102 research outputs found

    3D object classification in baggage computed tomography imagery using randomised clustering forests

    Get PDF
    We investigate the feasibility of a codebook approach for the automated classification of threats in pre-segmented 3D baggage Computed Tomography (CT) security imagery. We compare the performance of five codebook models, using various combinations of sampling strategies, feature encoding techniques and classifiers, to the current state-of-the-art 3D visual cortex approach [1]. We demonstrate an improvement over the state-of-the-art both in terms of accuracy as well as processing time using a codebook constructed via randomised clustering forests [2], a dense feature sampling strategy and an SVM classifier. Correct classification rates in excess of 98% and false positive rates of less than 1%, in conjunction with a reduction of several orders of magnitude in processing time, make the proposed approach an attractive option for the automated classification of threats in security screening settings

    A Review of Automated Image Understanding within 3D Baggage Computed Tomography Security Screening

    Get PDF
    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT

    A 3D descriptor to detect task-oriented grasping points in clothing

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Manipulating textile objects with a robot is a challenging task, especially because the garment perception is difficult due to the endless configurations it can adopt, coupled with a large variety of colors and designs. Most current approaches follow a multiple re-grasp strategy, in which clothes are sequentially grasped from different points until one of them yields a recognizable configuration. In this work we propose a method that combines 3D and appearance information to directly select a suitable grasping point for the task at hand, which in our case consists of hanging a shirt or a polo shirt from a hook. Our method follows a coarse-to-fine approach in which, first, the collar of the garment is detected and, next, a grasping point on the lapel is chosen using a novel 3D descriptor. In contrast to current 3D descriptors, ours can run in real time, even when it needs to be densely computed over the input image. Our central idea is to take advantage of the structured nature of range images that most depth sensors provide and, by exploiting integral imaging, achieve speed-ups of two orders of magnitude with respect to competing approaches, while maintaining performance. This makes it especially adequate for robotic applications as we thoroughly demonstrate in the experimental section.Peer ReviewedPostprint (author's final draft

    On the Relevance of Denoising and Artefact Reduction in 3D Segmentation and Classification within Complex Computed Tomography Imagery

    Get PDF
    We evaluate the impact of denoising and Metal Artefact Reduction (MAR) on 3D object segmentation and classification in low-resolution, cluttered dual-energy Computed Tomography (CT). To this end, we present a novel 3D materials-based segmentation technique based on the Dual-Energy Index (DEI) to automatically generate subvolumes for classification. Subvolume classification is performed using an extension of Extremely Randomised Clustering (ERC) forest codebooks, constructed using dense feature-point sampling and multiscale Density Histogram (DH) descriptors. Within this experimental framework, we evaluate the impact on classification accuracy and computational expense of pre-processing by intensity thresholding, Non-Local Means (NLM) filtering, Linear Interpolation-based MAR (LIMar) and Distance-Driven MAR (DDMar) in the domain of 3D baggage security screening. We demonstrate that basic NLM filtering, although removing fewer artefacts, produces state-of-the-art classification results comparable to the more complex DDMar but at a significant reduction in computational cost - bringing into question the importance (in terms of automated CT analysis) of computationally expensive artefact reduction techniques. Overall, it was found that the use of MAR pre-processing approaches produced only a marginal improvement in classification performance ( 10Ă—) when compared to NLM pre-processing

    On using Feature Descriptors as Visual Words for Object Detection within X-ray Baggage Security Screening

    Get PDF
    Here we explore the use of various feature point descriptors as visual word variants within a Bag-of-Visual-Words (BoVW) representation scheme for image classification based threat detection within baggage security X-ray imagery. Using a classical BoVW model with a range of feature point detectors and descriptors, supported by both Support Vector Machine (SVM) and Random Forest classification, we illustrate the current performance capability of approaches following this image classification paradigm over a large X-ray baggage imagery data set. An optimal statistical accuracy of 0.94 (true positive: 83%; false positive: 3.3%) is achieved using a FAST-SURF feature detector and descriptor combination for a firearms detection task. Our results indicate comparative levels of performance for BoVW based approaches for this task over extensive variations in feature detector, feature descriptor, vocabulary size and final classification approach. We further demonstrate a by-product of such approaches in using feature point density as a simple measure of image complexity available as an integral part of the overall classification pipeline. The performance achieved characterises the potential for BoVW based approaches for threat object detection within the future automation of X-ray security screening against other contemporary approaches in the field

    Automated X-ray image analysis for cargo security: Critical review and future promise

    Get PDF
    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo
    • …
    corecore