11 research outputs found

    A FUZZY BASED PARAMETRIC MONITORING AND CONTROL ALGORITHM FOR DISTINCTIVE LOADS TO ENHANCE THE STABILITY IN RURAL ISLANDED MICROGRIDS

    Get PDF
    Effective monitoring and control of isolated rural microgrid in the developing world is challenging. The modern communication and monitoring is difficult to handle in such communities due to a complicated approach to the area, lack of modern facilities and unavailability of skilled manpower. Implementation of a microgrid in such areas using intermittent renewable sources and limited storage is challenging. Uncontrolled load consumption leads to the system-wide outages due to prolonged storage utilization in peak hours and is referred here as battery storage stress hours (BSSH). This research is focused to study and analyze the behavior of parametric load monitoring and control algorithm that could control the distinctive load of the microgrid during BSSH. In the proposed algorithm, the residential loads are distinctively controlled while utilizing the three locally available parameters that are the state of the charge of storage, solar irradiations and ambient temperature. In other words, the natural parameter variations have been uniquely utilized as a monitoring tool for load control. The fuzzy controller takes a decision for the activation or deactivation of any load based on the three parameters variation ranges. It is observed from the simulation and experimental results that while only utilizing locally available parameters the effective load control is possible

    Komponentenbasierte dynamische Modellierung von Energiesystemen und Energiemanagement-Strategien für ein intelligentes Stromnetz im Heimbereich

    Get PDF
    The motivation of this work is to present an energy cost reduction concept in a home area power network (HAPN) with intelligent generation and flexible load demands. This study endeavors to address the energy management system (EMS) and layout-design challenges faced by HAPN through a systematic design approach. The growing demand for electricity has become a significant burden on traditional power networks, prompting power engineers to seek ways to improve their efficiency. One such solution is to integrate dispersed generation sources, such as photovoltaic (PV) and storage systems, with an appropriate control mechanism at the distribution level. In recent years, there has been a significant increase in interest in the installation of PV-Battery systems, due to their potential to reduce carbon emissions and lower energy costs. This research proposes an optimal economic power dispatch strategy using Model Predictive Control (MPC) to enhance the overall performance of HAPN. A hybrid AC/DC microgrid concept is proposed to address the control choices made by the appliance scheduling and hybrid switching approaches based on a linear programming optimization framework. The suggested optimization criteria improve consumer satisfaction, minimize grid disconnections, and lower overall energy costs by deploying inexpensive clean energy generation and control. Various examples from actual case study demonstrate the use of the established EMS and design methodology.Die Motivation dieser Arbeit besteht darin, ein Konzept zur Senkung der Energiekosten in einem Heimnetzwerk (HAPN) mit intelligenter Erzeugung und exiblen Lastanforderungen vorzustellen. Im Rahmen dieser Forschungsarbeit wird ein Entwurf für ein HAPN entwickelt, indem das Energiemanagementsystem (EMS) und der Entwurf des Layouts auf der Grundlage des Systemmodells und der betrieblichen Anforderungen gelöst werden. Die steigende Nachfrage nach Elektrizität ist für traditionelle Stromnetze kostspielig und infrastrukturintensiv. Daher konzentrieren sich Energietechniker darauf, die Effizienz der derzeitigen Netze zu erhöhen. Dies kann durch die Integration verteilter Erzeugungsanlagen (z. B. Photovoltaik (PV), Speicher) mit einem geeigneten Kontrollmechanismus für das Energiemanagement auf der Verteilungsseite erreicht werden. Darüber hinaus hat das Interesse an der Installation von PV-Batterie-basierten Systemen aufgrund der Reduzierung der CO2-Emissionen und der Senkung der Energiekosten erheblich zugenommen. Es wird eine optimale wirtschaftliche Strategie für den Energieeinsatz unter Verwendung einer modellprädiktiven Steuerung (MPC) entwickelt. Es wird zudem ein hybrides AC/DC-Microgrid-Konzept vorgeschlagen, um die Steuerungsentscheidungen, die von den Ansätzen der Geräteplanung und der hybriden Umschaltung getroffen werden, auf der Grundlage eines linearen Programmierungsoptimierungsrahmens zu berücksichtigen. Die vorgeschlagenen Optimierungskriterien verbessern die Zufriedenheit der Verbraucher, minimieren Netzabschaltungen und senken die Gesamtenergiekosten durch den Einsatz von kostengünstiger und sauberer Energieerzeugung. Verschiedene Beispiele aus einer Fallstudie demonstrieren den Einsatz des entwickelten EMS und der Entwurfsmethodik

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    The role of access to electricity in development processes:approaching energy poverty through innovation

    Get PDF

    μGIM - Microgrid intelligent management system based on a multi-agent approach and the active participation of end-users

    Get PDF
    [ES] Los sistemas de potencia y energía están cambiando su paradigma tradicional, de sistemas centralizados a sistemas descentralizados. La aparición de redes inteligentes permite la integración de recursos energéticos descentralizados y promueve la gestión inclusiva que involucra a los usuarios finales, impulsada por la gestión del lado de la demanda, la energía transactiva y la respuesta a la demanda. Garantizar la escalabilidad y la estabilidad del servicio proporcionado por la red, en este nuevo paradigma de redes inteligentes, es más difícil porque no hay una única sala de operaciones centralizada donde se tomen todas las decisiones. Para implementar con éxito redes inteligentes, es necesario combinar esfuerzos entre la ingeniería eléctrica y la ingeniería informática. La ingeniería eléctrica debe garantizar el correcto funcionamiento físico de las redes inteligentes y de sus componentes, estableciendo las bases para un adecuado monitoreo, control, gestión, y métodos de operación. La ingeniería informática desempeña un papel importante al proporcionar los modelos y herramientas computacionales adecuados para administrar y operar la red inteligente y sus partes constituyentes, representando adecuadamente a todos los diferentes actores involucrados. Estos modelos deben considerar los objetivos individuales y comunes de los actores que proporcionan las bases para garantizar interacciones competitivas y cooperativas capaces de satisfacer a los actores individuales, así como cumplir con los requisitos comunes con respecto a la sostenibilidad técnica, ambiental y económica del Sistema. La naturaleza distribuida de las redes inteligentes permite, incentiva y beneficia enormemente la participación activa de los usuarios finales, desde actores grandes hasta actores más pequeños, como los consumidores residenciales. Uno de los principales problemas en la planificación y operación de redes eléctricas es la variación de la demanda de energía, que a menudo se duplica más que durante las horas pico en comparación con la demanda fuera de pico. Tradicionalmente, esta variación dio como resultado la construcción de plantas de generación de energía y grandes inversiones en líneas de red y subestaciones. El uso masivo de fuentes de energía renovables implica mayor volatilidad en lo relativo a la generación, lo que hace que sea más difícil equilibrar el consumo y la generación. La participación de los actores de la red inteligente, habilitada por la energía transactiva y la respuesta a la demanda, puede proporcionar flexibilidad en desde el punto de vista de la demanda, facilitando la operación del sistema y haciendo frente a la creciente participación de las energías renovables. En el ámbito de las redes inteligentes, es posible construir y operar redes más pequeñas, llamadas microrredes. Esas son redes geográficamente limitadas con gestión y operación local. Pueden verse como áreas geográficas restringidas para las cuales la red eléctrica generalmente opera físicamente conectada a la red principal, pero también puede operar en modo isla, lo que proporciona independencia de la red principal. Esta investigación de doctorado, realizada bajo el Programa de Doctorado en Ingeniería Informática de la Universidad de Salamanca, aborda el estudio y el análisis de la gestión de microrredes, considerando la participación activa de los usuarios finales y la gestión energética de lascarga eléctrica y los recursos energéticos de los usuarios finales. En este trabajo de investigación se ha analizado el uso de conceptos de ingeniería informática, particularmente del campo de la inteligencia artificial, para apoyar la gestión de las microrredes, proponiendo un sistema de gestión inteligente de microrredes (μGIM) basado en un enfoque de múltiples agentes y en la participación activa de usuarios. Esta solución se compone de tres sistemas que combinan hardware y software: el emulador de virtual a realidad (V2R), el enchufe inteligente de conciencia ambiental de Internet de las cosas (EnAPlug), y la computadora de placa única para energía basada en el agente (S4E) para permitir la gestión del lado de la demanda y la energía transactiva. Estos sistemas fueron concebidos, desarrollados y probados para permitir la validación de metodologías de gestión de microrredes, es decir, para la participación de los usuarios finales y para la optimización inteligente de los recursos. Este documento presenta todos los principales modelos y resultados obtenidos durante esta investigación de doctorado, con respecto a análisis de vanguardia, concepción de sistemas, desarrollo de sistemas, resultados de experimentación y descubrimientos principales. Los sistemas se han evaluado en escenarios reales, desde laboratorios hasta sitios piloto. En total, se han publicado veinte artículos científicos, de los cuales nueve se han hecho en revistas especializadas. Esta investigación de doctorado realizó contribuciones a dos proyectos H2020 (DOMINOES y DREAM-GO), dos proyectos ITEA (M2MGrids y SPEAR), tres proyectos portugueses (SIMOCE, NetEffiCity y AVIGAE) y un proyecto con financiación en cascada H2020 (Eco-Rural -IoT)

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts

    Get PDF
    The climate changes that are visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this book presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on energy internet, blockchain technology, and smart contracts, we hope that they are of interest to readers working in the related fields mentioned above

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    Technologisch herausfordernde Transformationsprozesse wie die Energiewende können durch passende Anreizsysteme entscheidend beschleunigt werden. Ziel solcher Anreize ist es hierbei, ein Umfeld idealerweise so zu schaffen, dass das Zusammenspiel aller aus Sicht der beteiligten Wettbewerber individuell optimalen Einzelhandlungen auch global optimal im Sinne eines übergeordneten Großziels ist. Die vorliegende Dissertation schafft einen regelungstechnischen Zugang zur Frage optimaler Anreizsysteme für heutige und zukünftige Stromnetze im Zieldreieck aus Systemstabilität, ökonomischer Effizienz und Netzdienlichkeit. Entscheidende Neuheit des entwickelten Ansatzes ist die Einführung zeitlich wie örtlich differenzierter Echtzeit-Preissignale, die sich aus der Lösung statischer und dynamischer Optimierungsprobleme ergeben. Der Miteinbezug lokal verfügbarer Messinformationen, die konsequente Mitmodellierung des unterlagerten physikalischen Netzes inklusive resistiver Verluste und die durchgängig zeitkontinuierliche Formulierung aller Teilsysteme ebnen den Weg von einer reinen Anreiz-Steuerung hin zu einer echten Anreiz-Regelung. Besonderes Augenmerk der Arbeit liegt in einer durch das allgemeine Unbundling-Gebot bedingten rigorosen Trennung zwischen Markt- und Netzakteuren. Nach umfangreicher Analyse des hierbei entstehenden geschlossenen Regelkreises erfolgt die beispielhafte Anwendung der Regelungsarchitektur für den Aufbau eines neuartigen Echtzeit-Engpassmanagementsystems. Weitere praktische Vorteile des entwickelten Ansatzes im Vergleich zu bestehenden Konzepten werden anhand zweier Fallstudien deutlich. Die port-basierte Systemmodellierung, der Verzicht auf zentralisierte Regeleingriffe und nicht zuletzt die Möglichkeit zur automatischen, dezentralen Selbstregulation aller Preise über das Gesamtnetz hinweg stellen schließlich die problemlose Erweiterbarkeit um zusätzliche optionale Anreizkomponenten sicher

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively
    corecore