5,051 research outputs found

    Autonomous Golf Cars for Public Trial of Mobility-on-Demand Service

    Get PDF
    We detail the design of autonomous golf cars which were used in public trials in Singapore’s Chinese and Japanese Gardens, for the purpose of raising public awareness and gaining user acceptance of autonomous vehicles. The golf cars were designed to be robust, reliable, and safe, while operating under prolonged durations. Considerations that went in to the overall system design included the fact that any member of the public had to not only be able to easily use the system, but to also not have the option to use the system in an unintended manner. This paper details the hardware and software components of the golf cars with these considerations, and also how the booking system and mission planner facilitated users to book for a golf car from any of ten stations within the gardens. We show that the vehicles performed robustly throughout the prolonged operations with a small localization variance, and that users were very receptive from the user survey results.Singapore. National Research Foundatio

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Autonomous Personal Mobility Scooter for Multi-Class Mobility-On-Demand Service

    Get PDF
    In this paper, we describe the design and development of an autonomous personal mobility scooter that was used in public trials during the 2016 MIT Open House, for the purpose of raising public awareness and interest about autonomous vehicles. The scooter is intended to work cooperatively with other classes of autonomous vehicles such as road cars and golf cars to improve the efficacy of Mobility-on-Demand transportation solutions. The scooter is designed to be robust, reliable, and safe, while operating under prolonged durations. The flexibility in fleet expansion is shown by replicating the system architecture and sensor package that has been previously implemented in the road car and golf cars. We show that the vehicle performed robustly with small localization variance. A survey of the users shows that the public is very receptive to the concept of the autonomous personal mobility device.Singapore-MIT Alliance for Research and Technology (SMART) (Future Urban Mobility research program)Singapore. National Research Foundatio

    Learning Multi-Agent Navigation from Human Crowd Data

    Get PDF
    The task of safely steering agents amidst static and dynamic obstacles has many applications in robotics, graphics, and traffic engineering. While decentralized solutions are essential for scalability and robustness, achieving globally efficient motions for the entire system of agents is equally important. In a traditional decentralized setting, each agent relies on an underlying local planning algorithm that takes as input a preferred velocity and the current state of the agent\u27s neighborhood and then computes a new velocity for the next time-step that is collision-free and as close as possible to the preferred one. Typically, each agent promotes a goal-oriented preferred velocity, which can result in myopic behaviors as actions that are locally optimal for one agent is not necessarily optimal for the global system of agents. In this thesis, we explore a human-inspired approach for efficient multi-agent navigation that allows each agent to intelligently adapt its preferred velocity based on feedback from the environment. Using supervised learning, we investigate different egocentric representations of the local conditions that the agents face and train various deep neural network architectures on extensive collections of human trajectory datasets to learn corresponding life-like velocities. During simulation, we use the learned velocities as high-level, preferred velocities signals passed as input to the underlying local planning algorithm of the agents. We evaluate our proposed framework using two state-of-the-art local methods, the ORCA method, and the PowerLaw method. Qualitative and quantitative results on a range of scenarios show that adapting the preferred velocity results in more time- and energy-efficient navigation policies, allowing agents to reach their destinations faster as compared to agents simulated with vanilla ORCA and PowerLaw

    Eyes-Off Physically Grounded Mobile Interaction

    Get PDF
    This thesis explores the possibilities, challenges and future scope for eyes-off, physically grounded mobile interaction. We argue that for interactions with digital content in physical spaces, our focus should not be constantly and solely on the device we are using, but fused with an experience of the places themselves, and the people who inhabit them. Through the design, development and evaluation of a series ofnovel prototypes we show the benefits of a more eyes-off mobile interaction style.Consequently, we are able to outline several important design recommendations for future devices in this area.The four key contributing chapters of this thesis each investigate separate elements within this design space. We begin by evaluating the need for screen-primary feedback during content discovery, showing how a more exploratory experience can be supported via a less-visual interaction style. We then demonstrate how tactilefeedback can improve the experience and the accuracy of the approach. In our novel tactile hierarchy design we add a further layer of haptic interaction, and show how people can be supported in finding and filtering content types, eyes-off. We then turn to explore interactions that shape the ways people interact with aphysical space. Our novel group and solo navigation prototypes use haptic feedbackfor a new approach to pedestrian navigation. We demonstrate how variations inthis feedback can support exploration, giving users autonomy in their navigationbehaviour, but with an underlying reassurance that they will reach the goal.Our final contributing chapter turns to consider how these advanced interactionsmight be provided for people who do not have the expensive mobile devices that areusually required. We extend an existing telephone-based information service to support remote back-of-device inputs on low-end mobiles. We conclude by establishingthe current boundaries of these techniques, and suggesting where their usage couldlead in the future

    Mobile Robots in Human Environments:towards safe, comfortable and natural navigation

    Get PDF
    • …
    corecore