9,118 research outputs found

    Integrated high-voltage switched-capacitor DC-DC converters

    Get PDF
    The focus of this work is on the integrated circuit (IC) level integration of high-voltage switched-capacitor (SC) converters with the goal of fully integrated power management solutions for system-on-chip (SoC) and system-in-pagage (SiP) applications. The full integration of SC converters provides a low cost and compact power supply solution for modern electronics. Currently, there are almost no fully integrated SC converters with input voltages above 5 V. The purpose of this work is to provide solutions for higher input voltages. The increasing challenges of a compact and efïŹcient power supply on the chip are addressed. High-voltage rated components and the increased losses caused by parasitics not only reduce power density but also efïŹciency. Loss mechanisms in high-voltage SC converters are investigated resulting in an optimized model for high-voltage SC converters. The model developed allows an appropriate comparison of different semiconductor technologies and converter topologies. Methods and design proposals for loss reduction are presented. Control of power switches with their supporting circuits is a further challenge for high-voltage SC converters. The aim of this work is to develop fully integrated SC converters with a wide input voltage range. Different topologies and concepts are investigated. The implemented fully integrated SC converter has an input voltage range of 2 V to 13 V. This is twice the range of existing converters. This is achieved by an implemented buck and boost mode as well as 17 conversion ratios. Experimental results show a peak efïŹciency of 81.5%. This is the highest published peak efïŹciency for fully integrated SC converters with an input voltage > 5V. With the help of the model developed in this work, a three-phase SC converter topology for input voltages up to 60 V is derived and then investigated and discussed. Another focus of this work is on the power supply of sensor nodes and smart home applications with low-power consumption. Highly integrated micro power supplies that operate directly from mains voltage are particularly suitable for these applications. The micro power supply proposed in this work utilizes the high-voltage SC converter developed. The output power is 14 times higher and the power density eleven times higher than prior work. Since plenty of power switches are built into modern multi-ratio SC converters, the switch control circuits must be optimized with regard to low-power consumption and area requirements. In this work, different level shifter concepts are investigated and a low-power high-voltage level shifter for 50 V applications based on a capacitive level shifter is introduced. The level shifter developed exceeds the state of the art by a factor of more than eleven with a power consumption of 2.1pJ per transition. A propagation delay of 1.45 ns is achieved. The presented high-voltage level shifter is the ïŹrst level shifter for 50 V applications with a propagation delay below 2 ns and power consumption below 20pJ per transition. Compared to the state of the art, the ïŹgure of merit is signiïŹcantly improved by a factor of two. Furthermore, various charge pump concepts are investigated and evaluated within the context of this work. The charge pump, optimized in this work, improves the state of the art by a factor of 1.6 in terms of efïŹciency. Bidirectional switches must be implemented at certain locations within the power stage to prevent reverse conduction. The topology of a bidirectional switch developed in this work reduces the dynamic switching losses by 70% and the area consumption including the required charge pumps by up to 65% compared to the state of the art. These improvements make it possible to control the power switches in a fast and efïŹcient way. Index terms — integrated power management, high input voltage, multi-ratio SC converter, level shifter, bidirectional switch, micro power supplyDer Schwerpunkt dieser Arbeit liegt auf der Erforschung von Switched-Capacitor (SC) Spannungswandler fĂŒr höhere Eingangsspannungen. Ziel der Arbeit ist es Lösungen fĂŒr ein voll auf dem Halbleiterchip integriertes Power Management anzubieten um System on Chip (SoC) und System in Package (SiP) zu ermöglichen. Die vollstĂ€ndige Integration von SC Spannungswandlern bietet eine kostengĂŒnstige und kompakte Spannungsversorgungslösung fĂŒr moderne Elektronik. Der kontinuierliche Trend hin zu immer kompakterer Elektronik und hin zu höheren Versorgungsspannungen wird in dieser Arbeit adressiert. Aktuell gibt es sehr wenige voll integrierte SC Spannungswandler mit einer Eingangsspannung grĂ¶ĂŸer 5 V. Die mit steigender Spannung zunehmenden Herausforderungen an eine kompakte und efïŹziente Spannungsversorgung auf dem Chip werden in dieser Arbeit untersucht. Die höhere Spannungsfestigkeit der verwendeten Komponenten korreliert mit erhöhten Verlusten und erhöhtem FlĂ€chenverbrauch, welche sich negativ auf den Wirkungsgrad und die Leistungsdichte von SC Spannungswandlern auswirkt. Bestandteil dieser Arbeit ist die Untersuchung dieser Verlustmechanismen und die Entwicklung eines Modells, welches speziell fĂŒr höhere Spannungen optimiert wurde. Das vorgestellte Modell ermöglicht zum einen die optimale Dimensionierung der Spannungswandler und zum anderen faire Vergleichsmöglichkeiten zwischen verschiedenen SC Spannungswandler Architekturen und Halbleitertechnologien. Demnach haben sowohl die gewĂ€hlte Architektur und Halbleitertechnologie als auch die Kombination aus gewĂ€hlter Architektur und Technologie erheblichen EinïŹ‚uss auf die LeistungsfĂ€higkeit der Spannungswandler. Ziel dieser Arbeit ist die Vollintegration eines SC Spannungswandlers mit einem weiten und hohen Eingangsspannungsbereich zu entwickeln. Dazu wurden verschiedene Schaltungsarchitekturen und Konzepte untersucht. Der vorgestellte vollintegrierte SC Spannungswandler weist einen Eingangsspannungsbereich von 2 V bis 13 V auf. Dies ist eine Verdopplung im Vergleich zum Stand der Technik. Dies wird durch einen implementierten Auf- und AbwĂ€rtswandler-Betriebsmodus sowie 17 ÜbersetzungsverhĂ€ltnisse erreicht. Experimentelle Ergebnisse zeigen einen Spitzenwirkungsgrad von 81.5%. Dies ist der höchste veröffentlichte Spitzenwirkungsgrad fĂŒr vollintegrierte SC Spannungswandler mit einer Eingangsspannung grĂ¶ĂŸer 5 V. Mit Hilfe des in dieser Arbeit entwickelten Modells wird eine dreiphasige SC Spannungswandler Architektur fĂŒr Eingangsspannungen bis zu 60 V entwickelt und anschließend analysiert und diskutiert. Ein weiterer Schwerpunkt dieser Arbeit adressiert die kompakte Spannungsversorgung von Sensorknoten mit geringem Stromverbrauch, fĂŒr Anwendungen wie Smart Home und Internet der Dinge (IoT). FĂŒr diese Anwendungen eignen sich besonders gut hochintegrierte Mikro-Netzteile, welche direkt mit dem 230VRMS-Hausnetz (bzw. 110VRMS) betrieben werden können. Das in dieser Arbeit vorgestellte Mikro-Netzteil nutzt einen in dieser Arbeit entwickelten SC Spannungswandler fĂŒr hohe Eingangsspannungen. Die damit erzielte Ausgangsleistung ist 14-mal grĂ¶ĂŸer im Vergleich zum Stand der Technik. In SC Spannungswandlern fĂŒr hohe Spannungen werden viele Leistungsschalter benötigt, deshalb muss bei der Schalteransteuerung besonders auf einen geringen Leistungsverbrauch und FlĂ€chenbedarf der benötigten Schaltungsblöcke geachtet werden. Gegenstand dieser Arbeit ist sowohl die Analyse verschiedener Konzepte fĂŒr Pegelumsetzer, als auch die Entwicklung eines stromsparenden Pegelumsetzers fĂŒr 50 V-Anwendungen. Mit einer Leistungsaufnahme von 2.1pJ pro SignalĂŒbergang reduziert der entwickelte Pegelumsetzer mit kapazitiver Kopplung um mehr als elfmal die Leistungsaufnahme im Vergleich zum Stand der Technik. Die erreichte Laufzeitverzögerung betrĂ€gt 1.45 ns. Damit erzielt der vorgestellte Hochspannungs-Pegelumsetzer als erster Pegelumsetzer fĂŒr 50 V-Anwendungen eine Laufzeitverzögerung unter 2 ns und eine Leistungsaufnahme unter 20pJ pro Signalwechsel. Im Vergleich zum Stand der Technik wird die Leistungskennzahl um den Faktor zwei deutlich verbessert. DarĂŒber hinaus werden im Rahmen dieser Arbeiten verschiedene Ladungspumpenkonzepte untersucht und bewertet. Die in dieser Arbeit optimierte Ladungspumpe verbessert den Stand der Technik um den Faktor 1.6 in Bezug auf den Wirkungsgrad. Die in dieser Arbeit entwickelte Schaltungsarchitektur eines bidirektionalen Schalters reduziert die dynamischen Schaltverluste um 70% und den benötigten FlĂ€chenbedarf inklusive der benötigten Ladungspumpe um bis zu 65% gegenĂŒber dem Stand der Technik. Diese Verbesserungen ermöglichen es, die Leistungsschalter schnell und efïŹzient anzusteuern. Schlagworte — Integriertes Powermanagement, hohe Eingangsspannung, Multi-Ratio SC Spannungswan- dler, Pegelumsetzer, bidirektionaler Schalter, Mikro-Netztei

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 ”W. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Total Dose Simulation for High Reliability Electronics

    Get PDF
    abstract: New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in the field. An on-going concern for engineers is the consequences of ionizing radiation exposure, specifically total dose effects. For many of the different applications, there is a likelihood of exposure to radiation, which can result in device degradation and potentially failure. While the total dose effects and the resulting degradation are a well-studied field and methodologies to help mitigate degradation have been developed, there is still a need for simulation techniques to help designers understand total dose effects within their design. To that end, the work presented here details simulation techniques to analyze as well as predict the total dose response of a circuit. In this dissertation the total dose effects are broken into two sub-categories, intra-device and inter-device effects in CMOS technology. Intra-device effects degrade the performance of both n-channel and p-channel transistors, while inter-device effects result in loss of device isolation. In this work, multiple case studies are presented for which total dose degradation is of concern. Through the simulation techniques, the individual device and circuit responses are modeled post-irradiation. The use of these simulation techniques by circuit designers allow predictive simulation of total dose effects, allowing focused design changes to be implemented to increase radiation tolerance of high reliability electronics.Dissertation/ThesisPh.D. Electrical Engineering 201

    Characterization of A Novel Avalanche Photodiode for Single Photon Detection in VIS-NIR Range

    Full text link
    In this work we investigate operation in the Geiger mode of the new single photon avalanche photo diode (SPAD) SAP500 manufactured by Laser Components. This SPAD is sensitive in the range 400-1000nm and has a conventional reach-through structure which ensures good quantum efficiency at the long end of the spectrum. By use of passive and active quenching schemes we investigate detection efficiency, timing jitter, dark counts, afterpulsing, gain and other important parameters and compare them to the "standard" low noise SPAD C30902SH from Perkin Elmer. We conclude that SAP500 offers better combination of detection efficiency, low noise and timing precision

    Effects of Deposition Process on Poly-Si Microscale Energy Harvesting Systems: A Simulation Study

    Get PDF
    In this paper, the feasibility of a low-temperature polysilicon (LTPS) microscale energy harvester for a wireless sensor node is investigated. For that purpose, two device-level models for the LTPS solar cell and thin-film transistors are proposed and employed in system-level evaluation of an energy harvesting system. The results of our analysis indicate that: 1) the maximum power operating point for the solar cell is different when connected to a lossy power converter; 2) increasing the average grain size of the LTPS film can reduce the circuit area by 20 times, while increasing the output power by 6%; and 3) the proposed bottom–up approach enables the designers to identify system bottlenecks and improve the performance accordingly

    An Energy-Efficient, Dynamic Voltage Scaling Neural Stimulator for a Proprioceptive Prosthesis

    Get PDF
    Accepted versio

    Time-, spin-, and angle-resolved photoemission spectroscopy with a 1-MHz 10.7-eV pulse laser

    Full text link
    We describe a setup of time-, spin-, and angle-resolved photoemission spectroscopy (tr-SARPES) employing a 10.7-eV (λ\lambda=115.6 nm) pulse laser at 1-MHz repetition rate as a probe photon source. This equipment effectively combines technologies of a high-power Yb:fiber laser, ultraviolet-driven harmonic generation in Xe gas, and a SARPES apparatus equipped with very-low-energy-electron-diffraction (VLEED) spin detectors. A high repetition rate (1 MHz) of the probe laser allows experiments with the photoemission space-charge effects significantly reduced, despite a high flux of 1013^{13} photons/s on the sample. The relatively high photon energy (10.7 eV) also brings the capability of observing a wide momentum range that covers the entire Brillouin zone of many materials while ensuring high momentum resolution. The experimental setup overcomes a low efficiency of spin-resolved measurements, which gets even more severe for the pump-probed unoccupied states, and affords for investigating ultrafast electron and spin dynamics of modern quantum materials with energy and time resolutions of 25 meV and 360 fs, respectively.Comment: 11 pages, 7 figure
    • 

    corecore