4,442 research outputs found

    Digital Navigational Aids for the Visually Impaired A Designer’s Guide for Implementing Effective Feedback Solutions

    Get PDF
    Mobility and navigation in outdoor environments constitute a formidable daily challenge for the blind and visually impaired community. Difficulty in outdoor mobility limits participation in social activities and employment opportunities which in turn contributes to isolation and a decreased sense of mental well-being. To address these challenges, digital navigational aids (NAVIs) extend the capabilities of traditional mobility aids such as guide dogs and the white cane. However, adoption of these new technologies within the blind and visually impaired community has been low. This low adoption rate suggests that a gap exists between current solutions and user needs and goals. As intermediaries between solutions and the users they serve, designers are ideally situated to bridge this gap. Thus, this research aims to provide designers new to the problem space with an understanding of the considerations that inform NAVI design. To build a rudimentary understanding of these considerations, a literature review of individual NAVI research projects and comparative reviews of NAVIs was con-ducted. The interaction design requirements framework proposed by Sharp et al. (2019) was then used as an organizational tool for further defining these considerations. Requirements categories including user experience goals, usability goals, functional requirements, environmental requirements and data requirements were applied as themes in a thematic analysis of data obtained through interviews with NAVI designers and other designers of feedback systems in an effort to identify challenges, designer approaches and areas where improvements could be made to current NAVI design solutions. Findings from expert interviews suggest that developments emerging from the rap-idly evolving technological environment can be leveraged by designers for creating more user friendly and accessible solutions. For example, user familiarity with smartphone interfaces can reduce the learning curve required when adapting to a new smartphone-based NAVI thus increasing the chances of adoption into daily use. Data obtained in interviews also examines the methods by which designers improve usability, including users not only in their iterative processes but through-out the entire life cycle of a NAVI solution. Finally, expert interviews reveal new prototyping tools for designing feedback systems with wearables which streamline the prototyping process and lower the barrier of entry for designers without prior expertise in coding or electronics

    The Application of Geographic Information Systems to Support Wayfinding for People with Visual Impairments or Blindness

    Get PDF
    People with visual impairments or legal blindness are relying on differing, comprehensive information utilized for their individual mobility. Increasing the personal mobility of people with disabilities and thereby achieving a self-determined life are major steps toward a more inclusive society. Research and applications on mobility issues of people with visual impairments or blindness mainly focus on technical applications or assistive orientation and navigation devices, and less work is covering the individual needs, e.g., regarding the information required for wayfinding. Moreover, active participation of people with disabilities in research and development is still limited. ways2see offers a new online application to support individual mobility in context of pre-trip planning for people with visual impairments or blindness based on a Geographic Information System (GIS). Obstacles, barriers, landmarks, orientation hints, and directions for wayfinding are generated by user profiles. The underlying network for GIS analysis is designed as pedestrian network. This individually coded network approach integrates sidewalks and different types of crossings and implements various orientation and navigation attributes. ways2see integrates three research realms: firstly, implementing a participative and transdisciplinary research design; secondly, integrating personalized information aligned with the individual user needs; and thirdly, presenting result of GIS analysis through an accessible designed user interface

    Designing Accessible Nonvisual Maps

    Get PDF
    Access to nonvisual maps has long required special equipment and training to use; Google Maps, ESRI, and other commonly used digital maps are completely visual and thus inaccessible to people with visual impairments. This project presents the design and evaluation of an easy to use digital auditory map and 3D model interactive map. A co-design was also undertaken to discover tools for an ideal nonvisual navigational experience. Baseline results of both studies are presented so future work can improve on the designs. The user evaluation revealed that both prototypes were moderately easy to use. An ideal nonvisual navigational experience, according to these participants, consists of both an accurate turn by turn navigational system, and an interactive map. Future work needs to focus on the development of appropriate tools to enable this ideal experience

    Integrating Haptic Feedback into Mobile Location Based Services

    Get PDF
    Haptics is a feedback technology that takes advantage of the human sense of touch by applying forces, vibrations, and/or motions to a haptic-enabled device such as a mobile phone. Historically, human-computer interaction has been visual - text and images on the screen. Haptic feedback can be an important additional method especially in Mobile Location Based Services such as knowledge discovery, pedestrian navigation and notification systems. A knowledge discovery system called the Haptic GeoWand is a low interaction system that allows users to query geo-tagged data around them by using a point-and-scan technique with their mobile device. Haptic Pedestrian is a navigation system for walkers. Four prototypes have been developed classified according to the user’s guidance requirements, the user type (based on spatial skills), and overall system complexity. Haptic Transit is a notification system that provides spatial information to the users of public transport. In all these systems, haptic feedback is used to convey information about location, orientation, density and distance by use of the vibration alarm with varying frequencies and patterns to help understand the physical environment. Trials elicited positive responses from the users who see benefit in being provided with a “heads up” approach to mobile navigation. Results from a memory recall test show that the users of haptic feedback for navigation had better memory recall of the region traversed than the users of landmark images. Haptics integrated into a multi-modal navigation system provides more usable, less distracting but more effective interaction than conventional systems. Enhancements to the current work could include integration of contextual information, detailed large-scale user trials and the exploration of using haptics within confined indoor spaces
    corecore