
1

A Software Framework for Automated Behavioral
Modeling of Electronic Devices

Dirk Gorissen, Student Member, IEEE, Dirk Deschrijver, Member, IEEE, Tom Dhaene, Senior Member, IEEE,
Daniel De Zutter, Fellow, IEEE

Abstract—As the fabrication of prototypes is very costly,
system-level computer simulations have become commonplace
alternatives for the design of electronic devices and systems.
However, due to the computational cost of these simulations, the
use of behavioral modeling techniques has become indispensable.
Behavioral models can act as a surrogate for the expensive
simulations, and effectively speed-up the simulations without
sacrificing accuracy. Such models are compact and cheap to
evaluate, and have proven very useful for tasks such as opti-
mization, design space exploration, prototyping, and sensitivity
analysis. Consequently, there is great interest in techniques that
facilitate the construction of behavioral models, while minimizing
the computational cost and maximizing model accuracy. This
paper explores how such models can be calculated in an au-
tomated way by means of a unified software framework that
integrates adaptive modeling and adaptive sampling methods. It
generates global behavioral models that are accurate and valid
over the design space of interest while minimizing the number
of electromagnetic simulations. By placing a strong focus on
adaptivity, flexibility, and self-tuning the burden on the designer
is relieved and the total modeling turn-around time is reduced.

I. INTRODUCTION

Behavioral models (such as macromodels, surrogate models,
metamodels and response surface models) have many applica-
tions in diverse research domains such as aerodynamics [1],
hydrology [2], mechanical engineering [3], and many more.
When considering the design flow of electronic devices, these
models are often used to characterize the time- or frequency-
dependent behavior of an electronic component while taking
all electromagnetic phenomena into account (crosstalk, atten-
uation, dispersion, coupling effects,...) [4]. Such models are
of crucial importance for efficient design space exploration,
design optimization and sensitivity analysis [5], [6]. A key
advantage is that they are calculated independently of the
device’s physics and that they are valid of over a wide range
of design variables, taking into account multiple geometrical
layout or substrate features. Additionally, the models can
easily be linked together in a model cascade.

Some examples of behavioral models include polyno-
mial/rational functions [7], [8], [9], Kriging models [10], [11],
Artificial Neural Networks (ANN) [12], [13], and Support
Vector Machines (SVM) [14]. In order to obtain a reliable
model that satisfies all design requirements, significant chal-
lenges need to be addressed: which data collection strategy

Dirk Gorissen, Dirk Deschrijver, Tom Dhaene and Daniel De Zutter
are with Ghent University - IBBT, Department of Information Technology
(INTEC), Gaston Crommenlaan 8, Bus 201, 9050 Ghent, Belgium. E-mail:
{dirk.gorissen, dirk.deschrijver, tom.dhaene, daniel.dezutter}@intec.ugent.be.

to use, which model type is most applicable, how to rank
different models according to quality, etc. At the same time,
Electronic Design Automation (EDA) experts are typically not
familiar with the intricacies of these design choices. Their
primary concern is obtaining an accurate replacement model
with minimal computational overhead. The selection of model
types, model parameter optimization and sampling strategy are
of lesser or no interest to them, since these are just necessary
intermediate steps to solve the overall design problem.

In this paper, a unified and automated modeling frame-
work is presented that can assist an EDA domain expert
in generating accurate behavioral models [15]. It drives the
underlying system-level simulator, and at the same time builds
and tunes the model in such a way that the model accuracy and
compactness is maximized. On the one hand it does not require
particular assumptions about the device under test. However,
on the other hand, as no algorithm is optimal for every
problem, full control is still left with the EDA domain expert
such that problem specific assumptions or customizations can
easily be applied. Therefore, this work can lower the barrier
of entry for domain experts, promote benchmarking between
existing methods, and facilitate the transfer of knowledge from
behavioral modeling researchers to EDA domain experts.

II. GLOBAL BEHAVIORAL MODELING

From an abstract level, the system-level computer simulator
can be seen as an unknown multivariate function f : Ω 7→Cq,
that is defined on some domain Ω ⊂ Rd , and whose function
values Y = { f (x1), ..., f (xk)} ⊂Cq are known at a fixed set of
pairwise distinct sample points X = {x1, ...,xk} ⊂ Ω [16]. The
behavioral model is then a suitable function f̃ that closely
resembles f as measured by some criterion ξ , where ξ is
defined as a triplet that consists of following parts:

ξ = (Λ,ε,τ) (1)

Λ is a model quality estimator, i.e. a function that assigns
a positive score to a behavioral model where lower scores
indicate a more desirable model. Many implementations of Λ
have been described: the error in the samples, the hold-out,
bootstrap, cross validation, jack-knife, Akaike’s Information
Criterion (AIC), etc. [17]. An implementation of Λ is typically
associated with an error function ε . While Λ specifies the
model quality estimation algorithm (e.g., cross validation),
ε specifies what error function should be used to calculate
the actual quality score (e.g., mean relative error, maximum

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55755741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

absolute error, etc.). Finally, τ is the model quality target
desired by the user.

The behavioral modeling problem (i.e., finding the best
approximation f̃ ∗) for a given set of data points D =
{(x1, f (x1)), ...,(xk, f (xk))} can be formally defined as

f̃ ∗ = argmin
t∈T

argmin
θ∈Θ

Λ(ε, f̃t,θ ,D) (2)

such that

Λ(ε, f̃ ∗t,θ ,D)6 τ (3)

where f̃t,θ is the parametrization θ (from a parameter space
Θ) of f̃ , and f̃t,θ is of model type t (from a set of model types
T).

The first minimization over t ∈ T is the task of selecting a
suitable model type, i.e., a rational function, a neural network,
a spline, etc. This is the model type selection problem. In
practice, one typically considers only a single t ∈ T , though
others may be included for comparison. In some cases, the
choice of model type is also linked to physical properties
of a system (e.g. causality, stability, passivity) [18], [19],
[20]. Then given a particular model type t, the task is to
find the model parameter assignment θ that minimizes the
model quality measure Λ (e.g. determine the optimal order of
a polynomial model or the optimal neural network topology).
This is referred to as the hyperparameter optimization problem,
though generally both minimizations (over t and over θ) are
simply referred to as the model selection problem.

In order to construct f̃ , the dataset needs to be populated.
Traditionally the size and distribution of the data is chosen
up-front using standard experimental designs (e.g., a latin
hypercube design). However, since f (·) is expensive to com-
pute it becomes important to avoid unnecessary simulations.
Consequently, since the complexity of the response surface
is not known up-front, defining an a priori data distribution is
undesired. Instead data points should be selected iteratively, at
locations where the benefit to the model will be the greatest.

One starts by constructing an initial experimental design
using one of the many algorithms available from the theory of
Design and Analysis of Computer Experiments (DACE) [21].
The task is then to generate a new set of maximally informative
samples based on one or more criteria. Examples of such
criteria include distance from other points (spacefilling-ness),
distance from optima, prediction uncertainty, etc. In each
iteration of sampling algorithm, a best approximation model is
obtained, leading to a sequence of models. The overall number
of data samples should be kept to a minimum, while at the
same time maximizing the benefit to the model f̃ with respect
to ξ .

This process is called adaptive sampling, but is also known
as active learning [22], reflective exploration [7], Optimal Ex-
perimental Design [23], Sequential Exploratory Experimental
Design [24], and sequential design [25].

Fig. 1 shows how the model generation and data collection
fit together in a high level control flow.

There are two main parts to the flowchart: an outer, adaptive
sampling loop and an inner adaptive modeling loop. Given

Figure 1. General flowchart for adaptive global behavioral modeling. The
outer sampling loop will iteratively sample the design space while an inner
modeling loop will generate models that accurately capture the data selected
each iteration.

a set of sample points, the inner loop will optimize the
model hyperparameters (e.g., neural network topology) until
no further improvement is possible on the given set of samples.
Having reached a minimum of the hyperparameter space (e.g.,
the inner minimization in (2)), the algorithm then signals
the sample selection loop to determine a new, maximally
informative set of simulation points. These are then evaluated,
intelligently merged with the existing sample points, and the
adaptive modeling process is allowed to resume. This whole
process continues until the user-defined accuracy has been
reached or some user-defined stopping criterion is met. The
final behavioral model is returned to the user.

The flow of control in Fig. 1 forms the basis for every
data based approximation methodology. For example, note the
similarities with the work by Zhang in [26]. Of course, as-is,
Fig. 1 has little practical value since it is very vague. Like the
Expectation-Maximization algorithm [27] it is really a meta-
algorithm that can have many different actual instantiations
depending on what techniques are used for each step. However,
it should be clear that there are a large number of model-
ing options and choices available to the designer: different
model types, different experimental designs, different sample
selection strategies, different model selection criteria, different
hyperparameter optimization strategies, etc. All choices that
are difficult to make in an a priori manner [28].

Consequently, this generic control flow is taken as a starting
backbone, extended with pluggable components for each of the

3

Figure 2. Screenshot of SUMO Toolbox.

different steps. This results in a generic solution that can still
be customized for a specific problem if needed. In addition,
custom extensions ensure that the whole is more than a bag-of-
tools but that some automation (e.g., for model type selection)
is available if needed. The resulting modeling platform can
easily help an EDA domain expert to choose between different
techniques and help him to apply advanced modeling methods
to his problem with minimal overhead. Depending on the
configuration, the modeling platform can run autonomously (if
just a ‘quick-and-dirty’ model is needed) or under full manual
control with problem specific methods and customizations (to
ensure optimal efficiency accuracy for a given problem). The
framework in question is the SUrrogate MOdeling MATLAB
toolbox (SUMO Toolbox).

III. SUMO TOOLBOX

The SUMO Toolbox illustrated in Fig. 2 [29], [30] is
a flexible tool that integrates different modeling approaches
and implements an adaptive behavioral model construction
algorithm based on the flowchart in Fig. 1. Given an EDA
simulation engine (e.g., SPICE, SPECTRE, HFSS, Momen-
tum, CST, etc.) the toolbox computes a model within the time
and accuracy constraints set by the user. Different plugins are
supported: model types (rational functions, Kriging, splines,
SVM, etc.), model parameter optimization algorithms (Particle
Swarm Optimization, Efficient Global Optimization, simulated
annealing, etc.), sample selection (random, error based, density
based, etc.), and sample evaluation methods (local, on a
cluster or grid). The behavior of each software component
is configurable through a central XML [31] configuration file
and components can easily be added, removed or replaced
by custom implementations. This is illustrated in Fig. 3. In
addition the toolbox provides ‘meta’ plugins which include,
e.g. evolutionary algorithms to automatically select the best
model type for a given problem (see [28] for details), or the
possibility to use multiple model selection criteria in concert
[32].

Furthermore, there is built-in support for high performance
computing. On the modeling side, the model generation

Figure 3. Illustration of how the SUMO Toolbox enables algorithms and
methods to be combined in different ways through the use of a plugin-based
infrastructure.

process can take full advantage of multi-core CPUs (if the
MATLAB Parallel Computing Toolbox is available) and even
of a complete cluster or grid (if the MATLAB Distributed
Scheduler is available). This can result in significant speedups
for model types where the fitting process can be expensive
(e.g., neural networks).

Likewise, sample evaluation (simulation) can occur locally
(with the option to take advantage of multi-core architec-
tures) or on a separate compute cluster or grid (possibly
accessed through a remote head-node). All interfacing with
the grid middleware (submission, job monitoring, rescheduling
of failed/lost simulation points, etc.) is handled transparently
and automatically (see [33] for more details). Also, the sample
evaluation component runs in parallel with the other compo-
nents (non-blocking) and not sequentially. This allows for an
optimal use of computational resources.

The SUMO Toolbox has already been applied successfully
to a very wide range of applications, including RF circuit
block modeling [29], hydrological modeling [34], Electronic
Packaging [35], aerodynamic modeling [36], and automotive
data modeling [32]. Besides global modeling capabilities, the
SUMO Toolbox also includes a powerful optimization frame-
work based on the Efficient Global Optimization framework
developed by Jones [37].

IV. APPLICATIONS

To demonstrate the working and performance of the frame-
work described above, two EM device modeling problems are
discussed: a passive component (bandstop filter) and an active
device (low noise amplifier).

4

Figure 4. Double-folded microstrip stub bandstop filter

A. EM Behavioral Modeling of a Bandstop Filter

The first application concerns the modeling of a
parametrized double-folded microstrip stub bandstop filter [6].
The filter with ports P1 and P2 is shown in Fig. 4.

The substrate is 0.1270 mm thick with a relative dielectric
constant εr = 9.9 and a loss tangent tanδ = 0.003. The lines
are infinitely thin and perfectly conducting with W = 0.1219
mm. The parametric macromodel of the scattering matrix is
built as a function of the varying length of each folded segment
L ∈ [1.97,2.41] mm and varying spacing between a folded
stub and the main line S ∈ [0.06,0.24] mm over the frequency
range [5,20] GHz. The EM simulation engine used is ADS
Momentum.

In order to objectively assess the accuracy of the models,
a dense 50×30×151 (L×S× f requency) reference grid was
calculated. It is important to note that this dataset is not used
during the modeling process in any way since typically such a
reference grid is not available. It is simply used to objectively
test the quality of the models a posteriori.

1) Modeling settings: The SUMO Toolbox v6.2.1 is config-
ured with the generic ANN and multivariate rational modeling
plugins. No problem specific tuning or settings were used.
Thus the results will be indicative of how good a behavioral
model can be obtained if the framework is applied without
further problem specific knowledge, using just concepts from
a data modeling perspective. The multivariate rational mod-
els are based on a custom implementation [38]. The order
selection is performed using a genetic algorithm (population
size: 30, number of generations: 20), thus this need not be
done manually. The model quality estimator, Λ(·), is 5-fold
cross validation [39], [17] configured with a Mean Square
Error (MSE) error function (ε). The ANN models are based
on the MATLAB Neural Network Toolbox and are trained
with Levenberg-Marquardt backpropagation with Bayesian
regularization [40], [41] (600 epochs). Since the ANN models
do not support complex data directly, the real and imaginary
components are fitted separately using an ANN model with
two outputs. The topology and initial weights are determined
by an evolutionary strategy-like algorithm, with 25 models
being generated each modeling iteration. To assess the model
quality and drive the topology selection, Λ(·) is taken as the
sum of two criteria: the in-sample error (using a MSE) and
the Linear Reference Model (LRM) score [42]. The combined
scores for each output (real/imaginary) are then added together
to obtain the overall score of the model. The LRM score

penalizes a model if it exhibits unwanted bumps or ‘ripples’
between the sample points. It can be seen as a kind of
smoothness penalty that has the added benefit of keeping the
neural network model complexity low. We found that the
advantage of using these two metrics together is that they
produce better ANN models and are much faster to evaluate
than cross validation.

2) Sampling settings: The modeling starts with an optimal
Latin hypercube design of 4 points augmented with the corner
points in the 2-dimensional L×S space. Each iteration a new
sample is selected using the LOcal Linear Approximation-
Voronoi (LOLA-Voronoi) adaptive sampling algorithm [43].
LOLA-Voronoi identifies new sample locations by performing
a trade-off between exploration (covering the design space
evenly) and exploitation (concentrating on regions where the
actual response is nonlinear). LOLA-Voronoi’s strengths are
that it scales well with the number of dimensions, makes
no assumptions about the underlying problem or behavioral
model type, and works in both the R and C domains. LOLA
can automatically identify nonlinear regions in the domain
and sample these more densely than the more linear, ’flatter’
regions. In order to do this, LOLA-Voronoi depends only on
previously evaluated data points.

Because frequency is sampled automatically by ADS Mo-
mentum, LOLA-Voronoi samples in the 2-dimensional in-
stance space defined by the geometric parameters L and S.
New samples are submitted to ADS Momentum, which returns
a set of S-parameters over the frequency range of interest. In
order to select a sample in the reduced 2-dimensional design
space (without the frequency parameter), slices are taken at
multiple frequencies, and LOLA-Voronoi is used on each
slice separately. This results in a nonlinearity estimation for
each frequency slice, covering the entire 2-dimensional design
space. These estimations are aggregated into one score, which
is used to select new samples in locations with the highest
nonlinearity over the entire frequency range.

Momentum is configured to return 31 frequency samples
and the SUMO Toolbox is set to terminate after 136 instance
simulations (=136×31=4216 data points). Thus instead of
using an explicit target accuracy value, simulations are per-
formed until the computational budget is exhausted (τ =−∞).

3) Results: Fig. 5 shows a plot of the final rational models
for S11 and S12. For conciseness the following discussion will
only treat S11. The results for S12 are completely analogous.

Fig. 6 shows that the ANN model generation code is able to
reduce the true error (evaluated over a dense reference grid)
quite effectively while minimizing the estimated error. This
means that the in-sample error/LRM combination is a good
approximator of the true accuracy. In line with previous results
[42] we see that the decrease in true error is quite steady with
no large jumps.

Fig. 7 shows the probability density function of the absolute
errors (obtained using kernel density estimation [44]) for
the final best ANN model found by the toolbox after 136
Momentum simulations. The figure shows that very good
accuracy is achieved. Note also the small difference between
the training and test curves, meaning there is no overfitting and
the models show good generalization. The final ANN model

5

Figure 5. Plot of the final rational model for |S11| and |S12| at S = 0.131

10
−8

10
−6

10
−4

10
−2

10
0

T
ru

e
er

ro
r:

 M
ea

n
S

qu
ar

e
E

rr
or

 (
S

11
)

Number of Simulations

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

E
st

im
at

ed
 e

rr
or

: S
am

pl
e

E
rr

or
 +

 L
R

M
 S

co
re

True error real(S
11

)

True error imag(S
11

)

Estimated error

Figure 6. Evolution of the true and estimated error over the reference
data during the ANN topology optimization. Note that the true error is not
minimized directly, it is only shown here for reference.

for S11 is a 3− 8− 16− 2 network (210 parameters) and for
S12 a 3−12−15−2 network (275 parameters). This notation
denotes the number of elements of the input vector, and the
number of neurons in each layer of the ANN.

Let us now regard the results for the multivariate rational
functions. The evolution of the true error and estimated error
during the model generation process is shown in Fig. 8.
Compared to the ANN results in Fig. 6 we see that the error
reduction is more erratic in the rational case. Particularly in
the beginning, when only little data is available. This is due
to the use of cross validation as the accuracy estimator. Even
though we ensure an even distribution of the different folds,
when data is relatively sparse cross validation is known to
give biased results [17] and can mislead the order selection
procedure.

Again, good accuracy is achieved on S11, with the mean
accuracy being better than for the ANN models. Given the
rational nature of the underlying transfer function this should
not be surprising. However, it should be noted that the mod-

−90 −80 −70 −60 −50 −40

0

1

2

3

4

5

de
ns

ity

Absolute error on S
11

 (dB)

Training error
µ = −63.62
σ = 6.65

Test error
µ = −63.58
σ = 6.47

Figure 7. Probability density function of the absolute errors of the final ANN
model over the training and reference data after 136 simulations.

0 20 40 60 80 100 120
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of simulations

M
ea

n
S

qu
ar

e
E

rr
or

 (
S

11
)

5−fold cross validation error
True error

Figure 8. Evolution of the true error and estimated error over the reference
data during the rational model order selection.

eling effort was not the same for both model types. Since
the rational functions are fast to construct and train we can
afford to build more of them during each modeling iteration
than neural network models (since these are much slower to
train). In this case 20×30=600 rational models are built each
modeling iteration versus only 25 neural networks.

B. EM Behavioral Modeling of a Low Noise Amplifier

The second application is concerned with the accurate
capturing of the non linear behavior of a Low Noise Amplifier
(LNA). An LNA is characterized by performance figures (e.g.,
voltage gain, linearity, noise figure, etc.) which are functions
of the design parameters (e.g., width and length of transistors,
bias conditions, values of passive components) [45]. The goal
of the design process is to figure out one or more sets of
design parameters resulting in a circuit which fulfills the

6

specifications, i.e., constraints given on the performances.
More information on the modeling of this problem can be
found in [29].

Figure 9. Direct and indirect modeling of the LNA performance parameters

Obtaining the required circuit design parameters can be
done through an approximation of the circuit performance
figures based on one or more behavioral models. This is
referred to as ‘forward model’ of the circuit. A forward model
can be either obtained via direct modeling of circuit perfor-
mances (i.e., a one step approach) or by using intermediate
surrogate models of a convenient set of behavioral parameters
(e.g. admittances and noise functions) and by computing
performances via analytical equations in a post-processing step
(i.e., a two step approach). This is illustrated in figure 9.

To illustrate the indirect modeling approach we consider the
LNA and attempt to reproduce the behavior of the input-noise

current response variable
√

i2in. The input parameters are the
MOSFET width W , the inductances Ls,Lm, and the frequency,
leading to a 4-dimensional (4D) problem [29]. To illustrate
the direct modeling approach we model the IIP2 performance
parameter (denoting the second order nonlinearity). We also
use this approach to illustrate the scalability of the modeling
algorithms used. Instead of fixing the number of inputs we
vary them from 2 to 6. This will give insight in how the
model accuracy and required number of data points changes
as the dimensionality is increased (i.e. from 2D to 6D). The
relevant input parameters are the transistor width W , the source
inductance Ls, the load resistance RL, the voltage bias of the
transistor VGS, the transistor length L, and the resistance in
series with the generator RS (the generator series resistance).

1) Modeling settings: We use the same setup as the previ-
ous section but now only use ANN models since experience
showed these to perform best on this problem. To objectively
assess the accuracy of the produced models reference test sets
of size 512,153,114,75,56 are available. Again remember that
these do not influence the modeling process itself.

2) Sampling settings: The same sample selection algorithm
is used as with the filter application. Only this time there is no
autosampling (the frequency is not treated specially) and the
sample budget is extended to 1580 points in the indirect case
and 3000 points in the direct case. The data source is now a
custom MATLAB script instead of ADS Momentum.

3) Results: Fig. 10 shows the evolution of the relative error
histogram over the reference data for the indirect problem.
After 1580 points the error histogram corresponds to a mean

500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Number of samples

P
er

ce
nt

ag
e

of
 te

st
 p

oi
nt

s

e >= 100%
100% > e >= 10%
10% > e >= 1%
1% > e >= 0.1%
0.1% > e >= 0.01%
e < 0.01%

Figure 10. Evolution of the true error histogram (using a relative error)
over the reference data during ANN model generation for the 4D indirect
LNA modeling problem. More lighter regions mean a higher percentage of
the reference points have a low error. The final model after 1580 points has
mean relative error of 2.5%.

Table I
ELAPSED TIME TO COMPUTE 2D-6D MODELS FOR SECOND ORDER

NONLINEARITY (IIP2) OF LNA PERFORMANCE PARAMETERS.

LNA 2D 3D 4D 5D 6D
mins 0.4 1.2 24 61 192

relative error (over all test data) of 2.5% for the final 4D model.
For the direct modeling problem then, Fig. 11 shows a

visualization of the selected data samples and the model
for the 2D case. Fig. 12 shows the true accuracy curve for
each number of inputs from 2D to 6D. The true accuracy is
calculated as the Root Relative Square Error (RRSE) on each
test set. The RRSE is defined as

RRSE(y, ỹ) =

√
∑n

i=1(yi − ỹi)2

∑n
i=1(yi − ȳ)2 (4)

where y, ỹ, ȳ are the true, predicted and mean true response
values respectively.

The curves in Fig. 12 depict how good the LRM-
SampleError combination is at minimizing the error on the
reference grid. Desirable features are a smooth, monotonic
decrease of the error as a function of the number of data
points. The steeper the descent the better. Erratic jumps should
be avoided but temporary increases in error are permitted.
The error may temporarily increase if adding new data points
reveals new features in the data or a new interpretation. What
was thought to be a good model may turn out to be less
accurate given the new information.

Fig. 12 shows that satisfactory accuracy (which in this case
is defined as a RRSE score of 0.05) can be reached in all cases,
with convergence being particularly fast in the 2D and 3D case.
A second observation is that the curves for 5D and 6D are
rather erratic, much more so than the 2D-4D curves. The most
likely reason for this lies in the fact that the LRM algorithm

7

Figure 11. Plot of the final 2D ANN model for IIP2 with W = 100∗10−6 ∗
10Wn m and Ls = 0.2∗10−9 ∗10Lsn H. Selected data samples are marked (•).

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of samples

R
R

S
E

 o
n

IIP
2

(T
es

t e
rr

or
)

2D
3D
4D
5D
6D
target

Figure 12. Evolution of the true error across different dimensions when
modeling the second order nonlinearity (IIP2) of the LNA performance
parameters.

uses too little test points to estimate the model smoothness in
higher dimensions [42]. Table 1 shows the running times on a
Laptop with Intel(R) Core(TM) i7-2760QP CPU at 2.4 GHz
with 8 GB of RAM and a 64-bit operating system.

V. CONCLUSION

The continuous emergence of new devices and circuit
design techniques has led to the development of a wide
range of behavioral modeling methods that facilitate design
space exploration, optimization, and sensitivity analysis. This
paper discussed how the use of data modeling techniques can
be leveraged in a flexible modeling framework to facilitate
domain experts in their modeling task. By way of example,
accurate behavioral models with good generalization and scal-
ability were generated for electromagnetic bandstop filter and
low noise amplifier modeling problems. Sample selection and
model complexity setting were handled fully autonomously.

Future work includes the integration of more specialized fitting
algorithms (such as [46]) as plugins into the SUMO Toolbox
so as to ensure maximum accuracy and interpretability of
models for electronic devices and systems.

VI. DOWNLOAD INSTRUCTIONS

The SUMO Toolbox framework which was used for the
tests (including all algorithms and features discussed here) is
available under an open source license (AGPLv3) for down-
load at http://www.sumo.intec.ugent.be. The software package
contains a collection of demos, datasets and examples. Addi-
tional documentation is also included and a wiki page with in-
formation is available at http://www.sumowiki.intec.ugent.be.

REFERENCES

[1] A. Forrester, A. Sobester, and A. Keane, Engineering Design Via
Surrogate Modelling: A Practical Guide. Wiley, 2008.

[2] D. P. Solomatine and A. Ostfeld, “Data-driven modelling : some past
experiences and new approaches,” Journal of hydroinformatics, vol. 10,
no. 1, pp. 3–22, 2008.

[3] H. Fang, M. Rais-Rohani, Z. Liu, and M. Horstemeyer, “A comparative
study of metamodeling methods for multiobjective crashworthiness
optimization,” Computers and Structures, vol. 83, no. 25-26, pp. 2121–
2136, 2005.

[4] A. Chinea, Passive Macromodeling of Electrically Long Interconnects.
PhD thesis, Dept. of Electrical Engineering, Polytechnic University of
Turin, Turin, Italy, 2010.

[5] M. Bakr, J. Bandler, K. Madsen, and J. Sondergaard, “Review of the
space-mapping approach to engineering optimization and modeling,”
Optimization and Engineering, vol. 1, no. 3, pp. 241–276, 2000.

[6] J. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H.
Hemmers, “Space mapping technique for electromagnetic optimization,”
IEEE Transactions on Microwave Theory and Techniques, vol. 42,
pp. 2536–2544, Aug. 1994.

[7] J. De Geest, T. Dhaene, N. Faché, and D. De Zutter, “Adaptive CAD-
model building algorithm for general planar microwave structures,” IEEE
Transactions on Microwave Theory and Techniques, vol. 47, pp. 1801–
1809, Sep. 1999.

[8] D. Deschrijver and T. Dhaene, “Stability and passivity enforcement
of parametric macromodels in time and frequency domain,” IEEE
Transactions on Microwave Theory and Techniques, vol. 56, pp. 2435–
2441, Nov. 2008.

[9] T. Dhaene and D. Deschrijver, “Generalised vector fitting algorithm
for macromodelling of passive electronic components,” IEE Electronics
Letters, vol. 41, no. 6, pp. 299–300, 2005.

[10] J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis
of computer experiments,” Statistical science, vol. 4, no. 4, pp. 409–435,
1989.

[11] E. S. Siah, M. Sasena, J. L. Volakis, P. Y. Papalambros, and R. W.
Wiese, “Fast parameter optimization of large-scale electromagnetic
objects using direct with kriging metamodeling,” IEEE Transactions on
Microwave Theory and Techniques, vol. 52, no. 1, pp. 276–285, 2004.

[12] Q. J. Zhang and K. C. Gupta, Neural Networks for RF and Microwave
Design (Book + Neuromodeler Disk). Norwood, MA, USA: Artech
House, Inc., 2000.

[13] A. H. Zaabab, Q. J. Zhang, and M. Nakhla, “A neural network modeling
approach to circuit optimization and statistical design,” IEEE Transac-
tions on Microwave Theory and Techniques, vol. 43, pp. 1349–1358,
Jun. 1995.

[14] J. Suykens, T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vandewalle,
Least Squares Support Vector Machines. Singapore: World Scientific
Publishing Co., Pte, Ltd., 2002.

[15] D. Gorissen, K. Crombecq, I. Couckuyt, P. Demeester, and T. Dhaene,
“A surrogate modeling and adaptive sampling toolbox for com-
puter based design,” Journal of Machine Learning Research, vol. 11,
pp. 2051–2055, 2010.

[16] D. Busby, C. L. Farmer, and A. Iske, “Hierarchical nonlinear approxima-
tion for experimental design and statistical data fitting,” SIAM Journal
on Scientific Computing, vol. 29, pp. 49–69, Jan. 2007.

[17] C. Cherkassky and F. M. Mulier, Learning from Data: Concepts, Theory,
and Methods. Wiley-IEEE, 2007.

8

[18] P. Triverio, S. Grivet-Talocia, M. Nakhla, F. Canavero, and R. Achar,
“Stability, causality and passivity in electrical interconnect models,”
IEEE Transactions on Advanced Packaging, vol. 30, pp. 795–808, Nov.
2007.

[19] T. Dhaene and D. Deschrijver, “Efficient algorithm for passivity en-
forcement of s-parameter based macromodels,” IEEE Transactions on
Microwave Theory and Techniques, vol. 57, pp. 415–420, Feb. 2009.

[20] D. Deschrijver and T. Dhaene, “Fast passivity enforcement of s-
parameter macromodels by pole perturbation,” IEEE Transactions on
Microwave Theory and Techniques, vol. 57, pp. 620–626, Feb. 2009.

[21] J. P. C. Kleijnen, DASE : Design and Analysis of Simulation Experi-
ments. Springer, May 2007.

[22] M. Ding and R. Vemur, “An active learning scheme using support
vector machines for analog circuit feasibility classification,” in 18th
International Conference on VLSI Design, pp. 528–534, Jan. 2005.

[23] T. G. Robertazzi and S. C. Schwartz, “An accelerated sequential al-
gorithm for producing D-optimal designs,” Siam Journal on scientific
Computing, vol. 10, pp. 341–358, Mar. 1989.

[24] Y. Lin, An Efficient Robust Concept Exploration Method and Sequential
Exploratory Experimental Design. PhD thesis, Georgia Institute of
Technology, 2004.

[25] A. C. Keys and L. P. Rees, “A sequential-design metamodeling strategy
for simulation optimization,” Computers and Operational Research,
vol. 31, no. 11, pp. 1911–1932, 2004.

[26] L. Zhang, Y. Cao, S. Wan, H. Kabir, and Q.-J. Zhang, “Parallel automatic
model generation technique for microwave modeling,” in IEEE/MTT-S
International Microwave Symposium, pp. 103–106, Jun. 2007.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM Algorithm,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38,
1977.

[28] D. Gorissen, T. Dhaene, and F. De Turck, “Evolutionary model type
selection for global surrogate modeling,” Journal of Machine Learning
Research, vol. 10, pp. 2039–2078, 2009.

[29] D. Gorissen, L. De Tommasi, K. Crombecq, and T. Dhaene, “Sequential
modeling of a low noise amplifier with neural networks and active
learning,” Neural Computing and Applications, vol. 18, pp. 485–494,
Jun. 2009.

[30] D. Gorissen, “Grid-enabled adaptive metamodeling and active learning
for computer based design,” in Proceedings of The 22nd Canadian
Conference on Artificial Intelligence (AI 2009), Kelowna, vol. LNCS
5549 of Lecture Notes in Artificial Intelligence, pp. 266–269, May 2009.

[31] E. R. Harold and W. S. Means, XML in a Nutshell. O’Reilly Media,
Inc., Cambridge, Massachusetts, 2004.

[32] D. Gorissen, I. Couckuyt, E. Laermans, and T. Dhaene, “Multiobjective
global surrogate modeling,dealing with the 5-percent problem,” Engi-
neering with Computers, vol. 26, pp. 81–89, Jan. 2010.

[33] D. Gorissen, T. Dhaene, P. Demeester, and J. Broeckhove, Handbook
of Research on Grid Technologies and Utility Computing: Concepts
for Managing Large-Scale Applications, ch. Grid enabled surrogate
modeling, pp. 249–258. IGI Global, May 2009.

[34] I. Couckuyt, D. Gorissen, H. Rouhani, E. Laermans, and T. Dhaene,
“Evolutionary regression modeling with active learning: An application
to rainfall runoff modeling,” in International Conference on Adaptive
and Natural Computing Algorithms, vol. LNCS 5495, pp. 548–558, Sep.
2009.

[35] T. Zhu and P. D. Franzon, “Application of surrogate modeling to generate
compact and PVT-sensitive IBIS models,” in Proceedings of the 18th
Conference on Electrical Performance of Electronic Packaging and
Systems (EPEPS), Oct. 2009.

[36] D. Gorissen, K. Crombecq, I. Couckuyt, and T. Dhaene, Foundations
of Computational Intelligence, Volume 1: Learning and Approximation:
Theoretical Foundations and Applications, vol. 201, ch. Automatic
Approximation of Expensive Functions with Active Learning, pp. 35–62.
Springer Verlag, Series Studies in Computational Intelligence, 2009.

[37] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimiza-
tion of expensive black-box functions,” Journal of Global Optimization,
vol. 13, pp. 455–492, Nov. 1998.

[38] W. Hendrickx and T. Dhaene, “Sequential design and rational meta-
modelling,” in Proceedings of the 2005 Winter Simulation Conference
(M. Kuhl, S. N. M., F. B. Armstrong, and J. A. Joines, eds.), pp. 290–
298, Dec. 2005.

[39] A. Krogh and J. Vedelsby, “Neural network ensembles, cross validation,
and active learning,” in Advances in Neural Information Processing
Systems 7, NIPS Conference, Denver, CO, pp. 231–238, Dec. 1994.

[40] D. MacKay, “Bayesian model comparison and backprop nets,” in Ad-
vances in Neural Information Processing Systems 4 (J. E. Moody, S. J.

Hanson, and R. P. Lippmann, eds.), pp. 839–846, Morgan Kaufmann,
Dec. 1992.

[41] F. Foresee and M. Hagan, “Gauss-Newton approximation to bayesian
regularization,” in Proceedings of the 1997 International Joint Confer-
ence on Neural Networks, pp. 1930–1935, Jun. 1997.

[42] H. Nguyen, I. Couckuyt, L. Knockaert, T. Dhaene, D. Gorissen, and
Y. Saeys, “An alternative approach to avoid overfitting for surrogate
models,” in Winter Simulation Conference, pp. 2760–2771, Dec. 2011.

[43] K. Crombecq, D. Gorissen, D. Deschrijver, and T. Dhaene, “A novel
hybrid sequential design strategy for global surrogate modeling of
computer experiments,” SIAM Journal on Scientific Computing, vol. 33,
pp. 1948–1974, Jul. 2011.

[44] B. W. Silverman, Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, Apr. 1986.

[45] T. Lee, The Design of CMOS Radio-Frequency Integrated Circuits
(Second Edition). Cambridge University Press, 2003.

[46] D. Deschrijver, T. Dhaene, and D. De Zutter, “Robust parametric
macromodeling using multivariate orthonormal vector fitting,” IEEE
Transactions on Microwave Theory and Techniques, vol. 56, pp. 1661–
1667, Jul. 2008.

Dirk Gorissen was born on April 21, 1981. He
received his M.Sc. degree in Computer Science
from the University of Antwerp in 2004 and a he
received a Masters degree in Artificial Intelligence
from the Katholieke Universiteit Leuven in 2007.
He continued on to the PhD level at the University
of Antwerp and later at Gent University, Belgium
where he obtained his PhD in Engineering Science
in May 2010. During this time he also worked in
research labs in Atlanta, USA and Ottawa, Canada,
and he was a member of IBBT, an internationally

recognized multidisciplinary ICT research center. Starting February 2010 he
joined the Computational Engineering and Design Group at School of Engi-
neering Sciences of Southampton University, UK. His research interests lie in
the domain of computational engineering. Particular topics of interest include:
global and local surrogate modeling for engineering design exploration and
optimization, High Performance Computing (HPC), evolutionary computing,
machine learning, and software engineering.

Dirk Deschrijver was born in Tielt, Belgium, on
September 26, 1981. He received the Master degree
(Licentiaat) in computer science and Ph.D. degree
from the University of Antwerp, Antwerp, Bel-
gium, in 2003 and 2007, respectively. He was with
the Computer Modeling and Simula- tion (COMS)
Group, University of Antwerp, where he was sup-
ported by a research project of the Fund for Sci-
entific Research Flanders (FWO-Vlaanderen). From
May to October 2005, he was a Marie Curie Fellow
with the Scientific Computing Group, Eindhoven

University of Technology, Eindhoven, The Netherlands. He is currently an
FWO Post-Doctoral Research Fellow with the Department of Information
Technology (INTEC), Ghent University, Gent, Belgium. His research interests
include rational least squares approximation, orthonormal rational functions,
system identification, and parametric macromodeling techniques.

9

Tom Dhaene (M’94-SM’05) received the Ph.D.
degree in electrotechnical engineering from Ghent
University, Ghent, Belgium, in 1993. From 1989 to
1993, he was a Research Assistant with the Depart-
ment of Information Technology, Ghent University,
where his research focused on different aspects of
full-wave electromagnetic circuit modeling, tran-
sient simulation, and time-domain characterization
of high-frequency and high-speed interconnections.
In 1993, he joined the EDA company Alphabit (now
part of Agilent). He was one of the key developers

of the planar EM simulator ADS Momentum, ADS Model Composer, and
ADS Broadband SPICE. Since 2007, he has been a Full Professor with the
Department of Information Technology (INTEC), Ghent University - IBBT.
He has authored or coauthored more than 250 peer-reviewed papers and
abstracts in international conference proceedings, journals, and books. He is
the holder of 5 U.S. patents.

Daniel De Zutter (F’00) was born in 1953. He
received the M.Sc. degree in electrical engineering
from Ghent University, Ghent, Belgium, in 1976.
In 1981, and the Ph.D. degree from Ghent Uni-
versity, in 1984. He is currently a Full Professor
of electromagnetics. As author or coauthor, he has
contributed to more than 180 international journal
papers (cited in the Web of Science) and 200 papers
in conference proceedings. Between 2004 and 2008,
he served as the Dean of the Faculty of Engineering,
Ghent University, where he is currently the Head of

the Department of Information Technology. His research interest focuses on
all aspects of circuit and electromagnetic modeling of high-speed and high-
frequency interconnections and packaging, and on electromagnetic compati-
bility and numerical solutions of Maxwell’s equations. Dr. De Zutter was an
Associate Editor of the IEEE TRANSACTIONS ON MICROWAVE THEORY
AND TECHNIQUES.

