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Abstract—Accurate 3D tracking of objects from monocular
camera poses challenges due to the loss of depth during
projection. Although ranging by RADAR has proven effective
in highway environments, people tracking remains beyond the
capability of single sensor systems. In this paper, we propose a
cooperative RADAR-camera fusion method for people tracking
on the ground plane. Using average person height, joint detec-
tion likelihood is calculated by back-projecting detections from
the camera onto the RADAR Range-Azimuth data. Peaks in the
joint likelihood, representing candidate targets, are fed into a
Particle Filter tracker. Depending on the association outcome,
particles are updated using the associated detections (Tracking
by Detection), or by sampling the raw likelihood itself (Tracking
Before Detection). Utilizing the raw likelihood data has the
advantage that lost targets are continuously tracked even if
the camera or RADAR signal is below the detection threshold.
We show that in single target, uncluttered environments, the
proposed method entirely outperforms camera-only tracking.
Experiments in a real-world urban environment also confirm
that the cooperative fusion tracker produces significantly better
estimates, even in difficult and ambiguous situations.

Index Terms—radar, sensor fusion, pedestrian tracking, au-
tonomous vehicles

I. INTRODUCTION

Environmental perception requirements for reaching Level
4 and 5 autonomous driving, [1], demand for complete inte-
gration of hardware and software as well as the development
of smarter object detection and tracking algorithms. All of
these systems must be able to cope with low Signal-to-
Noise Ratio (SNR) data, dynamic occlusion, unpredictable
motion as well as sensor failure. To reach these requirements,
contemporary prototypes are usually equipped with an array
of complementary and redundant sensors. On the other hand,
at the low cost, high Technology Readiness Level (TRL)
segment, traditional systems have limited the possibilities. A
system of independent sensors, detectors and trackers can be
easily analyzed and standardized, but sharing the rich sensor
information between the sensors can lead to larger gains
in robustness and performance. This essentially explains the
archetypal difference between low level and high level data
fusion. In the context of Advanced Driver-Assistance Systems
(ADAS) it is pivotal to have an accurate situational awareness
image of the environment. The position of potential collision
threats must be estimated on the ground plane relative to the
ego-vehicle. To that end, the most discriminating information

can be captured using a high-resolution visible light camera.
However, back-projecting objects from the camera image to
the ground plane cannot be done accurately, so, often ranging
is performed by additional sensors. Technologies such as
stereo cameras, rotating and flash LiDAR, ultrasound and
RADAR have the advantage that they can measure distance
to objects directly. When measuring distances to soft targets
such as pedestrians and cyclists it can be seen, from the
leader boards of the KITTI 3D object benchmark [2], [3],
that LiDAR has a clear advantage over all other sensors.
However, LiDAR has limited practical application due to its
high cost. More so, LiDAR alone does not have the necessary
data density to perform robust object classification, so it is
often used in conjunction with a visible light camera.

As an alternative to expensive LiDAR technology, car man-
ufacturers commonly rely on automotive Frequency Mod-
ulated Continuous Wave (FMCW) RADAR sensors. Not
only are these compact, low-cost, and low-power sensors
providing range, (radial) velocity, and angular information,
RADAR technology is also largely insensitive to environ-
mental conditions like rain, snow, fog, dust, dirt, darkness,
or glaring sun. 77GHz FMCW RADAR has become the
de-facto standard in automotive applications, as the large
available bandwidth and small wavelengths allow to resolve
objects in range and velocity with high resolution. However,
as compared to LiDAR, automotive RADAR provides much
lower angular resolution. Hence, although ranging of vehicles
has been successfully performed in highway environments,
RADAR struggles to track the large variety of road users
that are commonly present in urban environments. Since
pedestrians have a much lower Radar Cross Section (RCS)
than other road users and infrastructure, a single pedestrian
in a highly cluttered scene is very hard to identify in the
received signal spectrum. This is especially true when the
pedestrian is static, occluded or close to RADAR reflecting
objects such as cars, light poles, traffic lights, signs and vari-
ous other corner reflectors. Therefore, current environmental
perception systems mainly rely on a combination of cameras
and RADARs. In this paper we propose a hybrid low and
high level cooperative fusion architecture for object detection
and tracking. Cooperative sensor fusion is accomplished by
continuously tuning the low level operating characteristics of
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Figure 1: System diagram of the proposed cooperative fu-
sion method: Camera observations are back-projected on the
ground plane and fused with RADAR data. Depending on
target-track association outcome the tracker uses raw data or
joint-likelihood to update the tracks.

one sensor by means of feedback data from another sensor
or higher level information. The goal is to adapt the current
data of one sensor using the strengths of another sensor,
while at the same time exploiting high level temporal and
historical knowledge in reaching a common goal. In our
case the goal is accurate tracking of vulnerable road users
on the ground plane using 77GHz automotive RADAR and
wide angle camera. The state of each person is represented
by a set of random samples, particles, whose weights and
positions allow flexibility in exploiting low-level sensor in-
formation. Initial ground plane detections are obtained by
back-projecting camera detections onto the the raw RADAR
range/azimuth signal, violet color on figure 1 and figure 2c.
Next, extracted local peaks in this likelihood, representing
expected candidate target centers, are fed into a multi-target
tracker. Candidate targets, which can be associated with
existing tracks, update the respective state via a Target-track
likelihood, blue color on figure 1, while unassociated tracks
are updated using the sensor observations before detection.
Therefore, in situations with well associated data, the tracker
gets less ambiguous likelihood information from the peaks in
the data, while in ambiguous situations, the tracker updates
sampling the entire energy field where multiple weak targets
can update multiple unassociated tracks. Our hybrid method
is essentially a Tracking by Detection design for good data
associations, and Tracking Before Detection (TBD) when no
association is possible.

The following sections are organized as follows, in sec-
tion §II we give a brief overview of relevant tracking ap-
proaches from the literature, in section §III we provide the
theoretical foundation of our approach while in section §IV
we show experimentally that the proposed cooperative fusion
improves upon the baseline. Finally, in section §V we con-

clude this paper with some remarks on the applicability and
potential improvements to the system.

II. RELATED WORK

There already exists a vast amount of literature dealing
with sensor fusion, the review of which is outside of the
scope of this paper. We hereby provide an overview of several
relevant papers that conceptually intersect with our work.

In [4] authors give a comprehensive evaluation of track-
ing performance for various single and multi-sensor system
setups in urban and highway scenarios. Their analysis is
based on the Cramer-Rao Lower Bound (CRLB) which
provides a lower bound on the variance of an estimator. The
metric can be used as a design tool in order to estimate
the tracking performance limits. Although their analysis is
thorough, it is based on loose sensor model assumptions that
limit real-world applicability. Nevertheless, this work reaches
interesting conclusions that, in highway environments, best
performance can be achieved by sensor data fusion of radar
and LiDAR while in urban environments, any two sensor
combination provides satisfactory performance.

An object tracker based on heterogeneous sensors (Li-
DAR, RADARs and cameras) using the Extended Kalman
Filter (EKF) is presented in [5]. These authors employ the
sequential-sensor method [6] that treats observations from
individual sensors independently and sequentially feeds them
to the EKF’s estimation process. Tracking of pedestrians,
cyclists and vehicles is performed by applying a class-
specific motion model. Data association is performed by
back-projecting camera object detections on the ground plane
and searching for the nearest LiDAR and RADAR detection.
Thus, the rich RADAR information is greatly discarded in
this process. This paper provides an extensive experimental
evaluation from a tracking perspective, however the target
localization accuracy is not fully evaluated.

In [7] authors use a 24GHz RADAR and a Track-Before-
Detect approach, to consider measurements which are usually
being discarded. Their approach is based on a Particle Filter
whose weights are influenced by Doppler signatures caused
by human walking. This system is limited to tracking only
a single target where events such as track creation and
termination are not considered. Finally, this paper offers only
a small scale experimental evidence which is not entirely
relevant to real traffic situations.

In [8] authors describe an algorithm for a multi-Bernoulli
filter for TBD by eliminating targets from the original ob-
servation of an automotive Fast Chirp Modulation (FCM)
RADAR. With sequential Monte Carlo (SMC) implementa-
tion of the proposed algorithm, their approach is validated
through a small scale experiment using a simulation of
an urban road scene. A weakness of this approach is the
process of eliminating the other targets in the likelihood
calculation, where elimination regions are defined by the
other target’s intensity and the actual radar parameters, such
as the number of array elements and the effective aperture.
A vast improvement in the performance can be achieved



(a) RGB camera frame with detected objects. (b) Uncertainty regions from back-projected cam-
era detections on the Ground plane.

(c) Uncertainty regions from combined camera and
RADAR.

Figure 2: Data sample and detections from an urban environment containing multiple vulnerable road users.

by introducing information from a camera sensor that can
separate multiple targets in the image domain.

III. TRACKING BY COOPERATIVE FUSION

Our proposed system extends on the TBD idea of these pa-
pers to tracking multiple soft targets from a moving vehicle.
We propose a Particle Filter based multi-object tracker which
uses a neural network [9] to perform initial object detection.
These detections are then fused with the RADAR data to
form a joint RADAR-Vision likelihood for potential targets.
During tracking prediction, particle weights are updated using
the joint-likelihood function, while detected targets are used
to innovate existing or create new tracks. Thus, during
tracking the rich RADAR information is fully exploited.
Whereas authors in [7] use a constant velocity model for
pedestrian motion, we adopt our behavioral motion model
from [10]. We solve the data association problem using the
Hungarian algorithm [11] while track management is done
using a Markov Decision Process approach similar to [12].

Formally, the goal of the system is to estimate the state and
cardinality of the set of unknown targets X = {xj} , j ≥ 0
by maximizing the belief in the state using past and current
sensor information. We model a target as a random variable
on the ground plane, with four parameters (position and
velocity) in the space x ∈ R4; x = [x, y, ẋ, ẏ]

T
. The

system relies on a set of sensors Y = {YC , YR, ...} to scan
the environment around the vehicle for potential collision
threats. The RADAR sensor generates observations in the
form of a 3D data cube: YR : yR ∈ R3 in the range, (radial)
velocity, and azimuth space. The camera detector, on the
other hand, generates a set of observations, yi, represented
by rectangular bounding boxes in image plane coordinates
YC : yC ,i = [u1 , u2 , v1 , v2 , s]i

T with u, v representing
image rows and columns. Since this camera observation
vector is incompatible with the target state space, we
transform each bounding box to an expected location on
the ground plane. To that end we employ the back-projection:

y′C = [x ′, y ′, s]
T
; y′ =

hfy
u2 − u1

and x ′ =
(v − v0) y

′

fx
, (1)

where h is assumed an average person height, and fx, fy
and v0 are the intrinsic camera parameters. For better read-
ability we will drop the prime symbol in all further equations,
assuming that the back-projection is already applied to all
camera observations. In the following sub-section we will use
Bayesian tracking theory under the Markovian assumption
to provide an analytical solution for tracking a single target
using cooperating sensors. In our previous work [10] we give
for more details on how we solve the association and track
management tasks.

A. Bayesian tracking

Under the Markov process assumption, the state of the
target is conditioned on the previous state, i.e. the target
motion model, and on current sensor observations. Since the
target of interest can be observed by multiple sensors, we
model the probability for a target to be in the state x, at
time t as a function of the previous state and process noise:
p (xt |xt−1 ) = f (xt−1, ξt−1). The sensors measure the true
state of each target providing an observation yt which suffers
from measurement noise, yt = h (xt, ηt). In our multi sensor
system, the measurement model represents the conditional
dependence between the target state and the various sensor
observations:

p (yt |xt ) = p (yC,t,yR,t |xt ) . (2)

In order to maximize the belief in the state, given the state
transition model p (xt |xt−1 ), past and current observations
{yC,1:t,yR,1:t}, we employ Bayesian tracking recursion.
This enables us to estimate the posterior density function
in two steps, i.e. using the motion model to make a pre-
diction, and the observation likelihood function to update
with observations. During the prediction step the past state
is propagated to the current time by using the state transition
probability p (xt |xt−1 ), where by dropping the observation
from the state transition term, which holds under the Markov
assumption, we get:



p (xt |yC,1:t−1,yR,1:t−1 ) =ˆ
p (xt |xt−1 ) p (xt−1 |yC,1:t−1,yR,1:t−1 ) dxt−1. (3)

During the update step, new observations yC,t,yR,t be-
come available and innovate the state variable of the respec-
tively associated target xj ,t using the Bayes’ rule. Assuming
that the track is a first order Markov process we re-write the
posterior as:

p (xt |yC,1:t,yR,1:t ) =
p (xt |yC,1:t−1,yR,1:t−1 ) p (yC,t,yR,t |xt )

p (yC,t,yR,t |yC,1:t−1,yR,1:t−1 )
. (4)

The camera and RADAR sensors operate using different
principles and in different EM spectra which makes their
measurements conditionally independent given the state.
Thus, the first factor in the numerator is the result of the
prediction step: p (xt |yC,1:t−1,yR,1:t−1 ) = p (xt |xt−1 )
and the second factor is the likelihood function
of two conditionally independent variables:
p (yC,t,yR,t |xt ) = p (yC,t |xt ) p (yR,t |xt ). The
denominator term p (yt |y1:t−1 ) can be computed using
the likelihood function and the previous state. We find the
solution to this Bayesian recursion using non-parametric
distributions and Monte Carlo simulations. We model the
posterior as a weighted sum of N discrete samples:

p (xt |yC,1:t,yR,1:t ) ≈
N∑
i=1

witδ
(
xt − xit

)
, (5)

where xit is a random sample from this distribution: xit ∼
p (xt |yC ,1 :t ,yR,1 :t ) , δ is the Dirac delta function and wit
are sample weights, initially wit = 1

N . An approximation
of this distribution can be obtained by means of importance
sampling. The importance of each particle can be computed
recursively, [13], using the proposal distribution q ():

wit = wit−1
p
(
yC,t

∣∣xit ) p (yR,t ∣∣xit ) p (xit ∣∣xit−1 )
q
(
xit
∣∣xi1:t−1,yC,1:t,yR,1:t ) , (6)

where the numerator is the product of the observation model
p
(
yC,t

∣∣xit ) p (yR,t ∣∣xit ) and the motion model p
(
xit
∣∣xit−1 )

and the denominator is the proposal distribution. For simplic-
ity, we use a Bootstrap PF (6) weight update assuming that
the proposal distribution is the state transition prior:

wit = wit−1p
(
yC,t

∣∣xit ) p (yR,t ∣∣xit ) . (7)

This way we greatly simplify the computation of the par-
ticle’s weight updates which enables us to perform Tracking
by Detection or Tracking Before Detection whether a specific
peak in the joint likelihood can be found and associated or
not. Specifically, if the track is predicted and not updated,
we update particle weights using the raw likelihood. figure 1,
before running NMS/CFAR [14]. Even if, at time step t, all

observations fall below the tracker sensitivity threshold and
no detections yt are available for innovation, we have already
used the RADAR data for updating the particle weights. In
cases where detection and association can be made, we use
the a target-track joint likelihood function which we present
in the following sub-section.

B. Joint-likelihood function

Since likelihoods govern the PF weights which are a
component of the posterior (5), accurately modeling this
function is essential to the performance of the tracker. For this
reason, we learn the observation likelihood model parameters
from data using the actual physical sensors in controlled and
uncluttered environments. For the camera sensor, we model
the measurement positional uncertainty, that a person will be
detected at position yC = [x′, y′]

T if this person is standing
at position x = [x, y]

T as the likelihood function p (yC |x ) .
Multiple factors, such as bounding box errors, pose variabil-
ity, occlusion, etc. influence the position of the back-projected
bounding box on the ground plane. These appearance factors
are difficult to model which makes the detection uncertainty
function unknown. We therefore approximate this function
with a two-dimensional Gaussian in polar coordinates, where
the radial and angular variances are a function of the range.
Incorrect person height in the model creates ground plane
errors that scale linearly with distance which can be well
captured by our model. Thus, for p (yC |x ) we have:

p (yC |x ) = exp

(
− (ρy − ρx)2

σ2
ρ

− (θy − θx)2

σ2
θ

)
, (8)

where the range variance is a function of the track range
σρ = aρx and the azimuth variance σθ is constant.

Detections from the RADAR data cube are affected by
various types of noise which create errors on the position
yR = [ρ, θ, ρ̇]

T. Since people have a radar cross-section
compared to other road users and infrastructure, the useful
signal that we seek to extract from the data cube is strongly
corrupted. Firstly, objects moving with velocity larger than
the maximum unambiguous velocity suffer from aliasing
and appear as ghost targets. Second, in a real world traffic
environment the RADAR signal suffers from the effects of
multipath propagation which is difficult to model without
knowledge of the scene structure. Lastly, there is a strong
signal mixing when two people stand close to each other
and without prior knowledge of the number of targets it
is very difficult to resolve such targets. In order to reduce
the computational load of the likelihood function, we model
the RADAR observation likelihood with the two-dimensional
Gaussian function in polar coordinates similar to (8). We note
that p (yR |x ) has variances learned from control experiments
which are completely different from the ones of p (yC |x ).
The camera likelihood has a distinctive range dependent
uncertainty (σC,ρ = 0.039ρx [m] , σC,θ = 0.014 [rad]), while
the RADAR likelihood has a “banana” shape with con-
stant range variance and much larger angular variance
(σR,ρ = 0.17 [m] , σR,θ = 0.344 [rad]).
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Figure 3: Detections of a single pedestrian walking on a
known trajectory. Black line: ground truth trajectory com-
puted by segmenting the LiDAR data; Red: detections from
RADAR; Green: back-projected detections from Faster R-
CNN; Blue: fused detections.

IV. EXPERIMENTAL RESULTS

We conducted two sets of experiments and measured
performance of the cooperative system against the control,
camera-only tracker. For capturing the data, we equipped an
electric cargo tricycle with a sensor array consisting of a
single GoPro Hero 4 black RGB camera, Texas Instruments
AWR1443 77GHz automotive FMCW RADAR and a Velo-
dyne VLP-16 LiDAR. Data was captured asynchronously at
30Hz, 20Hz and 10Hz respectively, while synchronization is
achieved using timestamps. In the first experiment, the ego-
vehicle was parked in an open environment (empty parking
lot) while the pedestrian was walking in a predictable and
known trajectory in front of the sensor array. The goal of
this first experiment is to compute the improvement of raw
positional accuracy by controlling for data ambiguities such
as multiple target association, occlusions and ego-motion.
Camera object detection was performed by running the Faster
R-CNN [9] object detector trained on the MS-COCO dataset
[15]. Performance is measured by means of Root Mean
Squared Error of the estimated person position on the ground
plane position with respect to the ground truth which comes
from a calibrated VLP-16 LiDAR. On figure 3, we present
one typical trajectory and the corresponding results obtained
from the control and fusion-based system. It is apparent
that the camera error pattern, shown by green dots, is more
pronounced in the longitudinal direction, while the RADAR
error, shown in red dots, is stronger in the lateral direction.
Applying the cooperative fusion system in this experiment
brought significant improvements in the localization accu-
racy. We measured a decrease in RMSE from 0.357m for the
camera-only, and 0.503m for the RADAR-only, to 0.188m

for the fusion method, which is an improvement of close to
47%.

In the second experiment we tested the real-world impact
of tracking accuracy using our cooperative fusion system over
a single sensor baseline. To that end, we conducted a large
scale data capture and annotation in an urban environment
(city center). For this paper, we selected 16 sequences with
difficult traffic situations, where ego-motion ranges from
0Km/h to 25Km/h. All sequences were hand annotated by
computer vision researchers, in such a way that annotators
were asked to draw ground plane bounding boxes around
each vulnerable road user visible both in the LiDAR, RADAR
and Camera data. The annotator could also advance the time
in the past or future in order to accurate label ambiguous
cases. In total, the dataset contains 1922 frames captured at
10Hz, with 6734 labeled ground truth objects.

In all experiments, accurate odometry was obtained by
applying the LiDAR odometry algorithm of [16]. The tracker
[10] solves the association problem, and decides whether
to update an existing track, spawn a new track or merge
tracks. We output tracks which reach a confidence score
of χt > 0.7, which we then compare against the ground
truth annotations using gated nearest neighbor association.
A gating of 2m is applied, meaning results are matched
only to ground truth annotations within 2m. Within these
gates, we compute the RMSE of the cooperative fusion
tracker against the control, camera-only tracker. On table I
we provide a full breakdown of the results per sequence and
per range bracket. We observed that localization accuracy
decreases with the increase of range in both camera-only and
fusion experiments. However, we show that the cooperative
fusion system can better localize pedestrians and cyclists in
almost all sequences and all range brackets. In this realistic
experiment, fusion achieves an average RMSE of 0.826m for
all tracked targets compared to the camera-only RMSE of
0.947m. This improvement of around 15% is significant and
very important because it stems from uncontrolled real-world
data. It shows that our cooperative fusion method is able to
extract useful RADAR information in the highly cluttered
urban environment. As previously discussed, various factors
such as multi-target ambiguity and multipath diminish the
improvement as compared to the open space single target
experiment. Demo videos and additional material can be
found on our project page 1 where we show the input and
output of the tracker for all test sequences.

V. CONCLUSION

In this paper we proposed a novel, vulnerable road user
tracker based on cooperative fusion of RADAR and camera
information. Targets are detected and tracked accurately on
the ground plane, with the possibility of using tracking
predictions in a path planning algorithm. Particle sample
weights are updated using the raw RADAR-camera joint
observation likelihood before candidate targets are selected
by the CFAR algorithm. In the case where no candidates

1https://telin.ugent.be/~mdimitri/tracking



Target localization accuracy, RMSE [m]↓
Sequence

Range Method 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Mean

[0, 10)m
Camera 1.05 0.89 0.74 1.02 0.82 0.71 0.81 0.67 0.66 0.54 0.76 0.79 0.75 0.79 0.75 0.70 0.765
Fusion 0.85 0.83 0.60 0.79 0.74 0.53 0.60 0.56 0.53 0.37 0.65 0.60 0.61 0.65 0.58 0.74 0.601

[10, 20)m
Camera 1.33 0.87 1.02 1.11 1.00 1.02 1.17 0.83 1.32 1.08 0.84 0.77 0.99 1.17 1.04 0.87 1.058
Fusion 1.21 0.84 0.94 0.80 1.01 0.86 1.00 0.63 0.84 0.86 0.46 0.64 1.11 1.06 0.90 0.78 0.938

[20, 30)m
Camera n/a n/a 1.48 1.32 1.22 1.29 1.30 n/a n/a 1.64 n/a 1.39 n/a 1.33 1.36 1.21 1.247
Fusion n/a 0.97 1.28 1.24 1.22 1.19 1.33 n/a n/a 1.53 n/a 0.61 n/a 1.28 1.28 0.95 1.218

Table I: Tracking localization accuracy results, bold indicates better results. (↓-lower is better). n/a fields indicate sequences
without targets in the respective range.

can be found, the tracker is able to continuously update the
particle weights using the rich likelihood information. This
principle of operation is conceptually different to the classical
Tracking by Detection and is able to better take advantage
of the low level sensor information.

In a series of real-world experiments, we were able to
accurately model the shape of the target-track joint likelihood
function where we confirmed that the range and azimuth
uncertainties of the camera and RADAR are complementary.
Using comprehensive experimental evaluation we showed
that target localization performance is dramatically improved
in an uncluttered environment which clearly demonstrates the
effectiveness of using the raw RADAR signal. In a highly
cluttered environment, we also observed gains in localization
accuracy of the fusion over the camera-only system. These
gains, although significant, are less apparent since there exist
a multitude of complex interfering factors that create ambi-
guities in the likelihood function. Such ambiguities become
greater with the increase of distance to the target, since
RADAR returns are weaker and camera detections are more
uncertain. We conclude that, by using cooperative fusion of
RADAR and camera, our system can better detect, track and
localize pedestrians and cyclists in an urban environment.

Designing the tracker closely coupled to the sensor data
has it’s drawbacks. The Particle Filter needs to evaluate the
joint likelihood function before detection which means that
the RADAR processor must evaluate all particle hypotheses
over the range/azimuth/doppler data. This creates memory
overhead which scales linearly with the number of targets
and the number of particles. To mitigate this issue and still
retain real-time operation capability, we implemented all
tracking and likelihood computation code in CUDA using
the high level Quasar compiler and programming language
[17]. In our real-world urban environment experiments we
measured an average runtime of 52.9ms per frame for the
tracking algorithm. This time does not include the CNN
object detection and CFAR algorithm which can be offloaded
to a separate GPU. A potential weakness in the approach is
the assumption of an average person height during the camera
back-projection. This introduces large variance in the range
estimation from the camera and in cases of people of non-
average height can create ambiguities. Our future research
will be focused on incorporating the person height in the

target state vector, which will be estimated the same way as
the person position and velocity.
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