
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

May 2021

Learning Multi-Agent Navigation from Human Crowd Data Learning Multi-Agent Navigation from Human Crowd Data

Foram Joshi
Clemson University, foram2494@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Recommended Citation Recommended Citation
Joshi, Foram, "Learning Multi-Agent Navigation from Human Crowd Data" (2021). All Theses. 3555.
https://tigerprints.clemson.edu/all_theses/3555

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3555?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Learning Multi-agent navigation from human
crowd data

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Science

by

Foram Joshi

May 2021

Accepted by:

Dr. Ioannis Karamouzas, Committee Chair

Dr. James Z. Wang

Dr. Victor B. Zordan

Abstract

The task of safely steering agents amidst static and dynamic obstacles has

many applications in robotics, graphics, and traffic engineering. While decentral-

ized solutions are essential for scalability and robustness, achieving globally efficient

motions for the entire system of agents is equally important. In a traditional de-

centralized setting, each agent relies on an underlying local planning algorithm that

takes as input a preferred velocity and the current state of the agent’s neighborhood

and then computes a new velocity for the next time-step that is collision-free and as

close as possible to the preferred one. Typically, each agent promotes a goal-oriented

preferred velocity, which can result in myopic behaviors as actions that are locally

optimal for one agent is not necessarily optimal for the global system of agents. In

this thesis, we explore a human-inspired approach for efficient multi-agent navigation

that allows each agent to intelligently adapt its preferred velocity based on feedback

from the environment. Using supervised learning, we investigate different egocentric

representations of the local conditions that the agents face and train various deep

neural network architectures on extensive collections of human trajectory datasets

to learn corresponding life-like velocities. During simulation, we use the learned ve-

locities as high-level, preferred velocities signals passed as input to the underlying

local planning algorithm of the agents. We evaluate our proposed framework using

two state-of-the-art local methods, the ORCA method, and the PowerLaw method.

ii

Qualitative and quantitative results on a range of scenarios show that adapting the

preferred velocity results in more time- and energy-efficient navigation policies, al-

lowing agents to reach their destinations faster as compared to agents simulated with

vanilla ORCA and PowerLaw.

iii

Table of Contents

Title Page . i

Abstract . ii

List of Tables . v

List of Figures . vi

1 Introduction . 1

2 Related Work . 6
2.1 Local Planning Algorithms for Collision Avoidance 7
2.2 Machine Learning for Multiagent Navigation 8

3 Methods . 10
3.1 Problem Formulation . 10
3.2 Learning Human-Like Velocities . 12
3.3 Training . 20
3.4 Simulation . 27

4 Results . 29
4.1 Evaluation Metrics . 32
4.2 Results and Analysis . 34

5 Conclusion and Discussion . 48

Appendices . 53
A Learning from dense scenarios with obstacles 54
B Learning Speed Information from Pedestrian Datasets 58
C Local Planners . 60

Bibliography . 63

iv

List of Tables

3.1 Pedestrian datasets used for training 11

4.1 ORCA Experiment Results. Collision statistics are not shown since
no collisions were observed. 37

4.2 PowerLaw Experiment Results. Collision statistics are not shown
since no collisons were encountered. 38

1 Pedestrian datasets used for training 54
2 Vanilla ORCA Experiment Results. Collision statistics are not shown

since no collisions were encountered. 56
3 Powerlaw Experiment Results. (* here represents that 1 agent was

stuck at the obstacle at the end of the simulation. Collision statistics
are not shown since no collisions were encountered) 57

4 ORCA Experiment Results using human-like preferred speeds and
directions. Collision statistics are not shown since no collisions were
encountered. 59

5 PowerLaw Experiment Results using human-like preferred speeds and
directions. Collision statistics are not shown since no collisions were
encountered. 59

v

List of Figures

1.1 Overview of the proposed method. In the training phase, we compute
local neighborhood representations of individual humans from real-
world crowd datasets. We then train a neural network to learn to map
these neighborhood encodings into velocities taken by the human at
the next timestep. In the simulation phase, each agent observes its
local neighborhood and queries the trained neural network to obtain a
human-inspired velocity which is passed into the local planner as the
preferred velocity. The local planner outputs a collision free velocity
which the agent takes in the simulation. 4

3.1 The datasets used for training, top left - Students, top right - Zara,
bottom - Oneway . 12

3.2 The left figure shows a frame from the oneway scene. The blue ’X’
sign denotes the goal position of the blue agent. The red agents are
other agents moving in the scene (their velocities are not shown for
simplicity). On right, the lidar-scan in the local coordinate frame of
the ego (blue) agent is shown. The new space is centered at zero with
the Y-axis pointing towards the goal. 14

3.3 MPD Scan. Notice how the MPD value is low for agent 1 which seems
to be headed towards a collision with the ego-agent in the near future.
On the other hand, since the blue agent is diverging from agent 3, the
distance of closest approach is their distance at the current frame. For
agent 2, the MPD value is the distance between the two when they
pass each other in the future. 17

3.4 Overview of the attention-based encoding. 18
3.5 Network Architecture for LiDAR-based training 21
3.6 Train vs Test losses for the LiDAR, MPD, and Latent approaches. It

seems that both MPD and LiDAR achieve lower test losses than the
Latent method, although the Latent method seems less noisy compared
to the other two. 23

vi

3.7 The 1st row shows the LiDAR scans for input deviation -1, -0.5, -0.2
radians (from left to right). The 2nd row shows the LiDAR scans for
deviation input 0.2, 0.5, 1 radians. The 3rd row shows the LiDAR scan
for input deviation of 0 radians. Note that the scans are produced
with a constraint on its L2-norm, so it’s biased towards producing the
minimum perturbations (i.e. black rays) possible. 26

4.1 The above group of images show the test scenarios where we evaluate
our approaches. Top Left: Two-groups at 90◦, Top Right: Circle,
Middle: Crowd, Bottom: Hallway. The images show the starting loca-
tions of the agents and the cross-hairs show their goal positions in the
environment. 31

4.2 Vanilla ORCA simulation on the Hallway scenario. The agents reach
a deadlock situation which increases the interaction overhead of the
simulation. 39

4.3 ORCA simulation in the Hallway scenario with preferred deviations
obtained from MPD encoding. Notice in particular, how the agents
in the wing react to each other’s actions by moving into pockets of
spaces created by each other’s motion. 40

4.4 Vanilla ORCA simulation on 12 agents Circle scenario with agent-
radius set to 0.25m. The last three agents exhibit high rotation and
end up travelling a longer and convoluted distances to the goal with
extreme curvatures. 41

4.5 ORCA simulation with preferred velocities obtained from MPD scans
on Circle scenario (agent radius = 0.25m). Unlike 4.4, the agents
reach the goal faster with smoother trajectories. 42

4.6 Vanilla Powerlaw simulation on Two-groups at 90◦ scenario. No-
tice from 7 to 11 seconds how all agents try to reach towards their goal,
but end up pushing the mass of agents towards the bottom-left. This
causes a large group of agents to deviate from the straight line path
and cause a high interaction overhead. 43

4.7 PowerLaw simulation with MPD-assisted preferred velocities on
Two-groups at 90◦ scenario. The agents complete the scenario faster
as well as take less deviations while reaching the goal compared to
vanilla PowerLaw. 44

4.8 Speed distribution histogram for Two-groups at 90◦ scenario with
PowerLaw variants. The black line denotes the mean speed and the
gray box shows the one-standard deviation. 45

vii

4.9 Speed distribution histogram for Two-groups at 90◦ scenario with
ORCA variants.The black line denotes the mean speed and the gray
box shows the one-standard deviation. The high density in ORCA at
speed = 0.6m/s shows that some agents slow down during certain parts
of their trajectories. 46

4.10 A bar graph that shows the comparison of interaction overhead with
PowerLaw and our three methods on test scenarios. A higher
interaction overhead corresponds to agents taking more time to reach
their goals. 47

4.11 A bar graph that shows the comparison of interaction overhead with
ORCA and our three methods on test scenarios. A higher inter-
action overhead corresponds to agents taking more time to reach their
goals. 47

1 The datasets used for training. Left: Bottleneck, Right: Long bottle-
neck . 55

2 Gr90: A “closed” densely packed scenario with static obstacles. For 15
seconds, two groups (with total 100 pedestrians) enter the scene and
need to cross each other to reach the other at 90 degrees. 55

viii

Chapter 1

Introduction

Real-time goal-directed navigation of multiple agents has many applications in

robotics, graphics, and traffic engineering. Whether Roombas are cleaning the floor,

animated pedestrians walking through a virtual world, or robots delivering parts for

packaging in Amazon warehouses, the agents should be able to sense their surround-

ings and react accordingly to avoid collisions while successfully executing their tasks.

Despite not colliding, though, it is often important for the agents to navigate effi-

ciently, for example, to save resources (i.e., battery life) or reach critical locations in

a timely manner. However, conflicting constraints and the need to operate in dynamic

environments make the problem very challenging. Besides, due to real-time require-

ments, each agent typically needs to compute its motion independently, with limited

or no communication with the other agents. State-of-the-art decentralized techniques

for multi-agent navigation can provide formal guarantees about the collision-free be-

havior of the agents and can be extended to account for motion and sensing uncer-

tainty allowing implementation on actual robots [1, 9, 59, 63]. However, even though,

such techniques generate locally efficient motions for each agent, the global behavior

of the agents can be far from efficient. This is because actions that are optimal for

1

one agent are not necessarily optimal for the entire system of agents. Consequently,

most of the existing decentralized planners are very conservative leading to inefficient

agents that focus on not colliding and often forget about their tasks at hand.

In this project, we seek to develop a new, human-inspired approach for efficient

mobile agent navigation. Humans know when they have to be polite and yield to

others and when to take decisive actions, efficiently performing complex navigation

tasks without collisions such as walking in densely packed environments. The goal of

this project is to enable such behavior to mobile agents by taking advantage of the

large amounts of human crowd data available today. Importantly, and as opposed

to recent learning techniques for multi-robot navigation [15, 12], we will use human

data to enhance the decision-making process of the agents rather than replace their

underlying planning routines. Consequently, the proposed work lead to agents that

exhibit efficient, human-like, behavior while still guaranteeing robust and collision-

free navigation.

This project aims to improve the global efficiency of decentralized multia-

gent systems by improving the decision-making of individual agents based on data

of real human interactions. Our work follows the traditional multi-agent navigation

paradigm, where each agent navigates independently by running a continuous cycle

of sensing and acting. At each cycle, the agent senses its nearby agents and computes

a new collision-free velocity that is as close as possible to a preferred velocity indi-

cating the agent’s desired direction of motion and speed. While an extensive amount

of work exists on finding locally optimal collision-free velocities, little effort has been

put to adapt the input preferred velocity. Traditionally, the preferred velocity used

is the unit vector pointing towards the agent’s goal scaled by its preferred speed.

However, opting to move fast towards the goal while ignoring the aggregate motion

of its neighbors can lead to myopic behavior and decrease the efficiency of the overall

2

system in the long run. In this project, we hypothesize that the best way to teach

agents what preferred velocities to take is by letting them learn these velocities from

human crowds. Our overall approach is divided into two phases as shown in Figure

1.1. First, in an offline training phase, we train a deep learning model to learn pre-

ferred velocities from pedestrian datasets. Second, in the online simulation phase,

where each agent queries the trained network to retrieve a preferred velocity, which

is inputted into a local planning algorithm to get a collision-free velocity.

In the training phase, we use five publicly available pedestrian datasets which

contain crowd interaction examples across a variety of real-world scenarios. We ex-

plore three state-descriptors, namely LiDAR, minimum predicted distance (MPD)

[49], and a latent-space attention to encode the local conditions that the agent faces.

The neural network architectures are trained to learn the instantaneous velocity taken

by the human as a function of the local interaction conditions.

In the simulation phase, each agent in an iterative manner observes its local

neighborhood and queries the trained neural network to find its new target velocity.

The target velocity is not taken directly but rather is used as the preferred velocity in a

collision-avoidance subroutine. We tested the applicability of our proposed approach

on two popular algorithms for local collision avoidance, the ORCA [63] introduced

in robotics and the Power-law [31]. We qualitatively and quantitatively compare

the simulation results produced by vanilla collision-avoidance methods as well as the

combined approach proposed above. Our results show that using learned velocities

as the input preferred velocity improves the time efficiency of the global system of

agents when compared to vanilla local planners. The primary focus of this thesis is

as follows:

1. Investigate how the efficiency of the multi-agent system is impacted when each

3

Figure 1.1: Overview of the proposed method. In the training phase, we compute local
neighborhood representations of individual humans from real-world crowd datasets.
We then train a neural network to learn to map these neighborhood encodings into
velocities taken by the human at the next timestep. In the simulation phase, each
agent observes its local neighborhood and queries the trained neural network to obtain
a human-inspired velocity which is passed into the local planner as the preferred
velocity. The local planner outputs a collision free velocity which the agent takes in
the simulation.

agent selects its preferred velocity based on the state of its local neighborhood,

compared to moving greedily towards their goal.

2. Investigate various state-descriptors in terms of their efficacy of representing

the instantaneous as well as dynamic factors of the agent’s local neighborhood.

3. Evaluate the efficacy of the proposed human-inspired framework for multi-agent

navigation.

The rest of the thesis is organized as follows. In Chapter 2, we review highly

relevant work on multi-agent navigation. In Chapter 3, we present our problem for-

mulation for multi-agent navigation. We further elaborate on the pedestrian datasets

that we used for training (3.1), and explain in detail our three proposed methods

for capturing the per-agent local conditions, namely the LiDAR scan, the Miminum

4

Predicted Distance scan, and an attention-based latent encoding method (3.2). In

Chapter 4, we provide qualitative results comparing simulation results using two

collision-avoidance methods (4.1), and enumerate the quantitative metrics we used

for evaluation and discuss how the different encoding-based approaches perform (4.2).

Finally, in section 5, we discuss the results and plans about future work.

5

Chapter 2

Related Work

Our work focuses on the decentralized multi-agent navigation domain, where

the aim is to steer a system of agents from their starting position to the goal position

while avoiding collision with static and dynamic obstacles in the scene. In particular,

our work follows a traditional decentralized paradigm where each agent follows a cycle

of sensing and acting inside the environment on its own, without any communication

from its neighbors, and the goal is to improve the global efficiency of the entire

system of agents. Two general approaches for addressing the problem are planning-

based and learning-based. Planning-based approaches are procedure-driven methods

that can provide theoretical guarantees about navigation. In contrast, learning-based

algorithms are data-driven methods that tend to generalize well to a large variety

of scenarios, but unlike the planning methods, they do not guarantee collision-free

behavior. Our work adopts a hybrid approach where we use machine learning to

learn high-level navigation control signals from pedestrian data and combine it with

a planning-based subroutine to produce collision-free motion.

6

2.1 Local Planning Algorithms for Collision Avoid-

ance

Multi-agent motion planning algorithms aim to find a sequence of valid ac-

tions for each agent to move them from starting to goal state without colliding with

any static obstacles or other agents present in the environment. Local planning al-

gorithms select these actions based on the agent’s local surroundings, typically based

on feedback from their sensors. Existing local planning approaches that rely on social

forces and rule-based techniques have been successfully applied to various multi-agent

domains and have been shown to generate human-like collision avoidance behavior

[25, 50, 52, 54]. Geometric local planners based on the concepts of velocity obsta-

cles and time to collision [63, 31] are also widely applicable as they provide for-

mal guarantees about the collision-free behavior of the agents and can be extended

to account for motion and sensing uncertainty allowing implementation on actual

robots [1, 26, 67, 64].

In this work, two popular local planning frameworks have been explored. Op-

timal Reciprocal Collision Avoidance (ORCA) [63] is a highly scalable geometric local

planner that uses the concept of velocity obstacles and for provable collision-free nav-

igation. One limitation of ORCA is that agents can behave very timidly and not

exhibit urgency to reach their goal position, leading to high simulation times. The

other collision avoidance framework we consider in this thesis is the PowerLaw [31, 33],

which is a predictive force-based approach that calculates collision-free velocities using

the time-to-collision with respect to neighboring agents. The PowerLaw’s formulation

is derived from human pedestrian data and is known to produce human-like naviga-

tion. We are treating these frameworks as “black-boxes” in our work, and in theory,

they can be replaced with any other local planner that takes some information about

7

an agent’s local neighborhood as well as a preferred velocity as input and computes

a target velocity that avoids collision and is as close as possible to the preferred. The

preferred velocity passed into the local planner is typically the direction vector point-

ing from the agent’s current position towards the goal, scaled by the agent’s preferred

speed, hence encouraging agents to exhibit goal-oriented behavior. This often results

in locally greedy actions such that each agent attempts to make maximum progress

towards its goal while ignoring its neighbors. Such actions, while locally optimal,

may lead to long-term consequences that negatively impact the system’s efficiency at

a global level. In this thesis, we propose to address this issue by learning preferred

velocities from human pedestrian data.

2.2 Machine Learning for Multiagent Navigation

Numerous recent works [8, 12, 15, 43, 70, 13] have used reinforcement learn-

ing, where the task is formulated as a multi-agent Markov Decision Process, and the

agent interacts with the environment to learn a policy to map its observable state

into actions that maximize the rewards. There have also been work that focuses on

planning under uncertainty with Bayesian approaches [34, 2], and learning through

imitation learning like [72, 60]. Inverse reinforcement learning approaches have also

been explored [37, 38, 27] to predict human trajectories and promote socially com-

pliant navigation in virtual agents. Behavior cloning approaches, that rely on expert

demonstrations to train artificial agents have previously attempted to learn policies

by mapping from state to actions [6, 48] in self-driving cars, as well as in multi-robot

navigation [14, 44]. A recent work [71] has combined knowledge distillation [29] in

neural networks and deep reinforcement learning to shape reward functions from hu-

man trajectory data. In [5], the authors train multiple machine learning policies by

8

dividing the possible space of states an agent can encounter into steering contexts,

which they define as collections of situations selected for their qualitative similarity.

In [40], the authors track pedestrians in crowd videos to create example scenarios

queried by agents during simulation to generate human-like trajectories and interac-

tions. Long et al. [44] uses deep learning to train a collision-avoidance network on a

synthetic dataset containing examples of collision-free velocities generated by ORCA

in randomly generated scenarios. In contrast to the aforementioned approaches, we

aim to learn high-level actions directly from human crowd pedestrian data through

supervised learning and combine them with a geometric collision avoidance frame-

work. This allows for human-inspired multi-agent navigation while still providing

guarantees about collision-free motion.

Our work also investigates how different state-space representation is con-

ducive for efficient training. Various representations have been proposed in the liter-

ature, such as static representations of the neighborhood like distance-based LiDAR

scans, occupancy grids, RGB-D images, or anticipatory metrics like the minimum

predicted distance (MPD) [49]. Many recent deep learning approaches learn directly

from raw neighborhood data, such as a list of neighbor positions and velocities rela-

tive to the agent [7, 44]. Communication between agents for collaborative navigation

is also a heavily researched area, where the states of each agent can also be influenced

by communication signals received from nearby agents [28].

9

Chapter 3

Methods

3.1 Problem Formulation

We are given n agents A1...An moving in a scene. Each agent Ai enters the

environment at a specific time t0i as a and has a specific goal position gi to reach.

In this work, we assume that all agents are holonomic discs with a fixed radius r,

and have a commonly preferred speed s. At time-step t in the environment, each

active agent Ai has a global position pt
i and a velocity vt

i , and can sense the static

obstacles and neighboring agents within a given sensing radius r. After observing its

local neighborhood N (Ati), the agent must take a velocity v
(t+1)
i at the next time-step

that (a) makes progress towards its goal, (b) avoids collisions with the neighboring

agents and obstacles in the scene. This velocity v
(t+1)
i is typically selected by a

collision avoidance algorithm that takes as input the positions and relative velocities

of the agent’s neighbors and a preferred velocity vpref , and outputs a collision-free

velocity that is closest to vpref . Traditionally, vpref is treated as the vector that points

towards the agent’s goal, scaled by the agent’s preferred speed. Here we propose to

instead use as vpref , the velocity that a human would have taken if facing the same

10

Dataset Description Pedestrian
count

Frames
(10fps)

Oneway01 and
02 [30]

Pedestrians walk-
ing down a hallway
(unidirectional flow)

46 2357

Zara01 and 02
[40]

Pedestrians interac-
tions at a commercial
street. (bidirectional
flow)

352 58257

Students [40] Pedestrians inter-
actions at a college
campus. (bidirec-
tional flow)

434 70306

Table 3.1: Pedestrian datasets used for training

interaction conditions in the real world. To do this, we use supervised learning to

train neural networks on human trajectory data and learn a mapping from the local

conditions of the human to their preferred velocity, i.e. E(N (Ati)) 7→ v
(t+1)
i . During

simulation, the agent observes it’s local conditions and queries the trained neural

network to retrieve a human-preferred velocity. Note that the agent does not take

the learned velocity directly, and instead inputs it as the preferred velocity vpref into

it’s underlying local planning algorithm which then returns a collision-free velocity

that is maximally aligned to the inputted preferred velocity.

11

Figure 3.1: The datasets used for training, top left - Students, top right - Zara,

bottom - Oneway

3.2 Learning Human-Like Velocities

We seek to learn a function that maps an agent’s local conditions to the velocity

that it takes. In polar coordinates, each velocity vt
i can be represented as a tuple of

speed (magnitude) sti and deviation θti . Note that the deviation θti refers to the angle

of steering that an agent makes with respect to its goal direction. Since our eventual

goal is to use human-preferred velocities as preferred-velocity inputs into collision

avoidance subroutines, we only learn the human data’s deviation values. The choice

12

of only learning the deviation is based on the assumption that agents will always want

to move at their preferred speeds and that human speeds can be noisy, dependent

on social, external, or other unobserved factors. Hence, we are learning the mapping

H : E(N (Ati)) 7→ θ
(t+1)
i using a deep neural network, where E is an encoding of the

local neighborhood of the agent. In Appendix B, we show results from our experiments

by learning human preferred velocities, that includes both speed and magnitude.

This chapter discusses three different strategies for the encoding function E

and corresponding network architectures H that can learn human-preferred deviations

from raw pedestrian data. Once the neural network H is trained, it can collaborate

with vanilla collision avoidance methods to produce efficient collision-free velocities.

In particular, our framework supports any local collision-avoidance planning algo-

rithm P (N (Ati),v
t
pref) 7→ vt+1

i , that can compute a collision-free velocity vt+1 by

accepting the agent’s local neighborhood N (Ati) and preferred velocity vt
pref as in-

put. Typically, vt
pref is treated as the unit vector from the agent’s current position to

the goal position scaled by the preferred speed s. Still, we hypothesize that learning

preferred velocities from human beings will help the agents react according to their

neighborhood’s dynamic features and take actions that optimize their trajectories and

improve the global system’s efficiency.

3.2.1 Distance Based Scan - LiDAR Scan

This is a static approach to encode an agent’s neighborhood that considers

the space that is not occluded by other agents or static obstacles in the field of view

of the agent. Note that the scan is performed in the local neighborhood representa-

tion N (Ai), such that it generalizes for all agents in our datasets. The lidar-based

neighborhood encoding Elidar : [-θ, θ] 7→ [0,r], which denotes a discrete mapping from

13

angular samples to the distance to the closest obstacle (static or dynamic) computed

using the LiDAR approach. We ignore any obstacles beyond the agent’s sensing ra-

dius r. A major limitation of the LiDAR scan is its static nature, preventing from

capturing the neighboring agents’ velocity information. To address this, we stack

previous frames together and reformulate Et
hist lidar = (Et

lidar, ..., E
t−k
lidar) ∈ Rk×(f/res),

where k is the length of frame history, f is the field of view and res is the angle

resolution of the LiDAR.

Figure 3.2: The left figure shows a frame from the oneway scene. The blue ’X’ sign

denotes the goal position of the blue agent. The red agents are other agents moving

in the scene (their velocities are not shown for simplicity). On right, the lidar-scan

in the local coordinate frame of the ego (blue) agent is shown. The new space is

centered at zero with the Y-axis pointing towards the goal.

14

3.2.2 Minimum Predicted Distance (MPD)

Unlike LiDAR, which gives a static representation of the agent’s neighborhood,

MPD [46, 32, 49] is an anticipatory metric that considers the dynamic nature of the

neighborhood by accounting for the relative displacements and velocities between the

agent and its nearby neighbors. We can capture both how the local density changes

around the agent based on positions and how it is likely to change in the near future

from relative velocities. Similar to the distance-based map, to capture how MPD

varies spatially, we use an egocentric representation where now the neighborhood en-

coding, EMPD : [−θ, θ] 7→ [0, r], denotes a discrete mapping between evenly-spaced

orientations along with the agent’s FOV and MPD values with respect to the closest

object along with each orientation that can be found using ray tracing. Then, we

compute the MPD as the closest distance between the two interacting parties assum-

ing a linear extrapolation of their current velocities. Formally, given an agent A, the

MPD to its nth neighbor is computed as:

min
τ≥0
‖(p− pn) + (v − vn)τ‖)

where p and v denote the current position and velocities of the agent A, and

pn and vn denote the position and goal velocity of the neighbor, respectively. τ is the

time of closest approach between A and the neighbor.

The MPD-based formulation allows us to capture the agent’s local conditions

using just the current state observation. With this information, MPD is still inher-

ently anticipatory in nature, accounting for the agents’ expected future interactions

through their relative positions and velocities.

Figure 3.3, explains the idea of how MPD values are captured from the point of view

of the blue agent. We see that there are four neighboring red agents around the blue

15

agent. The length of black and green lines at a particular angle represents the agent’s

MPD value with respect to the closest agent along that ray. The green lines show no

agent/obstacle, and the MPD value is set to the sensing radius, while the black lines

indicate that the agent senses an impending collision. Each ray signifies the MPD

value with respect to the closest neighbor along that ray. The relative velocity and

relative positions of the ego-agent with respect to agent 1 suggest a close encounter

in the near future. So, the MPD value with respect to this neighbor is quite low,

denoting the low distance to the closest approach with respect to this neighbor (a

zero value will suggest that a linear extrapolation of their current velocity will result

in a collision). Agent 2 is moving parallel to the ego-agent in the opposite direction,

and there is no sign of a collision. The MPD value with respect to agent 2, therefore,

is just the distance between them when they have the same x-coordinate. Note that

for agent 3, the time of closest approach τ is negative, signifying that the nearest ap-

proach would have happened in the past. For this case, we assume that the minimum

predicted distance is the current euclidean distance between the two since they will

diverge in the future. Finally, since the MPD for agent 4 is greater than the agent’s

sensing radius, this agent’s reading is not included in the scan.

16

Figure 3.3: MPD Scan. Notice how the MPD value is low for agent 1 which seems

to be headed towards a collision with the ego-agent in the near future. On the other

hand, since the blue agent is diverging from agent 3, the distance of closest approach

is their distance at the current frame. For agent 2, the MPD value is the distance

between the two when they pass each other in the future.

3.2.3 Attention-based Latent Representation

Unlike LiDAR and MPD, where we generate a spatial or anticipatory embed-

ding of the agent’s neighborhood, this descriptor represents the neighborhood encod-

ing E as a generic neural network, where the input are the states from a fixed number

of nearby neighbors and the output are the latent variable φ (fixed-size vector) which

17

describes local crowd conditions from the perspective of the agent.

Figure 3.4: Overview of the attention-based encoding.

For a given agent Ai, we obtain its neighborhood N (Ai) ∈ Rq×4 that contains

the state information (px, py, vx, vy) of each of the q nearest neighbors expresses in

the agent’s local coordinate system. We then process each neighbor with a neighbor

encoding network J that maps each neighbor to a fixed-length embedding space. We

aim to learn a neural attention score for each neighbor from these embedding vectors.

The basic principle of attention is to find importance scores for each item in a list of

keys depending on a query. In our case, the list of keys are the neighbor embeddings

[h0...hq], and the query is an order-invariant representation of the neighborhood,

such as the mean 1
q

∑
j hj. We concatenate the order-invariant mean vector with

individual neighbor embeddings and learn a scalar attention score for each neighbor

j, that is aj = A(
[
hj � 1

q

∑
j hj)

]
). Finally, we normalize the attention scores

18

(using a softmax operation) and obtain an order-invariant latent embedding vector

φ for the neighborhood as a weighted sum of all neighbor encodings. A similar type

of architecture has been used recently with great success to train visual recognition

systems as agents move around scenes and robot-crowd interaction scenarios [7].

Algorithm 1: Attention-Based Encoding

input : Agent neighborhood in local coordinate space N (Ai) ∈ Rq×4

output: A fixed length neighbor encoding vector φ

1. Map to a fixed length embedding for each neighbor j in N (Ai):

hj = J(N (Ai)k), where J is a neural network.

2. Calculate attention scores for each neighbor:

aj = A(

[
hj �

1

q

∑
j

hj)

]
)

where � is the concatenation operator and A is a feed forward network;

3. Normalize the attention scores for each neighbor

aj = softmax(aj∀j)

4. Compute neighborhood encoding: φ =
∑

j ajhj

19

3.3 Training

3.3.1 Data Preprocessing

We used five pedestrian datasets (Table 3.1) to train our neural network,

namely oneway01, oneway02 , zara01, zara02, and students . Each dataset con-

tains a list of timestamps, instantaneous positions, and velocities of individuals in the

scene. Since some of our latter processing steps (the LiDAR scan, for example) de-

pends on frame sequences, we resample all datasets to have a fixed timestep difference

of 0.1 seconds. All datasets also contain static obstacles represented as axis-aligned

bounding boxes. To extract dynamic information from the data, we simulate the

data and reconstruct the scene by processing each row chronologically. We treat the

last known position of a pedestrian as his goal, and each pedestrian is removed from

the simulation once reaches the goal. At each timestep, we retrieve all the active

pedestrians’ global positions and then construct a local view of each agent. The lo-

cal coordinate frame’s origin is the current position of the ego-agent, and the Y-axis

points toward the agent’s goal. We transform the entire scene (neighboring agents

and static obstacles) to this local system and obtain the raw neighborhood infor-

mation N (Ai) for the ego-agent. This process is repeated for each active agent in

each timestep. There are many irregular movements in the crowd datasets, especially

zara02 and students. Some pedestrians stand still for large amounts of time and or

move aimlessly around the scene (without trying to reach their final positions). To

clean these examples, we prune examples where the pedestrian’s instantaneous speed

is below a certain threshold (0.25 m/s) and if their deviation angle is outside a certain

range (± 1.25 radians).

20

3.3.2 Implementation Details

The training has been conducted in a supervised fashion using scenarios con-

taining oneway01, oneway02, zara01, zara02, and students datasets which cu-

mulatively consists of 130,000 training examples. The dataset is divided into a train-

test ratio of 80:20. For better generalization and inclusion of all training examples

during training, we created stratified mini-batches to ensure that the sampled mini-

batch contained an equal number of training examples from each scenario in the

combined dataset.

Figure 3.5: Network Architecture for LiDAR-based training

1. LiDAR:

The sensing radius r for calculating the LiDAR scan was kept as 5m. The field

of view f angle set to 240◦, and the angular resolution is set to 1. We use a frame

history length of 4 spaced with 0.1 second intervals to add dynamic information

to the scans. The input passed to the neural network is the LiDAR values

with historical scans. We then give the input to three 1D-Convolutional layers,

each consisting of 64 filters, kernel size of 5, and strides as 2 with activation

function as the rectified linear unit (ReLU). The third convolution layer’s output

21

is then flattened and fed through one fully connected layer containing 64 units.

The final dense layer contains one neuron optimized to predict the deviation.

We trained this network with mini-batches of 64 examples using the Adaptive

Moment Estimation (ADAM) algorithm with a learning rate of 0.0001. We used

early stopping to prevent over-fitting when the model performed poorly on a

test dataset. We used dropout on every layer to limit over-fitting, and a drop

rate of 0.5 resulted in the best generalization of the test data.

2. MPD:

The network architecture and training method is same as LiDAR. The only

difference is that we do not use historic frames for MPD.

3. Latent-Attention:

The neighbor encoding network H is a two-layer feed-forward neural network,

each of 64 units and activation function as the hyperbolic tangent. The attention

network A is a linear layer that outputs unnormalized attention scores. The

final dense layer accepts the attention-encoded features as input and predicts

the deviation values. Like the other methods, we trained this network using

ADAM Optimizer as well with a learning rate of 5e−4.

The Figure 3.6 shows the training and testing plots of the 3 methods. The

test losses for each method reaches close to 10−3 which attests that our neighborhood

descriptors have a strong correlation with the deviations chosen by the humans.

22

Figure 3.6: Train vs Test losses for the LiDAR, MPD, and Latent approaches. It

seems that both MPD and LiDAR achieve lower test losses than the Latent method,

although the Latent method seems less noisy compared to the other two.

3.3.3 Model Interpretability

Before deploying any machine learning model, especially highly non-linear

structures like neural networks, it is crucial to understand the fairness and the ex-

plainability of the network. This section presents a simple gradient-based optimiza-

tion algorithm to interpret our models and help us understand how the network is

making decisions. The algorithm will input a target deviation angle, and the objective

of this algorithm is to create a saliency map [57, 45] of LiDAR values that will make

the trained network predict the input deviation angle. In other words, the algorithm

23

tries to create an inverse mapping from the deviation to the LiDAR values.

Algorithm 2: Towards Model Interpretability

input : A trained neural network Ψ : X ∈ RFOV 7→ θ that maps from a

radial input (MPD or LiDAR) to human-preferred deviation,

A query deviation angle θ∗

output: A saliency map X∗ ∈ RFOV s.t. Ψ(X∗)→ θ∗

Randomly initialize X∗,

Initialize σ = 0.1, l2 = 10−3, lr = 10−1

for k steps do

Forward pass through Ψ and obtain the current prediction θ̂ = Ψ(X∗);

Randomly perturb the target deviation θ∗ with mean centered gaussian

noise. θ̇ = θ∗ +N (0, σ) ;

Calculate loss L = (y − y∗)2 + l2 ‖X∗‖ ;

Calculate gradients of loss L with respect to X∗.∇ =
δL
δX∗

;

Optimize X∗ with one step of gradient descent. X∗ = X∗ − lr ∗ ∇
end

The optimization algorithm is presented in Algorithm 2. Given a neural net-

work Ψ and a query deviation angle θ∗, we aim to find a radial input X such that

Ψ(X) is very close to θ∗. At each step, we aim to reduce the loss between the queried

deviation angle and the network’s output with respect to our current best guess for

X. We add an L2 normalization loss to the radial scan to penalize high values in

the scan. Finally, we compute the gradients of the total loss with respect to X and

perform gradient descent. We also recommend using Gaussian filtering for smoothing

24

the output scans. Alternatively, instead of optimizing for 240 rays, one could optimize

for a lower number (say, 24) and then up-sample to retrieve the entire field-of-view.

We have trained the network with one frame LiDAR data on pedestrian

datasets (oneway01, oneway02, zara01, zara02 and students). We then cap-

ture an importance map with each ray of LiDAR scan for a range of deviations. In

Figure 3.7 the black lines represent if the saliency map expects an obstacle along that

ray, while green lines represent little or no obstruction. The blue arrow is the target

deviation input into the optimization algorithm. To interpret the Figure 3.7, the aim

here is that when an input of −1 radians is passed as deviation angle to the network,

we want to generate a LiDAR scan that would make the network output the deviation

angle as −1 radians. We see that for input with extreme deviation angle (e.g., -1 and

1), the network creates a scan representing obstacles/neighbors at the agent’s front

and opposite sides. We notice the agent tries to predict a deviation that is away from

the approaching obstacles to avoid the collision. For inputting the deviation angle as

0, we would expect a scan with no obstructions, which is happening in the third row

of the Fig 3.7. The network correctly returns a nearly empty scan. These experiments

show that the neural network is learning useful patterns from the pedestrian datasets

that align with human intuition.

25

Figure 3.7: The 1st row shows the LiDAR scans for input deviation -1, -0.5, -0.2

radians (from left to right). The 2nd row shows the LiDAR scans for deviation input

0.2, 0.5, 1 radians. The 3rd row shows the LiDAR scan for input deviation of 0

radians. Note that the scans are produced with a constraint on its L2-norm, so it’s

biased towards producing the minimum perturbations (i.e. black rays) possible.

26

3.4 Simulation

In 3.3 we elaborate on how we use supervised learning on pedestrian datasets

to train a neural network that maps the local conditions of a pedestrian to the devia-

tion (from the goal vector) that he took. We now seek to integrate this neural network

to steer virtual agents towards their goals in multi-agent navigation scenarios. How-

ever, using the human-preferred velocities directly does not guarantee collision-free

navigation. Instead, we propose to use the learned velocities as the input preferred

velocity vpref to the agent’s underlying collision avoidance subroutine C.

Our simulation algorithm follows the typical multiagent navigation paradigm.

At timestep t = 0, the scene is initialized with each disk-shaped agent Ai at their

starting location with predefined goal positions gi. At each timestep, each agent

observes it’s local neighborhood and formulates the appropriate representation (Li-

DAR, MPD, or Latent). This representation is then processed by the trained neural

network to output a human-preferred deviation θt+1
i . The agent’s preferred velocity

for the next timestep is defined as a tuple of it’s preferred speed s and preferred

deviation θt+1
i . Finally, the subroutine C inputs the preferred velocity vt+1

i pref and

the relative positions and velocities of the agent’s nearest neighbors (typically within

a predefined sensing radius) and computes a collision free velocity vt+1
i closest to the

input preferred velocity. The agent’s location is then updated using standard Euler

integration, i.e. x
(t+1)
i = xt

i + vt+1
i ∆t, where ∆t is the simulation timestep. We

serially update each agent’s location following the above steps. Agents are removed

from the scene when they reach within 0.1m distance from their goal.

27

Algorithm 3: Simulation Algorithm

input : A pre-trained neural network Ψ : f(E(N (Ai))) 7→ θ

Collision avoidance algorithm C(N (Ai), vpref) 7→ v
(t+1)
i

Initial positions (x0
1, ...x

0
N), goal positions (g1...gN), radius

(r1, ...rN), and preferred speeds (s1, ...sN) of N agents.

Initialize time t = 0

Initialize list of agents A containing disks Ai of radius ri at position xi

while ‖A‖6= 0 do

for i = 1 ... N do

Create a local coordinate mapping function L that transforms from

the global space into the agent’s local space such that the origin is at

xt
i and Y-axis as

gi − xt
i

‖gi − xt
i‖

;

Compute local state N (Ai) containing the relative position and

velocities of neighboring agents within sensing rsense in L

Compute observation E(N (Ai)) using the encoding strategy E ;

Query the neural network to get preferred deviation

θt+1
i = Ψ(E(N (Ai))) ;

Preferred velocity vt+1
i pref = [si, θ

t+1
i] (in polar coordinates);

Collision free velocity vt+1
i = C(vt

i pref , E(N (Ai)));

Convert vt+1
i to global space with L−1

end

for i = 1 ... N do

Update each agent’s global position xt+∆t
i = xt

i + vt+1
i ∆t ;

Remove agent Ai from A if ‖xi − gi‖ ≤ 0.1 m ;

end

t := t+ ∆t ;

end

28

Chapter 4

Results

In this section, we evaluate the performance of our proposed framework (Figure

1.1) using the ORCA [Appendix C.1] and the Power Law [Appendix C.2] methods

as the underlying local planners to compute the final collision-free velocity of each

agent. . We consider the following four scenarios:

1. Hallway: Two groups of six agents each start at opposite sides of a narrow

and short hallway and have to swap positions.

2. Circle: Twelve agents initialized on the perimeter of a circle trying to reach

the opposite end of the circle.

3. Two-groups at 90◦: Two groups of 15 agents each cross paths perpendicularly

in an obstacle-free environment.

4. Crowd: 48 agents are places in a square region and have to reach randomly

assigned goals.

The starting configurations of each scenario are shown in Figure 4. All simulations

were produced using same test conditions across all methods. The preferred speed

29

for each agent is set to 1.3 m/s and the maximum speed to 1.5 m/s. The agent

radius for the circle and hallway scenario is set to 0.25m and 0.3m, respectively,

and for the crowd and Two-groups at 90◦, it is set to 0.2m. Selecting the agent’s

radius to a larger value for the circle and hallway scenarios makes navigation tasks

more difficult and allows us to assess the encoding methods’ value. For ORCA and

PowerLaw, the velocities are updated every 0.1 seconds and 0.02 seconds, respectively.

The network is queried for preferred velocities every 0.1 seconds, consistent with the

training conditions in the pedestrian datasets.

During simulation, every agent spawns in the virtual environment at its desig-

nated start position. At each step of the simulation, each agent observes neighboring

agents’ states in a 5m sensing radius around the agent and converts the neighborhood

into the agent’s local coordinate system. The neighborhood is then encoded with the

corresponding method (LiDAR, MPD, or Latent-based) and then given as input into

a trained neural network. The neural network outputs a preferred deviation based

on the input neighborhood. We input this deviation and the agent’s preferred speed

into the underlying local planner as the next timestep’s preferred velocity. The local

planning algorithm considers the states of the agent’s neighbors and static obsta-

cles and outputs a collision-free velocity that is maximally aligned to the preferred

velocity. The positions of all agents are updated according to the planner’s veloc-

ity using standard Euler integration. We remove agents from the scene after they

reach a 0.5m radius surrounding their goal positions. In our experiments, we use

the Python versions of the official PowerLaw and ORCA libraries as implemented in

[http://motion.cs.umn.edu/PowerLaw] and [https://gamma.cs.unc.edu/RVO2/], re-

spectively.

30

Figure 4.1: The above group of images show the test scenarios where we evaluate

our approaches. Top Left: Two-groups at 90◦, Top Right: Circle, Middle: Crowd,

Bottom: Hallway. The images show the starting locations of the agents and the

cross-hairs show their goal positions in the environment.

31

4.1 Evaluation Metrics

We use the following metrics to evaluate the performance of the simulations :

1. Simulation Time: This can be defined as the time taken by the entire simu-

lation to complete, i.e., from the beginning until the last agent reaches its goal.

Lower simulations times are better.

2. Average Speed: This denotes the average speed of each agent in the simula-

tion. A speed equal to 1.3 m/s is preferable which is the preferred agent speed

set in all of our simulations.

3. Collision Rate: This is a ratio of the total number of collisions to the total

number of frames in the simulation. Two agents are said to be colliding at a

particular timestep if their centers’ distance is smaller than the sum of their

radii.

4. Interaction Overhead: We use the interaction overhead metric as defined in

[20]. For each agent, the interaction overhead calculates the additional time it

took to reach its goal compared to the theoretical best time possible. In other

words, this measures the extra time that the agent spent avoiding collisions with

all other agents and static obstacles in the scene. An interaction overhead of 0

would mean that all the agents reached their goals in the best possible travel

time. Formally, the interaction overhead for the set of agents A is defined as

follows:

Interacion Overhead = TTime(A) - MinTTime(A)

where TTime(A) = µTimeToGoal(A)+3σT imeToGoal(A) such that TimeToGoal(A)

are a set of travel completion times, and µ(.) and σ(.) denote the mean and stan-

32

dard deviations respectively and MinTTime(A) = µMinT imeToGoal(A) +

3σMinT imeToGoal(A) ; such that MinTimeToGoal(A) are a set of theoreti-

cal best travel times assuming that each agent followed a straight line path to

the goal at their preferred speed.

5. Energy Efficiency: We use the energy efficiency metric as defined in [18, 21].

The energy efficiency of an agent at a particular frame is defined as the ratio of

the progress made by the agent towards the goal to the total energy expended

at that frame.

The progress made by an agent Ai towards the goal at a particular time-step is

calculated as follows:

Progress (Ai) = v · g − p

‖g − p‖

where g,p are the goal position and current position respectively and v is the

instantaneous velocity of the agent.

The energy expended by the agent at a particular timestep is calculated as:

Energy (Ai) = b+ c‖v‖2,

where the first term b denotes the power consumed by the agent due its pro-

cessing and sensing operations, while the second term c‖v‖2 corresponds to the

kinetic energy spent by the agent while moving. Following the work of [19], we

have opted to pick b=1 and c=2.25.

Finally the energy efficiency for the agent is:

Energy Efficiency (Ai) =
Progress(Ai)

Energy(Ai)
.

The total energy efficiency of a simulation is calculated by taking the mean of

the energy efficiencies of each agent.

33

4.2 Results and Analysis

Table 4.1 shows evaluation results of traditional ORCA and ORCA combined

with LiDAR, MPD, and Attention encoding. In all scenarios, using learned preferred

velocities performs better than naively picking the goal direction. In the circle and

hallway scenario, our methods outperform vanilla ORCA by a sizeable margin. Not

only do they complete the tasks faster with low interaction overhead, but they also

lead to higher average speed and energy efficiency. This suggests that the agents

can traverse towards their goal with less deviation compared to vanilla methods.

This can be confirmed with the trajectory plots discussed later in the section. For

the Two-groups at 90◦ scenario, the proposed methods only marginally outperform

vanilla ORCA. This can be attributed to the fact that the scenario’s dense interactions

are not well presented in the datasets we chose for training. As future work, it will

be interesting to see how training on more densely packed crowd data affects the

network’s performance in such interactions.

Table 4.2 shows results from our experiments with the PowerLaw. It can be

noticed that for most scenarios, the difference in performance between the vanilla

PowerLaw and modified versions is not as distinct as in ORCA. This is because Pow-

erLaw is elaborated from crowd interaction data and hence simulations generally ex-

hibit some of the efficiency found in human motion. Still, learning preferred velocities

shows an improvement in almost all scenarios in comparison to the vanilla method.

In the Two-groups at 90◦ scenario, which requires the densest agent interactions

among our testing scenarios, we noticed that the our approaches can reduce the num-

ber of collisions than vanilla power law while still improving the energy efficiency and

interaction overhead of the system.

While all encoding methods improve vanilla local planning approaches, the

34

MPD metric consistently generates energy-efficient and low overhead navigation. The

anticipatory nature of MPD seems to generalize on a wide variety of scenarios contain-

ing both sparse and dense scenarios, different neighbor radius and relative velocities,

and a variety of neighbor interaction scenarios absent in the original dataset.

Figures 4.2 and 4.3 compare the vanilla ORCA versus ORCA + MPD, in the

Hallway scenario. In the ORCA simulation, the two groups of agents approach each

other head-on and spend some time to find a collision-free velocity that makes progress

towards the goal. Note that, for vanilla ORCA, we are perturbing the goal velocity

with random gaussian noise (0 mean, 10−4 standard deviation) to avoid deadlock sit-

uations common in ORCA. On the other hand, when the preferred velocity is queried

using our MPD network, the agents can pick preferred velocities by observing other

agents’ actions. This allows to avoid the deadlock scenario in the ORCA simulation

and accelerates the simulation time.

In Figures 4.4 and 4.5, the simulations for vanilla ORCA and LiDAR-assisted

ORCA is shown for the circle scenario. The latter completes the task in 7.6 seconds

compared to the 11.7 seconds of the former method, with higher energy efficiency and

lower interaction overhead. The agents’ trajectories in the vanilla ORCA simulation

show high curvatures, particularly in the middle of the simulation when multiple

agents flock in the center searching for space. The trajectories produced by the

hybrid approach are much smoother and decisive.

Figures 4.6 and 4.7, the simulations for vanilla PowerLaw and MPD+PowerLaw

is shown for the Two-groups at 90◦ scenario (agent-radius set to 0.2m). In the

vanilla method, it is noticeable that the two groups of agents start pushing each

other towards the environment’s bottom-right corner. Both parties greedily try to

reach their destinations at each timestep without reacting to what the neighbors are

trying to achieve. This behavior eventually results in multiple agents taking a longer

35

path to the goal and a simulation time of 19 seconds with an interaction overhead

of 11.11 seconds. In contrast, the MPD-assisted preferred velocities show lesser de-

viation and complete the simulation in 16 seconds, with a lower interaction overhead

of 6.326 seconds.

In Figures 4.9 and 4.8, we show the speed distribution plots with PowerLaw

and ORCA variants. We ignore the first two and last two frames of each agent’s

trajectory, calculate their speed per frame, and plot a density distribution graph. The

Y-axis denotes the density (density = counts/(
∑

(counts)∗bin width), where counts

are the number of data points in each bin), such that the area under the histogram

integrates to 1. Although the improvement is less pronounced when using PowerLaw

(due to its inherent capabilities of producing human-like motion) compared to ORCA,

we can still see that LiDAR can improve the performance of vanilla PowerLaw. For

ORCA-variants, we can see that all methods improve the vanilla implementation to

produce higher speeds in agents. The vanilla ORCA plot shows a high density in

low-speed regions (around 0.6 m/s) highlighted by the red circle in Figure 4.9 that

is absent in the hybrid plots, suggesting that some agents stops or significantly slow

down during their trajectory due to possible congestions.

In Figures 4.11 and 4.10, we compare the interaction overheads of each method

on different scenarios. In most scenes, the adaptive preferred speed improves the per-

formance of the vanilla methods (except LiDAR+ORCA in Two-Groups at 90◦, and

PowerLaw+Latent in circle). The MPD method seems to consistently produce the

best gain in the ORCA scenarios. Although its performance gain is less pronounced

in PowerLaw compared to ORCA, it still shows improvement over vanilla PowerLaw

in all scenarios.

36

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Circle12 ORCA 11.7 0.971 8.53 0.302
LiDAR 8.50 1.098 4.34 0.342
MPD 8.1 1.118 4.102 0.341
Latent 8.1 1.043 4.10 0.335

Hallway ORCA 14.2 0.659 10.73 0.211
LiDAR 8.7 1.111 3.837 0.349
MPD 7.8 1.16 1.24 0.366
Latent 8.1 1.144 2.546 0.356

Two-group ORCA 14.3 1.244 3.5 0.368
at 90◦ LiDAR 14.9 1.172 5.04 0.364

MPD 13.8 1.237 3.45 0.371
Latent 13.7 1.247 3.18 0.368

Crowd ORCA 12 0.932 8.08 0.293
LiDAR 9.6 1.064 3.88 0.335
MPD 9.4 1.104 3.02 0.347
Latent 9.3 1.087 3.27 0.342

Table 4.1: ORCA Experiment Results. Collision statistics are not shown since no
collisions were observed.

37

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Circle12 PowerLaw 9.38 0.995 4.683 0.337
LiDAR 7.83 1.123 3.06 0.363
MPD 7.71 1.05 2.710 0.352
Latent 9.65 0.991 6.328 0.333

Hallway PowerLaw 12.38 0.72 6.952 0.257
LiDAR 8.75 1.032 3.651 0.347
MPD 8.72 0.987 3.448 0.343
Latent 8.7 1.017 3.567 0.347

Two- PowerLaw 16.70 1.08 8.404 0.345
group LiDAR 15.83 1.12 6.074 0.358
at 90◦ MPD 16.70 1.085 7.347 0.353

Latent 16.17 1.089 6.601 0.350
Crowd PowerLaw 10.65 0.874 5.067 0.324

LiDAR 9.84 0.887 4.701 0.329
MPD 9.96 0.877 4.83 0.321
Latent 10 0.918 4.324 0.332

Table 4.2: PowerLaw Experiment Results. Collision statistics are not shown since
no collisons were encountered.

38

Figure 4.2: Vanilla ORCA simulation on the Hallway scenario. The agents reach
a deadlock situation which increases the interaction overhead of the simulation.

39

Figure 4.3: ORCA simulation in the Hallway scenario with preferred deviations
obtained from MPD encoding. Notice in particular, how the agents in the wing
react to each other’s actions by moving into pockets of spaces created by each other’s
motion.

40

Figure 4.4: Vanilla ORCA simulation on 12 agents Circle scenario with agent-
radius set to 0.25m. The last three agents exhibit high rotation and end up travelling
a longer and convoluted distances to the goal with extreme curvatures.

41

Figure 4.5: ORCA simulation with preferred velocities obtained from MPD scans
on Circle scenario (agent radius = 0.25m). Unlike 4.4, the agents reach the goal
faster with smoother trajectories.

42

Figure 4.6: Vanilla Powerlaw simulation on Two-groups at 90◦ scenario. Notice
from 7 to 11 seconds how all agents try to reach towards their goal, but end up
pushing the mass of agents towards the bottom-left. This causes a large group of
agents to deviate from the straight line path and cause a high interaction overhead.

43

Figure 4.7: PowerLaw simulation with MPD-assisted preferred velocities on
Two-groups at 90◦ scenario. The agents complete the scenario faster as well as
take less deviations while reaching the goal compared to vanilla PowerLaw.

44

Figure 4.8: Speed distribution histogram for Two-groups at 90◦ scenario with Pow-
erLaw variants. The black line denotes the mean speed and the gray box shows the
one-standard deviation.

45

Figure 4.9: Speed distribution histogram for Two-groups at 90◦ scenario with
ORCA variants.The black line denotes the mean speed and the gray box shows
the one-standard deviation. The high density in ORCA at speed = 0.6m/s shows
that some agents slow down during certain parts of their trajectories.

46

Figure 4.10: A bar graph that shows the comparison of interaction overhead with
PowerLaw and our three methods on test scenarios. A higher interaction over-
head corresponds to agents taking more time to reach their goals.

Figure 4.11: A bar graph that shows the comparison of interaction overhead with
ORCA and our three methods on test scenarios. A higher interaction overhead
corresponds to agents taking more time to reach their goals.

47

Chapter 5

Conclusion and Discussion

In this thesis, we explored a human-inspired approach for learning efficient

multi-agent navigation. We used two collision avoidance frameworks, ORCA and the

Power Law, that traditionally rely on goal-oriented preferred velocities. We propose

a framework that queries a neural network to pick preferred velocities as a function of

the agent’s local conditions. We train the neural networks to learn human preferred

deviations (from the goal direction) from four publicly available crowd datasets and

investigate three neighborhood encoding methods that try to capture the static and

dynamic properties of the agent’s surroundings. The first method is a distance-

based LiDAR scan with stacked frames (to provide a sense of time to the encoding).

The second method is another radial scan based on the minimum predicted distance

(MPD) metric, which measures the distance of the closest approach of the ego-agent

with respect to each of its neighbors. The third method we experimented with is a

general neural encoding method that does not make any assumptions about how to

describe the interaction conditions that an agent faces. We individually encode the

states (positions, velocities) of neighboring agents and use an attention module to

encode the collection into a fixed-length embedding space.

48

Our training datasets provide a wide range of real-world crowd interaction

scenarios. During training, we create mini-batches by stratifying examples from each

scenario, promoting diversity and generalization. We also analyze the trained neural

networks by designing a gradient-based interpretation algorithm (for LiDAR and

MPD-based networks) that inputs a query input deviation angle and outputs a radial

scan that makes the trained network produce that deviation. The scans align perfectly

with human intuition, as it is noticeable that the network learns to go straight towards

the goal when there are no obstacles in front and takes deviations when surrounded

by agents.

After we train the neural networks, we use them to pass high-level control

signals to the agents’ underlying planning algorithms during simulation. Each agent

iteratively senses its local neighborhood, queries the neighborhood to obtain a human-

preferred deviation, and pass this (along with its preferred speed) into its collision

avoidance subroutine. The subroutine then returns a new collision-free velocity which

the agent takes at the next time step. Thus, we follow a hybrid approach, where we

combine learning − based and planning − based methods to train virtual agents to

exhibit human-level navigation patterns and retain the formal guarantees provided

by collision-avoidance algorithms.

We test these data-driven agents in multiple diverse scenarios and evaluate

their global interaction overhead and energy efficiency. Our results show a promising

direction for future research. When human-inspired actions are passed as preferred

velocities into the agent’s underlying local planner, we observed the time efficiency

of the multi-agent system improves, especially when using the ORCA navigation

method. We also show an improvement over PowerLaw, a force-based planner derived

from crowd interaction data that aligns with our original hypothesis that opting for

greedy actions at every timestep (always aligning preferred direction of motion with

49

the goal direction) can exhibit myopic behavior that can be detrimental to the long-

term efficiency of the global system of agents. Instead, our method allows agents

to opt for smarter target velocities that adapt to its neighborhood dynamics. We

present some trajectories from simulations, such as Figures 4.3, 4.5, and 4.7, where

we show examples where agents show a tendency to react to each other’s actions

(like humans do while navigating in a crowded space) and take independent actions

without any communication with its neighbors. We demonstrate quantitatively how

these actions eventually lead to an improvement in global efficiency.

We found that the MPD method generalizes the best across all our test sce-

narios and planners both qualitatively and quantitatively. The LiDAR method also

shows promising results in a variety of scenarios. Still, conceptually the MPD scan

has the edge over LiDAR because, by definition, the former can encode dynamic infor-

mation of the neighborhood more straightforwardly. While the current formulation of

the latent-embedding method has some limitations (no representation of the agents’

radius, no simple way of encoding static obstacles), early results with this method

appear to be promising. Because of the generality of the encoding scheme, we think

training on larger datasets should help improve the performance further. Further

experimentation is needed to see how all three method scales in different scenarios

that include static obstacles and when using different training datasets.

Limitations:

Since our approach is data-driven, the quality of our results is bounded by the

scope and sizes of the datasets and training examples that we use. Our testing sce-

narios were devoid of static obstacles (we show some preliminary results in Appendix

A), and it remains to be seen how adding more closed and densely packed scenarios

50

affect the simulations. We would also need to make adjustments to the attention-

based descriptor in order to account for static obstacles. One method may be to treat

static obstacles as a collection of neighbors with zero velocity, and continue using our

current formulation. This may be computationally inefficient, so other static-obstacle

representations need also to be considered. Still, due to it’s generality, we think that

the attention-based method has the potential to outperform both the MPD and the

LiDAR method, given enough data.

We assume that all our agents are discs with fixed radius in our framework,

which may not be the case when we are in a real-world setting. If this method is to be

transferred to real robotic systems, it may be worth to explore different shapes and

sizes of agents. We also assume that trained agents can behave similarly to the expert

pedestrians from our datasets, ignoring the kinodynamic constraints of the real-world

robots. Finally, it must be noted that our method does not directly optimize for global

efficiency. We follow the decentralized multi-agent navigation paradigm where each

neighbor senses and acts for optimizing towards own goals, without communication

with its neighbors. We are aware that our approach cannot entirely replace a global

planner, when deploying many agents to navigate in a complex environments with

dense obstacles, or with densely crowded pedestrians, or for that matter both. Adding

a waypoint generation algorithm as a high level planner that inputs new goal locations

can also be beneficial for traversing through scenarios with a large number of static

obstacles [42].

Future Work:

There are multiple promising directions for future work. One could improve the

framework by addressing limitations mentioned above. Although we learn navigation

51

policies from human data, our primary goal is to increase the efficiency of the global

system of agents. It will be interesting to assess the trajectories taken by agents using

our approach and compare directly with crowd motion, for example by using the

entropy metric [23, 32] to quantitatively analyze the similarity between trajectories

observed in our agents and ground truth human trajectories. We can also evaluate

on the basis of distance metric [62], novelty detection [74, 71], or unfreezing time

[61]. The next phase of our research involves deploying our methods to turtlebots

and test how the method translates to real- world applications. Another interesting

avenue of research is to deploy robots in a heterogeneous setting and extend our work

to socially-intelligent agents that interact with human beings [53, 22, 41]. We also

intend to collect laboratory and real-world datasets in such settings, which can be

used downstream for supervised learning and facilitating socially-aware multi-robot

navigation.

52

Appendices

53

Appendix A Learning from dense scenarios with

obstacles

In this section, we discuss training MPD and LiDAR based descriptors on

dense or closed pedestrian datasets that contain multiple static obstacles. Table 1

shows the description of the two scenarios used for the training. In [32], the authors

capture a low dimensional manifold of various scenarios that humans encounter during

crowd navigation, and show that human action in closed scenarios like the bnc (Figure

1) map to a different space than open scenarios in 3.1. Our early results are promising

and shows that learning from dense scenarios can show improvement over vanilla

local planners, and that training policies on dense scenarios produce better results in

crowded spaces compared to policies trained in open scenarios like zara, students

and oneway.

Dataset Description Pedestrian
count

Frames
(10fps)

Bnc-
Bottleneck
[55]

Pedestrians walking
down a constricted hall-
way.(unidirectional flow)

176 18519

Bncl-Long
Bottle-
neck [55]

Pedestrians walking down
a long constricted hall-
way.(unidirectional flow)

178 31127

Table 1: Pedestrian datasets used for training

For learning human-preferred deviations in closed scenarios, we trained neural

networks on bnc and bncl datasets, having about 50,000 interaction examples in

total, which is considerably lower than the open scenarios we trained in Table 4.1

(which contained close to 130,000 interactions). We evaluate these networks on the

54

Figure 1: The datasets used for training. Left: Bottleneck, Right: Long bottleneck

Figure 2: Gr90: A “closed” densely packed scenario with static obstacles. For 15
seconds, two groups (with total 100 pedestrians) enter the scene and need to cross
each other to reach the other at 90 degrees.

55

Two-groups at 90◦ dataset (Chapter 4) and the Gr90 [39] dataset (Figure 2), which

consists of two groups with a total of 100 pedestrians trying to cross each other at 90◦

in the presence of static obstacles in the scene. Table 2 and 3 shows experiment results

on both of these scenarios with using ORCA and PowerLaw respectively. Despite

the low number of training rows, we can see that the network can still improve the

performance of vanilla methods or at least match it. Especially with PowerLaw, our

approach has considerably improved the vanilla implementation in both scenarios.

The closed-model seems to also improve on the open-models trained for Table 4.1

and 4.2 in the Two-groups at 90◦ scenario. Although these results look promising,

they are inconclusive and need more investigation with larger training data and testing

scenarios.

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Gr90 ORCA 30.4 1.23 3.27 0.36
LiDAR 30.5 1.23 2.79 0.36
MPD 30.5 1.21 4.15 0.35

Two- ORCA 14.3 1.244 3.5 0.368
groups LiDAR 14.4 1.27 3.5 0.37
at 90◦ MPD 13.9 1.25 3.4 0.37

Table 2: Vanilla ORCA Experiment Results. Collision statistics are not shown
since no collisions were encountered.

56

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Gr90 PowerLaw 32.9∗ 1.19 3.99 0.36
LiDAR 30.94 1.18 2.73 0.37
MPD 30.98 1.17 2.77 0.37

Two- Powerlaw 16.70 1.08 8.404 0.345
groups LiDAR 14.77 1.18 4.07 0.36
at 90◦ MPD 14.89 1.16 4.55 0.37

Table 3: Powerlaw Experiment Results. (* here represents that 1 agent was stuck
at the obstacle at the end of the simulation. Collision statistics are not shown since
no collisions were encountered)

57

Appendix B Learning Speed Information from Pedes-

trian Datasets

In section 3.3, we train neural networks to learn human-preferred deviations

from pedestrian datasets. During simulation, we assumed that the preferred speed of

the agent is always fixed and we only incorporate the human-preferred deviation to

formulate a new vpref that we pass as input into local planners. In this section, we

provide results where we also learn the magnitude of human-preferred velocities from

open-crowd datasets (oneway01, oneway02, zara01, zara02, students), compared

to just learning deviations, and use vpref as a tuple of both human-preferred speed

and deviation. This means that for certain interaction scenarios, the agent will be

able to decide to slow down, as well as go faster compared to its usual preferred

speed. We tested this approach in the circle, hallway, and Two-groups at 90◦

scenarios using the same experimental conditions as section 4.2. Tables 4 and 5 show

corresponding results. The latent method seems to be more stable compared to MPD

and LiDAR methods, however the results still seem inconclusive. In certain scenarios,

using human-preferred speeds actually shows a minor drop in performance compared

to vanilla planner. Comparing with 4.1 and 4.2, we can observe that the performance

gain has reduced in these results.

In conclusion, it is unclear if they can increase the global efficiency of the

system. This does not necessarily mean that learning human-preferred speed is a

bad idea. We hypothesize that learning both speed and deviation will produce more

human-like understanding of crowd interactions in virtual agents. Conceptually, slow-

ing down speeds (in dense environments) may result in higher energy efficiency and

less deviations from the goal path. We think that training on a larger corpus of data

and test on more representative test scenarios can help to properly evaluate the worth

58

of learning human-speeds.

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Circle ORCA 11.70 0.97 8.53 0.30
Lidar 9.7 1.07 4.75 0.34
MPD 10.60 0.91 7.80 0.30
Latent 9.8 0.97 5.96 0.32

Hallway ORCA 14.20 0.66 10.73 0.21
Lidar 9.09 1.02 4.39 0.33
MPD 8.8 1.056 4.23 0.345
Latent 8.3 1.01 2.89 0.355

Two-groups ORCA 14.3 1.24 3.5 0.368
at 90◦ Lidar 14.99 1.17 5.04 0.363

MPD 15.6 1.16 5.4 0.365
Latent 14.8 1.19 4.17 0.373

Table 4: ORCA Experiment Results using human-like preferred speeds and direc-
tions. Collision statistics are not shown since no collisions were encountered.

Scene Method Sim
Time

Average
Speed

Interaction
Overhead

Energy
Efficiency

Circle PowerLaw 9.22 0.995 4.411 0.335
Lidar 8.54 1.036 3.44 0.3514
MPD 8.22 1.019 3.39 0.349
Latent 9.43 0.926 5.33 0.323

Hallway PowerLaw 12.38 0.72 6.952 0.257
Lidar 10.75 0.97 5.25 0.345
MPD 10.72 0.94 5.51 0.32
Latent 9.23 0.98 4.24 0.36

Two-groups PowerLaw 10.65 0.87 5.07 0.32
at 90◦ Lidar 10.76 0.96 5.25 0.337

MPD 10.72 0.94 5.51 0.33
Latent 9.24 0.97 4.24 0.342

Table 5: PowerLaw Experiment Results using human-like preferred speeds and
directions. Collision statistics are not shown since no collisions were encountered.

59

Appendix C Local Planners

C.1 Optimal Reciprocal Collision Avoidance

ORCA is a velocity-based approach for collision avoidance that provides guar-

antees for collision-free motion among multiple holonomic robots. We are given a

group of n robots which are represented as disks of radius ri, each having a target

goal position gi, velocity vi and position xi. At each timestep, the agent also se-

lects a preferred velocity vpref
i , which is typically chosen as the goal direction scaled

by its preferred speed. The objective of ORCA is to compute an optimal vi that is

collision-free and maximally aligned to vpref
i .

For robot Ai and neighbor Aj, the velocity obstacle [17] V Oi|j is a set of all

relative velocities that will lead to a collision between the two agents at some moment

in time τ >= 0.

V Oτ
i|j = {v̄ | ∃t ∈ [0, τ] , τ v̄ ∈ D (xj − xi, rj + ri)}

where D(x, r) is a disc centered at x having radius r.

The set of collision-free velocities for the agent Ai is given by:

ORCAτi = D(0, V max) ∩i 6=j ORCAτi|j

where D(0, V max
i) denotes the set of allowed holonomic velocities for the robot, and

ORCAτi|j is a set of velocities which move agent Ai at least halfway out of the velocity

obstacle between Ai and Aj.

The optimal velocity for the robot can then be found as the velocity in the set

ORCAτi that is closest to the preferred velocity vpref
i :

v∗i = argminvi ∈ ORCAτi
‖vi − vpref

i ‖

60

The above optimization problem can be solved using linear programming in

time linear with the number of neighbors that Ai has to avoid. The position of the

agent can then be computed at the next timestep using standard Euler integration:

xi+ = vi∆t, where ∆t is the simulation time.

C.2 Power Law

PowerLaw is a predictive force-based method that computes collision-free ve-

locities using the notion of time-to-collision. In [31], the authors analyzed a variety

of publicly available crowd datasets and demonstrated that the interaction energy

between a pair of pedestrians follows a PowerLaw distribution as a function of their

projected time-to-collision τ . The time to collision τ between agent Ai and neighbor

Aj, such that their relative distance x = xi − xj, relative velocity v = vi − vj and

combined radius r = ri + rj, denotes the first time in the future that the two agents

collide assuming both agents extrapolate forward with the same velocity. It can be

computed by finding the smallest positive root for the quadratic equation related to

the necessary condition for disc collision:

‖x + vτ‖ = r

In case no roots exist for τ we consider τ =∞, which means that the two agents can

never collide (for example if their velocities are equal and parallel to each other).

The interaction potential of two pedestrians are mathematically given as:

U(x,v) = kτ−pe−τ/τ0

where k is the scaling constant that sets the unit for energy, p is the exponent of

power law, and the τ0 models the fact that pedestrians tend to ignore collisions that

place too far in the future.

61

The collision force is calculated as the negative gradient of the potential:

FC = −∇xU

⇒ FC =
ke−τ/τ0

τm+1

(
p+

τ

τ0

)
x + vτ√

D

where D is the discriminant of the quadratic (x · v)2 − ‖v‖2(‖x‖2 − r2)

Given the preferred velocity vpref and the current velocity vi of the agent, the

driving force Fgoal computes the force due to which the agent moves towards its goal.

Fgoal =
vpref

i − vi

ξ
, where ξ is the time that the agent takes to adapt its velocity to

the preferred velocity.

Given the driving force Fgoal and the collision avoidance force FC , we calculate

the total force F = Fgoal+FC . Using Euler integration, the new velocity and position

is computed.

v+ = F∆t

x+ = v∆t

where ∆t is the time step of the simulation.

Because PowerLaw is derived from crowd data, agents tend to exhibit more

human-like behavior. As compared to ORCA, PowerLaw agents are willing to take

a step towards a collision if that collision can be solved more efficiently in the short

run. This addresses the issues of timid agents commonly encountered with ORCA

and leading to agents being more assertive towards reaching their goals.

One of the disadvantage of the PowerLaw is that, as any first-order method, it typi-

cally requires a very small time step to guarantee numerical stability. This makes it

slower to run than ORCA.

62

Bibliography

[1] Javier Alonso-Mora, Andreas Breitenmoser, Martin Rufli, Paul Beardsley, and
Roland Siegwart. Optimal Reciprocal Collision Avoidance for Multiple Non-
Holonomic Robots, pages 203–216. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013.

[2] C. Amato, G. Konidaris, G. Cruz, C. A. Maynor, J. P. How, and L. P. Kael-
bling. Planning for decentralized control of multiple robots under uncertainty.
In 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 1241–1248, 2015.

[3] Tucker Balch. Social entropy: a new metric for learning multi-robot teams. 04
1997.

[4] Tucker Balch. Hierarchic social entropy: An information theoretic measure of
robot group diversity. Autonomous Robots, 8, 03 2000.

[5] Cory D. Boatright, Mubbasir Kapadia, Jennie M. Shapira, and Norman I. Badler.
Generating a multiplicity of policies for agent steering in crowd simulation. Com-
put. Animat. Virtual Worlds, 26(5):483–494, September 2015.

[6] Mariusz Bojarski, D. Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, L. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, X. Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. ArXiv,
abs/1604.07316, 2016.

[7] C. Chen, Y. Liu, S. Kreiss, and A. Alahi. Crowd-robot interaction: Crowd-
aware robot navigation with attention-based deep reinforcement learning. In 2019
International Conference on Robotics and Automation (ICRA), pages 6015–6022,
2019.

[8] Y. F. Chen, M. Everett, M. Liu, and J. P. How. Socially aware motion planning
with deep reinforcement learning. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1343–1350, 2017.

63

[9] Bobby Davis, Ioannis Karamouzas, and Stephen J Guy. Nh-ttc: A gradient-
based framework for generalized anticipatory collision avoidance. arXiv preprint
arXiv:1907.05945, 2019.

[10] Vishnu R Desaraju and Jonathan P How. Decentralized path planning for multi-
agent teams with complex constraints. Autonomous Robots, 32(4):385–403, 2012.

[11] S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S.
Morcos, Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka,
Karol Gregor, David P. Reichert, Lars Buesing, Theophane Weber, Oriol Vinyals,
Dan Rosenbaum, Neil Rabinowitz, Helen King, Chloe Hillier, Matt Botvinick,
Daan Wierstra, Koray Kavukcuoglu, and Demis Hassabis. Neural scene repre-
sentation and rendering. Science, 360(6394):1204–1210, 2018.

[12] Michael Everett, Yu Fan Chen, and Jonathan P. How. Collision avoidance in
pedestrian-rich environments with deep reinforcement learning. IEEE Access,
9:10357–10377, 2021.

[13] Tingxiang Fan, Xinjing Cheng, Jia Pan, D. Manocha, and Ruigang Yang.
Crowdmove: Autonomous mapless navigation in crowded scenarios. ArXiv,
abs/1807.07870, 2018.

[14] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Fully distributed multi-
robot collision avoidance via deep reinforcement learning for safe and efficient
navigation in complex scenarios. 08 2018.

[15] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi-robot
collision avoidance via deep reinforcement learning for navigation in complex
scenarios. The International Journal of Robotics Research, 39(7):856–892, 2020.

[16] Ernst Fehr and Urs Fischbacher. Social norms and human cooperation. Trends
in cognitive sciences, 8:185–90, 05 2004.

[17] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environments using
velocity obstacles. The International Journal of Robotics Research, 17:760–, 07
1998.

[18] Julio Godoy. Machine learning methods for multi robot navigation. In Proceed-
ings of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’15, page 1995–1996, Richland, SC, 2015. International Foun-
dation for Autonomous Agents and Multiagent Systems.

[19] Julio Godoy, Stephen J. Guy, Maria Gini, and Ioannis Karamouzas. C-nav:
Distributed coordination in crowded multi-agent navigation. Robotics and Au-
tonomous Systems, 133:103631, 2020.

64

[20] Julio Godoy, Ioannis Karamouzas, Stephen Guy, and Maria Gini. Adaptive
learning for multi-agent navigation. Autonomous Robots, 3:1577–1585, 12 2018.

[21] Julio Godoy, Ioannis Karamouzas, Stephen J Guy, and Maria Gini. Anytime
navigation with progressive hindsight optimization. In 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 730–735. IEEE,
2014.

[22] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
Social gan: Socially acceptable trajectories with generative adversarial networks.
pages 2255–2264, 06 2018.

[23] Stephen J. Guy, Jur van den Berg, Wenxi Liu, Rynson Lau, Ming C. Lin, and
Dinesh Manocha. A statistical similarity measure for aggregate crowd dynamics.
ACM Trans. Graph., 31(6), November 2012.

[24] Dirk Helbing, Illés Farkas, and Tamás Vicsek. Simulating dynamic features of
escape panic. Nature, 407:487–490, 09 2000.

[25] Dirk Helbing and Péter Molnár. Social force model for pedestrian dynamics.
Phys. Rev. E, 51:4282–4286, May 1995.

[26] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. Multi-robot col-
lision avoidance with localization uncertainty. In AAMAS, pages 147–154, 2012.

[27] Peter Henry, Christian Vollmer, Brian Ferris, and Dieter Fox. Learning to navi-
gate through crowded environments. pages 981 – 986, 06 2010.

[28] Dalton Hildreth and Stephen J. Guy. Coordinating multi-agent navigation by
learning communication. Proc. ACM Comput. Graph. Interact. Tech., 2(2), July
2019.

[29] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a
neural network. In NIPS Deep Learning and Representation Learning Workshop,
2015.

[30] Eunjung Ju, Myung Geol Choi, Minji Park, Jehee Lee, Kang Hoon Lee, and
Shigeo Takahashi. Morphable crowds. ACM Transactions on Graphics (TOG),
29(6):1–10, 2010.

[31] Ioannis Karamouzas, Brian Skinner, and Stephen J Guy. Universal power law
governing pedestrian interactions. Physical review letters, 113(23):238701, 2014.

[32] Ioannis Karamouzas, Nick Sohre, Ran Hu, and Stephen J. Guy. Crowd space:
A predictive crowd analysis technique. ACM Trans. Graph., 37(6), December
2018.

65

[33] Ioannis Karamouzas, Nick Sohre, Rahul Narain, and Stephen Guy. Implicit
crowds: optimization integrator for robust crowd simulation. ACM Transactions
on Graphics, 36:1–13, 07 2017.

[34] Sammie Katt, Frans A. Oliehoek, and Christopher Amato. Bayesian reinforce-
ment learning in factored pomdps. In Proceedings of the 18th International Con-
ference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, page 7–15,
Richland, SC, 2019. International Foundation for Autonomous Agents and Mul-
tiagent Systems.

[35] Beomjoon Kim and Joelle Pineau. Socially adaptive path planning in human en-
vironments using inverse reinforcement learning. International Journal of Social
Robotics, 8:51–66, 2016.

[36] Wee Lit Koh and Suiping Zhou. Modeling and simulation of pedestrian behaviors
in crowded places. ACM Trans. Model. Comput. Simul., 21(3), February 2011.

[37] Henrik Kretzschmar, Markus Spies, Christoph Sprunk, and Wolfram Burgard.
Socially compliant mobile robot navigation via inverse reinforcement learning.
The International Journal of Robotics Research, 35(11):1289–1307, 2016.

[38] Markus Kuderer, Henrik Kretzschmar, Christoph Sprunk, and Wolfram Burgard.
Feature-based prediction of trajectories for socially compliant navigation. 07
2012.

[39] Gregor Lämmel and Matthias Plaue. Getting out of the way: Collision-avoiding
pedestrian models compared to the realworld. In Pedestrian and Evacuation
Dynamics 2012, pages 1275–1289. Springer, 2014.

[40] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example.
In Computer graphics forum, volume 26, pages 655–664. Wiley Online Library,
2007.

[41] Yuejiang Liu, Qi Yan, and Alexandre Alahi. Social nce: Contrastive learning of
socially-aware motion representations. ArXiv, abs/2012.11717, 2020.

[42] Zuxin Liu, B. Chen, Hongyi Zhou, G. Koushik, M. Hebert, and D. Zhao. Mapper:
Multi-agent path planning with evolutionary reinforcement learning in mixed
dynamic environments. 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 11748–11754, 2020.

[43] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan.
Towards optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6252–6259. IEEE, 2018.

66

[44] Pinxin Long, Wenxi Liu, and Jia Pan. Deep-learned collision avoidance policy
for distributed multi-agent navigation. IEEE Robotics and Automation Letters,
PP, 09 2016.

[45] T. Mundhenk, Barry Chen, and Gerald Friedland. Efficient saliency maps for
explainable ai. 11 2019.

[46] Anne-Hélène Olivier, Antoine Marin, Armel Crétual, and Julien Pettré. Minimal
predicted distance: A common metric for collision avoidance during pairwise
interactions between walkers. Gait Posture, 36(3):399–404, 2012.

[47] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and Cesar Ca-
dena. From perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots. pages 1527–1533, 05 2017.

[48] Dean Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D.S. Touretzky, editor, Proceedings of Advances in Neural Information Process-
ing Systems 1, pages 305 –313. Morgan Kaufmann, December 1989.

[49] Victoria Rapos, Michael Cinelli, Natalie Snyder, Armel Crétual, and Anne-
Hélène Olivier. Minimum predicted distance: Applying a common metric to
collision avoidance strategies between children and adult walkers. Gait Posture,
72:16–21, 2019.

[50] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
In Proceedings of the 14th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH ’87, page 25–34, New York, NY, USA, 1987.
Association for Computing Machinery.

[51] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput. Graph., 21(4):25–34, August 1987.

[52] Craig W Reynolds. Steering behaviors for autonomous characters. In Game
developers conference, volume 1999, pages 763–782. Citeseer, 1999.

[53] Adarsh Sathyamoorthy, Jing Liang, Utsav Patel, Tianrui Guan, Rohan Chandra,
and Dinesh Manocha. Densecavoid: Real-time navigation in dense crowds using
anticipatory behaviors. pages 11345–11352, 05 2020.

[54] Adarsh Jagan Sathyamoorthy, Utsav Patel, Tianrui Guan, and D. Manocha.
Frozone: Freezing-free, pedestrian-friendly navigation in human crowds. IEEE
Robotics and Automation Letters, 5:4352–4359, 2020.

[55] Armin Seyfried, Oliver Passon, Bernhard Steffen, Maik Boltes, Tobias Rup-
precht, and Wolfram Klingsch. New insights into pedestrian flow through bot-
tlenecks. Transportation Science, 43(3):395–406, 2009.

67

[56] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and Takayuki Kanda.
Towards a socially acceptable collision avoidance for a mobile robot navigating
among pedestrians using a pedestrian model. International Journal of Social
Robotics, 6(3):443–455, 2014.

[57] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[58] Shawn Singh, Mubbasir Kapadia, Petros Faloutsos, and Glenn Reinman. An
open framework for developing, evaluating, and sharing steering algorithms. vol-
ume 5884, pages 158–169, 11 2009.

[59] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and Dinesh Manocha. In-
dependent navigation of multiple mobile robots with hybrid reciprocal velocity
obstacles. In 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5917–5922. IEEE, 2009.

[60] Jiaming Song, Hongyu Ren, Dorsa Sadigh, and Stefano Ermon. Multi-agent
generative adversarial imitation learning. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[61] P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense, interact-
ing crowds. In 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 797–803, 2010.

[62] Muhammad Usman, Tien-Chi Lee, Ryhan Moghe, Xun Zhang, Petros Falout-
sos, and Mubbasir Kapadia. A social distancing index: Evaluating navigational
policies on human proximity using crowd simulations. In Motion, Interaction
and Games, MIG ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[63] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Recip-
rocal n-body collision avoidance. In Cédric Pradalier, Roland Siegwart, and
Gerhard Hirzinger, editors, Robotics Research, pages 3–19, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

[64] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal
n-body collision avoidance. In Robotics research, pages 3–19. Springer, 2011.

[65] H. Van Dyke Parunak and Sven Brueckner. Entropy and self-organization in
multi-agent systems. In Proceedings of the Fifth International Conference on
Autonomous Agents, AGENTS ’01, page 124–130, New York, NY, USA, 2001.
Association for Computing Machinery.

68

[66] Wouter van Toll and Julien Pettre. Synchronizing navigation algorithms for
crowd simulation via topological strategies. Computers Graphics, 89, 04 2020.

[67] L. Wang, Z. Li, C. Wen, R. He, and F. Guo. Reciprocal collision avoidance for
nonholonomic mobile robots. In 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV), pages 371–376, 2018.

[68] D. Wolinski, S. J. Guy, A.-H. Olivier, M. Lin, D. Manocha, and J. Pettré. Pa-
rameter estimation and comparative evaluation of crowd simulations. Comput.
Graph. Forum, 33(2):303–312, May 2014.

[69] David Wolinski, S J. Guy, A-H Olivier, Ming Lin, Dinesh Manocha, and Julien
Pettré. Parameter estimation and comparative evaluation of crowd simulations.
In Computer Graphics Forum, volume 33, pages 303–312. Wiley Online Library,
2014.

[70] Yuchen Xiao, Joshua Hoffman, Tian Xia, and Chris Amato. Learning multi-robot
decentralized macro-action-based policies via a centralized q-net. 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 10695–
10701, 2020.

[71] Pei Xu and Ioannis Karamouzas. Human-inspired multi-agent navigation using
knowledge distillation. 03 2021.

[72] Fan Yang, Alina Vereshchaka, Changyou Chen, and Wen Dong. Bayesian multi-
type mean field multi-agent imitation learning. 12 2020.

[73] Chao Yu, Minjie Zhang, Fenghui Ren, and Xudong Luo. Emergence of social
norms through collective learning in networked agent societies. volume 1, pages
475–482, 05 2013.

[74] M. Zhao and Venkatesh Saligrama. Anomaly detection with score functions based
on nearest neighbor graphs. In NIPS, 2009.

69

	Learning Multi-Agent Navigation from Human Crowd Data
	Recommended Citation

	Title Page
	Abstract
	List of Tables
	List of Figures
	Introduction
	Related Work
	Local Planning Algorithms for Collision Avoidance
	Machine Learning for Multiagent Navigation

	Methods
	Problem Formulation
	Learning Human-Like Velocities
	Training
	Simulation

	Results
	Evaluation Metrics
	Results and Analysis

	Conclusion and Discussion
	Appendices
	Learning from dense scenarios with obstacles
	Learning Speed Information from Pedestrian Datasets
	Local Planners

	Bibliography

