179 research outputs found

    A Fuzzy Shape-Based Anomaly Detection and its Application to Electromagnetic Data

    Get PDF

    Detecting abnormal behavior in lithography machines

    Get PDF

    Anomaly Detection in Time Series: Theoretical and Practical Improvements for Disease Outbreak Detection

    Get PDF
    The automatic collection and increasing availability of health data provides a new opportunity for techniques to monitor this information. By monitoring pre-diagnostic data sources, such as over-the-counter cough medicine sales or emergency room chief complaints of cough, there exists the potential to detect disease outbreaks earlier than traditional laboratory disease confirmation results. This research is particularly important for a modern, highly-connected society, where the onset of disease outbreak can be swift and deadly, whether caused by a naturally occurring global pandemic such as swine flu or a targeted act of bioterrorism. In this dissertation, we first describe the problem and current state of research in disease outbreak detection, then provide four main additions to the field. First, we formalize a framework for analyzing health series data and detecting anomalies: using forecasting methods to predict the next day's value, subtracting the forecast to create residuals, and finally using detection algorithms on the residuals. The formalized framework indicates the link between the forecast accuracy of the forecast method and the performance of the detector, and can be used to quantify and analyze the performance of a variety of heuristic methods. Second, we describe improvements for the forecasting of health data series. The application of weather as a predictor, cross-series covariates, and ensemble forecasting each provide improvements to forecasting health data. Third, we describe improvements for detection. This includes the use of multivariate statistics for anomaly detection and additional day-of-week preprocessing to aid detection. Most significantly, we also provide a new method, based on the CuScore, for optimizing detection when the impact of the disease outbreak is known. This method can provide an optimal detector for rapid detection, or for probability of detection within a certain timeframe. Finally, we describe a method for improved comparison of detection methods. We provide tools to evaluate how well a simulated data set captures the characteristics of the authentic series and time-lag heatmaps, a new way of visualizing daily detection rates or displaying the comparison between two methods in a more informative way

    Multivariate Statistical Process Control Charts: An Overview

    Get PDF
    In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as principal components analysis (PCA) and partial lest squares (PLS). Finally, we describe the most significant methods for the interpretation of an out-of-control signal.quality control, process control, multivariate statistical process control, Hotelling's T-square, CUSUM, EWMA, PCA, PLS

    Online network monitoring

    Get PDF
    An important problem in network analysis is the online detection of anomalous behaviour. In this paper, we introduce a network surveillance method bringing together network modelling and statistical process control. Our approach is to apply multivariate control charts based on exponential smoothing and cumulative sums in order to monitor networks generated by temporal exponential random graph models (TERGM). The latter allows us to account for temporal dependence while simultaneously reducing the number of parameters to be monitored. The performance of the considered charts is evaluated by calculating the average run length and the conditional expected delay for both simulated and real data. To justify the decision of using the TERGM to describe network data, some measures of goodness of fit are inspected. We demonstrate the effectiveness of the proposed approach by an empirical application, monitoring daily flights in the United States to detect anomalous patterns. © 2021, The Author(s)

    A tool for Swarm satellite data analysis and anomaly detection

    Get PDF
    In this work we introduce a system pipeline for the analysis of earth's electromagnetic field that is used to analyse precursors to earthquakes. Data gathered by the Swarm satellites are used to present the utility of our system. Our objective is to provide a streamlined method to analyze electromagnetic data over a region and investigate the relationship of precursory signals to seismic events. The process follows three distinct stages: data extraction, data pre-processing and anomaly detection. The first stage consists of the region selection and data extraction. The second stage consists of four different pre-processing methods that address the data sparsity problem and the cause of artificial anomalies. The last stage is the Anomaly Detection (AD) of the Swarm satellite data, over the investigated region. The different methods that are implemented are known to perform well in the field of AD. Following the presentation of our system, a case study is described where the seismic event of 6.2 Mw is in Ludian, China and occurred on 3rd August 2014. The event is used to present the usefulness of our approach and pinpoint some critical problems regarding satellite data that were identified

    Towards real-time intrusion detection for NetFlow and IPFIX

    Get PDF
    DDoS attacks bring serious economic and technical damage to networks and enterprises. Timely detection and mitigation are therefore of great importance. However, when flow monitoring systems are used for intrusion detection, as it is often the case in campus, enterprise and backbone networks, timely data analysis is constrained by the architecture of NetFlow and IPFIX. In their current architecture, the analysis is performed after certain timeouts, which generally delays the intrusion detection for several minutes. This paper presents a functional extension for both NetFlow and IPFIX flow exporters, to allow for timely intrusion detection and mitigation of large flooding attacks. The contribution of this paper is threefold. First, we integrate a lightweight intrusion detection module into a flow exporter, which moves detection closer to the traffic observation point. Second, our approach mitigates attacks in near real-time by instructing firewalls to filter malicious traffic. Third, we filter flow data of malicious traffic to prevent flow collectors from overload. We validate our approach by means of a prototype that has been deployed on a backbone link of the Czech national research and education network CESNET
    corecore