internal states and output variables, are univocally deter-
mined by the instantaneous values of the internal states x(t) and of the input u(t),
through the mappings induced by F and G respectively.

The explicit dependency of the system behavior on the state vector allows to
model its time domain evolution by explicitly taking into account arbitrary initial
conditions, which must be specified in order to derive a well-defined and unique
solution for (2.27), (2.28). However, computing in such solutions is generally not
possible, and the task must be tackled by means of numerical techniques. Nonethe-
less, qualitative properties of the involved differential equations can be studied by
means of classical system theory approaches. In this thesis, the discussion about
qualitative properties concerning non-linear systems will be limited to the concept
of equilibrium points and passivity; the first is introduced in the following, while
the second is treated in Sec. 2.3.2.
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Equilibrium points and stability

Consider system (2.28) with constant control u(t) = U0 for t ≥ 0 and initial
state x(0) = Xe. The dynamic equations in this case read

ẋ(t) = F (x(t), U0), x(0) = Xe. (2.29)

An equilibrium point is defined as follows.

Definition 2.3. The state Xe is an equilibrium point for (2.29) if x(t) = Xe ∀t > 0,
or equivalently, if F (Xe, U0) = 0.

It is of interest to study the effects induced on the system evolution by small
perturbations of the equilibrium configuration. This leads to the following charac-
terization of equilibrium points, that is due to Lyapunov.

Definition 2.4. An equilibrium point Xe is stable if

∀ϵ, ∃δ(ϵ) : ||Xe − x(0)|| < δ(ϵ)⇒ ||Xe − x(t)|| ≤ ϵ, ∀t > 0, (2.30)

being || · || any norm in RN.

In words, the equilibrium point is stable if it is possible to bound the trajectory
of the states x(t) arbitrarily close to Xe by choosing a suitably close perturbed
initial condition. An equilibrium point is unstable if it is not stable.

Stable equilibrium points may be further characterized by the following asymp-
totic stability property

Definition 2.5. A stable equilibrium point Xe is asymptotically stable if it holds
that

∃δa : ||Xe − x(0)|| < δa ⇒ lim
t→∞
||Xe − x(t)|| = 0 (2.31)

Asymptotic stability guarantees that all the state trajectories starting from a pre-
scribed neighborhood of Xe will converge to this equilibrium point given a sufficient
time horizon.

When the convergence to the equilibrium is exponential, we have the following
particular definition

Definition 2.6. An equilibrium point Xe is exponentially stable if there exist pos-
itive scalars α, λ, c such that:

||x(t)−Xe|| ≤ α||x(0)−Xe||e−λt, ∀t > 0, ∀||x(0)−Xe|| < c (2.32)

Stability, asymptotic stability and exponential stability are all local properties,
as they are defined upon a given neighborhood of Xe inside which the attraction
to the equilibrium takes place. Such neighborhood is commonly referred to as
domain of attraction. When the domain of attraction of an asymptotically (ex-
ponentially) stable equilibrium point is the whole space RN, then this point is
additionally qualified as globally asymptotically (exponentially) stable equilibrium
point. If an equilibrium point is global, then it must be the only equilibrium point
for system (2.28)
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2.2.2 Linear-time-invariant systems

A special case occurs when the maps F and G in (2.28) are linear in both
the state and input vector; in such a case, the dynamical system under study is
classified as Linear Time-Invariant (LTI) and the state space equations read

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t) +Du(t).
(2.33)

When the initial conditions are not of interest, the above state space will be repre-
sented by the following compact notation

Σ =

(︃
A B
C D

)︃
. (2.34)

Systems like (2.33) are of paramount importance and represent the starting point
for most of the topics treated in this dissertation. In what follows, some properties
of interest concerning linear state space systems are given.

As opposed to (2.28), a closed form expression is available to compute the
solution of (2.33); at a given time t ≥ 0, the state configuration x(t) can be obtained
by means of the formula

x(t) = Φ(t,0)x(0) +

∫︂ t

0

Φ(t, τ)Bu(τ)dτ, Φ(t, τ) = eA(t−τ). (2.35)

In the above, the first term of the sum is called zero-input response and represents
the free evolution that the system would exhibit due to non-vanishing initial con-
ditions, in absence of external control; the second term is the zero-state response,
and takes into account the effect of the input on the system dynamics.

For a given LTI system there exist infinitely many state space realizations that
are equivalent from an input-output standpoint. To see this, consider the change of
variables x̂(t) = Tx(t), being T an invertible linear transformation. Then, simple
algebraic manipulations show that the input-output relation induced by state Σ is
preserved under the following change of representation of the state space matrices

Σ ≃ Σ̂ =

(︃
TAT−1 TB
CT−1 D

)︃
; (2.36)

Additionally, all the structural properties of (2.33) are preserved under this change
of representation, which is called similarity transformation.

Under the assumption of invertibility of the matrix D, a state space Σ2 obtained
from Σ1 by exchanging the roles of input and output, i.e. by setting y2(t) = u(t)
and u2(t) = y(t), is commonly referred to as inverse state space, and is defined as

Σ2 =

(︃
A−BD−1C −BD−1

D−1C D−1

)︃
. (2.37)
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For LTI systems, all the information required to characterize the equilibrium
points can be inferred from the matrix A, or equivalently, by the properties of the
zero-input response. Consider the dynamic equations entering (2.33) and a generic
equilibrium point Xe associated with the constant input u(t) = U0. Recalling the
definition of stable equilibrium point, we have that Xe is stable if

∀ϵ, ∃δ(ϵ) : ||Xe − x0|| < δ(ϵ)⇒ ||Xe − x(t)|| ≤ ϵ, ∀t > 0, x0 = x(0), (2.38)

Where x0 is a perturbed initial condition. By defining

δx(t) = x(t)−Xe, δx0 = x0 −Xe (2.39)

condition (2.38) is rewritten as:

∀ϵ, ∃δ(ϵ) : δx0 < δ(ϵ)⇒ ||δx(t)|| ≤ ϵ, ∀t > 0. (2.40)

Consider then the dynamic equations of (2.33) with the two different initial condi-
tions

ẋe(t) = Axe(t) +BU0, x(0) = Xe (2.41)
ẋ(t) = Ax(t) +BU0, x(0) = x0 (2.42)

Due to the definition of equilibrium, in (2.41) it holds ẋe(t) = 0, xe(t) = Xe ∀t ≥ 0;
by subtracting (2.42) from (2.41), the following is obtained

δẋ(t) = Aδx(t), δx(0) = δx0. (2.43)

The above shows that the evolution of the deviation from the equilibrium, δx(t), is
uniquely determined by the zero-input response of the autonomous system (2.43),
through the matrix A. By studying the properties of the zero-input response, one
can derive conclusions about the properties of the equilibrium point. Neither the
choice of the input nor the matrix B play any role in assessing the stability of a
LTI system. The following theorems are of interest

Theorem 2.1. If system (2.43) admits multiple equilibrium points, all of them are
either stable or unstable.

Theorem 2.2. For system (2.43) only the state configuration δx = 0 can be asymp-
totically stable, and only when other equilibrium points do not exist. Additionally,
if δx = 0 is asymptotically stable, then it is also globally exponentially stable.

The above theorems allow to state that stability of (2.33) is not a property of a
specific state configuration, but of the whole system, which can be defined as stable,
exponentially stable, or unstable. The stability assessment is based solely on the
study of the algebraic properties of the matrix A. Different practical approaches are
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available to perform this assessment; those that are of interest for the derivations
of this thesis will be reported in Sec. 2.3.1.

Beyond stability, the structural properties of observability and controllability
of (2.33) will be needed. The pair (A,C) is said to be observable if for any time
t1 > t0 the value of the state x(t0) can be determined from the knowledge of the
input u(t) and of the output y(t) in the time interval [t0, t1]. It is proved that (A,C)
is observable if and only if the observability matrix

O =

⎡⎢⎢⎢⎢⎣
C
CA
CA2

...
CAN−1

⎤⎥⎥⎥⎥⎦ (2.44)

is full column rank, i.e. Rank(O) = N.
Analogously the pair (A,B) is said to be controllable if for any initial state

x(t0), time instant t1 > t0, and target state xT , there exists an input signal u(t)
such that x(t1) = xT . Also in this case, it is proved that (A,B) is controllable if
and only if the controllability matrix

C =
[︁
B BA BA2 ... BAN−1

]︁
(2.45)

is full row rank, i.e. Rank(C⊤) = N.
When the pairs (A,C) and (A,B) are respectively observable and controllable,

then the state space (2.33) is minimal, in the sense that the number of states N is
the least possible to recover the input-output relation of the dynamical system.

The concept of linear state space can be generalized to the case in which some
of the state variables are constrained by algebraic equations; in such a case, the
LTI dynamical system can be described by a set of differential algebraic equations
(DAE), by means of the following descriptor system

Eẋ(t) = Ax(t) +Bu(t) x(0) = x0

y(t) = Cx(t) +Du(t).
(2.46)

Whenever Rank(E) = N, the descriptor system (2.46) is equivalent to the standard
state space (2.33); conversely, when E is singular the actual state variables involved
in the dynamics of (2.46) are less then N, and the vector x(t) represents a set of
generalized state variables.

2.2.3 Linearization

Consider the nonlinear system (2.28) and an equilibrium point defined by the
state vector X0 and the constant input vector U0. The corresponding system output
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is constant and equal to Y0 = G(X0, U0). When one is interested at describing the
evolution of the state and output vectors of the nonlinear system in proximity of
this equilibrium, a first order approximation of the maps F , G, can be derived to
obtain a local description of the system behavior.

The local behavior can be characterized by defining two perturbation signals
x̃(t), ũ(t) as follows

x̃(t) = x(t)−X0, ũ(t) = u(t)− U0; (2.47)

these two signals represent the instantaneous deviations of the state and input
vectors from the constant equilibrium point configuration (X0, U0). Accordingly,
the system output can be expressed as

y(t) = Y0 + ỹ(t), (2.48)

where ỹ(t) represents the output perturbation induced by ũ(t).
Adopting these signal representations, the dynamic equations of (2.28) read

ẋ̃(t) = F (x̃(t) +X0, ũ(t) + U0). (2.49)

A first-order approximation of the above (exact) expression can be performed
around the equilibrium point. By expressing (2.49) in terms of a first-order Taylor
expansion we obtain

ẋ̃(t) ≈ F (X0, U0) +
∂F

∂x

⃓⃓⃓
x=X0
u=U0

x̃(t) +
∂F

∂u

⃓⃓⃓
x=X0
u=U0

ũ(t), (2.50)

where by definition we have F (X0, U0) = 0. By defining the matrices of partial
derivatives as

A =
∂F

∂x

⃓⃓⃓
x=X0
u=U0

, B =
∂F

∂u

⃓⃓⃓
x=X0
u=U0

(2.51)

one obtains the linear system

ẋ̃(t) ≈ Ax̃(t) +Bũ(t) (2.52)

which represents the Jacobian Linearization of (2.28) around the equilibrium (X0, U0).
For sufficiently small deviations from this equilibrium, equations (2.52) approximate
the relationship between the deviation variables x̃(t), ũ(t).

Applying the same approximation procedure to the output equation leads to
the state space that explains the relation between the signals x̃(t), ũ(t) and ỹ(t)

ẋ̃(t) ≈ Ax̃(t) +Bũ(t)

ỹ(t) ≈ Cx̃(t) +Dũ(t),
(2.53)
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where the matrices C and D are defined as

C =
∂G

∂x

⃓⃓⃓
x=X0
u=U0

, D =
∂G

∂u

⃓⃓⃓
x=X0
u=U0

. (2.54)

As state space (2.53) represents an approximation for the dynamics of (2.28),
which is valid for small deviations around the equilibrium, it is commonly referred
to as small signal model for the reference system in correspondence of the operating
point defined by the triplet (X0, U0, Y0).

2.2.4 Uncertain and parameter varying linear systems

When the linear state space equations (2.33) depend on a set of external physical
or mathematical parameters, whose value is constant in time but unknown apriori,
the resulting LTI system is said to be uncertain. Consider a vector of parameters
ϑ ∈ Rd; in the following it is assumed that ϑ can attain values within the compact
set

Θ = [ϑ1, ϑ1, ]× . . .× [ϑd, ϑd], (2.55)

where ϑi and ϑi represent respectively the minimum and the maximum value of
each individual parameter. An uncertain LTI state space system depending on ϑ
has the form

ẋ(t) = A(ϑ)x(t) +B(ϑ)u(t), x(0) = x0

y(t) = C(ϑ)x(t) +D(ϑ)u(t).
(2.56)

In the above system, the value of the parameter is not allowed to vary with time, so
that for each possible instance of ϑ, the resulting state space equations are linear
and time invariant.

A more complex situation occurs when the parameter vector is a function of
time, ϑ(t) : R≥0 → Θ. In such a case, we have a linear parameter varying (LPV)
system

ẋ(t) = A(ϑ(t))x(t) +B(ϑ(t))u(t), x(0) = x0

y(t) = C(ϑ(t))x(t) +D(ϑ(t))u(t).
(2.57)

Linear parameter varying systems are a particular case of linear time-varying sys-
tems, in which the time dependency is indirectly induced by the value of the vector
function ϑ(t). For the developments of this thesis, the discussion will be limited to
uncertain or LPV systems with P = Q, i.e. square systems with the same number
of inputs and outputs.

Linear systems depending on external parameters will be also described in terms
of the descriptor system

Eẋ(t) = A(ϑ)x(t) +B(ϑ)u(t)

y(t) = C(ϑ)x(t)
. (2.58)
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The derivations of this work will consider a particular structure for the matrices
involved in the above descriptor, in which

E =

[︃
IN 0
0 0

]︃
A(ϑ) =

[︃
A2 B2

C2(ϑ) D2(ϑ)

]︃
B =

[︃
0
−IP

]︃
C(ϑ) =

[︁
C1(ϑ) D1(ϑ)

]︁. (2.59)

The descriptor system (2.58) with matrices defined as in (2.59) is commonly used
to represent parameterized behavioral models [103], and will be exploited for the
derivations of Chapter 5.

Under the assumption that D2(ϑ) is nonsingular ∀ϑ ∈ Θ, straightforward al-
gebraic manipulations show that the descriptor (2.58) is equivalent to the state
space

Σ =

(︃
A2 −B2D2(ϑ)

−1C2(ϑ) B2D2(ϑ)
−1

C1(ϑ)−D1(ϑ)D2(ϑ)
−1C2(ϑ) D1(ϑ)D2(ϑ)

−1

)︃
. (2.60)

2.2.5 Frequency domain description of LTI systems and the
impulse response

The state space representation provides an explanation for the input-output be-
havior of a dynamical system in terms of the state vector, and is therefore commonly
referred to as internal.

For LTI systems, the concept of transfer function provides a tool to characterize
the system behavior only in terms of the external signals, i.e. the input and the
output. By means of the transfer function, the behavior of the system is explained
in terms of an algebraic relation relating the Laplace domain representation of the
input and the output signals. Taking the Laplace transform of the state space
equations (2.33) for vanishing initial conditions gives

sX(s) = AX(s) +BU(s) (2.61)
Y (s) = CX(s) +DU(s). (2.62)

From the above, the following purely algebraic relations between the states, the
input, and the output can be derived:

X(s) = (sIN − A)−1BU(s), Y (s) = H(s)U(s), (2.63)

where
H(s) = C(sIN − A)−1B +D ∈ CP×Q (2.64)

is the transfer function of the underlying LTI system. As the transfer function is
derived by imposing vanishing initial conditions on the state vector for t = 0, it is

44



2.2 – Dynamical system representations

suitable to describe only the output contribution of the zero-state response of the
system. When the transfer function representation is adopted, the knowledge of
the state vector is not required. As a consequence, even if the LTI system behavior
admits an infinity of equivalent state space representations, the associated transfer
function is unique.

The transfer function (2.64) is always a rational function of the complex variable
s with individual elements

Hi,j(s) =
Ni,j(s)

D(s)
, (2.65)

where the numerator and the denominator are polynomials of degree at most N. The
denominator is common to all of the transfer function elements, as D(s) = |sI−A|.
Each of these elements can be therefore rewritten (dropping the i, j subscripts) as

H(s) =
aMs

M + aM−1s
M−1 + ...+ a0

bNsN + bN−1sN−1 + ...+ b0
. (2.66)

When it holds M ≤ N , then the transfer function is proper. Other representations
are available for H(s). The pole-zero form reads

H(s) = k

∏︁M
m=1(s− zm)∏︁N
n=1(s− qn)

(2.67)

where the numbers zm are the transfer function zeros, while the qn are the transfer
function poles. In case of matrix transfer functions, all the i, j elements of H(s)
in (2.65) share the same set of common poles, as they represent the values of s for
which D(s) vanishes.

It is known that the set of admissible poles for a transfer function coincide
with the eigenvalues of the state space matrix A, which remain the same under
any similarity transformation. However, the pole-zero form (2.67) highlights the
fact that, in case a pole is equal to one zero, a cancellation may take place, thus
reducing the actual degree of the transfer function; as a result, some eigenvalues of
A may be not poles of some transfer matrix elements.

The pole-residues form is another possible representation of H(s) which will be
extensively exploited in the following. The general, assuming simple poles, form is

H(s) = R0 +
N∑︂

n=1

Rn

s− qn
, Ri ∈ CP×Q, i = 0,1, ..., N (2.68)

where the residues Ri are real when qi ∈ R; in case of complex conjugate poles
qi = q∗i+1 ∈ C, then Ri = R∗

i+1.
Although transfer functions hide the internal description of the LTI system by

implicitly taking into account the role of the states, it is useful to express the zero-
input response of state space (2.33) in the Laplace domain, for non-vanishing initial
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conditions. By setting u(t) = 0, ∀t, and considering the initial condition x(0) = x0,
the unilateral Laplace transform is applied to the state and output signals, in order
to obtain the representation

sX(s) = AX(s) + x0 (2.69)
Y (s) = CX(s) (2.70)

from which

X(s) = L {eAtx0} = (sI− A)−1x0, Y (s) = CX(s). (2.71)

This shows that the zero-input response in the Laplace domain has the same rational
structure of the transfer function of H(s). When the eigenvalues of A have simple
multiplicity, then each j-th component of the state vector can be expressed in the
Laplace domain in pole-residues form

Xj(s) =
N∑︂
i=1

cji
s− qi

(2.72)

where qi are the transfer function poles and cji are constants.
Another mathematical tool suitable to characterize the external behavior of a

linear time invariant system is the impulse response. As opposed to the transfer
function, the impulse response describes the system evolution in the time domain.

The impulse response is a matrix function h(t) : R → RP×Q, that links the
signals u(t) and y(t) through the convolution integral

y(t) = h(t) ∗ u(t) =
∫︂ ∞

−∞
h(t− τ)u(τ)dτ. (2.73)

Assuming from now on that u(t), h(t) = 0 ∀t < 0, the above reduces to

y(t) = h(t) ∗ u(t) =
∫︂ t

0

h(t− τ)u(τ)dτ, (2.74)

and each output component is obtained as a superposition of the individual input
effects

yi(t) =

Q∑︂
j=1

∫︂ t

0

hi,j(t− τ)uj(τ)dτ. (2.75)

For a LTI system, the transfer function is the Laplace transform of the impulse
response

H(s) = L {h(t)} =
∫︂ t

0

h(t)e−stdt. (2.76)
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2.2.6 Multiport representations of electrical networks

Up to now, we considered the input and the output vectors of a dynamical
system as generic physical quantities. When an electrical network is considered,
inputs and outputs are defined based on currents and voltages.

Assuming that the network is represented as a P-port, then the most common
definitions of inputs and outputs are based on the following multiport representa-
tions, that relate voltages and currents in the Laplace domain.

• Impedance representation. The P inputs are the port currents I(s), the out-
puts are the port voltages V (s), that are related by the law

V (s) = Z(s)I(s). (2.77)

The network function Z(s) is the impedance matrix, with elements defined as

Zii(s) =
Vi(s)

Ii(s)
, Ik(s) = 0,∀k /= i

Zij(s) =
Vi(s)

Ij(s)
, Ik(s) = 0,∀k /= j.

(2.78)

• Admittance representation. The P inputs are the port voltages V (s), the
outputs are the port currents I(s), that are related by the law

I(s) = Y (s)V (s). (2.79)

The network function Y (s) is the admittance matrix, with elements defined
as

Yii(s) =
Ii(s)

Vi(s)
, Vk(s) = 0,∀k /= i

Yij(s) =
Ii(s)

Vj(s)
, Vk(s) = 0,∀k /= j.

(2.80)

• Scattering representation. The input are the incident waves A(s), the output
are the reflected waves B(s), defined as

Ak(s) =
1

2
√
Zk

(Vk(s) + ZkIk(s)), k = 1,2, ...,P

Bk(s) =
1

2
√
Zk

(Vk(s)− ZkIk(s)), k = 1,2, ...,P;
(2.81)

where Zk is the k-th port reference impedance. Here we assume Zk =
50Ω, k = 1,2, . . .P. The scattering matrix is the input-output transfer func-
tion relating the vector of the incident waves A(s) with the vector or the
reflected waves B(S)

B(s) = S(s)A(s) (2.82)
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with elements obtained as

Sii(s) =
Bi(s)

Ai(s)
, Ak(s) = 0, ∀k /= i

Sij(s) =
Bi(s)

Aj(s)
, Ak(s) = 0,∀k /= j.

(2.83)

Also, the hybrid representation will be considered in this work, and will be explicitly
defined when necessary. When both the impedance and the admittance matrices
exist, they are related by the equations

Y (s) = Z−1(s), Z(s) = Y −1(s). (2.84)

By defining a diagonal matrix collecting the reference impedances, Zref = Diag(Z1, . . . , ZP),
the scattering, impedance and admittance matrices are related as follow

S(s) = [Z
−1/2
ref Z(s)Z

−1/2
ref + IP]−1[Z

−1/2
ref Z(s)Z

−1/2
ref − IP]

S(s) = [Z
1/2
ref Y (s)Z

1/2
ref + IP]−1[IP + Z

1/2
ref Y (s)Z

1/2
ref ]

Y (s) = Z
−1/2
ref [IP − S(s)][IP + S(s)]−1Z

−1/2
ref

Z(s) = Z
1/2
ref [IP − S(s)]

−1[IP + S(s)]Z
1/2
ref

(2.85)

The instantaneous power absorbed by a P-port network reads

p(t) =
P∑︂

k=1

vk(t)ik(t) = v(t)⊤i(t) = i(t)⊤v(t). (2.86)

For immittance representations, this expression translates to

p(t) = u(t)⊤y(t) (2.87)

while for scattering representations

p(t) = a(t)⊤a(t)− b(t)⊤b(t) = u(t)⊤u(t)− y(t)⊤y(t) (2.88)

2.3 Stability and passivity
This section provides some characterization of the qualitative system behavior

around its equilibrium points (stability), and introduces the concept of passiv-
ity. The proposed material is classical, more detailed discussions can be found
in [65], [5], [94], [51].
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2.3.1 Stability

A review of the basic concepts related to internal stability characterization of
dynamical systems is given next. Internal stability is explicitly defined in terms
of the system state vector, in compliance with the definitions given in Sec. 2.2.
Historically, the foundation of the internal stability concepts is due to Lyapunov,
who proved that, for a generic system of ODEs like (2.28), the characterization
of the equilibrium points can be performed by studying the properties of energy
functions related to the state configurations. According to the Lyapunov stability
theory, an equilibrium point is stable if any state trajectory starting sufficiently
close to it is such that the internal energy of the system is non-increasing in time.
This concept is mathematically represented in terms of the so-called Lyapunov
functions.

Consider the following scenario involving an autonomous (time-invariant) dy-
namical system, associated with an equilibrium point Xe

ẋ = F (x), F (Xe) = 0; (2.89)

Let V (x) : RN → R be a scalar continuously differentiable function of the states,
and let B(Xe, r) = {x : ||x − Xe||2 < r} be a spherical neighborhood centered
at the equilibrium state Xe. When the state configuration evolves in time, the
function V (x(t)) can be interpreted as a continuously differentiable function of t,
which evolves along the state trajectories according to

V̇ (x) =
dV (x(t))

dt
=

N∑︂
i=1

=
∂V

∂xi

∂xi
∂t

=
N∑︂
i=1

∂V

∂xi
Fi(x(t)) (2.90)

The following two theorems, proved by Lyapunov, are of interest.

Theorem 2.3. The equilibrium point Xe of (2.89) is stable if there exists a dif-
ferentiable function of the states V (x) : RN → R ∈ C1 and a scalar r > 0 such
that

1. V (Xe) = 0 and V (x) > 0 ∀x ∈ B(Xe, r),

2. V̇ (x) ≤ 0 ∀x ∈ B(Xe, r).

Theorem 2.4. The equilibrium point Xe of (2.89) is asymptotically stable if there
exists a differentiable function of the states V (x) : RN → R ∈ C1 and a scalar r > 0
such that

1. V (Xe) = 0 and V (x) > 0 ∀x ∈ B(Xe, r),

2. V̇ (x) < 0 ∀x ∈ B(Xe, r).
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The function V (x) in the theorems is usually denoted as Lyapunov function.
The two above theorems characterize the properties of the equilibrium point with-
out relying on the explicit computation of the system state trajectories around Xe.
As such, they provide a qualitative characterization of the system equilibria. How-
ever, the theorems provide only sufficient conditions to prove the stability (resp.
asymptotic stability) of the equilibrium points. Moreover, for a general system of
non-linear ODEs, no systematic procedure is available to determine the expression
for a Lyapunov function able to satisfy the assumptions of the theorems.

For the particular case of LTI systems, additional theoretical results allow to
easily characterize the internal stability. As already pointed out, to completely
characterize the stability of a LTI system as (2.33), it sufficies to consider the
equilibrium points Xe associated to the equation AXe = 0; this equation is satisfied
only if either Xe ∈ Null(A) or Xe = 0. As the results of this thesis concern mostly
asymptotically stable LTI systems, the results presented here will be referred to the
only admissible asymtotically stable equilibrium point, i.e., the origin; this does not
reduce the generality of the results, as those that would be obtained by considering
Xe ∈ Null(A) are identical.

It is a known result in the theory of LTI systems that a Lyapunov function
certifying the asymptotic stability of the state Xe = 0, if exists, is a positive
definite quadratic form

V (x) = x⊤Px, P = P⊤ ≻ 0. (2.91)

The associated variation along the state trajectories is

dV (x(t))

dt
= ẋ(t)⊤Px(t) + x(t)⊤Pẋ(t) = x(t)⊤[A⊤P + PA]x(t). (2.92)

This shows that V̇ (x) is negative definite in any neighborhood of the origin if and
only if the matrix Q = [A⊤P+PA] is negative definite. As V (x) in (2.91) is positive
definite by construction over RN, a LTI system is asymptotically stable if and only
if

∃P = P⊤ ≻ 0 : A⊤P + PA ≺ 0. (2.93)

For simple stability, V̇ (x) is allowed to be negative semi-definite; this means that
the system is stable if and only if

∃P = P⊤ ≻ 0 : A⊤P + PA ⪯ 0. (2.94)

The following Theorem also provides the way to characterize the asymptotic sta-
bility of system (2.33) in terms of the eigenvalues of the matrix A

Theorem 2.5. Given system (2.33) and any matrix Q ∈ SN
++, a solution P ∈ SN

++

of the equation
A⊤P + PA = −Q, (2.95)
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exists and is unique if and only if all the eigenvalues of A have strictly negative real
part. In this case, A is denoted as Hurwitz.

The consequence of the above theorem is well-known: the knowledge of the
eigenvalues of the matrix A is sufficient to state if a LTI system is asymptotically
stable. As the eigenvalues of A are also the poles for the transfer function H(s), the
asymptotic stability of the system can also be assessed by checking the negativity
of the real part of the transfer function poles, if no cancellation between poles and
zeros occurs.

2.3.2 Passivity

A dynamical system is passive if it is not able to generate energy on its own.
The concept of dissipativity formalizes this idea in mathematical terms. Given the
instantaneous electrical power p(t) entering a P-port, defined by (2.86) we have the
following

Definition 2.7. System (2.28) is dissipative with respect to the supply rate p(t) if
there exists a non-negative scalar function of the states S : RN → R+ such that

S(x(t1)) ≤ S(x(t0)) +

∫︂ t2

t0

p(t)dt (2.96)

for all t0 ≤ t1 and for all signals x,u,y satisfying the state space equations. If S(x)
exists, then it is called storage function.

The storage function S(x(t)) represents a generalized energy function, in a way
analogous to Lyapunov functions. The inequality (2.96) is called dissipation in-
equality. Under the assumption that the energy stored in the system is vanishing
for a reference time instant t = 0, which implies S(x(0)) = 0, the dissipation
inequality translates to

0 ≤ S(x(t)) ≤
∫︂ t

0

p(t)dt = E(t), ∀t. (2.97)

where E(t) is the energy dissipated by the system up to time t. The non-negativity
of E(t) implies system passivity.

The dissipation inequality (2.96) can be expressed in differential form whenever
the storage function S(x) is differentiable; the differential form reads:

dS(x(t))

dt
≡ Ṡ(x) ≤ p(t), ∀t. (2.98)

Moreover, the dissipation function d(t) = −Ṡ(x) + p(t) can be interpreted as the
instantaneous power dissipated by the dynamical system.
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Storage functions, similarly to Lyapunov functions, are not unique. Indeed, for
the generic case of nonlinear systems, it is proved that storage functions are also
admissible Lyapunov functions in proximity of an equilibrium point provided that
they are positive definite and meet additional technical conditions. As one could
expect, determining a storage assessing the dissipativity of a nonlinear system is a
nontrivial task.

For LTI systems, stronger theoretical results are available. In particular, it is
proved that for stable linear time invariant systems, the class of admissible storage
functions is reduced to the set of positive definite quadratic forms. For LTI systems
in immittance representation, this leads to the following important result.

Theorem 2.6. Let system (2.33) be controllable and observable. Then it is dissi-
pative (passive) with respect to supply rate (2.87) if and only if there exists a matrix
P ∈ SN

++ such that

Q =

[︃
A⊤P + PA PB − C⊤

B⊤P − C −D −D⊤

]︃
⪯ 0 (2.99)

The above theorem known as Positive Real lemma (PRL), states that for im-
mittance linear time invariant systems, dissipativity can always be assessed by
checking the feasibility of matrix inequality (2.99). The theorem can be derived by
requiring that inequality (2.98) is verified with a positive-definite storage function
S(x) = x⊤Px for all of the possible configurations of the state and input vectors.
For the system, an admissible dissipation function is

d(t) = −
[︃
x
u

]︃⊤
Q

[︃
x
u

]︃
. (2.100)

As a necessary condition for the involved matrix to be negative semi-definite is
that the upper-right block is negative semi-definite as well. Therefore the function
S(x), if it exists, plays also the role of Lyapunov function for system (2.33).

The following Bounded Real lemma (BRL) represents the equivalent counterpart
of the PRL for LTI systems in scattering representation

Theorem 2.7. Let system (2.33) be controllable and observable. Then it is dissi-
pative (passive) with respect to supply rate (2.88) if and only if there exists a matrix
P ∈ SN

++ such that

Q =

[︃
A⊤P + PA+ C⊤C PB + C⊤D

B⊤P +D⊤C −IP +D⊤D

]︃
⪯ 0 (2.101)

Here, the matrices Q and P have the same interpretation as in the positive real
lemma. The main structural difference between the two theorems, which has prac-
tical implications, is the fact that in (2.101), the dependency of matrix Q on C and
D is either quadratic or bilinear. The linear dependency on the state space matrices
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can be recovered by applying the inverse Schur complement to condition (2.101),
which is then converted to the following equivalent form⎡⎣A⊤P + PA PB C⊤

B⊤P −IP D⊤

C D −IP

⎤⎦ ⪯ 0, (2.102)

in which the dependency on all the state space output matrices is linear.
Passivity of LTI systems in immittance or scattering representations can be

assessed also in terms of the properties of the associated transfer matrix H(s), by
means of frequency domain criteria. The following definitions are of interest.

Definition 2.8. A transfer matrix H(s) is Positive Real (PR) if it satisfies the
following conditions

1. H(s) regular for R{s} > 0,

2. H∗(s) = H(s∗) ∀s ∈ C,

3. H⋆(s) + H(s) ⪰ 0 for R{s} > 0.

Definition 2.9. A transfer matrix H(s) is Bounded Real (BR) if it satisfies the
following conditions

1. H(s) regular for R{s} > 0,

2. H∗(s) = H(s∗) ∀s ∈ C,

3. IP − H⋆(s)H(s) ⪰ 0 for R{s} > 0.

The first point in the above definitions requires that the transfer function H(s)
has no poles in the open right-half complex plane; this implies that the matrix A
of the associated state space (2.33) is required to be stable. The second point is
equivalent to requiring that the impulse response of the system is real-valued. The
third point taks a different form for immittance and scattering representations.
The hermitian part of positive real transfer matrices is required to be positive
semi-definite in the open right-half complex plane, whereas the singular values of a
bounded real transfer matrix H(s) must be bounded by one over the same region.

Point 3 in both definitions 2.8, 2.9 is strictly related to the energy gain of the
associated linear system. The following theorem states that positive realness and
bounded realness provide a characterization for the passivity of LTI systems in
immittance or scattering representations

Theorem 2.8. An LTI system with transfer matrix H(s) is passive if and only if
H(s) is Positive Real (immittance case) or Bounded Real (scattering case).
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Whenever the transfer function H(s) is rational, with no poles on the imaginary
axis and is bounded for s → ∞, then the fulfilment of Point 3 in both defini-
tions 2.8, 2.9 can be equivalently required over the imaginary axis jR rather than
over the open right-half complex plane. This means that whenever such a transfer
function fulfills Points 1, 2 then it is{︄

Bounded Real if and only if: IP − H⋆(jω)H(jω) ⪰ 0,

Positive Real if and only if: H⋆(jω) + H(jω) ⪰ 0.
(2.103)

Under the above conditions, the link between the frequency domain characteriza-
tion of passivity and the fulfillment of the linear matrix inequalities involved in
Theorems 2.7, 2.6 is provided by the celebrated Kalman-Yakubovich-Popov lemma
(KYP)2 [56, 105]

Theorem 2.9. Let the pair (A,B) be controllable, with A ∈ RN×N, B ∈ RN×P, and
let

Ω(A,B, P ) =

[︃
A⊤P + PA PB

B⊤P 0

]︃
, Z(jω) = (jωIN − A)−1B. (2.104)

The following statements are equivalent for any matrix G ∈ SN+P:

1. The following frequency domain inequality holds for all ω excluded those such
that jω is an eigenvalue of A[︃

Z(jω)
IP

]︃⋆
G

[︃
Z(jω)
IP

]︃
⪰ 0 (2.105)

2. There exists a matrix P ∈ SN such that

Ω−G ⪯ 0 (2.106)

3. There exists a solution of the Lur’e equations, that is, there exists matrices
P ∈ SN, L ∈ R(N+P)×P such that

Ω−G = −L⊤L (2.107)

2The number of theoretical derivations and applications based on this lemma are so numerous
and important that often some of the derived results go under the name of the KYP lemma
itself. An example is the positive real lemma, that is often refferred to as Kalman-Yakubovich-
Popov lemma. The interested reader is referred to [56] for an historical overview of the research
developments that led to the formulation of Theorem 2.9 and for further discussions
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Chapter 3

Rational fitting

This chapter provides an overview of most common rational fitting approaches.
Rational approximation can be considered as the starting point for most develop-
ments and novel results documented in this thesis.

The motivations and the advantages offered by rational fitting problem are intro-
duced, together with the classical Sanathanan-Koerner iteration and the celebrated
Vector Fitting algorithm. Then, the multivariate rational fitting setting and the
Parameterized Sanathanan-Koerner iteration are introduced in Sec. 3.2.1. Some
contents of this last section are recent and include research topics covered by the
author.

3.1 Rational fitting
The goal of the rational fitting techniques covered in this dissertation is to build

a rational closed form approximation H(s) of a target function H̆(s) ∈ CP×P depend-
ing on the complex frequency. The target transfer function is known numerically
in correspondence of K complex frequency sampling points

Hk
˘ = H̆(sk), k = 1,2, . . . , K. (3.1)

These values represent the dataset upon which the approximation is built. The
rational fitting process enforces the condition

H(sk) ≈ H̆(sk), k = 1,2, . . . , K. (3.2)

where the approximation is performed by minimizing a suitable norm of the model-
data error.
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3.1.1 Problem linearization

Consider the situation in which the structure of the model function H(s) ∈ CP×P

is defined according to

H(s) =
N(s)

D(s)
=

∑︁n
i=0Ri fi(s)∑︁n
i=0 ri gi(s)

; (3.3)

in the above fi(s), gi(s) are complex scalar basis functions, that can be chosen
freely provided that H(s) is a rational function. The coefficients of the expansions,
Ri ∈ CP×P, ri ∈ C are unknowns to be estimated during the rational fitting process.
This model structure assumes that all of the entries of H̆(s) can be approximated
by considering a common denominator D(s).

In this case, the enforcement of (3.2) over the available data points can be
performed by minimizing the following cost function

min
ri,Ri

K∑︂
k=1

⃦⃦⃦⃦∑︁n
i=0Ri fi(sk)∑︁n
i=0 ri gi(sk)

− H̆k

⃦⃦⃦⃦2
F

= min
ri,Ri

K∑︂
k=1

∥Ek∥2F (3.4)

where ∥·∥F is the Frobenius norm1. The rational dependency of the cost function
defined in (3.4) on the coefficients ri makes the approximation problem non-convex,
and thus prone to exhibit multiple local sub-optimal solutions, with expected con-
vergence problems during minimization.

One intuitive way to deal with this issue is to perform a linearization of the
approximation condition (3.2) (first proposed in [70]), replacing it with the following

N(sk) ≈ D(sk)H̆(sk), k = 1,2, . . . K. (3.5)

which can be enforced by minimizing

min
ri,Ri

K∑︂
k=1

⃦⃦⃦⃦
⃦

n∑︂
i=0

Ri fi(sk)−

(︄
n∑︂

i=0

ri gi(sk)

)︄
H̆k

⃦⃦⃦⃦
⃦
2

F

= min
ri,Ri

K∑︂
k=1

⃦⃦
Ēk

⃦⃦2
F
. (3.6)

The minimizer of (3.6) can be found by simply solving a homogeneous least-squares
problem involving the unknown coefficients, using appropriate constraints to rule
out the vanishing solution. However, problems (3.4) and (3.6) are not equivalent,
and the linearization introduces a bias in the coefficients estimation. To see this,

1Other norms can be chosen to measure the approximation error to be minimized by the
rational approximation. The Frobenius norm is used here because it is also the one employed to
derive most of the results of this thesis.
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3.1 – Rational fitting

consider the vectors ek = vet(Ek), ēk = vet(Ēk); it holds that

K∑︂
k=1

∥Ek∥2F =
K∑︂
k=1

e⋆kek, (3.7)

K∑︂
k=1

⃦⃦
Ēk

⃦⃦2
F
=

K∑︂
k=1

ē⋆kēk =
K∑︂
k=1

(D(sk)ek)
⋆D(sk)ek =

K∑︂
k=1

|D(sk)|2e⋆kek. (3.8)

The above shows that the linearized cost function weights the original error com-
ponents with the squared absolute value that the denominator function attains at
each sk.

3.1.2 The Sanathanan-Koerner iteration

The Sanathanan-Koerner (SK) algorithm [92] performs a rational approximation
of the target function H̆(s) exploiting model structure (3.3). The fitting process
consists at iterating the estimation of the model H(s), by repeatedly enforcing a
linearized version of (3.4). The idea behind the algorithm is to progressively reduce
the bias introduced in the linearized fitting condition (3.5), by solving a sequence
of suitably weighted least-squares problems.

Let ν be an iteration index and let D0(s) = 1. The Sanathanan-Koerner itera-
tion solves the following convex problems

min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
⃦Nν(sk)− Dν(sk)H̆k

Dν−1(sk)

⃦⃦⃦⃦
⃦
2

F

=

= min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
⃦
∑︁n

i=0R
ν
i fi(sk)− (

∑︁n
i=0 r

ν
i gi(sk))H̆k∑︁n

i=0 r
ν−1
i gi(sk)

⃦⃦⃦⃦
⃦
2

F

, ν = 1,2, . . . (3.9)

This optimization represents a least-squares problem in the current decision vari-
ables rνi , Rν

i , since at iteration ν the denominator function Dν−1(s) is numerically
available as a result of the previous iteration. By employing the notation used
in (3.7), it can be seen how the cost function minimized at each SK iteration can
be written equivalently as

K∑︂
k=1

e⋆k

(︄
|Dν(sk)|2

|Dν−1(sk)|2

)︄
ek. (3.10)

The above cost function is equivalent to (3.7) at any iteration ν̄ for which it holds
Dν̄(s) = Dν̄−1(s), which represents a convergence condition for the SK iteration.

For what concerns the model structure, the SK iteration is usually performed
by employing either canonical polynomial or partial fraction bases. Whenever it
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3 – Rational fitting

is assumed that H̆(s) can be adequately represented through a proper rational
function, these two sets of bases are{︄

fi = gi = si Polynomial basis
f0 = g0 = 1, fi = gi =

1
s−qi

, i = 1, . . . , n Partial fraction basis.
(3.11)

In both cases, choosing the above basis functions leads to a proper rational function
H(s) of order at most n. When the partial fraction basis is employed, the algorithm
is usually referred to as Generalized Sanathanan-Koerner iteration (GSK). In this
case, some remarks are in order. The set of numbers {qi} representing the poles of
the basis are often chosen to have negative real part, so that all the partial fractions
are stable. Whenever qi is complex, then qi+1 is chosen as its complex conjugate2.

The partial fractions can also be used to define a different basis, fi = ϕi(s),
where the functions ϕi(s) are orthonormal rational functions constructed starting
from 1

s−qi
, i = 1, . . . n, as explained in [34]; this improves the numerical conditioning

of the optimization problem (3.9).
Using the partial fractions basis, both the rational functions N(s) and D(s)

share the same set of poles {qi}, that cancel out in H(s), whose actual poles and
zeros coincide with the zeros of D(s) and N(s) respectively. Therefore, the partial
fractions play only the role of basis functions, and their poles are not the poles of the
approximating function. The result is that H(s) is expressed in rational barycentric
form, widely adopted in interpolation problems [66], rational fitting algorithms [79],
and model order reduction schemes [63].

When polynomials or partial fractions are used as bases, the coefficient rν0 can be
fixed a priori to a known real value, in such a way that problems (3.9) do not admit
the trivial zero optimal solution. Also, the condition D0(s) = 1, is easily achieved
by additionally setting r0i = 0 for i = 1,2, . . . , n. From a practical standpoint, the
partial fraction basis performs better then the polynomial basis, due to the bad
numerical conditioning properties of the latter for large values of n.

Figure 3.1 shows the results obtained by applying the GSK algorithm to a test
case. The target function H̆(s) represents the scattering parameters of a high-speed
interconnect, that are modeled in this case setting n = 25. The top panel shows
a comparison between the model H(s) and the reference data samples, in terms of
real and imaginary components. The bottom panel shows the absolute value of the
associated fitting error. The convergence index δν for this example defined as

δν =
∥xν − xν−1∥2
∥xν−1∥2

(3.12)

being xν =
[︁
rν1 , r

ν
2 , . . . , r

ν
n

]︁
, is reported in Fig 3.2. As this index vanishes, the

estimate of the denominator stabilizes, meaning that the algorithm has converged.

2The case H̆
∗
(s) /= H̆(s∗) for some s is not considered in this work.

58



3.1 – Rational fitting

Figure 3.1: GSK modeling performace. The target rational function H̆(s) represents
the scattering parameters of a high-speed interconnection. Top panel: model-vs-
data comparison. Bottom panel: absolute value of the error.

3.1.3 The Vector Fitting iteration

The Vector Fitting (VF) iteration represents one of the most widespread tech-
niques in the field of macromodeling and model order reduction based on rational
fitting. Since its introduction in 1999 [61], this algorithm has been subject of
intensive research (see e.g. [34, 35, 60, 31, 59])
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3 – Rational fitting

Figure 3.2: The convergence index δν of the GSK iteration in a practical application.

The algorithm can be seen as an elegant reformulation of the GSK counter-
part [62], in which the iterative re-weighting of the cost function is indirectly per-
formed via relocation of the basis poles {qi}.

In order to introduce the algorithm, it is convenient to take a closer look at (3.9)
when the basis functions fi(s), gi(s) are defined as the partial fractions in (3.11).
In this setting, the GSK optimization problem at each iteration is

min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
⃦⃦Rν

0 +
∑︁n

i=1
Rν

i

sk−qi
− (rν0 +

∑︁n
i=1

rνi
sk−qi

)Hk

rν−1
0 +

∑︁n
i=1

rν−1
i

sk−qi

⃦⃦⃦⃦
⃦⃦
2

F

, ν = 1,2, . . . . (3.13)

For simplicity in the following derivation, suppose that H̆(s) is a scalar function, so
that both Nν(s) and Dν(s) admit the pole-zero form representation

Nν(s) = Gν
N

∏︁n
i=1(s− aνi )∏︁n
i=1(s− qi)

, Dν(s) = Gν
D

∏︁n
i=1(s− zνi )∏︁n
i=1(s− qi)

, (3.14)

where the gain and the poles of N(s) and D(s) are functions of the unknown coef-
ficients Rν

i , rνi (here the explicit dependency is omitted for readability). Using this
representation, the optimization problem is rewritten as

min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
⃦⃦Gν

N

∏︁n
i=1(sk−aνi )∏︁n
i=1(sk−qi)

−Gν
D

∏︁n
i=1(sk−zνi )∏︁n
i=1(sk−qi)

H̆k

Gν−1
D

∏︁n
i=1(sk−zν−1

i )∏︁n
i=1(sk−qi)

⃦⃦⃦⃦
⃦⃦
2

F

, ν = 1,2, . . . . (3.15)
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which is equivalent to

min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
Gν

N

Gν−1
D

∏︁n
i=1(sk − aνi )∏︁n

i=1(sk − z
ν−1
i )

− Gν
D

Gν−1
D

∏︁n
i=1(sk − zνi )∏︁n

i=1(sk − z
ν−1
i )

H̆k

⃦⃦⃦⃦2
F

, ν = 1,2, . . . .

(3.16)
The above formulation shows that at iteration ν the weighting procedure introduced
by the GSK iteration leads to the minimization of a cost function equal to that
defined in (3.6), provided that the basis functions are partial fractions defined
as in (3.11), with poles {zν−1

i }. These new poles are the zeros of the previously
estimated denominator function, Dν−1(s).

The vector fitting iteration exploits this fact in order to avoid the explicit numer-
ical weighting introduced by the SK scheme. In its basic formulation, the algorithm
works as follows. An iteration-dependent model structure is defined as

Hν(s) =
Nν(s)

Dν(s)
=
Rν

0 +
∑︁n

i=1
Rν

i

s−qνi

rν0 +
∑︁n

i=1
rνi

s−qνi

; (3.17)

here, again, each Rν
i and rνi are model unknowns, together with Rν

0 . For ν = 1,
the basis poles {q1i } are initialized to a predefined set. Then, the VF solves the
sequence of optimization problems

min
rνi ,R

ν
i

K∑︂
k=1

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦R

ν
0 +

n∑︂
i=1

Rν
i

sk − qνi⏞ ⏟⏟ ⏞
Nν(s)

−

(︄
rν0 +

n∑︂
i=1

rνi
sk − qνi

)︄
⏞ ⏟⏟ ⏞

Dν(s)

H̆k

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
2

F

, ν = 1,2, . . . (3.18)

with
Dν−1(s) ⇐⇒

(︃
A B
C D

)︃
→ {qνi } = eig(A−BD−1C) (3.19)

The iteration reaches a fixed point whenever it holds {qν̄−1
i } = {qν̄i }, which is the

convergence condition of the Vector Fitting algorithm. When it happens, the zeros
of Dν̄(s) coincide with its poles; this implies that the denominator coefficients rν̄i
are identically zero for i = 1, . . . , n and that Dν̄(s) = rν̄0 . Up to a normalization
factor rν̄0 , the output model of the vector fitting scheme is then

H(s) = Nν̄(s) = Rν̄
0 +

n∑︂
i=1

Rν̄
i

sk − qν̄i
(3.20)

It is proved [68] that whenever H̆(s) is a proper rational function of order n and
the data samples Hk are noise-free, the VF convergence condition takes place in a
single iteration.
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3 – Rational fitting

In practical implementations, it is common to stop the algorithm either when
a desired model-vs-data error is achieved, or when the difference between the basis
poles of two successive iterations is small enough. This last approach is based on the
definition of a small threshold ϵ, used to define the following convergence criterion

δν =
∥xν − xν−1∥2
∥xν−1∥2

≤ ϵ (3.21)

being xν =
[︁
rν1 , r

ν
2 , . . . , r

ν
n

]︁
.

As an application example, Fig. 3.3 shows the performance of the VF scheme
when applied to the same fitting problem presented in sec. 3.1.2, setting n = 25.
The model-vs-data error shows that the VF scheme guarantees an accuracy im-
provement of about 1 order of magnitude with respect to the GSK. Also, the con-
vergence index decreases faster, as shown in Fig. 3.4

3.2 Multivariate rational fitting

Parameterized rational fitting computes an approximation for a function H̆(s,ϑ),
which depends both on the Laplace variable and on a set of additional parameters
ϑ ∈ Θ ⊂ Rd, where Θ is defined as in (2.55). In this case, the fitting is expected
to return an approximating function H(s,ϑ) whose dependency on the variable s
is rational for each value of ϑ belonging to Θ. Therefore, the approximation to be
enforced in a parameterized rational fitting problem is

H(sk,ϑm) ≈ H̆(sk,ϑm) = H̆k,m, k = 1,2, . . . , K, m = 1,2, . . .M (3.22)

where H̆k,m are samples of the target function available at prescribed sampling
points.

3.2.1 The PSK iteration

The Generalized Sanathanan-Koerner algorithm can be extended to the param-
eterized case, in order to perform multivariate rational fitting. The genaralization
leads to the so-called Parameterized-Sanathanan-Koerner (PSK) algorithm, [33,
103, 102]

To illustrate the algorithm, the discussion is limited to the case of a model
structure of the form

H(s,ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑︁n
i=0Ri(ϑ) φi(s)∑︁n
i=0 ri(ϑ) φi(s)

(3.23)

where the basis functions φi(s) are defined as the partial fractions. As the PSK
iteration is one of the main numerical tools exploited for the derivations of this
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3.2 – Multivariate rational fitting

Figure 3.3: VF modeling performace. The target rational function H̆(s) represents
the scattering parameters of a high-speed interconnection, as in Fig 3.1. Top panel:
model-vs-data comparison. Bottom panel: absolute value of the error.

thesis, it is worth defining the following modified partial fraction basis, used in
practical implementations⎧⎪⎨⎪⎩

φi(s) = (s− qi)−1, qi ∈ R
φi(s) = [(s− qi)−1 + (s− q∗i )−1] qi ∈ C
φi+1(s) = j[(s− qi)−1 − (s− q∗i )−1] qi+1 = q∗i ∈ C

(3.24)

with φ0(s) = 1 and with Re {qi} < 0 ∀ i /= 0. As opposed to the standard partial
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3 – Rational fitting

Figure 3.4: The convergence index δν of the VF iteration in a practical application.

fraction basis (3.11), functions (3.24) allow to perform the model estimation working
with real algebra [51].

The quantities Ri(ϑ), ri(ϑ) are the parameterized residues associated to each
partial fraction. They are unknown functions that must be found in such a way
that the fitting condition (3.22) is enforced. To practically estimate these functions,
it is assumed that they are structured as parameter-dependent basis functions ex-
pansions; in this dissertation, the interest will be limited to the case in which these
functions are multivariate polynomials of the parameter vector ϑ. In order to keep
the notation short, it is convenient to introduce a multi-index notation to identify
each of the basis component.

Let ξℓ(ϑi) be the ℓ-th component of a univariate polynomial basis of the i-th
parameter and let ℓ = (ℓ1, ℓ2, . . . , ℓd) be a d dimensional multi-index. Then the
multivariate polynomial basis ξℓ(ϑ) is defined as

ξℓ(ϑ) = ξℓ1(ϑ1)× ξℓ2(ϑ2)× . . .× ξℓd(ϑd). (3.25)

To define the PSK model structure, the order of the polynomial residues Ri(ϑ),
ri(ϑ) on each individual variable ϑi must be fixed; here, without loss of generality,
we assume that these orders are equal for both N and D, and are identified by i-th
entry of the multi-index

ℓ = (ℓ̄1, . . . , ℓ̄d), (3.26)

so that the two functions can be expressed in terms of the basis components ξℓ(ϑ)
as

Ri(ϑ) =
∑︂
ℓ∈Iℓ

Ri,ℓ ξℓ(ϑ), ri(ϑ) =
∑︂
ℓ∈Iℓ

ri,ℓ ξℓ(ϑ) (3.27)
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with unknown coefficients Ri,ℓ, ri,ℓ, being

Iℓ = {ℓ ∈ Nd : ℓ ≤ ℓ} (3.28)

the set of admissible multi-indices for the polynomial expansion, whose cardinality
will be denoted hereafter as Vℓ̄.

Once the model structure is defined, the model is generated by solving the
sequence of optimization problems

min
Rν

i,ℓ,r
ν
i,ℓ

M∑︂
m=1

K∑︂
k=1

⃦⃦⃦⃦
⃦Nν(sk,ϑm)− Dν(sk,ϑm)H̆k,m

Dν−1(sk,ϑm)

⃦⃦⃦⃦
⃦
2

F

=

= min
Rν

i,ℓ,r
ν
i,ℓ

M∑︂
m=1

K∑︂
k=1

⃦⃦⃦⃦
⃦
∑︁n

i=0R
ν
i (ϑm) φi(sk)− (

∑︁n
i=0 r

ν
i (ϑm) φi(sk))H̆k,m∑︁n

i=0 r
ν−1
i (ϑm) φi(sk)

⃦⃦⃦⃦
⃦
2

F

,

ν = 1,2, . . . (3.29)

that represent the parameterized counterpart of (3.9). As in the SK and VF
schemes, the iteration is stopped when the estimate of the denominator stabilizes;
this means that the stopping criterion (3.21) can also be used in the parameterized
setting, in which the vector xν collects all the denominator unknowns ri,ℓ.

3.2.2 Estimation of the PSK coefficients

A compact matrix notation for (3.29) is readily obtained by collecting all ele-
ments of Ri,ℓ, ri,ℓ at iteration ν in a vector zν , obtaining the homogeneous least-
squares form

Ψνzν ≈ 0, (3.30)

that must be constrained to avoid the trivial vanishing solution, e.g. by setting
∥zν∥2 = 1 and obtaining the optimal parameters as the right singular vector of Ψν

associated to the least singular value.
The matrix Ψν ∈ CKMP2×(n+1)(P2Vℓ̄+Vℓ̄) is defined as

Ψν =

⎡⎢⎣Γ
ν Ξν

1,1
. . . ...

Γν Ξν
P,P

⎤⎥⎦ (3.31)

with individual blocks defined as

Γν = W ν−1X,

Ξν
i,j = −W ν−1H̆ i,jX,

X = Φ⊗ J
(3.32)
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whereW ν−1 and H̆ i,j are diagonal matrices collecting respectively the samples of the
denominator available from previous iteration Dν−1(sk,ϑm) and the samples of the
response H̆ i,j(sk,ϑm), in correspondence of the available data points. The matrix
X collects the products of frequency and parameter basis functions, individually
stored in

Φ =

⎡⎢⎣φ0(s1) · · · φn(s1)
...

...
φ0(sK) · · · φn(sK)

⎤⎥⎦ , J =

⎡⎢⎣ ξ1(ϑ1) · · · ξℓ̄(ϑ1)
...

...
ξ1(ϑM) · · · ξℓ̄(ϑM)

⎤⎥⎦ (3.33)

In problem (3.30), the single elements of the model matrix H(s,ϑ) cannot be
estimated individually, due to the presence of the common denominator term. In
fact, the matrix Ψν exhibits a bordered block diagonal structure, which forces one
to solve a coupled estimation problem in which the denominator and the denomina-
tor unknowns are computed concurrently. However, some algebraic manipulations
inherited from the VF scheme [35], can be performed in order to reduce the com-
putational cost burden of the procedure, as shown in [17]. For each i, j-th element
of the target function, a QR factorization is performed as

Qν
i,jR

ν
i,j =

[︁
Γν Ξν

i,j

]︁
(3.34)

where

Rν
i,j =

⎡⎣• •

0 T ν
i,j

⎤⎦ . (3.35)

Once available, the blocks T ν
i,j are collected to build a least-squares problem of

reduced size, which can be used to estimate the denominator coefficients rνi,ℓ sepa-
rately from the numerator counterparts. This reduced least-squares problem takes
the form ⎛⎜⎝T ν

1,1
...

T ν
P,P

⎞⎟⎠xν = T̄
ν
xν ≈ 0, (3.36)

where xν is the vector collecting the unknowns rνi,ℓ. Once xν is found, the remaining
model unknowns Ri,ℓ are found by solving problem

min
yν

P∑︂
i=1

P∑︂
j=1

⃦⃦
Γνyνi,j + Ξi,jx

ν
⃦⃦2
2

(3.37)

with vectors yνi,j collecting all elements i, j of numerator matrix coefficients Rν
n,ℓ,

and where the vector yν is an ensemble of all these unknowns

yν⊤ =
[︁
yν⊤1,1 , . . . , y

ν⊤
P,P.
]︁

(3.38)
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Figure 3.5: Performance of the PSK scheme when applied to model the scattering
parameters of a parameterized multiconductor transmission line. See Sec. 4.6.2

Since at each iteration ν the knowledge of the coefficients Ri,ℓ is not required to
set up and solve problem (3.36), the numerator estimation problem (3.37) can be
solved only once the denominator estimate has stabilized, i.e., at the last PSK
iteration ν̄. This significantly improves the algorithm efficiency, since the iteration
requires only the computatution of the QR factorizations (3.34) and the solution
of the small scale problem (3.36).

Several examples of application of the PSK scheme will be provided in this work.
Fig. 3.5 anticipates the results that can be obtained by applying the algorithm for a
multivariate rational fitting problem, for d = 1. The underlying data represent the
scattering matrix parameters of a multiconductor transmission line system, that will
be more thoroughly discussed in Sec. 4.6.2. The rational fitting quality guaranteed
by the algorithm is remarkable. However, when the output approximation H(s,ϑ)
represents a parameterized transfer function, the plain PSK formulation is not able
to guarantee stability and passivity of the associated model. A solution for this
problem will be given in chapter 4.

3.2.3 Equivalent SPICE netlist

Model (4.8) admits a representation in terms of an equivalent SPICE netlist,
as discussed in [52]. Assuming that the PSK model represents the scattering pa-
rameters of a P-port network, one way of synthesizing the equivalent netlist is as
follows . First, decompose the model into two sub-blocks representing the individual
numerator and denominator transfer functions, defined as

1. a scalar admittance YD(s,ϑ) = D(s,ϑ), associated with instrumental port
voltage and current variables vD and iD obeying

iD = YD(s,ϑ) vD and vD = Y −1
D (s,ϑ) iD. (3.39)

To handle the presence of multiple ports, the scalar denominator function is
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YD,k

iD,k

+

−

vD,k
vk

2
√
R0

√
R0ik
2

YN

iN,P

iN,11

P
vN,P

+

−
vN,1−

+vD,1−
+vD,P

...

...

ik

R0 2
√
G0iN,k

+

−

vk

Figure 3.6: SPICE realization circuits. Top: denominator sub-block (k-th out of P
instances). Middle: numerator sub-block. Bottom: external interface of the PSK
model (k-th out of P ports, scattering representation, realized in Norton form).

represented as a diagonal P-ports

D⊗(s,ϑ) = IPD⊗(s,ϑ) (3.40)

realized as P separate and identical instances of YD, each associated with
a pair of port voltages vD,k and currents iD,k for k = 1, . . . ,P. These port
quantities are collected into the vectors v⊗ and i⊗ so that

i⊗ = D⊗(s,ϑ)v⊗, v⊗ = D−1
⊗ (s,ϑ)i⊗. (3.41)

2. The numerator sub-block is considered as a P-port with admittance matrix
YN(s,ϑ) = N(s,ϑ) so that, by defining the instrumental port voltage and
current vectors vN , iN ∈ CP, we have

iN = N(s, ϑ) vN . (3.42)
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1F

−

+

vC,i
−1
qi

vD

r0(ϑ)vD

iD

r1(ϑ)vC,1 · · · rn(ϑ)vC,n
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+

vD

Figure 3.7: Synthesis of parameterized admittance block D(s,ϑ). Top: elementary
RC cell synthesizing the basis pole qi. Bottom: external circuit interface.

3. Model (4.8) is assumed to be in scattering representation. Therefore,

B = H(s,ϑ)A = N(s,ϑ) · D−1
⊗ (s,ϑ) · A. (3.43)

where A,B ∈ CP are the incident and reflected scattering wave vectors, de-
fined as in (2.81).

Interconnection of the various blocks is realized as in Fig. 3.6 through dependent
sources, by setting

• i⊗ = A, so that the voltage vector at the output of the denominator block
reads v⊗ = D−1

⊗ (s,ϑ)A. See Fig. 3.6 (top) , where a pair of controlled sources
are used to synthesize each incident wave Ak;

• vN = v⊗, so that iN = H(s,ϑ)A, see Fig. 3.6 (middle);

• B = iN , so that B = H(s,ϑ)A. See Fig. 3.6 (bottom), where a pair of
current sources are used to realize the output components Bk in Norton form
according to (2.81).

In the above setting, each of the involved transfer function elements can be
synthesized following the same approach. We consider for example the synthesis of
D(s,ϑ), since the extension to N(s,ϑ) and D⊗(s,ϑ) is straightforward. From (4.8)
and (3.27), we can write

iD = D(s,ϑ) vD =
n∑︂

i=0

jD,i (3.44)

where jD,0 = r0(ϑ) vD and

jD,i = ri(ϑ) vC,i, with vC,i = (s− qi)−1 vD (3.45)
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3 – Rational fitting

for i = 1, . . . , n. With real stable basis poles qi < 0, the instrumental voltage vC,i is
synthesized as a standard RC cell, see Fig. 3.7(top). Two coupled RC cells are used
realize a pair of complex conjugate basis poles qi+1 = q∗i , as in [55]. The instru-
mental currents jD,i are synthesized as Voltage-Controlled Current Sources (VCCS)
with parameterized trans-conductance ri(ϑ). Equation (3.44) is then realized as in
Fig. 3.7(bottom).
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Chapter 4

Multivariate passive macromodeling

This chapter presents a novel framework for the generation of reliable parameter-
ized macromodels of passive devices, components, and sub-systems. The objective
is to formulate a data-driven model order reduction scheme that, starting from
frequency domain samples of the underlying system parameterized transfer func-
tion, returns certified passive parameterized surrogates. The method is thought to
be non-intrusive, so that no closed form descriptions of the reference system are
required to perform the model generation.

The reference data collection is performed according to the well-established
workflow of passive univariate (i.e. parameter free) macromodeling. First, a physi-
cal description of the reference device is instantiated in CAD tools that can provide
the required highly detailed descriptions of the structure behavior by directly solv-
ing the associated Maxwell’s or, more generally, first-principle methods, as outlined
in Sec. 1.1.1. Then, the electrical ports through which the device interacts with
the outer environment are defined, and a finite-bandwidth characterization of the
system is obtained by collecting samples of a specified network function, typically,
in scattering representation. When the generation of a parameterized macromodel
is required, the reference device network function is sampled in correspondence of
a finite number parameter values.

To derive a macromodel valid for a single parameter configuration, a rational
fitting process, such as the vector fitting scheme recalled in Sec. 3.1.3 ([79, 14, 69]) is
commonly applied to the available data to generate a rational reduced order model
of the network function. This model is then made available in the form of state space
or equivalent SPICE netlist, and exploited to speed-up system level simulations
by replacing the complex first-principle description. In Sec. 1.2.1, it has been
highlighted that embedding parameterization into macromodels enables a number
of desirable possibilities, including fast design optimization, statistical assessments
and worst-case analyses. This motivates the interest to develope a parameterized
counterpart for the above described univariate macromodeling approach.

71
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It is known that physically passive devices must always be represented or mod-
eled by certified passive equivalents. When it is not the case, the mathematical
representation can be the root cause of nonphysical instabilities [46, 51], as outlined
in Sec. 1.2.1. While for univariate macromodels robust post-processing passivity
enforcement schemes [50, 32, 54] can be successfully applied to achieve model pas-
sivity, the same is not true in the more involved parameterized setting. In this case
the property must be guaranteed for all of the possible parameter configurations
of interest, in the sense that passivity must hold uniformly over the considered
parameter set. This introduces significant technical difficulties that make passive
parameterized macromodeling an open research topic. In fact, currently available
state-of-the-art techniques are not able to guarantee the generation of parameter-
ized macromodels that are concurrently accurate, compact and uniformly passive.

The available strategies are based either on root macromodels interpolation or on
multivariate rational fitting. The ideas behind these two approaches and the related
pros and cons are summarized below, before introducing our novel approach.

Parameterized macromodeling via root macromodel interpo-
lation.

Root macromodels interpolation methods generate a passive reduced order pa-
rameterized model H(s,ϑ) based on the availability of univariate (i.e. not depending
on ϑ) macromodels. Various different implementations have been proposed [39, 41,
40, 91]. Most these approaches follow the general procedure discussed below.

A set of parameters of interest is defined according to (2.55). Then, a multidi-
mensional grid with nodes ϑg, g = 1, . . . G is defined over this parameter space. For
each node of the grid ϑg, the reference system transfer function H̆(s,ϑ) is sampled
or measured leading to the samples

H̃k,g = H̃(jωk,ϑg), k = 1, ...K. (4.1)

A rational fitting scheme, (such as VF, see Sec. 3.1.3) is then used to generate a
root macromodel Hg(s) that verifies the approximation Hg(jωk) ≈ H(jωk,ϑg) over
the available frequency samples. All root macromodels are then independently
processed by standard algorithms [50, 32, 54] to enforce their passivity.

Once the passive root macromodels Hg(s), g = 1, . . . G are available, the desired
parameterized macromodel is obtained via interpolation

H(s,ϑ) =
G∑︂

g=1

Hg(s)λg(ϑ). (4.2)

It turns out that the interpolating functions λ(ϑ) can be chosen so that the resulting
model H(s,ϑ) is passive uniformly over Θ.
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The procedure is simple, robust and straightforward. However, presents a num-
ber of drawbacks.

• The number of poles of H(s,ϑ) is generally different and larger than the
number of poles of each root macromodel, since the parameterized model is
a weighted sum of the root macromodels. This parameter-dependent com-
plexity is nonphysical and may introduce modeling artifacts (e.g. fictitious
resonant behaviors).

• The model representation is not compact, since it requires the availability
of G different macromodels. When G is large, the model compactness is
inevitably lost, and the model must be returned in the form, for example, of
large netlists embedding the individual roots descriptions.

The above described approach is based on transfer function. Other techniques
have also been proposed to interpolate the corresponding state space matrices [41,
40, 91]. When interpolating the state space matrices, the complexity of the param-
eterized model is kept constant, but the model representation compactness is still
lost. Additionally, the non-uniqueness of the state space representation can lead to
inconsistent interpolation results. In [91], the problem is tackled by representing the
root state space systems based on a common similarity transformation. However,
robustness and scalability of this approach have not been documented yet.

Parameterized macromodeling via multivariate rational fit-
ting

The second approach for the generation of passive parameterized macromodels
seeks for an implicit and global parameterization of the structure behavior, obtained
by means of multivariate rational fitting [33, 103]. The PSK iteration presented in
Sec. 3.2.1 provides the reference framework for this approach. Its main advantages
are a compact representation in terms of numerator and denominator coefficients,
and a model order that is independent on ϑ.

The compactness of the model, however, introduces relevant technical difficul-
ties when the rational approximation must ensure model stability and passivity
uniformly in Θ. The basic formulation of the PSK algorithm does not guarantee
these properties. A number of strategies have been therefore proposed to solve the
problem, see e.g. [116, 114]

All of the currently available methods aimed at guaranteeing asymptotic stabil-
ity of H(s,ϑ) are based on the enforcement of the following condition

D⋆(jω,ϑ) + D(jω,ϑ) ≥ 0 ∀ϑ ∈ Θ,∀ω. (4.3)

As will be more rigorously discussed in Sec. 4.3, the above implies that the poles of
model (4.8) are stable ∀ϑ ∈ Θ. Sampling-based techniques [114, 115] try to enforce
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condition (4.4) during the PSK iteration. At iteration ν these methods evaluate the
previously estimated function Dν−1(jω,ϑ) searching for parameter configurations
ϑv for which (4.4) is not verified. Then, they require

Dν⋆(jω,ϑv) + Dν(jω,ϑv) ≥ 0∀ω, (4.4)

by means of suitable linear constraints enforced on the coefficients rνi,ℓ. After the
last iteration, the resulting denominator function Dν̄(jω,ϑ) is sampled again over
Θ. If (4.4) is still violated for some parameter configuration, the coefficients rν̄i,ℓ are
iteratively perturbed until the violations are removed. This stability enforcement
strategy is efficient and effective, but is not theoretically guaranteed to return
uniformly stable models.

A more robust approach [116] for enforcing (4.4) relies in choosing uniformly
positive parameter basis functions, ξℓ(ϑ) ≥ 0 ∀ℓ. In such a case it can be shown
that (4.4) is verified if the following conditions are imposed on the model coefficients{︄

ri,ℓ > 0 ∀ℓ if qi ∈ R,
−αi · Re {ri,ℓ} ± βi · Im {ri,ℓ} > 0 ∀ℓ if qi = αi ± jβi.

(4.5)

The above linear constraints can be easily enforced while solving (3.36) using a
convex formulation. Despite robust and reliable, this approach is conservative,
since (4.5) are only sufficient conditions for (4.4), which in turn is a sufficient
condition for uniform stability. Therefore, the constraints (4.5) may significantly
restrict the set of parameterized models that can be identified, with a possible
accuracy degradation.

When parameterized macromodels are obtained via PSK iteration, none of the
current state-of-the-art approaches can guarantee theoretically their uniform pas-
sivity. Currently available strategies try to overcome this problem by enforcing
model passivity in post-processing, similarly to what is commonly done for uni-
variate macromodels. These techniques extend widespread passivity enforcement
schemes [50, 32, 54] to the parameterized case, by sampling Θ in order to detect
locations where the model is not passive, and to apply suitable model coefficients
perturbations [114]. Under the assumption that a stable but not passive model
H(s,ϑ) is available (we assume a scattering representation), passivity is enforced
by iteratively perturbing the model coefficients, in order to verify

IP − H⋆(jω,ϑv)H(jω,ϑv) ⪰ 0 ∀ω ∈ R (4.6)

in correspondence of a finite number of parameter configurations ϑv where the
above condition is violated. These parameter configurations are usually detected
via adaptive sampling of the parameter space Θ. This approach is usually effective,
but presents two main drawbacks

• There is no formal guarantee that the sampling procedure detects all of the
parameter configurations ϑv where (4.6) is violated
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• The iterative perturbation enforces (4.6) based on non-exact (linearized) con-
straints, as in standard passivity enforcement schemes [50]. Removal of the
passivity violations may require a large number of iterations and the process
is not guaranteed to converge.

The proposed approach

The contribution of this chapter is to describe a novel constrained multivariate
rational fitting scheme, that allows to overcome the above limitations and draw-
backs, by providing accurate and compact models that are stable and passive by
construction. The approach, first presented in [21, 20] can be summarized as fol-
lows.

1. The model structure is defined according to the PSK framework outlined in
Sec. 3.2.1. This guarantees a compact model representation. The employed
parameter-dependent basis functions, ξ(ϑ), are chosen to be multivariate
Bernstein polynomials. This choice is not restrictive since any polynomial
can be written in the Bernstein basis over a closed interval.

2. Stability conditions along frequency are expressed as a (continuously) param-
eterized linear matrix inequality structured according to the Positive Real
Lemma 2.6. These LMIs are aimed at constraining only the coefficients of
the denominator function, D(s,ϑ). Contrary to (4.5) these conditions are
necessary and sufficient to verify (4.4).

3. The above parameterized matrix inequality is cast into a finite number of
standard (parameter-free) LMIs, that provide sufficient conditions for uni-
form stability. The discretization process is performed by taking advantage
of the Bernstein polynomials properties.

4. The passivity conditions along frequency are expressed as another parame-
terized linear matrix inequality, by exploiting the Kalman-Yakubovich-Popov
Lemma 2.9. This parameterized LMI constrains only the coefficients of the
numerator function, N(s,ϑ).

5. Similarly to point 3, the above parameter-dependent condition is discretized
into a set of standard LMIs that provide sufficient conditions to guarantee
the passivity of the model. This avoids the necessity of any sampling-based
post-processing scheme.

6. The conservativity introduced by the discretization in points 3 and 5 is re-
duced by exploiting a special degree elevation property of Bernstein polyno-
mials.
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In the above list, the crucial steps are represented by the discretization process of
the stability and passivity constraints, performed by applying the properties of the
Bernstein polynomials used to parameterize the model coefficients. The usefulness
of this properties for handling parameter-dependent LMIs has been also recently
discussed in [67] in a more general setting.

From the numerical standpoint, the proposed modeling scheme requires com-
puting

• the iterative low-complexity estimate of the model denominator constrained
by the proposed set of LMIs, aimed at enforcing uniform stability (i.e., solving
problem (3.36) subject to LMI constraints)

• the solution of a single higher-complexity semidefinite program for the iden-
tification of the numerator coefficients, which guarantees uniform model pas-
sivity (i.e., solving problem (3.37) subject again to LMI constraints)

As a result, the procedure is fully deterministic and robust, since no sampling of the
parameter space is required to derive the required constraints. Since the formulation
is convex, the involved optimization problems can be solved in polynomial time
using standard optimization software.

The only drawback of the proposed approach is represented by the complexity of
the models that can be processed. The scalability analysis and the numerical exam-
ples that are presented at the end of the chapter show that small and medium-scale
models can be generated with modest time requirements .The method, however,
does not scale favorably with the model complexity, intended as a cumulative contri-
bution of model order (number of poles and parameter-dependent basis functions)
and number of interface ports. This applicability limit is common to all the strate-
gies that are based on the solution of semidefinite optimization problems, not only
in the framework of model order reduction, but also in the general field of modern
control system engineering and numerical linear algebra.

4.1 Problem statement
Consider a P-port passive LTI system, whose behavior depends on d physical or

design parameters, collected in the vector ϑ = (ϑ1, ..., ϑd) ∈ Θ, defined as in (2.55).
It is assumed that a highly accurate yet complex first-principle model is available
for the P × P transfer function of the system, H̃(s,ϑ), here assumed in scattering
representation. The PSK algorithm is used to generate a compact parameterized
macromodel H(s,ϑ) that verifies the approximation

H(jωk,ϑm) ≈ H̃(jωk,ϑ) = H̃k,m, k = 1, ...K, m = 1, ...,M. (4.7)
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with model structure

H(s,ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑︁n
i=0

∑︁
ℓ∈Iℓ

Ri,ℓ ξℓ(ϑ) φi(s)∑︁n
i=0

∑︁
ℓ∈Iℓ

ri,ℓ ξℓ(ϑ) φi(s)
. (4.8)

The necessary and sufficient conditions for the passivity of a generic scattering or
immittance LTI system in terms of its transfer matrix are given in 2.9 and 2.8. In
the parameterized setting, the conditions must be verified over the whole parameter
space, so that the model is uniformly passive if and only if

1. H(s,ϑ) regular for Re {s} > 0 ∀ϑ ∈ Θ

2. H∗(s,ϑ) = H(s∗,ϑ) ∀s ∈ C, ∀ϑ ∈ Θ

3. Φ(s,ϑ) ⪰ 0 for Re {s} > 0, ∀ϑ ∈ Θ

and

Φ(s,ϑ) =

{︄
IP − H⋆(s,ϑ)H(s,ϑ) scattering,
H⋆(s,ϑ) + H(s,ϑ) immittance.

(4.9)

Without loss of generality, we will only consider the Bounded Realness case for Con-
dition 3 in the following, since Positive Realness can be achieved with a straightfor-
ward adaptation. Noticing that the realness condition 2 is enforced by construction
by adopted model structure (4.8), the uniform passivity is verified when the model
H(s,ϑ) fulfils also Conditions 1 and 3; this leads to the formalization of the following
two problems.

Problem 4.1. Estimate the model coefficients ri,ℓ, so that Condition 1 is fulfilled
(uniform stability)

Problem 4.2. Assuming uniform stability, estimate the model coefficients Ri,ℓ, so
that Condition 3 is fulfilled (uniform passivity).

Notice that, in agreement with available literature concerning passive parame-
terized macromodeling, uniform stability is obtained by constraining the estimate
of the denominator D(s,ϑ), and provides a necessary prerequisite to uniform pas-
sivity. The latter is controlled by constraining all model coefficients.

4.2 State space parameterization
The main enabling factors for the proposed solution for problems 4.1 and 4.2

are represented by

1. A particular choice of the parameter dependent basis functions ξℓ(ϑ) used to
parameterize the model.
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2. The definition of two state space realizations for both model numerator N(s,ϑ)
and D(s,ϑ), interpreted as individual transfer functions.

This section presents the necessary mathematical tools and definitions that are
exploited in the proposed formulation.

4.2.1 Bernstein model parameterization

In the following, the parameter-dependent basis functions ξℓ(ϑ) entering model
structure (4.8) will be defined as multivariate Bernstein polynomials. For d = 1,

bℓ̄ℓ(ϑ) =

(︃
ℓ̄

ℓ

)︃
ϑℓ(1− ϑ)ℓ̄−ℓ, ℓ = 0, . . . , ℓ̄ (4.10)

is the ℓ-th Bernstein polynomial of degree ℓ̄ in the scalar variable ϑ. For d > 1, the
basis function ξℓ(ϑ) can be chosen to be the ℓ-th multivariate Bernstein polynomial
of multi-degree ℓ, defined as

ξℓ(ϑ) ≡ bℓℓ(ϑ) = bℓ̄1ℓ1(ϑ1)× · · · × bℓ̄dℓd(ϑd) (4.11)

where ℓ is defined as in (3.26). Given a multivariate polynomial matrix function
expressed in Bernstein basis

F (ϑ) : Rd → Rm×n =
∑︂
ℓ∈Iℓ

F ℓ bℓℓ(ϑ) (4.12)

the elements of the set {F ℓ : ℓ ∈ Iℓ}, in short {F ℓ}, are referred to as control
points.

The following properties of Bernstein polynomials [13] will be exploited in the
proposed derivations. First, these polynomials are non-negative and represent a
partition of unity for any arbitrary number of variables d and any maximum degree
ℓ

bℓℓ(ϑ) ≥ 0 ∀ℓ ∈ Iℓ,
∑︂
ℓ∈Iℓ

bℓℓ(ϑ) = 1, ∀ϑ ∈ Θ. (4.13)

Due to these properties, all the values attained by functions (4.12) are obtained
through a convex combination of the control points {F ℓ}.

Any multivariate Bernstein polynomial of degree ℓ admits a representation in
terms of a higher order Bernstein polynomial, that can be found via the degree
elevation formula. Given a Bernstein polynomial p(ϑ) of degree ℓ and a degree
increment e = (e1, . . . , e2) ≥ 0, p(ϑ) can be expressed equivalently as

p(ϑ) =
∑︂
ℓ∈Iℓ

pℓ bℓℓ(ϑ) =
∑︂
γ∈Iγ

gγ bγγ(ϑ), γ = ℓ+ e. (4.14)
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The new coefficients gγ are convex combinations of the coefficients pℓ

gγ =
∑︂
s∈S

(︁
ℓ
s

)︁(︁
e

γ−s

)︁(︁
ℓ+e
γ

)︁ ps, γ ∈ Iγ , (4.15)

where the sum is performed over the set of multi-indices S = {s : s = max(0,γ −
e), . . . ,min(ℓ,γ)}. Lastly, given two Bernstein polynomials p(ϑ), g(ϑ) of total
degree ℓ and γ respectively, their product h(ϑ) is another polynomial of total
degree β = ℓ+ γ, with coefficients hβ defined as

hβ =
∑︂
s∈S

(︁
ℓ
s

)︁(︁
γ

β−s

)︁(︁
ℓ+γ
β

)︁ psgβ−s, β ∈ Iβ (4.16)

where S = {s : s = max(0,β − γ), . . . ,min(ℓ,β)}.

4.2.2 State space formulations

The transfer function D(s,ϑ) can be realized in state space form as [103]

D(s,ϑ)↔ ΣD =

(︃
A1 B1

C1(ϑ) D1(ϑ)

)︃
, (4.17)

where the constant matrices A1, B1 are

A1 = blkdiag{A1,i} ∈ Rn×n (4.18)
B1 = [. . . , B1,i, . . . ]

⊤ ∈ Rn, (4.19)

and

A1,i =

⎧⎪⎨⎪⎩
qi, qi ∈ R[︄
σi ωi

−ωi σi

]︄
, qi = σi ± jωi ∈ C

(4.20)

B1,i =

{︄
1, qi ∈ R[︂
2 0

]︂
, qi = σi ± jωi ∈ C

(4.21)

By construction, the pair (A1, B1) is controllable and A1 is stable, as Re {qi} <
0 ∀i. Under the choice of basis functions (4.11), the matrices describing the output
equations are available as Bernstein polynomials and read

C1(ϑ) =
∑︂
ℓ∈Iℓ

Cℓ
1 b

ℓ
ℓ(ϑ), Cℓ

1 = [r1,ℓ, . . . , rn,ℓ] ∈ R1×n (4.22)

D1(ϑ) =
∑︂
ℓ∈Iℓ

Dℓ
1 b

ℓ
ℓ(ϑ), Dℓ

1 = r0,ℓ ∈ R. (4.23)
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Using a similar construction, the numerator transfer function N(s,ϑ) is realized as

N(s,ϑ)↔ ΣN =

(︃
A B

C2(ϑ) D2(ϑ)

)︃
(4.24)

where A = IP ⊗ A1 and B = IP ⊗B1 and

C2(ϑ) =
∑︂
ℓ∈Iℓ

Cℓ
2 b

ℓ
ℓ(ϑ) Cℓ

2 ∈ RP×nP, (4.25)

D2(ϑ) =
∑︂
ℓ∈Iℓ

Dℓ
2 b

ℓ
ℓ(ϑ) Dℓ

2 = R0,ℓ ∈ RP×P. (4.26)

Given a multi-index ℓ, matrix Cℓ
2 collects the entries of the model coefficients

Ri,ℓ, i > 0 with a suitable ordering. The pair (A,B) inherits the controllability
property from (A1, B1). All of the eigenvalues of A are stable.

4.3 Uniform stability enforcement
This section presents a solution for Problem 4.1 and derives a set of algebraic

and convex constraints providing a guaranteed uniform stability of the model.
Due to the adopted model structure (4.8), uniform stability is enforced by con-

straining all the zeros of the denominator D(s,ϑ) to be placed in the open left-half
complex plane, as these zeros coincide with the parameter-dependent model poles.
The denominator D(s,ϑ) satisfies by construction Conditions 1, 2 of Sec. 4.1 since
it is a real rational function with poles having strictly negative real part. If we can
construct this function so that it verifies also the immittance dissipativity condi-
tion (3)

D⋆(s,ϑ) + D(s,ϑ) ⪰ 0 for Re {s} > 0, ∀ϑ ∈ Θ (4.27)

then it becomes a certified uniformly Positive Real function. Since any PR function
is also minimum phase [110] with stable zeros, enforcing this condition guarantees
indirectly the uniform stability of the model H(s,ϑ). Note that, under the adopted
model structure, this condition can be restricted to the imaginary axis, as

D⋆(jω,ϑ) + D(jω,ϑ) ≥ 0 ∀ϑ ∈ Θ,∀ω, (4.28)

since D(s,ϑ) is asymptotically stable and bounded for s → ∞, without poles on
the imaginary axis s = jω.

This fact has been repeatedly exploited in the literature to generate stable
parameterized macromodels [114, 116, 52]. From the numerical point of view,
(4.28) is not suitable to be enforced directly, as it represents an infinite number of
constraints to be verified over the entire continuous frequency-parameter space. In
what follows, we propose an approach to overcome this issue.
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Considering the realization (4.17) and defining Z1(jω) = (jωIP − A1)
−1B1,

Condition (4.28) is reformulated as

Z1(jω)
⋆C1(ϑ)

⊤ + C1(ϑ)Z1(jω) + 2D1(ϑ) ≥ 0, (4.29)

that must hold ∀ϑ ∈ Θ,∀ω, or in the more compact matrix form[︃
Z1(jω)

IP

]︃⋆ [︃
0 −C1(ϑ)

⊤

−C1(ϑ) −2D1(ϑ)

]︃ [︃
Z1(jω)

IP

]︃
≤ 0. (4.30)

Since the pair (A1, B1) is controllable, we can exploit the equivalence between points
1 and 2 in the KYP lemma 2.9 to replace this frequency domain inequality with
the equivalent algebraic condition

∀ϑ ∈ Θ, ∃L(ϑ) ∈ Sn :

Ω(A1, B1, L(ϑ))−
[︃

0 C1(ϑ)
⊤

C1(ϑ) 2D1(ϑ)

]︃
⪯ 0, (4.31)

where Ω(A1, B1, L(ϑ)) is defined as in Theorem 2.9 and L(ϑ) plays the role of a
parameter-dependent matrix that can be used to define a quadratic storage func-
tion.

Condition (4.31) represents a robust LMI condition in which the variables are
the instrumental matrix L(ϑ) and the denominator coefficients ri,ℓ entering the
denominator output matrices according to (4.22)-(4.23). Although this condition
is convex, solving (3.36) to find the denominator coefficients while enforcing (4.31)
for all ϑ ∈ Θ is numerically infeasible task. The application of the KYP lemma
removed the dependency of the constraints on the variable ω, but the passivity
condition still depends continuously on the parameter vector ϑ.

The problem is tackled by constraining the class of the instrumental matrices
L(ϑ) to belong to a finite-dimensional subspace. In particular, a Bernstein poly-
nomials expansion is adopted to define the structure of such a matrix, as

L(ϑ) =
∑︂
ℓ∈Iℓ

Lℓ bℓℓ(ϑ), Lℓ ∈ Sn ∀ℓ ∈ Iℓ, (4.32)

based on a set of unknown symmetric matrix coefficients {Lℓ}. Using (4.32), (4.31)
turns into

∀ϑ ∈ Θ ,∃Lℓ ∈ Sn, ℓ ∈ Iℓ :

S(ϑ) =
∑︂
ℓ∈Iℓ

Sℓ bℓℓ(ϑ) ⪯ 0, (4.33)

with
Sℓ = Ω(A1, B1, L

ℓ)−
[︃
0 Cℓ⊤

1

Cℓ
1 2Dℓ

1

]︃
∈ Sn+1. (4.34)
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Since all elements of the Bernstein basis are nonnegative, bℓℓ(ϑ) ≥ 0 ∀ℓ ∈ Iℓ,
then (4.31) is entailed by the following sufficient conditions

Sℓ ⪯ 0 ∀ℓ ∈ Iℓ (4.35)

that can be used as a set of parameter-independent LMI constraints to be enforced
during the estimation of the model denominator coefficients. Therefore, the pro-
posed solution for uniform stability enforcement amounts at solving the following
semi-definite program

min
xν

⃦⃦
T̄

ν
xν
⃦⃦
2

s.t. Sℓ ⪯ 0 ∀ℓ ∈ Iℓ, (4.36)

which replaces the unconstrained least squares problem (3.36). The optimization
problem (4.36) is a semidefinite program that can be solved through off-the-shelf
convex optimization solvers.

Computational complexity analysis

Some considerations about the computational complexity of the proposed ap-
proach are in order. The solution of (4.36) involves (n + 1)Vℓ̄ unknown model
coefficients and Vℓ̄((n + 1)2 + n + 1)/2 instrumental variables. The size of the re-
gressor matrix is P2Vℓ̄n× Vℓ̄n, as in (3.36). The size of the symmetric matrices
entering the constraints is n + 1, and the number of matrix constraints is Vℓ̄. As
one could expect, the method suffers from a curse of dimensionality for large dimen-
sions of the design space d, as both the number of denominator unknowns and the
cardinality Vℓ̄ of the admissible indices grows exponentially with d. Nevertheless,
as experimentally proved later in Sec. 4.6, the solution of (4.36) requires affordable
(desktop-level) computational power when making use of state-of-the-art convex
optimization solvers, at least when d is limited to few units.

We conclude this section by highlighting that both (4.32) and (4.35) do intro-
duce some level of conservativity in the constraints when compared to the fully
parameterized form (4.31). It will be shown in Sec. 4.5 that this amount can be
effectively controlled and reduced thanks to the degree elevation property of the
Bernstein polynomials.

4.4 Uniform passivity enforcement
In this section, a solution for Problem 4.2 of Sec. 4.1, addressing the uniform

passivity enforcement of the model, is proposed. In the assumed scattering rep-
resentation, enforcing the uniform passivity is the same as enforcing the model
transfer function H(s,ϑ) to be Bounded Real throughout the design space Θ. One
prerequisite for this qualification is that the model is uniformly stable; therefore,
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we assume that the coefficients xν defining D(s,ϑ) have already been found by
solving the convex program (4.36). For this reason, the following derivations will
be focused on the identification of the numerator coefficients Ri,ℓ, assuming that
the denominator coefficients are fixed and numerically available.

The non-expansivity Condition 3 of Sec. 4.1 can be replaced by the equivalent
restriction to the imaginary axis

H⋆(jω,ϑ)H(jω,ϑ) ⪯ IP ∀ω ∈ R, ∀ϑ ∈ Θ, (4.37)

similarly to (4.28). The exploitation of the model structure (4.8) allows to express
the above as

N⋆(jω,ϑ)N(jω,ϑ)− IP D⋆(jω,ϑ)D(jω,ϑ) ⪯ 0, (4.38)
∀ω ∈ R, ∀ϑ ∈ Θ.

Also in this case, the numerator and the denominator transfer functions can be
expressed in terms of their state space realizations, as in Sec. 4.3. Before proceeding,
a Multi-Input Multi-Output (MIMO) realization of the auxiliary system IPD(s,ϑ)
appearing in (4.38) must be defined. This MIMO realization replicates the SISO
denominator D(s,ϑ) over the diagonal of the P×P matrix. The desired realization
can be obtained as

IPD(s,ϑ)↔
(︃

IP ⊗ A1 IP ⊗B1

IP ⊗ C1(ϑ) IP ⊗D1(ϑ)

)︃
=

(︃
A B

C⊗(ϑ) D⊗(ϑ)

)︃
, (4.39)

where all state space matrices are numerically available as the denominator coeffi-
cients have already been found. Here, the matrices A and B are the same entering
the numerator state space ΣN [103]. By defining Z(jω) = (jωInP − A)−1B and
using (4.39), (4.24), condition (4.38) is cast into[︃

Z(jω)
IP

]︃⋆(︃
X2(ϑ)−X⊗(ϑ)

)︃[︃
Z(jω)
IP

]︃
⪯ 0, (4.40)

which must hold ∀ϑ ∈ Θ and ∀ω, where the auxiliary matrices are defined as

Xµ(ϑ) =

[︃
C⊤

µ (ϑ)
D⊤

µ (ϑ)

]︃ [︁
Cµ(ϑ) Dµ(ϑ)

]︁
, (4.41)

being µ a place-holder for the subscripts {2,⊗}. As the pair (A,B) is control-
lable, the application of Theorem 2.6 allows to transform (4.52) into the equivalent
parameter-dependent algebraic condition

∀ϑ ∈ Θ, ∃P (ϑ) ∈ SnP :

X2(ϑ)−X⊗(ϑ) + Ω(A,B, P (ϑ)) ⪯ 0, (4.42)
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that can be understood as an ad-hoc formulation of Theorem 2.7 for stable transfer
functions which are parameterized according to the PSK model structure (4.8).

Condition (4.42) is analogous to (4.31), with the additional complication that
the numerator unknowns that are embedded in the parameterization of C2(ϑ),
D2(ϑ) enter quadratically in X2(ϑ). However, (4.42) can be reformulated as a
LMI. In first place, X⊗(ϑ) is rewritten as a sum of Bernstein polynomials of total
degree m = 2ℓ

X⊗(ϑ) =
∑︂

m∈Im

Xm bmm(ϑ) (4.43)

being Xm symmetric matrix coefficients. Due to the numerical availability of the
denominator coefficients ri,ℓ, each Xm can be computed exactly as the product of
polynomials in Bernstein basis, using formula (4.16). Then, applying the inverse
Schur complement to (4.42), the equivalent LMI condition is obtained⎡⎢⎣ Ω(A,B, P (ϑ))−X⊗(ϑ)

[︁
C2(ϑ) D2(ϑ)

]︁⊤
[︁
C2(ϑ) D2(ϑ)

]︁
−IP

⎤⎥⎦ ⪯ 0 (4.44)

which must be fulfilled ∀ϑ ∈ Θ. As a third step, the degree elevation property of
Bernstein polynomials (4.14) is applied to the off-diagonal blocks of (4.44). Specif-
ically, C2(ϑ) and D2(ϑ) are rewritten as sums of Bernstein polynomials of total
degree m using the minimal degree-ℓ expansions (4.25)-(4.26); the result is rewrit-
ten compactly in the form

Y (ϑ) =
∑︂

m∈Im

Ym bmm(ϑ) =
∑︂
ℓ∈Iℓ

[︃
Cℓ⊤

2

Dℓ⊤
2

]︃
bℓℓ(ϑ). (4.45)

The entries of the matrix coefficients Ym are linear combinations of the numerator
coefficients embedded in Ri,ℓ. Lastly, the following structure for the instrumental
matrix P (ϑ) is enforced

P (ϑ) =
∑︂

m∈Im

Pm bmm(ϑ), Pm ∈ SnP ∀m ∈ Im. (4.46)

Due to this assumption, all terms in (4.44) are Bernstein polynomials of total degree
m, meaning that (4.44) can be rewritten as

F (ϑ) =
∑︂

m∈Im

Fm bmm(ϑ) ⪯ 0 ∀ϑ ∈ Θ, (4.47)

using (4.45) and (4.46) where the symmetric matrix coefficients

Fm =

[︃
Ω(A,B, Pm)−Xm Ym

Ym⊤ −IP

]︃
∈ Sg (4.48)
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have of size g = Pn+2P. Finally, due to the sign properties of the Bernstein poly-
nomials, (4.44) is verified whenever the following set of linear matrix inequalities
holds

Fm ⪯ 0, ∀m ∈ Im. (4.49)

The above conditions can be easily coupled with the numerator estimation prob-
lem (3.37). The unconstrained least-squares system in the unknown variables Y ν

is thus replaced by the following LMI-constrained convex program

min
yνi,j

P∑︂
i=1

P∑︂
j=1

⃦⃦
Γνyνi,j + Ξi,jx

ν
⃦⃦2
2

s.t. Fm ⪯ 0, ∀m ∈ Im. (4.50)

Computational complexity analysis

A set of numerator coefficients that guarantees the model uniform passivity can
be obtained by solving (4.50). The row size of the data matrices entering (4.50)
depends on the amount of training data samples. If the reference structure is
reciprocal, then the cost function involved in the problem can be modified to esti-
mate only the lower (upper) triangular elements of the numerator transfer function
N(s,ϑ); in this case the problem involves Vm(n + 1)(P2/2 + P/2) unknowns and
Vm(P2n2/2+Pn/2) instrumental variables. Therefore, the complexity of the prob-
lem depends not only on the total number Vm of terms of the multivariate Bernstein
basis used to model the passivity constraints, but also on the size of the system P
of the device under modeling. This means that the proposed method is practically
applicable only to small-medium scale devices. This limitation is expected, since it
is a characteristic of all the passivity constraints formulation based on PR and BR
lemmas.

We remark that the proposed derivations assume that the output matrices of ΣD

and ΣN are expressed as Bernstein polynomials with common total degree ℓ. If this
assumption is dropped, the proposed method is still applicable, since the entries of
the matrix function (4.44) can be expressed as Bernstein polynomial series of the
same degree, by elevating the degree of the lower order terms.

Remark 4.1. When models in immittance representation are of interest, the
proposed passivity enforcement scheme can be applied as well. In this case, the
positive realness of the model transfer function is verified whenever

H⋆(jω,ϑ) + H(jω,ϑ) ⪰ 0, ∀ω ∈ R, ∀ϑ ∈ Θ. (4.51)

Expressing the above in terms of the state space realization of N and D leads to[︃
Z(jω)
IP

]︃⋆(︃[︃
C⊤

⊗(ϑ)
D⊤

⊗(ϑ)

]︃ [︁
C2(ϑ) D2(ϑ)

]︁
+

[︃
C⊤

2 (ϑ)
D⊤

2 (ϑ)

]︃ [︁
C⊗(ϑ) D⊗(ϑ)

]︁)︃ [︃Z(jω)
IP

]︃
⪰ 0.

(4.52)

85



4 – Multivariate passive macromodeling

The above condition is linear in the numerator unknowns embedded in C2(ϑ) and
D2(ϑ). Applying the KYP lemma 2.6 with instrumental matrix P (ϑ) defined as
in (4.46) leads to a parameterized LMI condition in the numerator coefficients and
the symmetric matrices Pm, which is frequency-independent. The condition can
be then discretized into Vm̄ standard LMIs similar to (4.49) and enforced while
solving (3.37). Differently from the scattering case, each of the involved LMIs is of
size Pn + P, since no application of the Schur complement is required to recover
linearity in the problem unknowns.

4.5 Reducing conservativity
The pair of semidefinite optimization problems (4.36) and (4.50), when solved

sequentially, provide a set of model coefficients that guarantee the uniform bounded
realness of H(s,ϑ) over Θ. All the steps leading to the linear matrix inequali-
ties (4.35) and (4.49) are based on a sequence of necessary and sufficient implica-
tions, with two exceptions. The first is the restriction of the instrumental matrices
L(ϑ) and P (ϑ) to a particular polynomial structure. This imposition reduces the
space of storage functions that can be found to provide stability or passivity cer-
tificates for the model. This translates to a restriction of the set of models that
can be generated. Therefore, the polynomial structure of the instrumental matrices
introduces some conservativity in the modeling algorithm.

A second reason for conservativity stems from the discretization of (4.33) into (4.35)
and of (4.47) into (4.49). With reference to the latter, the discretization process is
conservative since F (ϑ) can be uniformly negative semi-definite even if some of the
coefficients Fm are not. In this section, this limitation is analyzed in detail, and
an effective methodology to reduce the introduced conservativity is proposed. This
methodology allows to improve the overall model accuracy that can be achieved by
the proposed approach.

Consider the replacement of (4.47) with the finite set of constraints (4.49). Let
F be the set of matrices spanned by F (ϑ) as ϑ spans the design space Θ. Since
F (ϑ) is expressed as an expansion into Bernstein polynomial basis, F is a subset
of the convex hull of the control points {Fm}

F = {x : x = F (ϑ),ϑ ∈ Θ} ⊆ Conv({Fm}). (4.53)

The enforcement of (4.49) guarantees uniform passivity by requiring that the matrix
coefficients Fm are individually negative semi-definite, in such a way that

Fm ∈ S−
g ⇒ Conv({Fm}) ⊆ S−

g ⇒ F ⊆ S−
g . (4.54)

The level of conservativity depends on the distance between F and the boundary
of Conv({Fm}). The larger this distance, the larger the degree of conservativity in
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the passivity (stability) enforcement. Therefore, reduction of this distance will lead
to a reduction of conservativity and to an improved model accuracy. Fortunately,
the properties of Bernstein polynomials come at hand for this task, since it is well
known that, for any matrix function in form (4.12), the set of control points (the ma-
trix coefficients in the Bernstein expansion) converge uniformly to the value of the
expanded function under repeated application of the degree elevation property [71,
38, 86]. This is graphically illustrated in Fig 4.1.

Let us apply this property to the present passivity (stability) enforcement case.
We define e = m+ (e, . . . , e). Then for any e we can always write

F (ϑ) =
∑︂

m∈Im

Fm bmm(ϑ) =
∑︂
e∈Ie

F e bee(ϑ), (4.55)

where the new control points {F e} are obtained as convex combinations of {Fm}
according to (4.15). We have

F ⊆ Conv({F e}) ⊆ Conv({Fm}), ∀e ∈ N. (4.56)

For increasing e, we have the uniform convergence property [71]

lim
e→∞
{F e} = F (ϑ) (4.57)

with a convergence rate 1/e, see Fig. 4.1. For any given e, we can therefore re-
place (4.50) with a less conservative optimization problem

min
yνi,j

P∑︂
i=1

P∑︂
j=1

⃦⃦
Γνyνi,j + Ξi,jx

ν
⃦⃦2
2

s.t. F e ⪯ 0, ∀e ∈ Ie (4.58)

where the constraint F e ⪯ 0 becomes practically equivalent to (4.47) for sufficiently
large e.

Switching to (4.58) does not modify the number of decision variables in the opti-
mization. However, the number of LMI constraints increases becoming Ve, implying
that conservativity reduction comes with an increase in computational cost. As a
beneficial side effect, the degree elevation property may also lead to a relaxation
of the structure imposed on the instrumental matrix P (ϑ), thereby addressing the
first source of conservativity discussed at the beginning of this section. If applying
the degree elevation after imposing a given structure of the storage function (4.46),
this structure will not change even if expressed as a higher degree polynomial, and
the dimension of the space spanned by the allowed storage functions will remain
the same. Conversely, if a new degree-elevated structure

P (ϑ) =
∑︂
e∈Ie

P e bee(ϑ), P e ∈ SnP ∀e ∈ Ie (4.59)
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Figure 4.1: Graphical demonstration of the degree elevation effects. The red line
represents the set F of the values attained by a function defined according to (4.12)
for d = 1, ℓ̄ = 4 and F ℓ ∈ R3; the purple volume is the convex hull of F ; the light
blue polyhedra are the convex hulls of the control points {F ℓ} for different levels
of degree elevation. As the degree of the representation increases, the polyhedron
approaches the underlying set F , thus providing better and better outer approxi-
mations. Figure reproduced from [21] © 2022 IEEE.

of total degree e is used since the beginning, all the corresponding control points
P e will provide independent degrees of freedom in a degree-e expansion, therefore
increasing the space of allowed storage functions enabling certification of model
passivity (stability). Since polynomials converge to any arbitrary smooth multi-
variate function on a compact domain, this second strategy practically removes the
limitations of the imposed polynomial structure on P (ϑ), as far as e is sufficiently
large.

In our experiments, we observed that the degree elevation process is very effec-
tive in reducing the conservativity of the passivity constraints (4.49). Conversely,
we did not observe relevant advantages in applying the same strategy to improve
the stability constraints (4.36).

4.6 Numerical examples
The proposed passive parameterized macromodeling strategy is experimentally

tested in this section. A number of numerical tests of increasing complexity are
considered, in order to investigate the performance and the applicability limits
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of proposed approach. All experiments have been performed using a workstation
equipped with 32 GB of memory and a 3.3 GHz Intel i9-X7900 CPU using a pro-
totypal MATLAB implementation.

All tests are based on the following settings. The denominator coefficients xν
are always computed by solving problem (4.36), while the numerator coefficients yν
are estimated at the last iteration by solving problem (4.58) with a given level of
degree elevation e. When solving this problem, the structure of the matrix P (ϑ)
is always defined as in (4.59); this implies that the number of variables involved in
the problem is proportional to the number of considered constraints, i.e. Ve). The
above mentioned semi-definite programs are handled via the YALMIP toolbox [73],
exploiting the MOSEK interior point method for conic problems [6].

Iterations are stopped when the convergence index δν ≤ 10−3 as defined in (3.21);
the evolution of δν over iterations is displayed below for each test case, in order to
monitor convergence based on the stabilization of denominator coefficients. With
reference to a given transfer function element Hi,j and the associated reference data
H̆

i,j
, an overall error index is defined as

ϵi,j = max
m=1,...,M

⌜⃓⃓⃓
⎷ 1

K

K∑︂
k=1

⃓⃓⃓⃓
⃓Hi,j(jωk,ϑm)− H̆

i,j

k,m

H̃
i,j

k,m

⃓⃓⃓⃓
⃓
2

, (4.60)

which is representative of the worst case relative error of the model against the data
over the design space.

In the considered datasets, the frequency-parameter spaces are sampled over
logarithmically or linearly spaced grids. However, the proposed technique can be
applied also in case the data are obtained according to some adaptive sampling
strategy which leads to unstructured data distribution. Additionally, in some ap-
plication scenarios, some a priori knowledge of the transfer function properties (e.g.
degree of smoothness or resonance and anti-resonance locations) may be exploited
to reduce the number K of frequency samples retrieved for each parameter config-
uration. This is not restrictive for the applicability of the method, provided that
the data samples are sufficient to fully characterize the structure behavior.

As a final remark, notice that the automated selection of the model hyper-
parameters ℓ̄ and n is still an open problem. In the following examples, this selection
was performed in a preprocessing stage with a basic trial and error strategy.

4.6.1 An integrated inductor

In this test case a 2-port, 1.5 turns integrated inductor, parameterized by its
side-length ϑ ∈ [1.02, 1.52] mm is considered. The structure, schematically depicted
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Figure 4.2: A 1.5-turn integrated inductor parameterized by the side-length ϑ ∈
[1.02, 1.52] mm. Drawing is not to scale. Figure reproduced from [21] © 2022
IEEE.

in Fig. 4.2, is characterized in terms of its scattering parameters1 in the bandwidth
[0.1, 12] GHz. A total of M = 11 parameter configurations are available as training
data obtained from the solver Sonnet [97], with each dataset including K = 477
logarithmically distributed frequency samples.

These training data are used to generate a passive parameterized macromodel of
dynamic order n = 7, using degree ℓ̄ = 2 polynomials to represent the dependence of
the model responses on the inductor side-length. With these settings, the solution
of the semi-definite program (4.36) required 0.22 s on average for the 7 performed
iterations. Figure 4.3 shows the evolution of the convergence index (3.21) as the
iteration number increases.

At the last iteration ν̄ = 7, problem (4.58) was solved for different values of
the degree elevation level e = 1, ...,50, in order to show the effect of the proposed
conservativity reduction. Fig. 4.4 reports the trend of the optimal cost function
resulting from the solution of (4.58), as a function of e. This figure confirms the
effectiveness of degree elevation in the reduction of the conservativity of passivity
constraints, since the residual norm of the cost function is reduced by almost one
order of magnitude. The corresponding CPU time requirements are depicted in
Fig. 4.5, as a function of the total number of variables involved in the optimization,
which in turn depends on the degree elevation order e. For this small-scale example,
the computational time is modest even in the case e = 50, which is associated to a

1Data provided by Prof.Madhavan Swaminathan (Georgia Institute of Technology, USA)

90



4.6 – Numerical examples

Figure 4.3: Integrated inductor. Normalized deviation of the denominator coeffi-
cients estimates, as a function of the iteration index ν. Figure reproduced from [21]
© 2022 IEEE.

Figure 4.4: Integrated inductor. Residual norm of the constrained numerator co-
efficients estimation problem, as a function of the degree elevation level e. The
experimental results are compared to a reference asymptotic 1/e trend, which is
expected based on the theory [71]. Figure reproduced from [21] © 2022 IEEE.

total of 5847 unknowns.
Considering as an example the model obtained for e = 50, the non-expansivity

condition 3 of the model was verified a-posteriori . Therefore, the model singular
values were computed over a finely sampled frequency-parameter grid, using 3000
log-spaced frequency values in the bandwidth [0, 1011] Hz, and 3000 linearly spaced
samples in the design space. The maximum observed singular value resulted less
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Figure 4.5: Integrated inductor. Time required to solve problem (4.58) as a function
of the number of decision variables; the latter is directly proportional to the degree
elevation e. Figure reproduced from [21] © 2022 IEEE.

than one, with a passivity margin 1− σmax = 3× 10−10.
The quality of the resulting model (for the case e = 50) is confirmed by compar-

ing the model responses to the training data in Fig. 4.6. Finally, Fig. 4.7 reports
the relative error index ϵ2,1 as a function of the degree elevation e. The figure
reports also the error that would be obtained by generating a model without en-
forcing any passivity constraint. It can be observed that starting from e ≈ 6 the
proposed approach is able to achieve a model accuracy that is not distinguishable
from the unconstrained case. In conclusion, proposed framework is able to guar-
antee uniform model passivity by construction, with no accuracy degradation, and
with limited overhead in computing time, at least for this small-scale example.

4.6.2 A multiconductor transmission line with variable cou-
pling length

This second test case provides an academic example with a distributed coupling
parameter. It consists of a multiconductor transmission line with two differential
pairs, each made of two equal parallel wires (radius of copper core rw = 0.5 mm
and dielectric coating re = 0.8 mm). The two differential pairs are placed next to
each other, so that the wire centers form a square with adjacent center-to-center
distance equal to 1.61 mm . The total length of the interconnect is L = 10 cm, but
the coupling between the two pairs in the corresponding per-unit-length matrices
is considered only over a portion of the length Lc = ϑ ∈ Θ = [20, 40] mm, which
is the independent parameter considered for this study. The lines are considered
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Figure 4.6: Integrated inductor. Comparison between parameterized model re-
sponses and training data for a degree elevation level e = 50; all the M = 11
parameter configurations are shown. Figure reproduced from [21] © 2022 IEEE.

as uncoupled for the remaining length L − Lc. Figure 4.8 provides a graphical
description for the structure. This example is selected to illustrate the shifting of the
resonances as ϑ changes, and the capability of the model to track such resonances
(the parameterized model poles) thanks to the adopted model structure.

The design space is sampled with M = 11 linearly spaced values. For each pa-
rameter configuration a total of K = 499 logarithmically spaced frequency samples
of the 4× 4 scattering matrix are extracted in the bandwidth [0.01, 5] GHz. These
samples are used to generate a model of dynamic order n = 28, whereas numerator
N(s,ϑ) and denominator D(s,ϑ) are parameterized by Bernstein polynomials of
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Figure 4.7: Integrated inductor. Relative error ϵ2,1 for different degree elevation
levels e. The blue line reports the corresponding error for a model generated without
enforcing any passivity constraint. Figure reproduced from [21] © 2022 IEEE.

Figure 4.8: A partially-coupled multiconductor transmission line system. The pa-
rameter ϑ represents the length of the coupling. The drawing is not to scale. Figure
reproduced from [21] © 2022 IEEE.

order 4 and 2, respectively.
The convergence of the identification algorithm is demonstrated in Fig. 4.9,

where the value of δν for ν ≥ 1 is reported. For this example, 10 different models
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Figure 4.9: Coupled transmission line. Evolution of the convergence index δν

through iterations. Figure reproduced from [21] © 2022 IEEE.

Figure 4.10: Coupled transmission line. Optimal values of the cost function in (4.58)
for various degree elevation levels. Figure reproduced from [21] © 2022 IEEE.

were built, solving each time problem (4.58) with different levels of degree elevation
e = 1,2, . . . , 10. Figure 4.10 reports the optimal cost function value from the
solution of problem (4.58) for different degree elevation levels e. The average time
required to solve problem (4.36) is 0.72 s, while the time required to solve (4.58)
depends on the degree elevation level. The actual runtimes for this test case are
reported in Fig. 4.11.

Figure 4.12 reports the modeling results obtained with e = 10 for the entire first
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Figure 4.11: Coupled transmission line. Time required to solve problem (4.58) as
a function of the number of decision variables corresponding to the various degree
elevation levels reported in Fig. 4.10. The increase in the number of variables is
mostly due to the increased order of the instrumental polynomial matrix P (ϑ).
Figure reproduced from [21] © 2022 IEEE.

column of the scattering matrix, while Fig. 4.13 depicts the model relative error
ϵ2,1 as a function of the degree elevation e. These results confirm that also for this
case the error approaches the limit corresponding to the unconstrained (hence not
guaranteed passive) model, computed using the same training dataset. A graphical
representation of the model parameterized poles trajectories is given in Fig 4.14,
computed over a very fine sweep of the free parameter ϑ ∈ Θ. As expected, all the
poles are stable with a negative real part, uniformly in the parameter space. The
presence of bifurcations further confirms the effectiveness of the proposed approach
in modeling non-smooth poles behaviors, thanks to the implicit parameterization
provided by the adopted model structure.

4.6.3 A two-parameter high-speed PCB link

This test case considers a 2-parameter structure, namely a high-speed stripline
link running through two PCBs attached by a connector and the corresponding via
fields, first presented in [87]. A schematic layout of the structure is depicted in
Fig. 4.15. The PCB substrate has permittivity ϵr = 3 and tanδ = 0.002. The verti-
cal vias are parameterized by the pad radius ϑ1 ∈ [100, 300] µm and the associated
antipad radius ϑ2 ∈ [400, 600] µm. See [87] for full details.

The scattering parameters of the structure are available from a field solver
(courtesy of Prof. Schuster, TUHH, Germany) atK = 250 frequency points linearly
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Figure 4.12: Partially coupled transmission line. Fitting results for the first-column
of the transfer matrix. The elements that are not shown here exhibit similar trends
and a comparable model accuracy. Figure reproduced from [21] © 2022 IEEE.

spaced in the interval [0.02, 5] GHz, and over a 9× 9 uniform grid in the parameter
space. These data are used to generate a parameterized macromodel with n = 25
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Figure 4.13: Coupled transmission line. Relative error ϵ2,1 for the passive models
based on different degree elevations, compared to the error of the model obtained
without enforcing any passivity constraint. Figure reproduced from [21] © 2022
IEEE.

poles and polynomial order of numerator and denominator ℓ = (3,2).
The convergence of the denominator coefficient estimation is illustrated by plot-

ting δν in Fig. 4.16. With the considered model structure, the time required to
solve (4.36), averaged over the 8 PSK iterations amounts to 1.5 s. For this example,
a number of possible degree elevations levels e ranging from 1 to 25, was considered.
The time required to build each of the 25 models is depicted in Fig. 4.17. Observe
that, although the time requirements for this example are larger, the solver scales
favourably with the increase in the number of instrumental variables induced by the
higher degree elevations (almost linearly, at least up to 105 variables). The value
of the optimal cost function value of the semi-definite program (4.50) for different
values of e is reported in Fig. 4.18, and confirms the same decreasing trend that
has been observed in single-parameter test cases.

For the case e = 25, a visual comparison between the parameterized model
frequency response and the reference data is provided in Fig. 4.19, considering a
subset of 14 random parameter configurations out of the available 81. Also in this
case, the accuracy of the model is remarkable throughout the considered frequency
band, with no visual difference between model and data on this scale. Finally,
Fig. 4.20 reports the relative error ϵ1,1 for different degree elevations. Also for this
case the error stabilizes to the same error of the unconstrained (non-passive) model;
this occurs at about e = 15.

In order to assess the influence of the design parameters on the time-domain
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Figure 4.14: Parameterized poles trajectories of the coupled transmission line
model. Left panel: in-band poles. Right panel: enlarged view on the low-frequency
region. Figure reproduced from [21] © 2022 IEEE.

Figure 4.15: High-speed PCB stripline interconnect parameterized by via pad and
antipad radii. Drawing for illustration only and not to scale. Figure reproduced
from [21] © 2022 IEEE.
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Figure 4.16: High-speed link. Convergence of denominator coefficients estimates
through iterations. Figure reproduced from [21] © 2022 IEEE.

Figure 4.17: High-speed link. Time required to enforce the model passivity, as a
function of the number of variables required by different degree elevation levels.
Figure reproduced from [21] © 2022 IEEE.

responses, and to demonstrate the efficiency of the parameterized models in a typi-
cal use case scenario, a transient simulation of the equivalent parameterized SPICE
circuit synthesized from the model was performed. The simulation setup includes a
50Ω voltage driver launching a pulse sequence with amplitude 1 V, period T = 3 ns,
rise and fall time 200 ps, and bit duration 0.8 ns. The receiver side is instead ter-
minated by a RC parallel load, with R = 1 kΩ and C = 2 pF. The pad radius was
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Figure 4.18: High-speed link. Cost function reduction for increasing degree eleva-
tion during passivity enforcement. Figure reproduced from [21] © 2022 IEEE.

fixed to ϑ1 = 300 µm, and the antipad radius was allowed to vary; in particular
a linear sweep of 8 configurations within its allowed range was considered. The
results of the simulation are depicted in Fig. 4.21, where the voltage signals at the
receiver are shown. The time requirements of each simulation amounted to 0.5 s
using the freeware LTSPICE solver.

4.6.4 Modeling behaviors with parameter dependent com-
plexity

In this experiment, we test the robustness of the proposed approach when used
for modeling structures whose in-band complexity is parameter-dependent. This
situation occurs e.g. when the free parameters of the model are related to the
electrical size of the underlying structure. Since model (4.8) has a fixed number
of poles, modeling this kind of systems requires using a model order n equal to
the largest required by the response behavior. We show experimentally that the
proposed approach is robust to this kind of over-parameterization.

To this aim, we model a lossy copper microstrip transmission line in the band-
width [0,20] GHz. The microstrip is characterized by a width w = 150 µm, a
height t = 30µm and is placed over a dielectric with relative permittivity ϵr = 4.1
and loss tangent tanδ = 0.02. We let the length of the line vary in the interval
L ∈ [6.5, 14.8] mm, inducing the required parameter dependent complexity in the
considered bandwidth.

To build the model, we fixed the line length and we sampled the 2×2 scattering
matrix of the line in correspondence of K = 400 logarithmically spaced frequency
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Figure 4.19: High-speed link. Comparison of model responses (e = 25) with the
corresponding raw data over a random subset of 14 out of the total 81 available
frequency responses. Figure reproduced from [21] © 2022 IEEE.

values. We repeated the procedure M = 20 times, for different parameter values
extracted randomly with uniform probability over the parameter space, including
also the interval extremal points. We used 18 out of the 20 available parameterized
responses to generate a model of order 12, using Bernstein polynomials of order
ℓ̄ = 7 for both numerator and denominator. The remaining 2 were used for model
validation. The modeling stage required 35 seconds, 15 of which were necessary to
solve (4.58), with a degree elevation level e = 50.
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Figure 4.20: High-speed link. Evolution of the relative error ϵ1,1 for the passive
models with different degree elevations, compared to the unconstrained model error.
Figure reproduced from [21] © 2022 IEEE.

Figure 4.21: Parameterized transient analysis of the high-speed link equivalent
circuit. The simulation is performed by considering eight different antipad radius
configurations in the interval [400,600]µm, while keeping fixed the pad radius to
300µm. Two periods of the output signal are shown. Figure reproduced from [21]
© 2022 IEEE.

The proposed approach resulted to be robust to the over-parameterization, re-
turning an accurate model. The model accuracy is shown in Fig. 4.22 for all of the
20 available responses and in Fig. 4.23 for the extremal points of the parameter
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Figure 4.22: Modeling of a transmission line with varying length. Top panel: re-
flection coefficient magnitude. Bottom panel: reflection coefficient phase.

space. As can be seen in Fig. 4.24, the model poles exhibit smooth and regular
trajectories within the modeling bandwidth. In order to match the proper dynamic
order of the responses, for some of the parameter values the trajectories exceed the
bandwidth limit. When this happens the poles evolve according to more involved
yet controlled behaviors.
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Figure 4.23: Modeling of a transmission line with varying length. Top panel: agree-
ment between model and data transmission magnitude at the extremal points of
the parameter space. Bottom panel: same as top, but for the phase.

4.6.5 Comparison with state-of-the-art techniques

We consider the same test case of Sec. 4.6.4 and the same dataset to compare
the modeling performance of the proposed approach with those of root macromod-
els interpolation and multivariate rational fitting combined with sampling-based
stability and passivity enforcement schemes. For the latter case, we applied the
strategy proposed in [114], generating a model with n = 12 and ℓ̄ = 7. The model
generation required 146 s, while the passivity enforcement step converged in 126 s,
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Figure 4.24: Modeling of a transmission line with varying length. The parame-
terized poles of the macromodel obtained by means of the proposed approach. To
model the parameter-dependent complexity of the behavior with a constant dy-
namic order n, for some parameter configuration the poles exceed the bandwidth
limit, according to involved yet controlled trajectories.

resulting in time requirements that are about 5× larger than those of the proposed
approach.

To apply the root macromodels interpolation strategy, we used the vector fitting
algorithm and the passivity enforcement scheme described in [50] to generate 18
univariate passive macromodels in correspondence of the parameter configurations
exploited to train the PSK models. To predict the response of the system for a line
length validation value Lv, we used the following formula

H(s, Lv) = αH(s, L1) + (1− α)H(s, L2), (4.61)
α = 1− (Lv − L1)/(L2 − L1), L1 < L2 (4.62)

being L1 and L2 the nearest parameter values for which root macromodels are
available. The results of the comparison are shown in Fig. 4.25 for Lv = 8.2
mm (top panel) and for Lv = 0.112 mm (bottom panel). The results show that
the proposed approach returns a model that is practically indistinguishable from
that obtained vie post-processing passivity enforcement. On the other hand, the
approach based on the root macromodels returns less accurate predictions, even if
the associated model is of order 2n = 24.
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Figure 4.25: Modeling of a transmission line with parameterized length via different
techniques. Top panel reflection coefficient for the length validation value Lv = 8.2
mm. Bottom panel: transmission coefficient for the length validation value Lv =
0.112 mm. The proposed approach matches the results obtained via multivariate
rational fitting combined with sampling-based stability and passivity enforcement.
The prediction obtained combining root macromodels lacks of accuracy and returns
a macromodel of order 2n.
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Figure 4.26: The LNA circuit schematic.

4.6.6 Stability constraints. Scalability and conservativity as-
sessment.

This last example is aimed at assessing experimentally the conservativity in-
duced by the stability enforcement scheme proposed in Sec. 4.3, and its scalability
in case of many parameters. The assessment is performed by considering a test-
bench already studied in [116], in order to compare the proposed method with the
one based on the enforcement of (4.5). The device under test is the Low Noise Am-
plifier (LNA) depicted in Fig. 4.26, first presented in [25]. The circuit depends on
d = 7 design parameters, which are listed in Table 4.1, and includes both lumped
elements and lossy transmission lines.

For this example, the proposed parameterized macromodeling approach is ap-
plied to generate a reduced-order small-signal surrogate of the amplifier. Since the
device is active, the passivity constraints derived in section 4.4 are not applicable.

A fixed operating point VSUP = 4.5 V is considered to construct a small-signal
linearized model. A total of M = 1400 parameter configurations are chosen accord-
ing to a latin-hypercube distribution in the design space. For each fixed configu-
ration, the reflection coefficient at the amplifier input port is sampled at K = 701
logarithmically spaced frequency points in the interval [1,10] GHz. Only 595 pa-
rameter configurations are exploited to generate a parameterized macromodel with
n = 10 and ℓ = (1, 1, 1, 1, 1, 1, 2), while the remaining samples are left for model
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Figure 4.27: LNA example. Comparison between model responses and validation
data over 19 different frequency responses, randomly selected in the design space.

validation.
With this configuration, the modeling algorithm reaches the stopping threshold

δν = 10−3 in only 3 iterations. The average time to solve (4.36) is 6 s, and the
relative error index results ϵ = 1.42 × 10−3, confirming that the model is highly
accurate also in correspondence of the validation samples. In Fig. 4.27, a visual
comparison between the model and the data is provided for 19 different randomly-
selected validation responses.

In order to show the low degree of conservativity of the proposed stability con-
straints, the experiment performed in [116], where the uniform stability is enforced
by imposing a sign inequality directly on the denominator coefficients rn,ℓ during
the model generation, was repeated here with the novel stability constraints. For
this purpose, the same LNA device was considered and the dimension of the design
space was reduced to d = 5, by taking into account only the first five parameters
listed in Table 4.1. A model was built by setting n = 16 and ℓ = (1,1,1,1,1), as in

Table 4.1: Free parameters considered for the modeling of the LNA test case. First
six parameters: parasitic inductances and capacitances of the transistor. Parameter
h is the substrate thickness for lines TL1, TL2, TL3.

# Parameter ϑi ϑi,min ϑi,max

1 Lb (nH) 0.88 1.32
2 Lc (nH) 0.88 1.32
3 Le (nH) 0.20 0.30
4 Ccb (pF) 0.0016 0.0024
5 Cbe (pF) 0.064 0.096
6 Cce (pF) 0.064 0.096
7 h (mm) 0.45 0.55
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the referenced article.
The stop criterion δν = 10−3 was met after 4 iterations, with an average com-

puting time required to solve (4.36) equal to 1.2 s. The relative error index of the
resulting model read ϵ = 6.36 × 10−5; the same index for a model based on [116]
was ϵ = 1.94×10−2. Thus, the proposed technique provides a decrease of the worst
case relative error of about 3 orders of magnitude, while guaranteeing the uniform
model stability by construction. This improvement is attained in approximately
the same runtime.

4.7 Discussion
The modeling framework described in this chapter provides a major improve-

ment with respect to to standard techniques for the generation of passive param-
eterized macromodels. The proposed approach generates compact parameterized
macromodels that are at the same time characterized by minimal complexity and
guaranteed passive by construction. These features can not be guaranteed concur-
rently by previously available methods based on root macromodels interpolation or
multivariate rational fitting with stability and passivity enforced by perturbation
or post-processing.

Before the results of this research were presented, the main limiting factor for the
generation of certified passive macromodels in the PSK framework was represented
by the difficulty in handling numerically the parameterized Bounded Realness con-
dition (4.37). The derivations of this section show that such a difficulty can be
overcome by taking advantage of the PSK model structure combined with the spe-
cific choice of the Bernstein basis for model parameterization. These two elements,
when combined, allow to derive a specific formulation for the dissipation function
of the model, and to enforce its semi-definiteness by means of discretized sufficient
conditions. Some advancements in similar directions were preliminarly presented
in [116] for what concerns the stability enforcement; then, a preliminary formula-
tion of the passivity constraints was given in [20]. In the paper [21], the ideas were
gathered and presented with the same level of detail of this section.

The degree elevation property of the Bernstein polynomials is fundamental to
derive both the discretized sufficient conditions for passivity and to address a strat-
egy for the reduction of their conservativeness. The straightforward link between
the polynomial degree used to represent the constraints and their conservativity
becomes a valuable trade-off parameter that can be tuned to reach the desired
compromise between model accuracy and generation time.

As shown in Sec. 4.6, the method is efficient and reliable to generate surrogates
for devices of modest dimensions and limited number of parameters. Unfortunately,
the benefits of the proposed method come with an unfavourable scaling of its de-
mand for computational power, as the complexity of the model increases, both
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in terms of electrical ports and of number of free parameters.The computational
complexity of the interior point method used to solve problem (4.58) strongly de-
pends on the specific algorithm implementation and on the possibility to exploit
the particular problem structure. For instance, we noticed that for the problem of
interest the MOSEK interior point implementation outperforms competing publicly
available SDP solvers based on the same algorithm (e.g. SEDUMI or SDPT3). It
is thus difficult to estimate rigorously which are the limitations of the proposed
approach in terms of resulting model complexity. Based on our experience, us-
ing the hardware described in Sec. 4.6, we were able to solve problem (4.58) in
less then one hour to generate models with nPd < 100, using a degree elevation
level e that practically nullifies the conservativity induced by the constraints dis-
cretization. A passive model generation is guaranteed also for larger problems,
at the price of longer runtimes. Notice however, that even sampling-based post-
processing schemes for passivity enforcement become more and more expensive and
unreliable as the dimension of the design space increases beyond few units.
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Chapter 5

Small signal and linear parameter
varying models

This chapter reports a series of novel results concerning the generation of macro-
models for fast small signal analysis of nonlinear systems and analog Circuit Blocks
(CBs). Specifically, the presented techniques apply to systems designed to behave
almost linearly under prescribed operating conditions, that will be denoted hence-
forth as mildly nonlinear. Typical examples are, Low-Noise Amplifiers (LNA),
Operational Amplifiers (OPA), and Low DropOut (LDO) voltage regulators, which
are ubiquitous in electronic products.

As outlined in Sec. 1.1.2, analog circuit blocks in advanced design stages are
commonly represented by netlists that translate the physical device description into
an equivalent circuit. As in modern Systems-on-Chip (or Systems-in-Package), CBs
operate at very low voltage supply levels, within miniaturized volumes, the resulting
equivalent circuit characterization must account for coupling and parasitic effects
due to layout and packaging. This leads to highly complex CB representations that
limit the possibility to perform system-level simulations, e.g., for stability assess-
ment or performance optimization. In this view, reduced order behavioral models
of analog circuit blocks represent enabling factors for performing such simulations
in a fast and accurate way.

In the available literature, a variety of modeling frameworks have been proposed
to approximate the behavior of CBs for nonlinear simulations; among them, the
classical Hammerstein-Wiener model structure identification [93], trajectory piece-
wise linear approaches [88], Volterra series based methods [84], X Parameters [89],
and neural networks [78, 77]. These approaches are all characterized by specific
advantages and drawbacks from the point of view of model complexity, degree of
accuracy, and training time requirements. This is because, when dealing with non-
linear systems, the range of admissible behaviors is so broad and heterogeneous
that any effective modeling strategies should be tailored with respect to the char-
acteristics of the device, having in mind the application of interest. In this Chapter,
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we restrict the focus on mildly nonlinear circuits, that are deliberately designed to
operate as linear as possible in the neighborhood of some prescribed working point.
Our objective is to derive surrogate models that can replace these devices for sim-
ulations that meet the small signal assumption. This assumption is commonly
verified in practically relevant situations, for example when stability assessment or
power management optimization of large scale systems must be performed.

When the small signal assumption is verified, the mildly nonlinear circuit block
can be replaced by a linearized model, which mimics the reference nonlinear behav-
ior though a set of linear differential equations. The exploitation of such a linear
model guarantees drastic reduction in terms of description complexity and high
accuracy in transient analyses for small deviations around the operating point [83].
Additionally, due to the linear structure, a linearized model ensures that fundamen-
tal physical properties, such as stability, can be easily guaranteed by construction.
As a drawback, linearized models are not suitable to perform nonlinear analyses,
such as harmonic distortion, that can be in principle modeled by using nonlinear
models (e.g. based on Volterra series).

Capitalizing on the multivariate rational fitting framework presented in chap-
ter 4, we propose a methodology to generate linearized behavioral models that
replace the reference CB description for small signal analyses in which either

1. The operating point of the device is unknown a priori but kept constant during
a transient simulation

2. The operating point of the device is unknown a priori and allowed to vary
during a transient simulation.

In both cases, the models are constructed from frequency-domain samples of mul-
tiple small-signal responses corresponding to a set of static operating points (bias
levels) in a given design range. The PSK iteration is used to build a multivariate
rational approximation for the target bias-dependent small signal transfer function.
This data acquisition procedure has the advantage of being relatively inexpensive.
Therefore, we apply the framework of chapter 4, where the operating point plays
the role of the parameter ϑ.

For applications involving constant but uncertain bias, the modeling approach
is analogue to the one of chapter 4, with the difference that only uniform stability
constraints are enforced during the model generation. The second application sce-
nario involving nonstationary operating conditions is tackled by representing the
reduced order parameterized model as a Linear Parameter Varying (LPV) system.
In this case, the dependency of the model on the bias condition is induced in real-
time using a feed-through term resulting from a low-pass filtering operation on the
port signals. This operation is performed at negligible computational cost.

The main technical contribution of the proposed modeling approach is related
to asymptotic stability of the resulting LPV models. By making use of Lyapunov
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theory and of the results derived in Chapter 4, it is possible to ensure the quadratic
stability of the surrogate LPV models [24], which entails the asymptotic stability
under any possible time-varying bias conditions within a proper design range. Also
in this case, parameterizing the model coefficients through multivariate Bernstein
polynomials, guarantees quadratic stability by enforcing a finite number of LMIs
during the model estimation.

The approach is validated experimentally in Section 5.3 over a set of test cases
involving low dropout voltage regulators. The results show that the linear struc-
ture of the models combined with their low complexity representation guarantee
major speedup, in real time while at the same time preserving the accuracy of the
predictions.

5.1 Equivalent linearized surrogates for mildly non-
linear systems

Consider a P-port nonlinear electrical system that admits a description in terms
of a state space representation

ξ̇(t) = F (ξ(t), u(t)),

η(t) = G(ξ(t), u(t)),
(5.1)

where u, η ∈ RP denotes the input and output signals, ξ, ξ̇ ∈ RN are the internal
state vector and its time derivative, and F,G are C1-smooth maps. The above
state space is the same as (2.28), rewritten here for convenience. Although descrip-
tion (5.1) is suitable to describe a broader class of systems, in the following the
discussion will be focused on nonlinear circuit blocks that admit a SPICE netlist
representation. Without loss of generality, we restrict our attention to immittance
representations.

An affine linearized model provides an approximation of the input output prop-
erties of (5.1) in proximity of a prescribed operating condition. More specifically,
such a model is intended to replace (5.1) whenever the following assumptions are
met

1. The system signals can be decomposed as

u(t) = U0 + ũ(t), ξ(t) = Ξ0 + ξ̃(t), η(t) = Y0 + η̃(t). (5.2)

where (U0,Ξ0, Y0) are constant quantities hencefoth denoted as DC compo-
nents (defining the bias level or operating point) and ũ(t), ỹ(t), ξ̃(t) are small
signals.
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2. The triplet of constant quantities (U0,Ξ0, Y0) identifies a unique asymptot-
ically stable equilibrium point, corresponding to the static input U0 with
(U0,Ξ0, Y0) being the stationary solution of (5.1)

0 = F (Ξ0, U0),

Y0 = G(Ξ0, U0)
(5.3)

3. ũ(t) ≡ 0 for t ≤ 0, and thus

u(t) = U0, ξ(t) = Ξ0, η(t) = Y0, ∀t ≤ 0. (5.4)

The above conditions reflect those that are encountered whenever a small signal
analysis of a device obeying equations (5.1) is performed in standard SPICE solvers.
In particular, assumption 1 represents the small-signal operating condition; assump-
tion 2 requires that the operating point of the device is well-defined and that the
small signal analysis is carried out in proximity of such operating point. Finally
assumption 3 is compliant with the fact that at the reference time instant t = 0 the
small signals are vanishing and that the system quantities are initialized according
to (5.3).

Around the operating point (U0,Ξ0, Y0), the nonlinear system can be linearized
following the steps recalled in Sec 2.2.3. The process leads to the local linear model

ξ̇̃(t) ≈ Ã ξ̃(t) + B̃ ũ(t) , ξ̃(0) = 0

η̃(t) ≈ C̃ ξ̃(t) + D̃ ũ(t),
(5.5)

where Ã, B̃, C̃, D̃ are computed as in (2.51) and (2.54). The above small signal
model approximates the behavior of the signals deviations from the equilibrium.
From an input output point of view, state space (5.5) provides an approximation
for the map ũ(t)→ η̃(t).

As the dimension N of ξ can be large when highly detailed descriptions of the
underlying device are considered, model order reduction techniques can be applied
to reduce the complexity of the linear system explaining the small-signal dynamics.
This leads to a small-signal reduced-order model of (5.1)

ẋ̃(t) = A x̃(t) +B ũ(t), x̃(0) = 0

ỹ(t) = C x̃(t) +D ũ(t),
(5.6)

Clearly, the above model is valid only in a neighborhood of the equilibrium point
induced by the DC component U0. In this dissertation, we consider the situation in
which the nonlinear maps F and G are not available in closed form, since encrypted
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indirectly into the netlist describing the nonlinear circuit. Thus, the reduced-order
small signal model can be constructed by means of rational fitting techniques,
starting from a set of samples of the small-signal transfer function.

H̆k = H̃(jωk) = C̃(jωkI − Ã)−1B̃ + D̃, k = 1, . . . K. (5.7)

computed at a discrete set of frequencies ωk by means of an AC sweep performed
within the SPICE solver where the circuit description is available. The fitting
process returns a small-signal reduced order transfer function H(s) ≈ H̃(s) with
order n≪ N, which can be readily cast in the state space form (5.6)

5.1.1 Affine linearized models

System (5.6) provides only a compact model for predicting the small signal
behavior, but it cannot be used as a direct replacement of (5.1) in circuit simulation
environments. This is because, even if the reduction process preserves the accuracy
of the mapping from ũ(t) to η̃(t), in a global circuit simulation both the the DC
and the small signal components act concurrently on the circuit. This means that
a model aimed at replacing (5.1) must accurately reproduce the input-output map
ũ(t) + U0 → η̃(t) + Y0. This requires a consistent embedding of the desired bias
level.

A straightforward modification of (5.6) allows to obtain a model that meets this
requirement, which is the affine linearized model, defined as follows

ẋ(t) = Ax(t) +Bu(t), x(0) = X0

y(t) = Cx(t) +Du(t) + YC ,
(5.8)

where vectors X0, YC are defined as

YC = Y0 − (CX0 +DU0) and X0 = −A−1BU0. (5.9)

Comparing (5.8) with (5.6), one can observe that

1. model (5.8) is subject to the total input u(t) = U0 + ũ(t) and not only to the
small-signal component ũ(t);

2. the output contains the constant term YC , which is needed to provide match-
ing between (5.1) and (5.8) under stationary conditions u(t) ≡ U0, x(t) ≡
X0 =⇒ y(t) ≡ Y0;

3. similarly to (5.2), we can split the signals x(t) and y(t) as

x(t) = X0 + x̃(t), y(t) = Y0 + ỹ(t), (5.10)
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where, according to the initial conditions entering (5.8), x̃(t) = 0 and ỹ(t) = 0 for
t ≤ 0. This means that the circuit is at rest for t ≤ 0, when only the constant DC
input U0 is applied.

Under the above conditions, the original nonlinear circuit block described by (5.1)
can be replaced by model (5.8) in circuit simulation environments under assump-
tions 1, 2, 3. Using (5.8) instead of (5.1), however, one has to define the initial
condition on the surrogate model X0 as in (5.9) in order to guarantee that the con-
stant components U0 and Y0, match exactly the input and output levels defining
the operating point of (5.1).

The signal ỹ(t) = y(t) − Y0 approximates the actual small-signal component
η̃(t) with an error introduced by the linearization and model reduction procedures.
With reference to Fig. 5.1, which illustrates the above affine linearization process
in the scalar (one-port) static case, we remark that both models (5.6) and (5.8)
should be considered as valid approximations of (5.1) only if the deviations from
the equilibrium point are sufficiently small. If this assumption is not verified, then
different modeling strategies should be adopted, see e.g. [72].

Figure 5.1: The linearized affine model of a nonlinear dissipative static component
in admittance representation. The presence of the biasing input U0 allows to derive
a local model around the operating point, corresponding to a constant output Y0.
The linearized model characteristic is affine, with a non-zero output YC obtained
with a vanishing input voltage. Figure adapted from [19] © 2020 IEEE.

5.1.2 Bias-dependent linearized models

Affine linearized models (5.8) can be used to replace efficiently the native circuit
block description (5.1), as far as all signals are bounded in a neighborhood of
some operating point. Nevertheless, from a system level point of view, the DC
working condition of the device is often not known a priori, but is imposed by the
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5.1 – Equivalent linearized surrogates for mildly nonlinear systems

interconnection of all the external subsystems and terminations connected to the
circuit electrical ports. When the outer environment conditions are modified, the
operating point of the circuit block may change in such a way that a predetermined
affine linearized model results to be inadequate.

To guarantee that the model is defined according to the actual operating point
within the simulation scenario of interest, the affine linearized state space (5.8)
should be generalized in order to explicitly embed the dependency of the equations
on the correct bias level [82], [18]. The following derivations show how to generate
parameterized affine models that can be used in simulation scenarios in which the
CB works under an uncertain uncertain operating point.

Model structure definition

The parameterized rational fitting framework presented in chapter 4 allows to
generate models that retain such a feature, albeit with minimal modifications of the
modeling procedure. The first adaptation to be taken into account is conceptual. A
parameterized affine macromodel should depend on the operating point, univocally
determined by the value of the constant input component U0 acting on the circuit for
t ≤ 0. Assuming that the value U i

0 of the input DC component at the i-th electrical
port is known to belong to a prescribed interval [U i

0, U
i

0], a set of admissible bias
conditions can be defined as

U0 = [U1
0, U

1

0]× [U2
0, U

2

0]× · · · × [UP
0 , U

P
0 ]. (5.11)

The set U0, called in the following bias space, represents a particular case of (2.55),
in which the parameter configurations of interest represent different operating
points of the circuit. Thus, in the considered modeling framework, the DC com-
ponent U0 assumes the meaning of both an uncertain parameter and an input
component.

In order to be compliant with the settings of Section 5.1, it is necessary to assume
that each bias condition U0 ∈ U0 is associated to a unique asymptotically stable
equilibrium point Ξ0 = Ξ0(U0) fulfilling (5.3). Therefore, by omitting for brevity
the dependency on the state configuration Ξ0 in matrices (2.51) and (2.54), the
small signal transfer function associated to (5.5) can be parameterized by U0 ∈ U0
as follows

H̃(s, U0) = D̃(U0) + C̃(U0)(sIN − Ã(U0))
−1B̃(U0). (5.12)

A reduced order small signal model that embeds the closed form dependency
on the bias condition can be obtained starting from samples of (5.12), computed
at discrete bias-frequency configurations

H̃k,m = H̃(jωk, U0m), k = 1, ...K, m = 1, ...,M (5.13)

that are again computed by performing a series of AC sweeps of the original circuit
for different bias conditions U0m. Dataset (5.13) is analogous to the one involved
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in (4.7), and therefore the PSK iteration can be used to generate the model. The
novel technical derivations of this chapter will be derived using the PSK model
structure in Bernstein polynomial basis

H(s, U0) =
N(s, U0)

D(s, U0)
=

∑︁n
i=0

∑︁
ℓ∈Iℓ

Ri,ℓ b
ℓ
ℓ(U0)φi(s)∑︁n

i=0

∑︁
ℓ∈Iℓ

ri,ℓ bℓℓ(U0)φi(s)
. (5.14)

Other choices of the parameter-dependent basis functions are allowed, as will be
shown in a practical application at the end of this section. The model transfer
function (5.14) admits the state space realization

H(s, U0)↔
(︃

A−BD−1
⊗ C⊗ −BD−1

⊗
C2 −D2D

−1
⊗ C⊗ D2D

−1
⊗

)︃
=

(︃
AM(U0) BM(U0)
CM(U0) DM(U0)

)︃
. (5.15)

The above is obtained starting from (4.24) and (4.39), as explained in [103]. The
involved matrices are defined as in Chapter (4.25), (4.26), (4.39), and their explicit
dependency on U0 in the left side of the equality is omitted for readability.

When the PSK modeling framework is applied to generate parameterized small
signal models, the only difference occurring between (5.14) and the model structure
exploited in Chapter 4 for the modeling of passive devices is represented by the
nature of the uncertain parameters; all the other symbols and quantities retain the
same meaning and the same interpretation that have been introduced in chapter 4.

Stability enforcement

The considered model structure is such that the stability enforcement strategy
introduced in 4.3 can be applied with no modifications in order to obtain a uni-
formly stable macromodel throughout U0. This condition reflects the preliminary
assumption that Ã(U0) must be asymptotically stable for all the considered bias
configurations. As Bernstein polynomials are defined in the unit interval, the bias
space U0 must be normalized to the unitary hypercube for (5.14) to be consistent.
Otherwise, different available strategies can also be employed to guarantee model
stability, e.g. the one proposed in [112].

Modeling of parameterized DC correction

Once model (5.14) is generated, it must be augmented with the affine correction
term, suitably parameterized over the bias space, that allows to recover the reference
circuit DC output Y0(U0) = G(Ξ, U0), U0 ∈ U0. The parameterized DC correction
term YC(U0) is defined upon state space (5.15) and Y0(U0) as

YC(U0) = Y0(U0)− (CMX0 +DMU0) and X0 = −A−1
M BMU0, (5.16)
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5.1 – Equivalent linearized surrogates for mildly nonlinear systems

and can be determined using the small-signal reduced order model and the full-order
device netlist. For a set of bias configurations U0,j ∈ U0, j = 1, . . . J , the reference
system DC output values Y0j = Y0(U0j) are computed with a parameterized DC
analysis. Then, the samples of the required map can be defined as

YCj = Y0j − (CMX0 +DMU0j), j = 1, . . . J. (5.17)

As the complexity of DC analysis is usually modest and so is that of the model
evaluation, a large number J of samples can be retrieved with small computa-
tional effort. Once these data are gathered, standard interpolation techniques can
be used to generate a model for the required parameterized DC correction term
YC(U0). This interpolation procedure can be performed with arbitrary choice of
basis functions, simply via least-squares estimation. The approach is straightfor-
ward and further details can be found in [82], [18]. Once the approximation of
YC(U0) is available, the overall parameterized affine model is assembled as

ẋ(t) = AM(U0)x(t) +BM(U0)u(t), x(0) = X0 = −A−1
M BMU0,

y(t) = CM(U0)x(t) +DM(U0)u(t) + YC(U0).
(5.18)

The following example shows how the proposed procedure can be used to generate
a bias-dependent linearized model of an LDO circuit.

Bias-dependent linearized equivalent of a post-layout LDO circuit

This example shows how bias-dependent linearized models can be used to drasti-
cally speedup small-signal simulations of circuit blocks in advanced stage of design,
as anticipated in Sec 1.2.1. The presented results have been documented in [18].

We consider the Only-MOS regulator design proposed in [74] depicted in Fig. 5.2.
The circuit was instantiated in Cadence environment, including the layout descrip-
tion 1. The design is characterized by low quiescent current and is intended for
low-power applications, with a maximum nominal load current IL = 10 mA and a
minimum rated input voltage VDD = 0.9 V. The circuit was designed according to
the reference specifications, making use of a 40 nm CMOS process. The resulting
layout takes a 0.0045 mm2 area.

For fixed bias configuration, the circuit block is characterized in terms of its
small signal hybrid matrix H̃(s):[︃

i1
v2

]︃
= H̃(s)

[︃
v1
i2

]︃
, (5.19)

where port 1 denotes the supply voltage and the port 2 the regulated voltage. For
this example, the admissible DC bias conditions for the supply voltage at port 1 are

1We thank Dr. Pedro Filipe Leite Correia De Toledo for providing the circuit design
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Port 2

Port 1

VBVB
VB

Vref

Figure 5.2: A Only-MOS LDO circuit schematic designed with 40 nm CMOS pro-
cess

VDD ≡ U1
0 ∈ [0.9, 1.1] V. At port 2, the admissible DC values for the load current

are instead IL ≡ U2
0 ∈ [0, 10] mA.

A parameterized small signal-model for the circuit, valid for the above defined
bias space, was obtained by applying the PSK algorithm of Sec. 3.2.1. A parame-
terized AC sweep was applied to the post-layout netlist to sample H̃(s, U0) (defined
as in (5.12)) in correspondence of a 25× 25 square grid over U0. For each bias con-
figuration, K = 125 logarithmically spaced samples of the frequency response were
retrieved over the bandwidth [0, 10] GHz. A subset of 208 parameters configuration
were used to perform model generation, setting n = 9 and inducing the parameter-
ization by choosing ξℓ(U0) as multivariate Chebyshev polynomials, of multidegree
ℓN = (4,4) for the numerator and ℓD = (3,3) for the denominator. Model stability
has been enforced in this case using the sampling-based strategy proposed in [112].

Fig. 5.3 shows the result of the multivariate rational fitting for one element of
the hybrid matrix, proving that the accuracy of the model is excellent for all of the
cosidered bias configurations.

Once the parameterized rational function H(s, U0) is available, the parameter-
ized correction term YC(U0) is computed to augment the small signal model with
the affine correction term. The required samples YCj are computed via parameter-
ized DC analysis using formula (5.17) and YC(U0) is reconstructed via multivariate
Chebyshev polynomials least-squares regression, performed on the available data.
The results of this regression for the DC correction at Port 2 are shown in Fig. 5.4
(left panel), together with the residual fitting error (right panel). The accuracy of
the approximation if excellent throughout the bias space, with a maximum error
around 2.5× 10−3.

Finally, H(s, U0) and YC(U0) are assembled to generate final model (5.18). The
state space model is cast into an equivalent SPICE netlist having a few kB size,
against the 30 MB of the post-layout original circuit netlist. In order to evaluate
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5.1 – Equivalent linearized surrogates for mildly nonlinear systems

Figure 5.3: Comparison between reference data (blue solid lines) and reduced order
small signal model (dashed red lines) for the post-layout LDO circuit. Left panel:
fixed bias current IL = 10 mA, with varying DC voltage within the bias space.
Right panel: the same by fixing VDD = 1 V and varying IL. Reproduced from [18]
© 2019 IEEE.

Figure 5.4: The parameterized DC correction YC(U0) for the second port of the
post-layout LDO test case. Right panel: reference data YCj (red dots) against the
resulting curve fitting (solid surface). Right panel: residual fitting error. Repro-
duced from [18] © 2019 IEEE.

the effectiveness of the complexity reduction, we performed a small signal transient
simulations by fixing the bias configuration with VDD = 1 V and IL = 5 mA, and
comparing the reference circuit response with that of the macromodel. The simula-
tion is performed by superimposing two sequential pulses of amplitude ±25 mV and
width 25µs to the VDD bias. The results of the simulation are shown in Fig. 5.5,
and confirm the excellent agreement between the reference circuit and the model.
Simulating the post-layout netlist required 63 s, while only 93 ms were required by
the model. The equivalent speed-up factor is in this case about 675×.
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5 – Small signal and linear parameter varying models

Figure 5.5: A small signal transient simulation. Affine linearized model (dashed red
lines) against reference post-layout LDO circuit (solid black line). The model sim-
ulation was 675× faster than the native circuit description. Reproduced from [18]
© 2019 IEEE.

5.2 Non-stationary operating conditions: the time-
varying approximation

The steps leading from (5.8) to (5.18) provide a linearized model that can be
used in place on the original nonlinear circuit for small signal analyses with con-
stant but uncertain operating point. However, during small-signal system level
simulations, the bias condition of the CB may be nonstationary, for example due
to a change of the loading conditions imposed by the terminations, or due to the
effect of some control operation aimed at tuning the operating point to meet some
performance goal, such as minimization of the power consumption. When the rate
of variation of the operating condition is slower than that of the small signals com-
ponents, the device evolution can be characterized by linearizing (5.1) around a
trajectory determined by the istantaneous operating condition. This concept is
formalized in the next derivations.

Let us assume that the input signal can be decomposed into a time-varying bias
term and a small-signal component, by generalizing (5.2) into

u(t) = U0(t) + ũ(t), (5.20)

where

• U0(t), from now on called bias component, is a slowly varying signal. Its rate
of variation limit will be further characterized below in Assumption 5.1. It is
also assumed that the amplitude of U0(t) is not necessarily small, but that

U0(t) ∈ U0 ∀t. (5.21)
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5.2 – Non-stationary operating conditions: the time-varying approximation

• ũ(t) is a small-signal input with ũ(0) = 0.

When the input signal is defined as above, the time invariant model (5.8) is not
adequate to represent the dynamics of (2.28), as the changes of the bias compo-
nent U0(t) may induce the circuit block to operate in correspondence of different
operating points.

The derivations contained in this section are based on the following assumption

Assumption 5.1. For each t∗ ≥ 0, the nonlinear equation

F (ξ, U0(t
∗)) = 0 (5.22)

has a unique solution ξ = Ξ0(t
∗), and a small constant δξ > 0 exists such that each

solution of (5.1) corresponding to input (5.20), obeys the inequality

||ξ(t∗)− Ξ0(t
∗)||2 ≤ δξ. (5.23)

Assumption 5.1 requires that the response of the nonlinear system is sufficiently
fast to respond to the variations of the input bias component in such a way that
the corresponding time-varying local equilibrium point tracks continuously the evo-
lution of U0(t). This assumption is satisfied when the spectrum of U0(t) is limited
to sufficiently low frequencies. The implications of this requirement will be docu-
mented on a practical example presented Section 5.3. If Assumption 5.1 is verified,
at each time instant the system trajectory (ξ(t), u(t)) is confined to a neighborhood
of the particular state-input configuration (Ξ0(t), U0(t)) which satisfies

0 = F (Ξ0(t), U0(t)),

Y0(t) = G(Ξ0(t), U0(t)).
(5.24)

If δξ is small enough and (5.24) holds, the small-signal dynamics of (5.1) can be
approximated by the time-varying linearization

ξ̇̃(t) ≈ F ′
Ξ(Ξ0(t), U0(t)) · ξ̃(t) + F ′

U(Ξ0(t), U0(t)) · ũ(t),
η̃(t) ≈ G′

Ξ(Ξ0(t), U0(t)) · ξ̃(t) +G′
U(Ξ0(t), U0(t)) · ũ(t),

(5.25)

with ξ̃(0) = 0. In view of the one-to-one correspondence between Ξ0(t) and U0(t),
(5.25) can be rewritten as

ξ̇̃(t) ≈ Ã(U0(t)) · ξ̃(t) + B̃(U0(t)) · ũ(t), ξ̃(0) = 0

η̃(t) ≈ C̃(U0(t)) · ξ̃(t) + D̃(U0(t)) · ũ(t),
(5.26)

where Ã, B̃, C̃, D̃ are defined as in (2.54) (2.51). From (5.26) it can be seen that,
under Assumption 1, the instantaneous value of the matrices entering (5.26) is
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the same as the one attained by the matrices defining parameterized small signal
transfer function (5.12), provided that U0(t) ∈ U0, ∀t. Therefore, the parameterized
modeling procedure of Sec. 5.1.2 can be easily generalized to generate a reduced
order model that mimics the desired map U0(t) + ũ(t)→ Y0(t) + η̃(t).

The proposed modeling procedure can be summarized as follows:

1. gather the frequency samples (5.13) of the small signal transfer function at
prescribed fixed values of the bias component;

2. synthesize a reduced-order parameterized transfer function in the form of (5.14)
exploiting the PSK iteration;

3. cast the parameterized transfer function into the state space (5.15) or into an
equivalent netlist, (not covered here, see [51]). Up to this step, the procedure
is the same as for standard parameterized macromodeling flows.

4. during a transient simulation, extract the bias input component U0(t) from
the total input u(t) and use this time-varying bias to instantiate the model
parameters in (5.15) by setting U0 = U0(t) at each time step.

As a result, the precedure returns a LPV affine model

ẋ(t) = AM(U0(t))x(t) +BM(U0(t))u(t), x(0) = X0 = −A−1
M BMU0(0),

y(t) = CM(U0(t))x(t) +DM(U0(t))u(t) + YC(U0(t)).
(5.27)

that represents a generalization of (5.15) to the time-varying case. Provided that
the value of U0(t) is known at each time instant, and that Assumption 5.1 is verified,
the model can be used to replace the original circuit block in a small signal anal-
ysis with nonstationary operating conditions. Adopting the reduction process, the
state space matrices in (5.15) have small size, and significant simulation speedup is
expected.

However, to exploit model (5.27) in system-level simulations, the two following
issues need to be addressed

• when the dynamics of the nonlinear system (5.1) are known to be stable
when subject to input of the type (5.20), this stability must be inherited by
model 5.27. Indeed, even if the “frozen-time” model (5.15) is guaranteed to
be uniformly stable for constant configurations of U0 ∈ U0, the stability of dy-
namics 5.27 it is not guaranteed when a time variation U0(t) takes place [119].
Therefore, the model generation must include some kind of appropriate con-
straints that guarantee the desired property.

• during runtime operation, the bias component U0(t) must be estimated start-
ing from the evolution of the full input u(t), in order to provide a valid
instantaneous parameterization of the time-varying model.
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These two issues will be addressed in sections 5.2.1, 5.2.2, providing a reliable
framework for the generation of LPV linearized macromodels.

As a last observation, notice that up to now the discussion has been focused on
the generation of linearized models in which the variation of the operating point is
induced by slowly varying components of the electrical quantities imposed at the
circuit block interfaces. Model structure (5.27) can also be exploited to take into
account changes of the circuit operating point induced by external environmen-
tal parameters on which (5.1) depends, e.g., on temperature. In this scenario, a
known instantaneous profile of the external parameter, such as a temperature pro-
file induced by heating, can be considered during runtime. Alternatively, coupled
electro-thermal or even multiphysics simulation, where the parameters are obtained
as a result of a co-simulation of an associated thermal or multiphysics model, are
also enabled by the proposed model structure.

In both the above-mentioned scenarios, the actual parameter value is available
in some form as a variable that is independent on the electrical port signals. There-
fore, there is no need to estimate in real time the actual working condition based
on the input signal u(t), and the exploitation of the proposed model structure is
more straightforward. In Section 5.3, an example of the first scenario, where a
given temperature profile is applied at runtime, is presented. Coupled multiphysics
simulations are left as a future investigation.

5.2.1 Self-parameterized model structure

Figure 5.6: The proposed model structure augmented with a low-pass filter aimed
at extracting the bias component and providing the instantaneous parameterization
to the linearized dynamics. Reproduced from [22] © 2021 IEEE.

During a transient analysis, the signal decomposition (5.20) is not defined
uniquely, as the only available numerical quantity is the full input signal u(t) at
the circuit interface. Therefore, the exploitation of (5.20) is practically applicable
only in view of an automated procedure aimed at isolating the bias and the small
signal components, as (5.27) requires the availability of the instantaneous input
bias component U0(t), to be provided as a parameter for the affine state.

When Assumption 5.1 holds, the spectrum of U0(t) is confined to a sufficiently
narrow low-frequency band, and the proposed time-varying linearization can be
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applied. It is thus intuitive that the required parameterization can be obtained
from the input signal by means of a low-pass filter aimed at extracting the value
of the instantaneous bias component. The resulting model structure is depicted in
Fig. 5.6,

The design of such a filter should be compliant with the requirements of our
main assumption; in particular, it must provide a parameterization such that (5.23)
holds with sufficiently small δξ. However, since the non-linear equations (5.1) are
not available in closed form, no analytical methods based on the native circuit
description can be exploited to derive an exact characterization of the frequency
domain properties that U0(t) must fulfill, in order to maintain the validity of the
proposed approximation. Due to this limitation, only heuristic criteria based on ex-
perimental (simulated) data regarding the circuit under modeling can be employed
to design the filter. The following procedure is proposed:

1. Build the low-order small-signal transfer function (5.14).

2. Sample the poles of the transfer function over the bias space U0. This op-
eration is not computationally expensive since the order n of the model is
small.

3. Determine the angular frequency ωp of the slowest pole of the parameterized
transfer function.

4. Set the cut-off frequency of the filter ωc = ρωp, with ρ ≤ 0.1

5. Build a second order Butterworth filter of with gain and cut-off frequency ωc.

The above procedure is aimed at guaranteeing a sufficiently slow variation of
the bias parameter, in compliance with previous results concerning LPV mod-
els derived from frozen-parameter configurations of the underlying system, see
e.g. [30], [107], [4]. Whenever an a-priori knowledge of the frequency content of
the bias input U0(t) is available, it can be used to tune the value of the ratio ρ.

In principle, time-domain data could also be exploited in the design of the de-
sired filter, based for example on the maximization of the accuracy of the model
against reference time domain training samples. In the proposed framework, re-
trieving time domain data from the original circuit description is extremely expen-
sive in terms of time requirements, as will be shown in the experimental section.
Additionally, due to the non-linear nature of equations (2.28), time-domain ap-
proaches would not provide additional warranties of accuracy when the model is
subject to input profiles that are different from those used to guide filter design.
Time-domain approaches are thus impractical and beyond the scope of this work.
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5.2.2 Quadratic stability constraints

In section 4.3, a method for the enforcement of uniform stability of LTI param-
eterized macromodels has been presented. However, the method is based upon the
frequency domain conditions (4.28), and can be used only to enforce the asymptotic
stability of Linear Time Invariant reduced order models; the addressed methodol-
ogy, when applied to generate the affine LPV macromodel (5.27) does not guarantee
that the dynamics of the resulting state space is stable irrespectively of the time
domain profile of the parameter U0(t). Therefore, some stronger conditions are
required.

The characterization of the stability properties of LPV systems has been subject
of intensive research in the fields of robust control and gain scheduling, see for
instance [15], [90], [118], [43]. A standard approach is to embed in the modeling
procedure the search for a Lyapunov function, which guarantees that the resulting
system is quadratically stable, meaning that is exponentially stable and admits a
quadratic parameter-independent Lyapunov function. This strong characterization
entails the asymptotic stability of system (5.27) under any possible time domain
evolution of the parameters U0(t). We refer to [95], for a complete theoretical
framework.

This approach can be incorporated in the PSK algorithm in order to enforce
the required stability properties to equations (5.27). This section shows that the
enforcement of quadratic stability can be achieved by constraining the iterative PSK
denominator estimation problem (3.36) with a suitable set of LMI constraints, that
represent a particular case of those introduced in 4.3 for the LTI case.

The derivation of such constraints exploits two known results. The first is the
equivalence between the affine state space formulation (5.27) and the descriptor
realization [103][︃

In×P 0
0 0

]︃
⏞ ⏟⏟ ⏞

E

[︃
ẋ
ẇ

]︃
=

[︃
A B

C⊗(U0(t)) D⊗(U0(t))

]︃
⏞ ⏟⏟ ⏞

A(U0(t))

[︃
x
w

]︃
+

[︃
0
−IP

]︃
⏞ ⏟⏟ ⏞

B

u

y =
[︁
C2(U0(t)) D2(U0(t))

]︁⏞ ⏟⏟ ⏞
C(U0(t))

[︃
x
w

]︃
+ YC(U0(t)) (5.28)

which holds since the structure of (5.27) is compliant with (2.60). The equivalence
also requires that D⊗(U0) /= 0 for all U0 ∈ U0, a condition that will be guaranteed
by the proposed stability conditions, as will be clear from the following derivations.
Therefore, the descriptor system (5.28) is well-posed, regular, and impulse-free.

The second available result needed to perform our derivations is the follow-
ing [24, Theorem 2.4.4], which provides the conditions that (5.28) must satisfy in
order to be quadratically stable.
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Theorem 5.1 (quadratic stability for descriptor systems). The descriptor LPV
system

E

[︃
ẋ
ẇ

]︃
= A(U0(t))

[︃
x
w

]︃
(5.29)

is quadratically stable if there exists

Q(U0) =

[︃
Q1 0

Q2(U0) Q3(U0)

]︃
(5.30)

with Q1 ∈ S(nP)
++ , Q2 : U0 → RP×n and Q3 : U0 → RP×P such that the inequality

A(U0)
⊤Q(U0) +Q(U0)

⊤A(U0) ≺ 0 ∀U0 ∈ U0. (5.31)

holds

Theoretically, Theorem 5.1 provides sufficient conditions that (5.28) must sat-
isfy to be quadratically stable. Nevertheless, these conditions can not be enforced
directly while generating the model, for two main reasons:

1. The entries C⊗ and D⊗ of the state matrix A(U0) are defined upon the un-
known model coefficients, according to (4.39). Considering these coefficients
and Q(U0) as unknown variables, (5.31) becomes a non-convex bilinear ma-
trix inequality (BMI) and thus cannot be solved efficiently as the number of
unknowns becomes large.

2. Condition (5.31) is required to hold uniformly over the whole parameter space
U0, imposing an infinite set of constraints.

In view of these considerations, enforcing (5.31) would translate in the necessity
to perform the model generation while imposing an infinite number of BMI con-
straints, in order to guarantee the quadratic stability of (5.28). This approach is
computationally impractical.

In order to make (5.28) compatible with the requirements of Theorem 5.1, a
simplified set of sufficient conditions is derived. The derivations are similar to those
of Section 4.3. Also in this case, the properties of the Bernstein polynomials are
used to parameterize the model structure. It is shown that this strategy provides
a guarantee for the quadratic stability through a finite set of LMIs.

The main result about the quadratic stability enforcement is given and proved
in the following.

Theorem 5.2 (Sufficient conditions for quadratic stability). The LPV system (5.28)
is quadratically stable if there exists Q1 ∈ Sn

++ such that[︃
A⊤

1 Q1 +Q1A1 Q1B1 − Cℓ⊤
1

B⊤
1 Q1 − Cℓ

1 −2Dℓ
1

]︃
≺ 0 ∀ℓ ∈ Iℓ. (5.32)
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Proof: Consider first the descriptor state matrix associated to (5.28) for the
single-input-single-output case, P = 1

A(U0) =

[︃
A1 B1

C1(U0) D1(U0)

]︃
. (5.33)

Applying Theorem 5.1 to the matrix A from (5.33) and defining

Q =

[︃
Q1 0
0 −1

]︃
shows that (5.33) is quadratically stable if Q1 = Q1

⊤ ≻ 0 obeys the inequalities[︃
A⊤

1 Q1 +Q1A1 Q1B1 − C1(U0)
⊤

B⊤
1 Q1 − C1(U0) −2D1(U0)

]︃
≺ 0 ∀U0 ∈ U0. (5.34)

Expanding C1(U0) and D1(U0) according to their definitions, (4.22) and (4.23),
leads to the equivalent condition⎡⎢⎢⎣

A⊤
1 Q1 +Q1A1 Q1B1 −

∑︂
ℓ∈Iℓ

bℓℓ(U0) · Cℓ⊤
1

B⊤
1 Q1 −

∑︂
ℓ∈Iℓ

bℓℓ(U0) · Cℓ
1 −2

∑︂
ℓ∈Iℓ

bℓℓ(U0) ·Dℓ
1

⎤⎥⎥⎦ ≺ 0 (5.35)

that must hold ∀U0 ∈ U0. In view of (4.13), one has

A1 = A1

∑︂
ℓ∈Iℓ

bℓℓ(U0), B1 = B1

∑︂
ℓ∈Iℓ

bℓℓ(U0) (5.36)

so that (5.35) shapes into∑︂
ℓ∈Iℓ

bℓℓ(U0)

[︃
A⊤

1 Q1 +Q1A1 Q1B1 − Cℓ⊤
1

B⊤
1 Q1 − Cℓ

1 −2Dℓ
1

]︃
≺ 0, ∀U0 ∈ U0 (5.37)

Due to (4.13), condition (5.37) is entailed by the discrete set of LMIs (5.32). This
proves the result for the case P = 1.

The general case P > 1 is proved by applying Theorem 5.1 to the matrix A(U0)
whose blocks are defined in (4.39), and by defining the matrix

Q =

[︃
IP ⊗Q1 0

0 −IP

]︃
,

where Q1 = Q∗⊤
1 ≻ 0 is a matrix that satisfies (5.34). Condition (5.31) shapes into

S ≺ 0 ∀U0 ∈ U0, (5.38)
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with

S =

[︃
IP ⊗ (A⊤

1 Q1 +Q1A1) IP ⊗ (Q1B1 − C1(U0)
⊤)

IP ⊗ (B⊤
1 Q1 − C1(U0)) −IP ⊗ (2D1(U0))

]︃
A similarity transformation S̄ = T⊤ST , where T is an appropriate permutation
matrix, leads to

S̄ = IP ⊗
[︃
A⊤

1 Q1 +Q1A1 Q1B1 − C1(U0)
⊤

B⊤
1 Q1 − C1(U0) −2D1(U0)

]︃
(5.39)

which is a block-diagonal repetition of (5.34), being thus negative definite, along
with S, whenever Q1 satisfies (5.32). This completes the proof.■

Theorem 5.2 provides sufficient conditions, that once verified, guarantee that the
affine LPV system (5.27) is quadratically stable. These conditions can be enforced
very easily during the model generation. Indeed, conditions (5.32) represent a finite
set of small-size LMIs, that can be enforced while solving (3.36); the resulting
optimization problem is

min
xν

⃦⃦
T̄

ν
xν
⃦⃦
2

s.t.
[︃
A⊤

1 Q1 +Q1A1 Q1B1 − Cℓ⊤
1

B⊤
1 Q1 − Cℓ

1 −2Dℓ
1

]︃
≺ 0 ∀ℓ ∈ Iℓ, Q1 ≻ 0

(5.40)
analogous to (4.36), with the difference that only one positive definite constant in-
strumental matrix Q1 must be found while identifying the denominator coefficients.
Therefore, the number of variables involved in the problem is n(n+1)/2+(n+1)Vℓ̄.
Some remarks about the proposed procedure are in order.

Remark 5.1. In order to cast (5.31) into a convex condition, the structure of
the Lyapunov function Q(U0) entering Theorem 5.1 has been simplified by impos-
ing Q3(U0) ≡ −1 and Q2(U0) ≡ 0. This could be the cause of some degree of
conservatism by over-constraining the model coefficients, and, in turn, the allowed
parameterized poles trajectories. However, in practice, no significant loss of accu-
racy have been in observed in models generated applying the proposed method, as
experimentally confirmed by the results presented in Section 5.3.

Remark 5.2. In the proposed formulation of Theorem 5.1, the state space realiza-
tion associated to model structure (5.14) has been considered. The properties of the
Bernstein polynomials defining the state space matrices allowed for the discretiza-
tion of the continuous parameter-dependent quadratic stability condition. However,
for the applicability of the proposed quadratic stability enforcement approach, the
basis functions ξℓ(U0) are not required to be necessarily Bernstein polynomials;
every choice of basis such that∑︂

ℓ∈Iℓ

ξℓ(U0) = 1, ξℓ(U0) ≥ 0 ∀ℓ ∈ Iℓ, U0 ∈ U0 (5.41)

is compatible with the proposed quadratic stability constraints.
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Remark 5.3. In the proposed framework, it is assumed that for any fixed con-
figuration of the bias component U0 ∈ U0, the nonlinear system (5.1) operates
around a stable operating point defined by equations (5.3). The enforcement of
the quadratic stability constraints (5.32) guarantees that the parameterized macro-
model inherits this property. Nevertheless, it is known that when active devices
are interconnected with certain (even passive) termination networks, the behavior
of the interconnected system may be unstable. It is thus relevant to ask if a certain
circuit block and the associated affine linearized equivalent (5.8) are both stable
(or unstable) under the same loading conditions.

This may not be the case in general, due to the unavoidable discrepancies be-
tween the local behavior of the reference circuit and that of the macromodel; these
differences are due to the errors introduced by both the linearization process and
by the modeling algorithm used to generate the reduced order model. However,
provided that the linearization does not introduce significant errors, and that the
order reduction approximation H(s, U0) ≈ H̃(s, U0) holds with sufficient accuracy,
then it may be argued that a termination that drives the macromodel to insta-
bility will do the same with the original circuit, and vice versa. Notice that the
linear structure of the surrogate is such that the unstable behaviors is qualitatively
different from that of the reference nonlinear system.

This situation occurs in the following example. Consider the common emitter
amplifier circuit depicted in Fig.5.7; for this circuit, a linearized macromodel is
derived around the stable equilibrium point enforced by the bias signal Vcc. The
input-output small signal transfer function has a maximum gain about 5.2. Ap-
plying the procedure of [49, Sec. 4.1], a passive two-port network that leads the
amplifier to instability can be found. Interconnecting this network with the macro-
model leads to an unstable system, in this case with a pair of complex conjugate
poles with positive real part p1,2 = +166 ± j628 rad/s. By interconnecting both
the macromodel and the original amplifier with the considered termination, and
performing a a transient analysis using a sinusoidal excitation vs(t) with ampli-
tude 1 µV and frequency 100 Hz, it is observed that instability occurs in both
the situations. The resulting output voltages are depicted in Fig. 5.8. As can be
observed, the results of the simulation are in agreement only up to a finite time
horizon (about 80 ms). For later times, the actual amplifier undergoes saturation,
making the small-signal assumption invalid.

Remark 5.4. The proposed set of linearized quadratic stability constraints (5.32)
can be seen as more general (yet restrictive) conditions for ensuring the uniform
stability of standard LTI parameterized macromodels, where the parameters are
constant. These are obviously a particular case of LPV systems, where time varia-
tion of the parameters is suppressed.

It is interesting to note that both (4.28) and proposed conditions (5.32) provide
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Figure 5.7: A common emitter amplifier (Cin = Cout = 10 µF, R1 = 4 kΩ ,
R2 = 1 kΩ, RC = 110 Ω, RE = 20 Ω and Vcc = 10 V) interconnected with a passive
two-port network (see text). Reproduced from [22] © 2021 IEEE.

Figure 5.8: Transient analysis of the unstable electrical network depicted in Fig. 5.7.
Reference nonlinear circuit and linearized model are in agreement up to a given
time horizon, after which the small-signal assumption does not hold. Reproduced
from [22] © 2021 IEEE.
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a certification of model stability based on energetic properties of the model denom-
inator function D(s, U0). In short, if D(s, U0) represents a passive system, then its
inverse is also passive and both zeros and poles have a negative real part [53]. The
proposed LMI conditions (5.32) provide a characterization of denominator passivity
in terms of the Positive Real Lemma 2.6, analogously to (4.31), with the additional
assumption that the employed storage function is constant.

5.3 Numerical examples
This section validates the proposed approach on a number of relevant test cases,

showing the effectiveness and the limitations of the parameter varying modeling
setting. The experiments are focused on two different Low Dropout Regulator
(LDO) designs; this class of reference devices was chosen due to its relevance in
modern electronic power distribution systems, in which they are heavily employed to
guarantee different levels of stabilized reference voltages for the system components.

Two different LDOs designs are considered as test cases. The first was first
presented in [75], and is treated in Sec 5.3.1. We will refer in the following as to
LDO-A. The second is the post-layout LDO design already presented in Sec. 5.1.2.
Here it is studied under nonstationary operating conditions. This test case will be
denoted as LDO-B, and is considered in Sec. 5.3.2 and 5.3.3.

5.3.1 LDO-A

The first example provides a proof-of-concept validation of the proposed model-
ing framework. As reference circuit, a CMOS LDO regulator design, first proposed
in [75] and depicted in 5.9, is considered.

The circuit schematic was instantiated in the LTSpice environment, without
taking into account any additional layout description or packaging parasitics. This
regulator provides a nominal output voltage VL = 2.8 V for load currents values
IL ∈ [0, 50] mA, with a minimum recommended DC input voltage VDD = 2.9 V.

The circuit was modeled through its 2-port hybrid representation, considering
as port variables the input voltage (port 1) and the load current (port 2). For this
test case, the reference load current was fixed to U2

0 ≡ IL = 10 mA, while the
input voltage was allowed to vary within the set U1

0 (t) ≡ VDD(t) ∈ [2.85, 3] V, in
order to stress the non-linear degradation of the power supply rejection at low input
voltages. The considered bias space is therefore the set U0 = [2.85, 3] V × 10 mA.

The bias space was sampled by collectingM = 20 distinct small-signal frequency
responses at different DC levels of the input voltage, and a reduced order model with
order n = 8 was extracted by applying the quadratic stability constraints (5.32).
N(s, U0) and D(s, U0) were both parameterized by means of third order Bernstein
polynomials. The frequency-domain fitting required 6.2 s.
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Figure 5.9: LDO-A. Circuit schematic

Figure 5.10 reports the results for two elements of the matrix transfer function,
confirming the excellent accuracy of the model against the reference data. A low-
pass filter with ρ = 0.05 and a cut-off frequency ωc = 2π800 rad/s completes the
model structure according to Fig. 5.6. The model was finally synthesized as a
behavioral netlist, implemented in the LTSpice environment.

A set of transient analyses was performed in order to compare the performance
of the proposed LPV behavioral model with the reference transistor-level schematic.
To this aim, the following testing input signals were defined

u1(t) = a1 sin(2πf1t) +
b

1 + e−k(t−0.09)
+ 2.85 V

u2(t) = a2 sin(2π
√
2f1t) + IL

(5.42)

where coefficients a1 = 5 mV, a2 = 1 mA and f1 = 10 kHz define the small signal
quantities. A variation of the operating point is induced by the second term in
u1(t), with a slew rate parameterized by b = 0.15 V and by the shape factor k.
A transient analysis was repeated for k = 100, 200, . . . ,1000, in order to assess the
ability of the model to track increasingly faster operating point variations. The
considered bias profiles are depicted in Fig. 5.11.

The regulated voltage returned by the model prediction was compared with
the transistor-level reference for the ten considered test cases, by computing the
RMS value of the corresponding deviation. The results are reported in the top
panel of Fig 5.12, while the bottom panel reports the transient regulated voltage
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of model and true circuit for one case k = 500 (similar results were obtained for all
values of k). It can be observed that the error remains well under control for all
the considered bias profiles, although it increases slightly for faster bias variations.
This behavior is expected, since faster variations are likely to be more difficult to
track by the low-pass filter.

The necessity of a LPV model structure that embeds time-varying small-signal
parameters is confirmed by Fig. 5.13. Here, the transient results obtained by a fixed
model with LTI structure and constant state space matrices defined by a prescribed
operating point U1

0 = 2.85 V are reported, by letting the input bias component
switch according to (5.42) with k = 500. In this experiment, the evolution of the
bias component is not tracked by the model. The results show that the LTI model is
not able to reproduce the correct voltage regulation behavior of the original circuit
as the input voltage drifts to a higher value. On the other hand, the proposed LPV
model structure adaptively tracks the operating point variation and recovers both
the trend and the small signal variations of the output voltage (bottom panel of
Fig. 5.12).

5.3.2 LDO-B

This second example is focused on a more realistic application scenario for
the proposed modeling framework, and takes into account the LDO circuit design
already considered in 5.1.2, which includes the parasitics characterization resulting
from the circuit layout extraction. Similarly to the LDO-A circuit of Sec. 5.3.1,
the device was modeled as a 2P system in hybrid representation. For this test
case, a fixed bias level of the input voltage to U1

0 ≡ VDD = 0.9 V was considered,
while the load current was allowed to span the entire operating range, so that U2

0 ≡
IL ∈ [0, 10] mA. A model with n = 9 parameterized poles was derived starting from
M = 50 frequency responses, obtained at different load current configurations, using
a polynomial order ℓ̄ = 5 for numerator and denominator. The model generation
time was 8.6 s. The accuracy of the fitting is confirmed in Fig. 5.14, where no visible
difference between the model and the reference small-signal responses can be noted,
throughout the entire bias space. Finally, a low-pass filter with cut-off frequency
ωc = 2π500 rad/s was added to complete the LPV model structure (Fig. 5.6).

The resulting LPV model was used to simulate a transition from a low-power
(IL = 0.5 mA) to a higher consumption state IL = 2 mA, with a transition time
∆t = 6 ms. A time-varying noise signal with flat power spectrum limited to the
band 1−10 kHz and amplitude 0.2 mA was added to the output current, to represent
a small-signal variation around IL. Similarly, a 20 mV small-signal variation with
the same bandwidth was added to the input voltage.

The model was istantiated as an equivalent SPICE netlist in the LTSpice en-
vironment. The numerically computed regulated voltage is provided in Fig. 5.15,
where the model response against the reference device data are compared. The
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Figure 5.10: Two elements of the transfer function for the LDO-A test case. The
parameterization is induced by the DC value of the input voltage. Both training
and validation samples are shown. Reproduced from [22] © 2021 IEEE.

results show that the model is accurate for the whole simulation length, and that
the accuracy is preserved during the transition. The reference transistor-level sim-
ulation was performed using Cadence 6.1.7-64b + Spectre 18.1.0-64b enviroment
into a HP Proliant DL580 Server featuring 72-parallel-CPU Intel Xeon Gold 6140M
and 128GB RAM. The total run-time was approximately 13 minutes. The same
transient analysis using the proposed model was performed in LTSpice on a differ-
ent machine, equipped with Intel Core i9 7900X CPU and 64 GB of RAM. The
resulting runtime was 16 s, corresponding to a 50× speed up.
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Figure 5.11: Time variation of the the bias component U1
0 (t) for the LDO-A test

case, for different values of k = 100,200, . . . ,1000. Reproduced from [22] © 2021
IEEE.

To further validate the model, an additional operating point variation scenario
was simulated, by switching the load current from IL = 5 mA to IL = 8 mA in
∆t = 6 ms, and using a small-signal component with amplitude 0.5 mA. The results
are reported in Fig. 5.16. Also in this case the LPV model is in full agreement with
the reference data, confirming the validity of the proposed approach.

5.3.3 Modeling a temperature-dependent behavior

This last experiment represents a proof of concept of how the proposed LPV
model structure can be adapted and exploited to track variations of environmental
quantities during a transient analysis. The LDO-B was analyzed by performing a
transient analysis including a time variation of the device temperature. The LPV
model was constructed by fixing the DC levels of the port variables to VDD =
1 V and IL = 50 µA, and by collecting a set of M = 26 parameterized small-
signal transfer functions for a broad range of operating temperature conditions
T ∈ [−25,100] ◦C. This data was used to generate a model with dynamic order
n = 8 and third-order parameterization to capture the temperature dependence in
the model. The modeling procedure required 6.8 s. The resulting model accuracy
is illustrated in Fig. 5.18. Additionally, a model with the same order was generated
by enforcing the uniform stability constraints proposed in [53] for parameterized
LTI macromodels, in place of (5.32); in Fig. 5.19 the output impedance of the
two models are compared for different temperature values, showing that no visible
degradation of the accuracy is induced when the constraints from [53] are replaced
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Figure 5.12: LDO-A test case. Top panel: RMS deviation of model wrt transistor-
level response, as a function of the slew rate of input bias variation (see Fig. 5.11).
Bottom panel: transient regulated voltages of model and transistor-level circuit for
the case k = 500. Reproduced from [22] © 2021 IEEE.

by the proposed constraints (5.32).
For this illustrative example, the real-time temperature parameterization is in-

jected directly into the model coefficients by making use of the temperature profile
shown in Fig. 5.17, which simulates the variation induced by a CPU heating [76]. A
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Figure 5.13: LDO-A test case: as in Fig. 5.12 (bottom panel), but using a fixed LTI
model, with constant state space matrices. This model cannot track the variation
of the operating point as the input bias component switches to another DC level.
Reproduced from [22] © 2021 IEEE.

band-limited small-signal component was also added to the input voltage, with am-
plitude 30 mV and power spectrum limited to 100 Hz, with a peak around the line
frequency at 50 Hz. A reference transient response was computed in the Cadence
environment. Due to the extremely long duration of the transient, this simulation
required approximately 24 hours to be performed.

The proposed model was instantiated and simulated with LTSpice in about
20 minutes, with a speed-up of about 100×. Figure 5.20 compares the transient
evolution of the regulated voltage for both proposed model and transistor-level
reference over two different time windows associated to different local temperature
values. The figure reports also the results of a transient simulation performed
with an ad hoc solver written in MATLAB and based on a simple backward Euler
integration of the LPV model. Although this code is prototypal and non-optimized,
the entire simulation required only 44 s, with further speedup with respect to
a conventional SPICE implementation. Both reference and the two LPV model
simulations provided compatible results, with no visible loss of accuracy.

5.4 Discussion
This chapter presented a macromodeling framework for mildly nonlinear systems

and analog circuit blocks. The approach is aimed at generating macromodels that
can replace the reference devices for small-signal operation, both with constant and
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Figure 5.14: Two frequency responses of the LDO-B test case. The parameteriza-
tion is induced by the DC value of the load current in the range [0,10] mA. Only
validation samples are shown. Reproduced from [22] © 2021 IEEE.

nonstationary operating conditions. The modeling procedure is non intrusive and
does not require performing expensive time domain simulations of the native circuit
descriptions to perform training. The model structure is inherited from the passive
parameterized macromodeling setting presented in chapter 4 and augmented with
suitable affine output terms. In the proposed approach, the model coefficients are
parameterized by the value of the input DC components at the device electrical
ports, which determine the operating point.

To reconstruct the reference behavior when the device is subject to time-dependent
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Figure 5.15: LDO-B test case. Top panel: regulated output voltage during an
operating point transition from IL = 0.5 mA to IL = 2 mA; bottom panel: zoom
on the transition time window. Reproduced from [22] © 2021 IEEE.

bias trajectories, we proposed to update online the value of the model coefficients,
based on the instantaneous operating point condition. The resulting model is repre-
sented as a LPV system that automatically extracts the input DC components from
the port signals in order to perform online self-parameterization. The asymptotic
stability of the dynamics is guaranteed by enforcing the existence of a parameter-
independent Lyapunov function for the model during its generation. This stability
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Figure 5.16: LDO-B. As in Fig. 5.15, but for an operating point transition from
IL = 5 mA to IL = 8 mA. Reproduced from [22] © 2021 IEEE.

assessment is performed numerically by solving suitable semidefinite programs when
estimating the model coefficients, similarly to what is done in Sec 4.3.

The modeling approach proved to be effective in a number of relevant test cases
involving LDOs. The resulting surrogates are accurate and guarantee significant
gains in terms of transient simulation speedup.
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Figure 5.17: The temperature profile used to perform the transient analysis LDO-B
under time-varying environmental conditions. Reproduced from [22] © 2021 IEEE.

Figure 5.18: Validation of LDO-B model, parameterized by device temperature.
The figure compares the model with the reference small-signal voltage regulation
transfer function, for the temperature operating range T ∈ [−25,100] ◦C. Repro-
duced from [22] © 2021 IEEE.
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Figure 5.19: Comparison between the output impedance of two models of the
LDO-B circuit, obtained by enforcing the uniform stability constraints as in [53]
and the proposed quadratic stability constraints (5.32) respectively. Reproduced
from [22] © 2021 IEEE.
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Figure 5.20: Transient analysis of the post-layout LDO with time-varying tempera-
ture over three time windows extracted from the whole simulation, representative of
different instantaneous temperature values. Top panel: T ≈ 32◦C. Bottom panel:
T ≈ 68◦C. Reproduced from [22] © 2021 IEEE.
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Chapter 6

System modeling during on-line
operation

All the macromodeling approaches discussed up to this point rely on the avail-
ability of frequency response samples (possibly swept over a parameter space of
interest) of the underlying systems. The parameterized models are obtained via
multivariate rational fitting, and in particular, exploiting the PSK iteration.

In certain scenarios however, there can be interest in generating reduced order
models of systems for which samples of the frequency response are not available,
either because no mathematical descriptions of the reference system are available, or
because they can be computed only by performing Fourier analysis of prohibitively
long and/or non-stationary time series data. In such situations, it is necessary (or
convenient), to perform the model order reduction process in the time domain, by
directly exploiting the availability of a set of real or virtual measurements of the
system input and output signals.

Black box modeling of dynamical systems starting from input-output time series
is a classical topic in the field of system identification, and a number of standard
approaches, such as those based on autoregressive models or state space identifica-
tion, are well established in the literature [72]. Time domain data have also been
exploited in the model order reduction framework, e.g. in [36, 29], and [47].

This chapter presents an approach to generate reduced order models of systems
starting from time-domain input-output data, sampled while the system is oper-
ating in real time (through measurements or highly accurate simulations). The
proposed approach is designed to generate models when the available data are re-
trieved under the following conditions

• During the data acquisition, all the input signals possibly act on the system
at the same time. Thus, their individual effect on the output signals is not
directly observable from the data.

• The system is not at rest when the data acquisition starts. This implies that
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the output signals embed free response components deriving from non-zero
initial conditions.

The above conditions exist whenever the system under modeling can be monitored,
but the user has no direct control on the input signals; therefore, no systematic
experiments can be performed by arbitrarily designing the excitation time series
required to build the model.

The described scenario is common in several applications, such as the two fol-
lowing notable examples.

• In the context of power systems, it is desirable to derive models describing
the dynamics of complex grids starting from data provided by Phasor Mea-
surement Units (PMU) [104, 37]; performing an online model generation and
validation is in this case particularly valuable, since generators and loads act-
ing on the distribution networks cannot be shut down or disconnected at will
just for defining a controlled identification environment.

• In the field of computational haemodynamics, the derivation of patient-specific
models of the cardiovascular system based on measured or simulated data
(transient pressure and blood flow rates) represents an attractive opportu-
nity to perform clinical diagnoses or what-if analyses. As training data are
blood pressure and flow within the human cardiovascular system, it is obvi-
ous that they can be acquired only during on-line operation (i.e. while the
patient is still alive!) and there is no possibility to control the physical signals
involved in the modeling procedure.

For both applications, the proposed algorithm discussed in this chapter is suitable
for estimating the small-signal reduced-order model (5.6) of the underlying systems
during online operation, thus providing an alternative time-domain framework for
the generation of local linearized equivalents described in Chapter 5.

The proposed modeling algorithm is based on the Time Domain Vector Fitting
scheme (TDVF) first presented in [47] and recalled here in section 6.1.1, suitably
reformulated to take into account the online data acquisition requirements. The
resulting scheme, called Real Time Vector Fitting (RTVF) [23], is described in
Sec 6.1.

6.1 Real-Time Vector Fitting

6.1.1 Background on Time-Domain Vector Fitting

Consider a dynamical system D operating in real time, with input u(t) ∈ RP

and output y(t) ∈ RP. The (unknown) system internal state vector is denoted as
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x(t) ∈ RN. It is assumed that set of samples of the input output vectors

u(tk), y(tk) k = 1, ..., K (6.1)

collected at constant sampling rate Fs, is available as a result of measurements or
simulations. Without loss of generality, is is assumed that t1 = 0 in the following.
All derivations will hold if t1 /= 0, provided that the time variable is redefined as
t← t− t1.

When the underlying system D is LTI, the relation between the input and
output signals is defined by the system transfer function according to

Y (s) = H̃(s)U(s), (6.2)

When D is mildly nonlinear and operates under small signal regime, then H̃(s) may
be regarded as a small signal transfer function as in (5.7). A reduced order model
H(s) ≈ H̃(s) can be determined from the samples (6.1) through one of the several
available data-driven model order reduction methods. Specifically, the standard
Time Domain Vector Fitting (TDVF) scheme [51, 47, 48], which represents the
starting point of the successive derivations, can be applied to generate the desired
model H(s) whenever

• a time series of each output ymj(t) at port m, excited by a single input
component uj(t) placed at port j, is available, under the constraint that
this input is acting alone, i.e. u(t)k /=j = 0.

• each of the above time series must be generated with uj(0) = 0, in such a
way that the system is at rest when the observation starts, and

ylj(0) ≡ 0, x(0) ≡ 0. (6.3)

If the data are compliant with the above requirements, then a model for H̃(s)
can be generated via the standard TDVF algorithm. For convenience, we briefly
recall this algorithm and its properties below.

The first step is to choose the order n of the model. Then, as in all vector fitting
schemes, some initial estimate of the dominant system poles {qi, i = 1, . . . , n} is
performed. Usually, such poles are initialized randomly as real or complex conjugate
pairs, provided that Re {qi} < 0 and |qi| < Ω, where Ω is the modeling bandwidth of
interest [51, 58]. Based on the training data, TDVF constructs the approximation

r0 · ymj(t) +
n∑︂

i=1

ri · y(i)mj(t) ≈ R
(0)
mj · uj(t) +

n∑︂
i=1

R
(i)
mj · u

(i)
j (t) (6.4)

for t = tk with k = 1, . . . , K, where R(i)
mj and ri are unknown coefficients that can

be determined through a linear least squares solution. In (6.4), the superscript (i)
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indicates the result of the single-pole convolution

z(i)(t) =

∫︂ t

0

eqi(t−τ)z(τ)dτ (6.5)

where z(t) is a generic signal with z(0) = 0. The regression problem (6.4) corre-
sponds to the Laplace-domain relation

Ymj(s) ≈ Hmj(s)Uj(s) =

R
(0)
mj +

∑︁n
i=1

R
(i)
mj

s− qi
r0 +

∑︁n
i=1

ri
s− qi

· Uj(s) (6.6)

In the above formula, the elements Hlj(s) are recognized to be structured exactly
as in (3.17), for a fixed iteration index ν. After the unknowns of the problem are
found, the poles relocation step can be performed exactly as for the VF frequency
domain counterpart, until some convergence condition is verified, as reported in
section 3.1.3.

6.1.2 Fitting real-time transient signals

Consider now the situation in which the system under modeling operates in real
time, with input and output data (6.1) acquired during system operation. As data
acquisition may begin at an arbitrary time instant, the assumption (6.3), which
requires that the system is at rest when the acquisition starts, is evidently too
restrictive; the output samples y(t) may include contributions from both the zero-
input and the zero-state response, due to non-vanishing initial conditions. Therefore
the relations required by (6.3) are not met and the system description through an
input-output transfer function is not sufficient. A suitable parameterization of the
zero-state response contribution is required. Moreover, assuming that the system
input signal can not be controlled, it is expected that all the input channels act
concurrently on the system. Therefore, standard TDVF cannot be applied in such
a situation.

Assuming that the system under observation is mildly nonlinear,however, it is
always possible to decompose the inputs, outputs and states vectors according to

u(t) = u0 + ũ(t),

y(t) = y0 + ỹ(t),

x(t) = x0 + x̃(t),

(6.7)

where
u0 = u(0), x0 = x(0), y0 = y(0) (6.8)

are considered as non-necessarily vanishing initial conditions and ũ(t), ỹ(t), x̃(t)
are small signal components.
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Notice that the signal decomposition (6.7) is different from the similar one
already defined in (5.2). In the latter, the small signal quantities are defined as
deviations from the actual operating point defined by equations (5.3). In (6.7),
instead, the small signals represent the deviation of the associated vectors from
the values that they assume when the system observation starts. This change of
reference point is necessary for the definition of the small signals in the considered
scenario, as the constant quantities defining the equilibrium point of the reference
system cannot be inferred by the time domain observations.

The derivations of this section show that an approximation for the small signal
transfer function H̃(s), defined as in (5.7) with respect to the actual operating point
of the system, can be obtained starting from the signal decomposition (6.7). The
Real Time Vector Fitting scheme, introduced next generalizes the standard TDVF
by allowing the presence of non-vanishing initial conditions, as in (6.8), and the
presence of inputs acting concurrently, as in common system operation conditions.

6.1.3 Modeling non-vanishing initial conditions

A consistent formulation of the online operation scenario would require to de-
compose the observations of the output signal y(t) into its zero-state and zero-input
contributions. This decomposition is not straightforward, because the system quan-
tities defining the operating point, and, in particular, the equilibrium configuration
of the system D, are unknown.

To describe the role of the unknown initial state, we first consider a generic LTI
system in state space form:

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(6.9)

by requiring that A is non-singular (the system has no poles at the origin). Plugging
the signal definitions (6.7) into (6.9) gives

ẋ(t) = ẋ̃(t) = A(x0 + x̃(t)) +B(u0 + ũ(t)) (6.10)
ỹ(t) + y0 = C(x0 + x̃(t)) +D(u0 + ũ(t)). (6.11)

The output (6.11) is rewritten as the superposition of the constant and the time-
dependent small-signal components as

y0 = Cx0 +Du0, (6.12)
ỹ(t) = Cx̃(t) +Dũ(t), ∀t ≥ 0. (6.13)

Two situations may occur:
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1. The system is at constant steady-state for t = 0 (equivalently, ∀t ≤ 0). If this
is the case, all small-signal components are zero for t = 0 and (6.10) reduces
to

Ax0 +Bu0 = 0 → x0 = −A−1Bu0. (6.14)

The above provides the initial state condition x0, from which one understands
that the triplet (x0, u0, y0) corresponds to the actual operating point of sys-
tem (6.9). Note that a constant steady-state operation is allowed since A
is assumed to be nonsingular. Coupling (6.10) with (6.14), for t > 0, the
small-signal components satisfy the state space equations

ẋ̃(t) = Ax̃(t) +Bũ(t). (6.15)

The sets of equations (6.13) and (6.15) provide the small-signal transfer func-
tion H̃(s) in terms of the state space matrices:

H̃(s) = C(sIP − A)−1B +D =
Ñ(s)

D̃(s)
(6.16)

with D̃(s) = |sIP−A|. In order to build a rational approximation for H̃(s) the
initial conditions u0, y0 can be subtracted from the input and output signals,
and a zero-state modeling scheme, such as basic TDVF can be applied based
only on small-signal components ũ(t), ỹ(t).

2. A second situation occurs when the system is not operating under constant
steady-state conditions for t < 0. In this case, (6.14) is not verified and

x0 /= −A−1Bu0. (6.17)

Therefore, even if the initial conditions u0, y0 are removed from the input
and output signals, the corresponding small-signal output ỹ(t) still includes
a contribution from the initial state. This contribution is analyzed next.

The system evolution in terms of small-signal state components can be obtained
by integrating equation (6.10) for t > 0 as

x̃(t) =

∫︂ t

0

eA(t−τ)(Bũ(τ) + Ax0 +Bu0)dτ. (6.18)

Equation (6.18) can also be rewritten as

x̃(t) =

∫︂ t

0

eA(t−τ)Bũ(τ)dτ

+
[︁
eAt − IP

]︁
(x0 + A−1Bu0)⏞ ⏟⏟ ⏞

T

,
(6.19)
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where the contribution of the state initial condition is highlighted. Notice that if a
steady-state condition holds for t ≤ 0, the second component of (6.19) vanishes, as
T = 0, and the associated solution coincides with the solution of the small-signal
system (6.15). The term T can therefore be interpreted as the deviation of the
actual initial state x0 and the equilibrium state that would stand if the system
were operating under steady-state conditions, excited by the constant input u0.

Computing the Laplace transform of (6.19) gives

X̃(s) = (sIP − A)−1B Ũ(s) +
[︁
(sIP − A)−1 − s−1IP

]︁
T. (6.20)

Plugging (6.20) in (6.13) one obtains

Ỹ (s) = CX̃(s) +DŨ(s) = H̃(s)Ũ(s) + Γ0(s), (6.21)

where H̃(s) is given by (6.16). Additionally,

Γ0(s) = (C(sIP − A)−1 − s−1C)T =
G̃(s)

s · D̃(s)
, (6.22)

where G̃(s) is an unknown polynomial vector. Equation (6.21) can be therefore
rewritten as

Ỹ (s) =
N̆(s)

D̃(s)
Ũ(s) +

G̃(s)

s · D̃(s)
. (6.23)

The terms in (6.23) are characterized by the same denominator D̃(s) up to a pole
at s = 0, representing the non-vanishing initial conditions contribution. A self-
consistent vector fitting scheme to estimate model H(s) ≈ H̃(s) can now be formu-
lated, by properly taking into account the presence of the additional term Γ0(s)
in (6.21).

6.1.4 Model structure and implementation

Starting from the Laplace domain expression of the small signal output (6.23),
the RTVF scheme is now introduced based on the following steps.

1. The observations are reconstructed by using a model of the form

Ỹ (s) ≈ N(s)

D(s)
Ũ(s) +

G(s)

s · D(s)
. (6.24)

where N, D and G are approximations computed trough VF iteration.

2. Both N(s) and D(s) are expanded in the standard rational barycentric form,
as in (6.6), using the initial set of poles qi; in particular, the components of
the unknown vector G(s) are expanded as:

Gj(s) = b
(0)
i +

n∑︂
i=1

b
(i)
i

s− qi
∀j = 1, . . . ,P . (6.25)
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3. The case of multiple inputs acting concurrently on the system is handled by
exploiting the superposition principle to express each output term Ỹ m(s) in
terms of all input components Ũ j(s).

Applying the above guidelines leads to the formulation of the fitting conditions (6.24)
as

Ỹ m(s) ≈
P∑︂

j=1

R
(0)
lj +

∑︁n
i=1

R
(i)
mj

s− qi
r0 +

∑︁n
i=1

ri
s− qi

· Ũ j(s)+

+

b
(0)
m +

∑︁n
i=1

b
(i)
m

s− qi

s ·
(︃
r0 +

∑︁n
i=1

ri
s− qi

)︃ ∀m = 1, . . . ,P. (6.26)

In (6.26), the terms R(i)
mj are the mj-th entries of the unknown matrix coefficients

R(i) defining the numerator transfer function N(s) of the model H(s) expressed
in barycentric form. The unknowns ri are common to all transfer matrix entries;
therefore, a set of common poles can be enforced for the model. Finally, the un-
knowns b(i)m allow for a parameterization of the zero-input response in barycentric
form, as written in (6.24).

Linearizing the fitting condition with respect to the denominator D(s) and per-
forming the inverse Laplace transform returns the following time-domain fitting
condition for t ≥ 0:

r0 · ỹm(t) +
n∑︂

i=1

ri · ỹ(i)m (t)

≈
P∑︂

j=1

[︄
R

(0)
mj · ũj(t) +

n∑︂
i=1

R
(i)
mj · ũ

(i)
j (t)

]︄

+ b(0)m ·Θ(t) +
n∑︂

i=1

b(i)mΘ(i)(t), ∀m = 1, . . . ,P (6.27)

where, Θ(t) represents the Heaviside step function.
Writing (6.27) for t = tk, with k = 1, . . . , K, one obtains the RTVF fitting

condition in compact matrix form

− ϕm · r +
P∑︂

j=1

ψj · rmj + β · bl ≈ 0 ∀m = 1,2, ...,P , (6.28)
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where the vectors collecting the unknown coefficients are

r =

⎡⎢⎣ r0
...
rn

⎤⎥⎦ , rmj =

⎡⎢⎣ R
(0)
mj
...

R
(n)
mj

⎤⎥⎦ , bm =

⎡⎢⎣ b
(0)
m

...
b
(n)
m

⎤⎥⎦ , (6.29)

and the matrices that collect the filtered signal samples defined as in (6.5) are

ϕm =

⎡⎢⎣ỹm(t1) ỹ(1)m (t1) . . . ỹ(n)m (t1)
...

... . . . ...
ỹm(tk) ỹ(1)m (tK) . . . ỹ(n)m (tK)

⎤⎥⎦ (6.30)

ψj =

⎡⎢⎣ũj(t1) ũ
(1)
j (t1) . . . ũ

(n)
j (t1)

...
... . . . ...

ũj(tk) ũ
(1)
j (tK) . . . ũ

(n)
j (tK)

⎤⎥⎦ (6.31)

β =

⎡⎢⎣1 Θ(1)(t1) . . . Θ(n)(t1)
...

... . . . ...
1 Θ(1)(tK) . . . Θ(n)(tK)

⎤⎥⎦ , (6.32)

where the functions Θ(i)(t) entering β are the step responses of the partial fractions
defining (6.25) computed for unitary residues. By additionally defining

∆ =
[︁
ψ1 . . . ψP β

]︁
, am =

[︁
r⊤m1 . . . r⊤mP b⊤m

]︁⊤ (6.33)

and collecting all components, the fitting condition (6.28) is expressed through the
compact matrix notation

⎡⎢⎢⎢⎣
∆ 0 . . . 0 ϕ1

0 ∆ . . . 0 ϕ2
...

... . . . ...
...

0 0 . . . ∆ ϕP

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
a1
a2
...
aP

r

⎤⎥⎥⎥⎥⎥⎦ ≈ 0. (6.34)

As common to other vector fitting schemes, standard techniques can be used to
avoid the vanishing trivial solution, using e.g. the SVD as outlined in Sec. 2.1.2, or
tailored non-triviality constraints, as explained in [57, 51]. Once (6.34) is solved,
the zeros zi of the denominator D(s) are computed as in (3.19) and used to define
the partial fractions basis for the next iteration. The iteration is performed until
convergence of the poles estimates. A pseudocode for the proposed scheme is given
in Algorithm 1. The final steps (lines 8–10) find the residues of the final rational
model based on the fixed poles obtained from the pole relocation process (lines
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1–7). In line 10, the vector ỹm collects all time samples of the m-th small-signal
output component.

Due to the particular structure of the least-squares problem (6.34), in order to
improve the algorithm efficiency, the coefficients r can be computed separately from
the unknowns am, by performing a number P of QR factorizations, as outlined for
the PSK algorithm in section 3.2.1; to see this, notice that the structure of (6.34)
is the same as that of (3.31). Therefore, the same decoupled estimation procedure
can be applied also in this case.

Algorithm 1 The RTVF algorithm
Input: Time samples u(tk), y(tk), sampling frequency Fs, starting poles {q1, . . . , qn},

maximum iteration number ν̄
Output: Estimated transfer function H(s)
1: Compute ũ(tk)← u(tk)− u(t1), ỹ(tk)← y(tk)− y(t1)
2: for ν = 1, .., ν̄ do
3: Compute filtered signals ỹ

(i)
m (tk), ũ

(i)
m (tk), Θ(m)(tk) according to (6.5).

4: Build and solve the least squares problem (6.34)
5: Compute the zeros zi of denominator D(s)
6: Set qi ← zi
7: end for
8: Set D(s) = 1

9: Compute filtered signals ũ
(i)
m (tk), Θ(i)(tk)

10: Build matrix ∆ and solve ∆am ≈ ỹm for m = 1, . . . ,P
11: return: H(s) = N(s), where Nmj(s) is numerator of (6.6)

6.2 Assessing the performance of RTVF
This section presents a set of numerical results for validation and performance

assessment of the RTVF scheme. First, performance is analyzed on several synthetically-
generated high order and large-size LTI test systems. These experiments are aimed
at evaluating the consistency of the fitting algorithm when it is used to identify
systems with rational transfer function, both in case of noiseless and noisy mea-
surements.

Once the RTVF scheme is validated, two practical application in power systems
modeling are discussed: the estimation of the dynamics of an individual generator,
and a black-box model of an aggregated power distribution network. Addition-
ally, an application in the field of computational haemodynamics is presented. The
power system applications were studied in collaboration with Prof. Luca Daniel
and Dr. Samuel Chevalier (MIT), while the cardiovascular application was studied
together with Prof. Piero Triverio (University of Toronto) and Elisa Fevola (Po-
litecnico di Torino). These collaborations were intended to extended the field of
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applicability of the developed techniques in a multidisciplary setting.

6.2.1 Consistency

The RTVF consistency is tested by running a systematic experimental campaign
over a set of synthetic randomly generated LTI reference systems, with the objective
of checking whether RTVF provides accurate estimates of all system poles. All
modeled systems shared the same dynamic order n = 10, with number of ports P
ranging from 2 to 30. The set of input-output data are generated as colored noise
with flat power spectrum up to angular frequency ωmax, corresponding to the fastest
pole of the reference system. The sampling frequency was fixed to Fs = 10ωmax/2π ,
and the total number of collected samples was K = 5000 in all cases. The modeling
window started at sample k = 250.

Figure 6.1: Time domain modeling results for a synthetic test case with P = 2.
The modeling window starts after 24 s, the validation window starts at 372 s.
Reproduced from [23] © 2021 IEEE.

Three metrics were used to assess performance of RTVF:

• the consistency of the pole estimates, as measured by the Hausdorff distance1

dH(P ,Q) between the set of exact poles P = {p1, . . . , pn} of the true system

1The Hausdorff distance between two sets P and Q is defined as

dH(P,Q) = max{sup
p∈P

inf
q∈Q
||p− q||, sup

q∈Q
inf
p∈P
||p− q||}. (6.35)
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and the set of numerically computed poles Q = {q1, . . . , qn};

• the worst-case time domain output error, computed as

E∞ = max
l=1,...,P

||yl − y̆l||∞, (6.36)

• and the RMS-normalized maximum error, computed as

ERMS
∞ = max

i=1,...,P

||yl − y̆l||∞
||y̆l||2

. (6.37)

The experiments show that RTVF recovered the system poles almost exactly,
with a set distance dH(P ,Q) ≤ 10−10 for all 29 test cases. Similar results were
obtained from the output errors: both E∞ and ERMS

∞ were less than 10−11. As
Fig. 6.1 shows, there is no visible difference between the model and the output
data samples. In this idealized setting, the RTVF scheme proved to be effective
and consistent with the expectations.

To further stress the algorithm, the presence of measurement noise on the input
and output signals is considered for the case where P = 2, n = 10. Signal corruption
is performed by adding a vector of zero-mean Gaussian random variables xn to any
input or output small-signal vector x̃ as

x̃N = x̃+ xn, (6.38)

with a prescribed signal to noise ratio

α = SNR = 20 log
RMS{x̃}
RMS{xn}

. (6.39)

In the experiments, an increasing levels of SNR, ranging from 10 dB to 100
dB, with resolution steps of 2 dB, is considered. For each level of SNR, R = 50
different synthetic systems are modeled, and the average Signal to Error Ratio
(SER) is computed both in time and frequency domain. This metric is defined as
follows. Let z be a vector collecting the samples of either a reference time-domain
output signal or a target frequency-domain transfer matrix element, and zM the
corresponding response of one of the R models. Then for this signal the SER is
defined as

SER = 20 log
RMS{z}

RMS{z − zM}
. (6.40)

For any fixed SNR level, the time-domain TD-SER is computed by averaging the
performance induced by (6.40) over the R models and the two output signals. The
frequency-domain FD-SER is computed in the same way, by averaging over the
transfer matrix elements. These two metrics are shown in Fig. 6.2.
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Figure 6.2: The trend of TD− SER and FD− SER against the SNR. Reproduced
from [23] © 2021 IEEE.

The meaning of the SER being above or below the black line threshold is that
RTVF is either rejecting or amplifying the presence of the noise on the data, re-
spectively. Since the TD-SER is always above the plane bisector (solid black line),
RTVF is able to partially reject the presence of measurements noise in the training
data. This noise rejection property is expected, since the basis functions involved
in the estimation procedure effectively filter the noisy input and output signals
via (6.5). On the other hand, FD-SER follows the bisector almost exactly, confirm-
ing also a good frequency-domain accuracy.

The noise-corrupted training input signals for a representative test case for
SNR = 16 are depicted in the top panel of Fig. 6.3, whereas the corresponding
extracted model is validated against the reference time-domain output in the bot-
tom panel. Even with this significant amount of noise, the time-domain prediction
capabilities of the model are excellent.

6.2.2 Generator Modeling in the IEEE 39-Bus System

In order to test the performance of RTVF in a simulated power system setting,
we apply the algorithm to estimate the local dynamic of a synchronous generator.
The generator is considered as a component of the larger IEEE 39-Bus New England
system (taken from [8] and depicted in Fig. 6.7) where it operates interacting with
other subsystems. A reference physics-based nonlinear model for the generator is
used to simulate its online operation under realistic load fluctuations and to collect
the training data samples. Fig. 6.4 shows the interconnection of the machine and
the related controllers with the outer network. The modeled machine is enclosed
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Figure 6.3: Top panel: corrupting one training input signal (solid line) with
SNR=16 (a cloud of R = 50 different realizations are depicted in a grey shade).
Bottom panel: response of a time domain model extracted from one noisy data
realization (SNR=16) compared to the reference noise-free signal. Reproduced
from [23] © 2021 IEEE.

in the grey box. For a complete characterization of the reference generator model
see [23]. For the present discussion, it is sufficient to recall that the model is of
dynamic order N = 15.

In order to reproduce a realistic modeling scenario, we sample the instantaneous
magnitude and the phase of the voltage and current signals at the generator in-
terface. This is done in order to mimic the data acquisition performed via Phase
Measurement Units (PMU) in actual applications. The acquisition returns samples
of the time-dependent voltage V(t)ejθ(t) and current I(t)ejϕ(t) phasors. The data
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Figure 6.4: Generator modeling example. The figure shows the interaction between
the generator, its three controllers, and the network. The PMU collects data at the
generator’s point of connection. Reproduced from [23] © 2021 IEEE.

are used to model a single generator’s closed-loop dynamics, with input and output
defined as

u(t) =

[︃
V(t)
θ(t)

]︃
y(t) =

[︃
I(t)
ϕ(t)

]︃
(6.41)

The RTVF algorithm is run to generate a MIMO model with P = 2 and various
reduced orders n. In order to validate the quality of the model generated in the
absence of measurement noise, we compare the model responses to the time and
frequency domain references provided by the exact machine equations (known an-
alytically in the frequency domain). The results are provided in Fig. 6.5 and show
that the model accuracy is excellent in both the time and frequency domains, even
though the reduced model order (in this case n = 9) is significantly less than the
machine’s true model order.

Algorithm 2 Measurement Noise Application
Input: Voltage & current signals V(t), I(t), θ(t), ϕ(t); desired SNR
Output: Noisy voltage & current signals Vn(t), In(t), θn(t), ϕn(t)
1: σVn ← RMS {V(t)− E {V(t)}} · 10−SNR/20

2: σIn ← RMS {I(t)− E {I(t)}} · 10−SNR/20

3: Vn(t)← V(t) + σVn · η(t)
4: In(t)← I(t) + σIn · η(t)
5: θn(t)← θ(t) + σVn · η(t)/E {V(t)}
6: ϕn(t)← ϕ(t) + σIn · η(t)/E {I(t)}

Return: Vn(t), In(t), θn(t), ϕn(t)

Robustness to measurement Noise

In order to further gauge the practical effectiveness of RTVF, artificial mea-
surement noise is applied to the voltage and current signals measured by the PMU.
To apply this noise, the procedure outlined in Algorithm 2 is implemented; in the
algorithm, η(t) represents an AWG noise vector. An SNR level is first specified in
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Figure 6.5: Noise-free generator model extraction. Top panel: frequency domain
validation of the generator model (order n = 9) compared to exact (linearized)
frequency response. Bottom panel: the time domain validation of the model against
the current magnitude reference output. Reproduced from [23] © 2021 IEEE.

terms of magnitude (V, I) signals, and the proper amount of noise is then added.
Next, noise with an appropriate standard deviation is applied to the phase signals
(θ, ϕ), such that the total vector error (TVE) in the complex plane would be a
circular cloud. In other words, an “equivalent" amount of noise is applied to both
the magnitude and phase data, relative to the specified SNR value.

Top and bottom panels of Fig. 6.6 report the frequency- and time-domain fitting
performance of a RTVF model of orderN = 7 obtained for SNR = 32dB. Compared
to the performance in the noise-free setting (Fig. 6.5), these results show that the
frequency-domain model accuracy is still quite acceptable, and that the accuracy in
the time domain seems to be not affected by the presence of noise. The experiments
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confirm that the time prediction capabilities of RTVF models extracted from noisy
signals are potentially adequate for power system applications.

Figure 6.6: Generator model training from noisy data (SNR = 32). Top panel:
frequency responses. Bottom panel: small signal current magnitude. Reproduced
from [23] © 2021 IEEE.

6.2.3 Wide Area Monitoring in the IEEE 39-Bus System

As a third experiment, the ability of RTVF to perform “wide area” monitoring
in the 39-Bus system via predictive modeling. The objective is to derive a black-
box of a portion of a large-scale power system, using as identification signals the
voltage and current phasors at the interface nodes. To do so, a simulated current
flowing across line 16-19 is measured, as shown in Fig. 6.7, along with the voltage
perturbations on bus 16. Subsequently, the resulting time domain data (i.e., V(t),

165



6 – System modeling during on-line operation

θ(t), I(t), ϕ(t)) are used to model the linearized dynamics of the grey box depicted
in Fig. 6.7, consisting of two generators, a load, and their interconnecting lines.
The proposed approach is here compared with the ARX modeling [28, 99] and
the standard Time Domain Vector Fitting scheme applied without the inclusion of
initial conditions estimation.

The data are collected at a 60 Hz sampling rate for a total duration of 500
seconds, using the training subset t ∈ [100,360] s to generate the models using the
three considered methods. The dynamics of this wide area had N = 30 full order
states, but using the ambient PMU data, a reduced order model of dynamic order
n = 13 is generated.

The results are shown in Fig. 6.8, where the accuracy of the models is evalu-
ated by comparing the output current magnitude and phase against the reference
time domain data. The presented results are compared to time domain validation
data, that are not used for model generation, and that are therefore meaningful to
validate the prediction capabilities of the model.; for the sake of visualization, we
used a different y-axis scale for the current magnitude signal returned by the ARX
model (right y-axis in the figure top panel). It can be observed that the proposed
RTVF method outperforms ARX and TDVF algorithms, providing highly accurate
predictions. Notice that, in principle, the application of TDVF in its standard
formulation is not even conceivable in the considered scenario due to the presence
of concurrent inputs, which are here handled by implementing an extended TDVF
algorithm according to the modified scheme of Sec. 6.1.4. Nevertheless, the experi-
ments confirm that including the effect of the initial conditions is crucial to derive
a meaningful model. This is even more evident when the frequency responses of
the models are compared with those of the reference system, as reported in Fig. 6.9
for the two off-diagonal elements of the transfer matrix. The remarkable accuracy
of the RTVF model proves its effectiveness for aggregated power system modeling,
even at the wide area level. The same performance are not achieved by the ARX
and TDVF algorithms.

6.2.4 Boundary conditions estimation for human arterial sys-
tems simulation

This last example provides a proof of concept of how the proposed vector fitting
scheme can be applied successfully in the field of computational haemodynamics.
This example is quite relevant since computational models of the cardiovascular
system have become a valuable tool for the study and investigation of cardiovascular
diseases [42] even in a patient-specific context where the geometry of cardiovascular
system to be analyzed is reconstructed from 3D radiology images.

Often, cardiovascular computational analyses are required only for localized por-
tions of the human body; therefore, it is a common practice to perform accurate
analyses of the arterial regions of interest, neglecting the remaining part of the
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Figure 6.7: IEEE 39-bus New England system. The area depicted by the grey box,
which geographically corresponds to a region in southern Massachusetts, US, is
used to test RTVF’s ability to perform wide area predictive modeling. Reproduced
from [23] © 2021 IEEE.

cardiovascular system. This practice becomes necessary when the simulations are
performed based on very precise yet complex fluid dynamics models, that require
high computational power to be performed. When these conditions are met, the ar-
terial system is truncated at the limits of the regions for which accurate simulations
are required; in correspondence of the truncation points, denoted as outlets, proper
boundary conditions must be enforced to take into account the proper dynamic
relationship between blood pressure and flow.

These boundary conditions can be either estimated starting from closed form
descriptions of the physics governing the cardiovascular system, or from measured
or simulated data. This latter scenario is of particular interest, because building
arterial system models starting from patient-specific data represents an interesting
approach to perform clinical diagnosis and what-if analyses, e.g., predicting the
consequences of surgical actions.

In this example of application of the RTVF algorithm, a set of boundary condi-
tions models are derived from time domain samples of the blood flow and pressure
at prescribed outlet points of the arterial system. The data come from the full
simulation of a 1D arterial model comprising the largest 55 human arteries, shown
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Figure 6.8: Wide area test case. Time domain validation of models derived by
means of RTVF, ARX, and TDVF without inclusion of the initial conditions esti-
mate. Top panel: Current magnitude deviation (note that the left y-axis applies
to RTVF and TDVF, while right y-axis refers to ARX; the latter has difficulties
in producing a sound approximation, especially at low frequencies). Bottom panel:
Current phase deviation. Reproduced from [23] © 2021 IEEE.

in Fig. 6.10. The full order model is simulated via the Nektar 1-D solver [2]. The
blood flow evolution is described by means of the Navier-Stokes partial differen-
tial equations including nonlinear phenomena. Further details about the problem
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Figure 6.9: Selected transfer functions elements estimated by the RTVF, TDVF and
ARX models, compared to the reference (exact) responses. Reproduced from [23]
© 2021 IEEE.

physics descriptions can be found in [2].
Although the involved phoenomena are nonlinear, standard approaches for the

estimation of suitable boundary conditions are based on the exploitation of LTI
model structures. The most common approach is represented by the Windkessel
model [85], which admits a representation in terms of first order ordinary differential
equations. In particular, the Windkessel model admits a representation in terms
of RRC circuit due to the duality that holds between the hydraulic and electrical
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domains. This suggests that behavioral models of higher order can be suitable
to obtain better estimates for the dynamics imposed by the required boundary
conditions at the outlet interfaces.

With reference to Fig. 6.10, the Nektar solver was used to collect samples of the
blood pressure and flow in correspondence of segment 19 (Left subclavian artery),
and suitable LTI models for the corresponding boundary conditions were built,
considering the blood flow as input and the blood pressure as output.

  

Figure 6.10: The arterial system model simulated in the Nektar 1-D solver. Left:
the full arterial system. Right: the truncated arterial system with first order (Wind-
kessel) outlet boundary conditions used in place of the native description. Courtesy
of E. Fevola, Politecnico di Torino.

The available time domain data are sampled with Fs = 1 kHz and represent
realistic signal waveforms that are encountered in healthy humans circulatory sys-
tems. The trend of the acquired blood flow signal is shown in Fig. 6.11. In order to
simulate a realistic scenario in which boundary conditions are estimated based on
in vivo patient specific measurements, the model generation is performed by using
a subset of the available data, considering non-vanishing initial conditions.

Four different models with increasing dynamic order n = 1,2,5,8 were gener-
ated using the time window samples t ∈ [5,11] s, applying the RTVF modeling
scheme. The case n = 1 corresponds to a first order model structure equivalent to
the standard Windkessel model outlet boundary condition. The resulting models
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Figure 6.11: The blood flow signal in correspondence of segment 19 of the arterial
system. The time window t ∈ [5,11] is used to extract behavioral models for the
outlet boundary conditions.

performance are shown in Fig. 6.12 for the cases n = 1,2. The higher order models
performance are shown instead in Fig. 6.13.

The presented plots show that the accuracy of the model approximation in-
creases significantly with the model order, reaching remarkable levels of accuracy
for the case n = 8, both over training data and over time samples that do not belong
to the modeling window. This confirms that the proposed approach can be success-
fully exploited to generate behavioral black box boundary conditions of arbitrary
complexity, also taking into account realistic modeling scenarios with non-vanishing
initial conditions.
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Figure 6.12: RTVF models of the boundary conditions relating pressure and flow
at the truncated arterial system outlet. Top panel: n = 1. This case is equivalent
to the standard RRC windkessel boundary condition. Bottom panel: n = 2.
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Figure 6.13: RTVF models of the boundary conditions relating pressure and flow
at the truncated arterial system outlet. Top panel: n = 5. Bottom panel: n = 8.
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Chapter 7

Discussion

This last chapter discusses the technical contributions proposed in this thesis.
The main achievements are summarized and discussed with specific reference to
their applicability. A number of relevant open problems are identified, and conclu-
sions are finally drawn.

7.1 Benefits of the proposed approach
This thesis provides novel macromodeling schemes that can be used to gener-

ate reduced order surrogates of passive and active components. As experimentally
demonstrated, such surrogates enable fast and accurate simulations of the under-
lying systems, guaranteeing speed-up factors up to two and even three orders of
magnitude. The proposed approaches are based on well-established rational fitting
schemes that are coupled with numerically manageable constraints, specifically de-
signed to guarantee

• deterministic and robust model generation procedures, depending on a small
number of free parameters

• drastic complexity reduction

• provable certificates for important model properties, in particular

1. uniform passivity for parameterized macromodels of passive components

2. asymptotic stability for surrogates of nonlinear systems.

The proposed models admit a representation in terms of equivalent netlists that
can be integrated in virtually any EDA software, thus enabling significant improve-
ments in terms of design flow efficiency. Additionally, a methodology was proposed
to derive reduced order macromodels for system operating in real-time, further
extending applicability of the proposed techniques.
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7.2 Limitations and open problems
Curse of dimensionality in parameterized macromodeling.

One of the main limiting factors for the practical exploitation of parameterized
macromodels is represented by their model complexity in presence of a large number
of external parameters. As the dimension of the parameter space increases, the
number of basis functions that are involved in the multivariate rational fitting
process becomes so high that the model generation procedure becomes inconvenient,
both in terms of time and space complexity.

This is particularly true when structured parameter-dependent basis functions
(such as the multivariate polynomials used in this thesis) are used to define the
model parameterization. Some recent research works [116, 113] proposed the usage
of radial basis functions in order to overcome the exponential growth of the number
of model unknowns in presence of large parameter space dimensions. Although
uniform model stability can be enforced easily by exploiting the positivity property
of the basis functions proposed in these works, handling the passivity enforcement
process in presence of many parameters remains an open problem.

Also, gathering the data describing the structure behavior in large dimensional
spaces represents a serious limiting factor for applicability of the available method-
ologies, due to the non-negligible computational cost required to sample the pa-
rameterized frequency response of the reference device on the basis of first-principle
descriptions. One possible way to address this problem is to develop suitable adap-
tive sampling schemes, possibly able to interact with the model generation process,
aimed at determining a minimal set of data points able to catch the information
required to explain the behavior of interest. The development of such a method is
a difficult task, since the lack of apriori information about the frequency response
dependence on the parameters makes any adaptive sampling strategy prone to po-
tentially miss certain parameter configurations that could induce large variations
in the reference data.

Behavioral models for strongly nonlinear components

Developing reliable behavioral models for strongly nonlinear components start-
ing from data is a challenging task, and represents one of the open macromodeling
research fields. As nonlinear dynamics translates into a large variety of admissible
qualitatively different behaviors, a general effective and reliable model order reduc-
tion scheme is still not available. For an extensive review of the state-of-the-art
intrusive MOR techniques for nonlinear systems the reader is referred to [10, 11,
12]. For what concerns more specifically data-driven approaches, classical strate-
gies based e.g. on Volterra series expansions result in highly complex models that
quickly become impractical as the degree of nonlinearity of the underlying device
increases. In the latest years, methods based on deep learning and recursive neural
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networks have been proposed to tackle the problem. Such approaches are numer-
ically accurate and in principle can be applied to a large variety of components,
but no formal guarantees about their reliability in scenarios that differs from those
described in the training data can be given. Additionally, enforcing the stability of
neural networks dynamics (when possible) is a highly complicated process.

An attractive perspective on nonlinear macromodeling is provided by the X
parameters, which represent an extension of the standard scattering counterparts
to the nonlinear case. X parameters have been successfully exploited to construct
behavioral models for RF amplifiers [109], with the inclusion of long-term mem-
ory effects [106]. The related research findings suggest that X parameters can be
profitably investigated in the future to develop successful nonlinear macromodeling
techniques retaining high levels of generality and reliability, at least in the field of
RF electronic components.

Handling passivity constraints of large electrical systems.

The passivity enforcement scheme presented in Chapter 4 is suitable only to
handle small to medium size modeling problems, and only in case the number of
free parameters does not exceed a few units. The reason is that a large number of
linear matrix inequalities must be enforced during the model generation in order
to reach high levels of accuracy. The size of these constraints and the number of
involved variables is determined by the number of ports of the electrical structure
under modeling. Therefore, in order to model devices with a large number of
electrical ports, some kind of ad-hoc numerical optimization should be employed
to reduce the computational burden.

From the theoretical perspective, one viable way to reach the goal could be for-
mulating different strategies to reduce the conservativity of the proposed passivity
enforcement scheme. From the numerical standpoint instead, it would be desirable
to exploit the structure of the proposed passivity constraints, similarly to what
has been proposed in [105], or to rely on optimization solvers aimed at handling
extremely large conic problems, as proposed in [81] or in [44]; probably, combining
both approaches would lead to appreciable reduction of the computational require-
ments of the approach.

Extending bias dependent macromodels

The linear parameter varying model structure introduced in Chapter 5 relies on
the low-pass filtering operation that provides at each time instant the parameter
value that defines the model equations. Performing the parameterization in this
way is effective whenever the bias component is slow enough. However, the low-
pass filter design is based, at the moment, on heuristic considerations about the
bandwidth of the time-varying bias component.
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Also, the presented modeling scheme is based on frozen parameter descriptions
of the reference device local behaviors. In the LPV identification framework, it
is known that models derived from frozen parameter configurations are valid only
for slow parameter variations. Alternative schemes, that identify models through
time series data in which the parameter changes dynamically have also been pro-
posed [101]. In order to pursue this strategy from the model order reduction point
of view, however, expensive time domain transient simulations would be required.
Thus, a systematic procedure aimed at minimizing the amount of collected data
should be integrated with any model training algorithm.

7.3 Conclusions
Passive macromodeling methods have represented the starting point for the

research progress documented in this thesis. As opposed to the univariate macro-
modeling case, the parameterized setting introduces significant difficulties when the
robust enforcement of stability and passivity is required. Before performing the re-
search herein documented, either heuristic procedures or oversimplified strategies
were available to generate parameterized macromodels. The former are not able
to provide certified passive models, while the latter do so by generating unneces-
sarily complex models. The strategy proposed in chapter 4 fills this technical gap,
by providing a way to generate compact and passive parameterized macromodels
following a robust and automated procedure. The practical effectiveness of the
workflow has been demonstrated over a number of test cases.

The availability of the solid algorithmic framework provided by combining ratio-
nal fitting schemes with system theory and convex optimization raised then ques-
tions about possible extensions; the main results led to the algorithms discussed in
Chapter 5, which concern the local approximation of nonlinear systems. Based on
results regarding the small-signal approximation of mildly nonlinear systems with
uncertain operating point, the canonical LTI model structure of parameterized
models was exploited to generate time varying approximations for non-stationary
local behaviors. The mathematical tools used to guarantee the stability in the time
invariant setting were inherited by this novel framework, with proper modifications,
with the objective of formulating a modeling scheme that preserves the structural
stability property of the underlying mildly nonlinear device, while at the same time
guaranteeing the accuracy of the model.

Lastly, the classical vector fitting algorithm was modified to handle modeling
scenarios in which the standard assumptions on data acquisition characterizing
classical macromodeling schemes do not hold. The problem of generating accurate
surrogates of actual or simulated complex systems starting from real-time measure-
ments was addressed, thus broadening the number of applications in which this
effective algorithm can be successfully employed. The validity of the considered
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local approach for solving relevant modeling problems has been confirmed by a
large number of practical examples belonging to the domain of electronics, power
systems, and even cardiovascular modeling.
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