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Abstract
An important problem in network analysis is the online detection of anomalous

behaviour. In this paper, we introduce a network surveillance method bringing

together network modelling and statistical process control. Our approach is to apply

multivariate control charts based on exponential smoothing and cumulative sums in

order to monitor networks generated by temporal exponential random graph models

(TERGM). The latter allows us to account for temporal dependence while simul-

taneously reducing the number of parameters to be monitored. The performance of

the considered charts is evaluated by calculating the average run length and the

conditional expected delay for both simulated and real data. To justify the decision

of using the TERGM to describe network data, some measures of goodness of fit are

inspected. We demonstrate the effectiveness of the proposed approach by an

empirical application, monitoring daily flights in the United States to detect

anomalous patterns.

Keywords MCUSUM � MEWMA � Multivariate Control Charts � Network
Modelling � Network Monitoring � Statistical Process Control � TERGM

1 Introduction

The digital information revolution offers a rich opportunity for scientific progress;

however, the amount and variety of data available requires new analysis techniques

for data mining, interpretation and application of results to deal with the growing

complexity. As a consequence, these requirements have influenced the development

of networks, bringing their analysis beyond the traditional sociological scope into
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many other disciplines, as varied as are physics, biology and statistics (cf. Amaral

et al. 2000; Simpson et al. 2013; Chen et al. 2019).

An important problem in network study is the detection of anomalous behaviour.

There are two types of network monitoring, differing in the treatment of nodes and

links: fixed and random network surveillance (cf. Leitch et al. 2019). In this work,

we concentrate on the modelling and monitoring of networks with randomly

generated edges across time, describing a surveillance method of the second type.

When talking about anomalies in temporal networks, the major interest is to find the

point of time when a significant change happened and, if appropriate, to identify the

vertices, edges or subgraphs which considerably contributed to the change (cf.

Akoglu et al. 2014). Further differentiation depends on at least two factors:

characteristics of the network data and available time granularity. Hence, given a

particular network to monitor it is worth first defining what is classified as

‘‘anomalous’’.

To analyse the network data effectively, it is important to account for its complex

structure and the possibly high computational costs. Our approach to mitigate these

issues and simultaneously reflect the stochastic and dynamic nature of networks is to

model them applying a temporal random graph model. We consider a general class

of Exponential Random Graph Models (ERGM) (cf. Frank and Strauss 1986;

Robins et al. 2007; Schweinberger et al. 2020), which was originally designed for

modelling cross-sectional networks. This class includes many prominent random

network configurations such as dyadic independence models and Markov random

graphs, enabling the ERGM to be generally applicable to many types of complex

networks. Furthermore, if a network has many covariates (also called attributes),

i.e., variables that provide additional information about the graph’s edges and nodes,

it can be both computationally and theoretically challenging to recognise

meaningful patterns. In this case, it is beneficial to apply ERGM that facilitate

data reduction by summarising the network in the form of sufficient statistics, i.e.,

network statistics that capture the relevant features of the network. Knowing the

observed values of sufficient statistics, we can derive the model parameters from the

network data and make inferences.

Hanneke et al. (2010) developed a dynamic extension based on ERGM which is

known as the Temporal Exponential Random Graph Model (TERGM). These

models contain the overall functionality of the ERGM, while additionally enabling

time-dependent covariates. Thus, our monitoring procedure for this class of models

allows for many applications in different disciplines which are interested in

analysing networks of medium sizes, such as sociology, political science,

engineering, economics and psychology (cf. Carrington et al. 2005; Ward et al.

2011; Das et al. 2013; Jackson 2015; Fonseca-Pedrero 2018).

In the field of change detection, according to Basseville and Nikiforov (1993),

there are three classes of problems: online detection of a change, off-line hypotheses

testing and off-line estimation of the change time. Our method refers to the first

class, meaning that the change point should be detected as soon as possible after it

occurred. In this case, real-time monitoring of complex structures becomes

necessary: for instance, if the network is observed every minute, the monitoring

procedure should be faster than one minute. To perform online surveillance for real-
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time detection, the efficient way is to use tools from the field of Statistical Process

Control (SPC). SPC corresponds to an ensemble of analytical tools originally

developed for industrial purposes, which is applied for the achievement of process

stability and variability reduction (cf. Montgomery 2009).

One of the leading SPC tools is a control chart, which exists in various forms in

terms of the number of variables, data type and statistics being of interest. For

example, the monitoring of network topology statistics applying the Cumulative

Sum (CUSUM) chart and illustrating its effectiveness on the analysis of military

networks was presented by McCulloh and Carley (2011). Wilson et al. (2019) used

the dynamic Degree-Corrected Stochastic Block Model (DCSBM) to generate the

networks and then performed surveillance over the Maximum Likelihood (ML)

estimates using the Shewhart and Exponentially Weighted Moving Average

(EWMA) charts. One of the possibilities to bring together the ERGM in form of

a Markov Graph and EWMA and Hotelling’s T2 charts was proposed by Sadinejad

et al. (2020). Farahani et al. (2017) evaluate the combination of Multivariate

EWMA (MEWMA) and Multivariate CUSUM (MCUSUM) applied with the

Poisson regression model for monitoring social networks. Hosseini and Noorossana

(2018) apply EWMA and CUSUM to degree measures for detecting outbreaks on a

weighted undirected network. The distribution-free MCUSUM is introduced by Liu

et al. (2019) to analyse longitudinal networks. Salmasnia et al. (2019) present a

comparative study of univariate and multivariate EWMA for social network

monitoring. An overview of further studies is provided by Noorossana et al. (2018).

In this paper, we present an online monitoring procedure based on SPC, which

enables one to detect significant changes in the network structure in real time. The

foundations of this approach, together with the description of the selected network

model and multivariate control charts, are discussed in Sect. 2. Section 3 outlines

the simulation study and includes performance evaluation of the designed control

charts. In Sect. 4 we monitor daily flights in the United States and explain the

detected anomalies. We conclude with a discussion of outcomes and present several

directions for future research.

2 Network monitoring

Network monitoring is a form of online surveillance procedure to detect deviations

from a so-called in-control state, i.e., the state when no unaccountable variation of

the process is present. This is done by sequential hypothesis testing over time, which

has a strong connection to control charts. In other words, the purpose of control

charting is to identify occurrences of unusual deviation of the observed process from

a prespecified target (or in-control) process, distinguishing common from special

causes of variation (cf. Johnson and Wichern 2007). To be precise, the aim is to test

the null hypothesis

H0;t : The network observed at time pointtis in its target state

against the alternative
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H1;t : The network observed at time pointt deviates from its target state.

In this work, we concentrate on the monitoring of networks, which are modelled by

the TERGM that is briefly described below.

2.1 Network modelling

A network (also interchangeably called ‘‘graph’’) can be presented by its adjacency

matrix Y :¼ ðYijÞi;j¼1;...;N , where N represents the total number of nodes. Two

vertices (or nodes) i, j are adjacent if they are connected by an edge (also called a tie
or link). In this case, Yij ¼ 1, otherwise, Yij ¼ 0. If the network is undirected, the

adjacency matrix Y is symmetric. The connections of a node with itself are mostly

not relevant to the majority of the networks, therefore, we assume that Yii ¼ 0 for all

i ¼ 1; . . .;N: Formally, we define a network model as a collection

fPhðYÞ; Y 2 Y : h 2 Hg, where Y denotes the ensemble of possible networks,

Ph is a probability distribution on Y and h is a vector of parameters, ranging over

possible values in a subset of p-dimensional Euclidean space H � IRp with p 2 IN

(Kolaczyk 2009). In case of a directed graph, where the edges have a direction

assigned to them, this stochastic mechanism determines which of the NðN � 1Þ
edges are present, i.e., it assigns probabilities to each of the 2NðN�1Þ graphs (cf.

Cannings and Penman 2003).

The ERGM functional representation is given by

PhðYÞ ¼
exp½h0sðYÞ�

cðhÞ ; ð1Þ

where Y is the adjacency matrix of an observed graph with s : Y ! IRp being a p-
dimensional statistic describing the essential properties of a network based on Y (cf.

Frank 1991; Wasserman and Pattison 1996). The network terms sðYÞ are sufficient

statistics which summarise the network data, so that the inference about the model

parameters h depends on the graph data Y only through the values sðYÞ. There are

several types of network terms, including dyadic dependent terms, for example, a

statistic capturing transitivity, and dyadic independent terms, for instance, a term

describing graph density (Morris et al. 2008). It is also possible to include nodal and

edge attributes into the statistics, whose variety depends on the type of network.

Although the overall concept presented in this work is valid for both graph types, we

explicitly consider directed graphs from now on.

The model parameters h can be defined as respective coefficients of sðYÞ which
are of considerable interest in understanding the structural properties of a network.

They reflect, on the network level, the tendency of a graph to exhibit certain sub-

structures relative to what would be expected from a model by chance, or, on the tie

level, the probability to observe a specific edge, given the rest of the graph (Block

et al. 2018). The last interpretation follows from the representation of the problem

as a log-odds ratio. The normalising constant in the denominator ensures that the

sum of probabilities is equal to one, meaning it includes all possible network

configurations cðhÞ ¼
P

Y2Y½exp h0sðYÞ� in the ensemble Y.

123

1340 A. Malinovskaya, P. Otto



In dynamic network modelling, a random sequence of Yt for t ¼ 1; 2; . . . with
Yt 2 Y defines a stochastic process for all t. Unlike the relational event models,

where the edges have no duration (cf. Butts 2008), in this work, we contemplate

edges with duration. To conduct surveillance over Yt, we propose to consider only

the dynamically estimated characteristics of a graph in order to reduce computa-

tional complexity and to allow for real-time monitoring. In most of the cases, the

dynamic network models serve as an extension of well-known static models.

Similarly, the discrete temporal expansion of the ERGM is known as TERGM (cf.

Hanneke et al. 2010) and can be seen as further advancement of a family of network

models proposed by Robins and Pattison (2001).

The TERGM defines the probability of a network at the discrete time point t both
as a function of subgraph counts in t and by including the network terms based on

the previous graph observations until the particular time point t � v. That is

PhðYtjYt�1; . . .;Yt�v; hÞ ¼
exp½h0sðYt;Yt�1; . . .;Yt�vÞ�

cðh;Yt�1; . . .;Yt�vÞ
; ð2Þ

where v represents the maximum temporal lag, capturing the networks which are

incorporated into the h estimation at t, hence, defining the complete temporal

dependence of Yt that corresponds to the Markov structure of order v 2 IN (Hanneke

et al. 2010). In Sects. 3 and 4, we assume v ¼ 1, leading to

ðYt ?? fY1; . . .;Yt�2gjYt�1Þ, where ?? defines conditional independence.

To model the joint probability of z networks between the time stamps vþ 1 and

vþ z, we define Ph based on the conditional independence assumption as

PhðYvþ1; . . .;YvþzjY1; . . .;Yv; hÞ ¼
Yvþz

t¼vþ1

PhðYtjYt�1; . . .;Yt�v; hÞ: ð3Þ

Regarding the network statistics in the TERGM, sð�Þ includes ‘‘memory terms’’ such

as dyadic stability or reciprocity (Leifeld et al. 2018). To distinguish the processes

leading to the dissolution and formation of links, Krivitsky and Handcock (2014)

presented Seperable TERGM (STERGM). To be precise, the STERGM is a subclass

of the TERGM class, which can reproduce any transition process captured by the

parameters h ¼ ðhþ; h�Þ and the network terms s ¼ ðsþ; s�Þ, where hþ and sþ

belong to the formation model, h� and s� to the dissolution model.

The careful selection of the network statistics is relevant from several points of

view. First of all, under the ML estimation, the expected value of the network

statistics is equal to the observed value, i.e., E hðsðYÞÞ ¼ sðYobsÞ (cf. van Duijn

et al. 2009). To be precise, on average, we reproduce the observed network Yobs in

terms of the sufficient statistics sðYÞ. Second, the selected network statistics

determine our understanding of the network formation, combining our knowledge

about the important terms to recover the graph structure with the interest of

including additional statistics for monitoring. The dimension of the sufficient

statistics can differ over time, however, we assume that in each time stamp t we
have the same configuration sð�Þ. In general, the selection of terms extensively

depends on the field and context, although the statistical modelling standards such

as avoidance of linear dependencies among the terms should be also considered
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(Morris et al. 2008). It is also helpful to perform goodness of fit tests, which enable

one to find a compromise between the model’s complexity and its explanatory

power.

An improper selection of the network terms can often lead to a near-degenerate

model, resulting in algorithmic issues and lack of fit (cf. Handcock 2003;

Schweinberger 2011). In this case, as well as fine-tuning the configuration of

statistics, one can modify some settings which design the estimation procedure of

the model parameters. Considering the Markov Chain Monte Carlo (MCMC) ML

estimation, for example, the run time, the sample size or the step length could be

adjusted (Morris et al. 2008). Another possible improvement would be to add some

stable statistics such as Geometrically-Weighted Edgewise Shared Partnerships

(GWESP) (Snijders et al. 2006). However, the TERGM is less prone to degeneracy

issues compared to the ERGM as ascertained by Hanneke et al. (2010) and Leifeld

and Cranmer (2019). Overall, we assume that most of the network surveillance

studies can reliably estimate beforehand the type of anomalies which are possible to

occur. This assumption guides the choice of terms in the models throughout the

work.

2.2 Monitoring process

Although the monitoring procedure can be constructed by supervising Yt directly,

this approach is likely to become computationally intricate as it depends on the

order of a graph, leading to the curse of dimensionality. In the case of TERGM, we

believe there are two reasonable choices of network monitoring, namely it can be

performed either in terms of the (normalised) network statistics or the model

parameters whose dimension remains independent from the network evolvement.

To obtain a time series of the corresponding estimates, we propose to apply a

moving window approach with the window size z. More precisely, we take into

account the past z observations of the network fYt�zþ1; . . .;Ytg to estimate the

respective quantities at time point t.

Let h be the true model parameters and ĥt their estimates at time point t based on

the last z network states. Similarly, the expected value of the network statistics

E hðsðYÞÞ can be estimated as

ŝt ¼
1

z

Xz�1

n¼0

sðYt�nÞ: ð4Þ

Note that for the first time point, we cannot compute the memory terms because v
previous network observations are not present. The same holds for the window size

z, i.e., at least vþ z past network states must be observed before the monitoring.

Concerning the choice of monitoring the network statistics or the model

parameters, it is worth noting that there is a one-to-one relationship between h and

E hðsðYÞÞ. That is, for every h, there is only one expectation of sðYÞ. Hence, one can
monitor the network based on the estimates of either h or E hðsðYÞÞ. Since the

monitoring procedure is identical for ĥt and ŝt, we introduce a new notation ĉt for
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the estimates of the network characteristics. Consequently, we refer to c meaning

either h or E hðsðYÞÞ.
Let p be the number of network terms, which describe the in-control state and can

reflect the deviations in the case of an out-of-control state. Thus, at time point t there

is a p-dimensional vector ĉt = ðĉ1t; . . .; ĉptÞ0 that estimates the network character-

istics c. Moreover, let Fc0;R be the target distribution of these estimates with c0 ¼
E 0ðĉ1; . . .; ĉpÞ0 being the expected value and R the respective p� p variance-

covariance matrix of the network characteristics (Montgomery 2009). Thus,

ĉt �
Fc0;R if t\s

Fcs;R if t� s

(

; ð5Þ

where s denotes a change point to be detected and cs 6¼ c0. If s ¼ 1 or t\s the

network is said to be in-control, whereas it is out of control in the case of s	 t\1.

Furthermore, we assume that the estimation precision of the parameters does not

change across t, i.e., R is constant for the in-control and out-of-control state. Hence,

the monitoring procedure is based on the expected values of ĉt. In fact, we can

specify the above mentioned hypothesis as follows

H0;t : E ðĉtÞ ¼ c0 against H1;t : E ðĉtÞ 6¼ c0 :

Typically, a multivariate control chart consists of the control statistic depending on

one or more characteristic quantities, plotted in time order, and a horizontal line,

called the upper control limit (UCL) that indicates the amount of acceptable varia-

tion. A hypothesis H0 is rejected if the control statistic is equal to or exceeds the

value of the UCL.

Subsequently, we discuss several control statistics together with presenting a

method to determine the respective in-control parameters and UCLs.

2.3 Multivariate cumulative sum and exponentially weighted moving
average control charts

The strength of the multivariate control chart over the univariate control chart is the

ability to monitor several interrelated process variables. It implies that the

corresponding test statistic should take into account the correlations of the data, be

dimensionless and scale-invariant, as the process variables can considerably differ

from each other. The squared Mahalanobis distance, which represents the general

form of the control statistic, fulfils these criteria and is defined as

D
ð1Þ
t ¼ ðĉt � c0Þ0R�1ðĉt � c0Þ; ð6Þ

being the part of the respective ‘‘data depth’’ expression—Mahalanobis depth that

measures a deviation from an in-control distribution (cf. Liu 1995). Hence, D
ð1Þ
t

maps the p-dimensional characteristic quantity ĉt to a one-dimensional measure. It

is important to note that the characteristic quantity at time point t is usually the

mean of several samples at t, but in our case, we only observe one network at each
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instant of time. Thus, the characteristic quantity ĉt is the value of the obtained

estimates and not the average of several samples.

In this work, we apply two control chart types and compare their performance in

network monitoring. Firstly, we discuss Multivariate CUSUM (MCUSUM) charts

(cf. Woodall and Ncube 1985; Joseph et al. 1990; Ngai and Zhang 2001). One of the

widely used versions was proposed by Crosier (1988) and is defined as follows

Ct ¼
�
ðrt�1 þ ĉt � c0Þ0R�1ðrt�1 þ ĉt � c0Þ

�1=2
; ð7Þ

where

rt ¼
0 if Ct 	 k;

ðrt�1 þ ĉt � c0Þð1� k=CtÞ if Ct [ k;

�

given that r0 ¼ 0 and k[ 0. The respective chart statistic is

D
ð2Þ
t ¼ r0tR

�1rt; ð8Þ

and it signals if

ffiffiffiffiffiffiffiffi

D
ð2Þ
t

q

is greater than or equals the UCL. Certainly, the values k and

UCL considerably influence the performance of the chart. The parameter k, also
known as reference value or allowance, reflects the variation tolerance, taking into

consideration d—the deviation from the mean measured in the standard deviation

units we aim to detect. According to Page (1954) and Crosier (1988), the chart is

approximately optimal if k ¼ d=2.
Secondly, we consider multivariate charts based on exponential smoothing

(EWMA). Lowry et al. (1992) proposed a multivariate extension of the EWMA

control chart (MEWMA), which is defined as follows

lt ¼ kðĉt � c0Þ þ ð1� kÞlt�1 ð9Þ

with 0\k	 1 and l0 ¼ 0 (cf. Montgomery 2009). The corresponding chart statistic

is

D
ð3Þ
t ¼ l0tR

�1
lt
lt; ð10Þ

where the covariance matrix is defined as

Rlt ¼
k

2� k

�
1� ð1� kÞ2t

�
R: ð11Þ

Together with the MCUSUM, the MEWMA is an advisable approach for detecting

relatively small but persistent changes. However, the detection of large shifts is also

possible by setting the reference parameter k or the smoothing parameter k high. For

instance, in case of the MEWMA with k ¼ 1, the chart statistic coincides with D
ð1Þ
t .

Thus, it is equivalent to Hotelling’s T2 control procedure, which is suitable for the

detection of substantial deviations. It is worth mentioning that the discussed

methods are directionally invariant, therefore, the investigation of the data at the

signal time point is necessary if the change direction is of particular interest.
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2.4 Estimation of the in-control parameters

In practice, the in-control parameters c0 and R are usually unknown and therefore

have to be estimated. Thus, one subdivides the sequence of network observations

into Phase I and Phase II. In Phase I, the process must coincide with the in-control

state so that the true in-control parameters c0 and R can be estimated by the sample

mean vector �c and the sample covariance matrix S from ĉt.
It is important that Phase I replicates the natural behaviour of a network, so that

possible dynamics related to its growth or changes in its topological structure are

considered. Similarly, if the network is prone to remain constant, this fact should be

captured in Phase I for reliable estimation and later network surveillance. After the

estimates of c0, R and the UCL are obtained, the calibrated control chart can be

applied to the actual data in Phase II.

2.5 Computation of control limits

If D
ð2Þ
t or D

ð3Þ
t is equal to or exceeds the UCL, it means that the charts signal a

change. To determine the UCLs, one typically assumes that the chart has a

predefined (low) probability of false alarms, i.e., signals when the process is in

control, or a prescribed in-control Average Run Length ARL0 that represents the

number of expected time steps until the first signal. To compute the UCLs

corresponding to ARL0 theoretically, a prevalent number of multivariate control

charts require a normally distributed target process (cf. Johnson and Wichern 2007;

Porzio and Ragozini 2008; Montgomery 2009). In our case, this assumption would

need to be valid for the estimates of the model parameters/the network statistics.

However, while there are some studies on the distributions of particular network

statistics sðYÞ (cf. Yan and Xu 2013; Yan et al. 2016; Sambale and Sinulis 2018),

only a few results are obtained about the parameter estimates of h. Primarily, the

difficulties to determine the distribution is that the assumption of independent and

identically distributed data is violated in the ERGM case. In addition, the

parameters depend on the choice of the model terms and network size (He and

Zheng 2015). Kolaczyk and Krivitsky (2015) proved asymptotic normality for the

ML estimators in a simplified context of the ERGM, pointing out the necessity to

establish a deeper understanding of the distributional properties of parameter

estimators.

In case that the normality assumption is violated to a slight or moderate degree,

the control charts still will remain robust (Montgomery 2009). The most crucial

assumption that needs to be satisfied is the independence of the observations at

different time points (Qiu 2013). If the data is autocorrelated, the theoretically

derived UCLs become invalid, so that their implementation would lead to inaccurate

results. Here, we consider networks which are dependent over time. Moreover, the

networks used for estimation of the characteristics ĉt are overlapping due to the

application of the moving window approach. As shown in Sect. 3.2, the

characteristics that are based on the averaged network statistics ŝt can violate this

assumption substantially. Regarding the estimates ĥt, if their computation does not
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involve overlapping of the networks by the sliding window approach of size z, i.e.,
each graph is involved only once in the estimation of h, and the size of z is enough
for recovering the temporal dependence completely, then the estimates become

uncorrelated. However, as we design an online monitoring procedure, we support

the idea of computing ĉt immediately as soon as a new data point is available. In this

case, we account for the correlation between the estimated characteristics ĉt.
There are several works which apply control charts in the presence of

autocorrelation, advising either using the residuals of the time series models as

observations, calculating theoretical control limits under autocorrelation or design-

ing a simulation study to determine the control limits corresponding to the desired

ARL0 (cf. Montgomery and Mastrangelo 1991; Alwan 1992; Runger and Willemain

1995; Schmid and Schöne 1997; Zhang 1997; Lu and Reynolds Jr 1999, 2001; Sheu

and Lu 2009). It is worth noting that the residual charts have different properties

from the traditional charts, which we consider in this work. Hence, we determine the

UCLs via Monte Carlo simulations described in Sect. 3.2.

3 Simulation study

To verify the applicability and effectiveness of the discussed approach, we design a

simulation study followed by the surveillance of real-world data with the goal of

obtaining some insights into its temporal development.

3.1 Generation of network time series

To compute �c and S we need a certain number of in-control networks. For this

purpose, we generate 2500 temporal graphs of desired length T\s, where each

graph consists of N ¼ 100 nodes. The simulation of synthetic networks is based on

the Markov chain principle: the network observation in time point Yt is simulated

from its previous state Yt�1 by selecting randomly a fraction / of elements of the

adjacency matrix and setting them to either 1 or 0, according to a specified transition

matrix M. This setting allows us to include the memory term during the estimation

of the TERGM that reflects the stability of both edges and non-edges between the

previous and the current network observation. The in-control values are /0 ¼ 0:01
and

M0 ¼
m00;0 m01;0

m10;0 m11;0

� �

¼
0:9 0:1

0:4 0:6

� �

;

where mij;0 denotes the probability of a transition from i to j in the in-control state.

At the beginning of each sequence, a directed network which is called the ‘‘base

network’’ is simulated by applying an ERGM with predefined network terms and

corresponding coefficients so that it is possible to control the ‘‘network creation’’

indirectly. This procedure helps to guarantee that the temporal networks have a

stochastic but analogous initialisation. In our case, we select three network statistics,

namely an edge term, a triangle term and a parameter that defines asymmetric

dyads. These terms are used later for estimating network characteristics.
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Subsequently, a new graph is produced by applying the in-control fraction / and the

transition matrix M.

Next, we need to confirm that the generated samples of networks behave

according to the requirements of Phase I, i.e., capturing only the usual variation of

the target process. For this purpose, we can exploit Markov chain properties and

calculate its steady-state equilibrium vector p, as it follows that the expected

number of non-edges and edges is given by p. Using eigenvector decomposition, we

find the steady-state to be p ¼ ð0:8; 0:2Þ0. Consequently, the expected number of

edges in the graph in its steady-state is 1980. However, the network density is only

one of the aspects to define the in-control process, as the temporal development and

the topology are also involved in the network creation. Hence, we identify the

suitable start of the considered network sequence by computing the network

statistics sðYtÞ over multiple network time series. By plotting the behaviour, we

determined that all four terms become stable by t ¼ 1000. Thus, we simulate 1000

network observations in a burn-in period so that the in-control sequence of network

states starts at t ¼ 1001.

3.2 Calibration of the charts in Phase I

After the generation of temporal networks, we compute ĥt by fitting the TERGM

and ŝt by applying Eq. (4) with a certain window size z using the four network

terms, namely edge term, a triangle term, a term that defines asymmetric dyads and

a memory term which describes the stability of both edges and non-edges over time

with the temporal lag v ¼ 1. Currently, there are two widely used approaches to

estimate the TERGM: Maximum Pseudolikelihood Estimation (MPLE) with

bootstrapped confidence intervals and MCMC ML estimation (Leifeld et al.

2018). The chosen estimation method to derive ĥt is the bootstrap MPLE which is

appropriate to handle a relatively large number of nodes and time points (Leifeld

et al. 2018). Next, we calculate the in-control parameters �c and S for both

monitoring cases. Finally, we calibrate different control charts by obtaining the

UCLs with respect to the predefined ARL0 via the bisection method. For two

window sizes z ¼ f7; 14g, Tables 1 and 3 summarise the obtained results for

surveillance of h, and Tables 2 and 4 for surveillance of sðYÞ with the MEWMA and

MCUSUM charts respectively. If the reader wishes to apply the TERGM with the

same network terms and similar window size as we did in this work, the presented

UCLs can be used directly. Otherwise, it is necessary to conduct different Monte

Carlo simulations that address the specific settings of the TERGM.

As both network characteristics describe the same process, we would expect the

UCL results to be similar. However, in Fig. 1 the analysis of the autocorrelation

functions applied to the estimates of one of the generated network time series shows

that the dependence structures of ĥt and ŝt considerably differ. While the elimination

of the overlap in the calculation procedure removes correlation in the case of the

parameter estimates ĥt, there is only a slight improvement regarding the averaged

network statistics ŝt. Thus, the UCLs are different for both cases.
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3.3 Design of the anomalous behaviour

To test how well the proposed control charts can detect the changes in the network’s

development, it is necessary to compose different anomalous cases and generate

samples from Phase II. Since our focus is on the detection of shifts in the process

mean, an anomalous change can occur either in the proportion of the asymmetric

Table 1 Upper control limits for the MEWMA chart based on the estimates ĥt and ARL0 2 f50; 75; 100g
for two different windows sizes z ¼ 7 and z ¼ 14

z ARL0/k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

7 50 39.32 35.76 31.04 26.52 22.58 19.22 16.46 14.10 12.14 10.46

75 45.76 41.03 35.20 29.81 25.27 21.61 18.53 15.86 13.66 11.72

100 50.52 45.30 38.58 32.56 27.62 23.48 20.00 17.13 14.71 12.66

14 50 55.14 43.44 33.80 26.96 21.98 18.16 15.16 12.76 10.76 9.15

75 65.63 50.94 39.29 31.23 25.26 20.68 17.24 14.50 12.20 10.32

100 73.85 56.20 42.97 33.97 27.44 22.52 18.72 15.69 13.21 11.15

Table 2 Upper control limits for the MEWMA chart based on the estimates ŝt and ARL0 2 f50; 75; 100g
for two different windows sizes z ¼ 7 and z ¼ 14

z ARL0/k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

7 50 65.03 43.79 32.23 25.29 20.36 16.72 13.91 11.66 9.85 8.31

75 82.40 52.41 38.13 29.52 23.59 19.23 15.88 13.23 11.13 9.42

100 96.23 59.39 42.92 32.96 26.19 21.24 17.58 14.69 12.32 10.35

14 50 71.09 45.47 32.66 24.81 19.51 15.80 12.95 10.74 8.96 7.53

75 89.03 55.26 38.71 29.06 22.85 18.40 15.07 12.46 10.35 8.66

100 103.00 62.73 43.73 32.56 25.40 20.40 16.65 13.73 11.43 9.57

Table 3 Upper control limits for the MCUSUM chart based on the estimates ĥt and ARL0 2 f50; 75; 100g
for two different windows sizes z ¼ 7 and z ¼ 14

z ARL0/k 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

7 50 21.01 19.36 17.75 16.21 14.83 13.52 12.25 11.10 9.99 9.00 8.03

75 25.19 22.90 20.82 18.95 17.33 15.91 14.47 13.19 11.94 10.74 9.61

100 28.25 25.59 23.31 21.18 19.38 17.67 16.12 14.67 13.27 11.96 10.73

14 50 30.10 27.84 25.64 23.67 21.69 19.83 17.92 16.17 14.44 12.75 11.06

75 37.35 34.60 31.91 29.25 26.86 24.53 22.37 20.20 18.14 16.19 14.32

100 43.06 39.52 36.20 33.15 30.45 27.84 25.43 23.16 20.97 18.81 16.77
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(a)

(b)

Fig. 1 Comparison of the autocorrelation function (ACF) values when the network characteristics are
estimated with a sliding window approach of size z ¼ 7 containing (left) and not containing (right)
overlapping network states

Table 4 Upper control limits for the MCUSUM chart based on the estimates ŝt and ARL0 2 f50; 75; 100g
for two different windows sizes z ¼ 7 and z ¼ 14

z ARL0/k 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

7 50 51.85 47.41 42.96 38.27 33.87 29.71 25.94 22.51 19.01 15.79 13.06

75 75.93 69.26 62.97 56.83 50.79 44.82 39.02 33.73 29.05 24.95 20.95

100 97.58 89.46 81.68 73.51 65.78 59.01 52.43 45.96 39.96 34.40 29.23

14 50 55.72 51.27 46.63 41.90 37.54 33.29 29.18 25.46 21.69 18.21 15.36

75 80.28 73.70 67.32 61.13 54.75 48.86 43.15 37.76 32.81 28.26 24.20

100 102.34 94.25 85.88 78.05 70.90 63.96 57.03 50.65 44.31 38.71 33.39
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edges, in the fraction of the randomly selected adjacency matrix entries / or the

transition matrixM. Thus, we subdivide these scenarios into three different anomaly

types which are briefly described in the flow chart presented in Fig. 2.

We define a Type A anomaly as a change in the values of M. That is, there is a

transition matrix M1 6¼ M0 when t� s. Similar to Type A, we consider anomalies of

Type B by introducing a new fraction value /1 in the generation process when t� s.
Both types are instances of a persistent change (also known as simply a ‘‘change’’),

where the abnormal development continues for all t� s (Ranshous et al. 2015).

Anomalies of Type C differ from the previous two types as they represent a ‘‘point

change’’ (also referred to as an ‘‘event’’)—the abnormal behaviour occurs only at a

single point of time s but its outcome may also affect subsequent network states in

our case due to the Markov property. We recreate this type of anomaly by

converting a fraction f of asymmetric edges into mutual links. This process happens

at time point s only. Afterwards, the new network states are created similar to Phase

I by applying M0 and /0 up until the anomaly is detected. The considered cases are

summarised in Table 5.

3.4 Performance of the charts in Phase II

In the next step, we analyse the performance of the proposed charts in terms of their

detection speed. As a performance measure, we compute the conditional expected

delay (CED) of detection, conditional on a false signal not having been occurred

before the (unknown) time of change s (Kenett and Pollak 2012). For our

simulation, we set s ¼ 101. Using 250 simulations, we estimate the CED based on

the UCLs with ARL0 ¼ 50 for each setting. That means we would expect CED ¼ 50

if no change happened and it should be considerably smaller in the case of an

anomaly. Figures 3, 4 and 5 present the results of the simulation for anomalies of

Type A, B and C, respectively.

There are several aspects to assess fully the obtained results. First of all, the

comparison of performance between the MCUSUM and the MEWMA control

charts. In most of the cases, the CED of the MEWMA chart is smaller compared to

Fig. 2 Anomaly types for the generation of observations from Phase II and calculation of the associated
run length
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the corresponding MCUSUM chart. However, for the best choice of the reference

parameter k or the smoothing parameter k, both charts are competitive. The

respective values are indicated by the large dots indicating the minimum on the

CED curve. For instance, the weakest change of Type A.1 (Fig. 3a) is detected

quicker by the MCUSUM chart with the low parameters k. In contrast, the

MEWMA charts perform better for bigger changes such as in Cases 2 and 3.

Generally speaking, we see that the CED is decreasing if the shift size or the

intensity of the change is increasing. Moreover, if the reference parameter k or the

smoothing parameter k is smaller, less intense anomalies can be detected. If in

practical implementation the detection of larger changes is required, these

parameters should also be higher. It is worth reminding that the MEWMA

chart coincides with Hotelling’s T2 chart if k ¼ 1, i.e., the control statistic depends

only on the current value.

The disadvantage of both approaches is that small and persistent changes are not

detected quickly when the parameters k or k are not optimally chosen. For example,

considering Case A.1 in Fig. 3b, we can notice that at the high values of the

parameter k the CED slightly exceeds the ARL0 reflecting the poor performance.

However, a careful selection of the parameters can overcome this problem. Also, the

choice of the window size plays a significant role in detecting the anomalies

reliably, being a trade-off between a precise description of the process and the

ability to reflect the sudden changes in its behaviour.

Regarding the differences in results with respect to the quantities ĥt and ŝt, we
notice a similar performance in Anomaly Types A and B. It is interesting that in

most of the cases the MEWMA control charts work better for ŝt and the CUSUM

control charts for ĥt. However, looking at the detection of anomaly Type C.2, we

observe a considerable advantage of applying ĥt rather than ŝt. To confirm that this

behaviour is supported by another example, we created an additional test case with

Table 5 Anomaly cases

Anomaly Type Description Case

Type A Change in the transition matrix M A.1 m00;1 ¼ 0:89 (m00;0 ¼ 0:9)

m01;1 ¼ 0:11 (m01;0 ¼ 0:1)

A.2 m10;1 ¼ 0:6 (m10;0 ¼ 0:4)

m11;1 ¼ 0:4 (m11;0 ¼ 0:6)

A.3 m00;1 ¼ 0:5 (m00;0 ¼ 0:9)

m11;1 ¼ 0:5 (m11;0 ¼ 0:6)

Type B Change of the fraction /0 ¼ 0:01 B.1 /1 ¼ 0:009

B.2 /1 ¼ 0:015

B.3 /1 ¼ 0:02

Type C Increase of the proportion of mutual edges by f C.1 f ¼ 0:005

C.2 f ¼ 0:01

C.3 f ¼ 0:05
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Conditional expected delays for anomalies of Type A for MCUSUM (left) and MEWMA (right)
together with the different choices of the reference parameter k and the smoothing parameter k, the
window sizes z ¼ 7 and z ¼ 14, and the network estimates ŝt (solid lines) and ĥt (dashed lines). Black
points indicate the minimum CED for each setting
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Conditional expected delays for anomalies of Type B for MCUSUM (left) and MEWMA (right)
together with the different choices of the reference parameter k and the smoothing parameter k, the
window sizes z ¼ 7 and z ¼ 14, and the network estimates ŝt (solid lines) and ĥt (dashed lines). Black
points indicate the minimum CED for each setting
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Conditional expected delays for anomalies of Type C for MCUSUM (left) and MEWMA (right)
together with the different choices of the reference parameter k and the smoothing parameter k, the
window sizes z ¼ 7 and z ¼ 14, and the network estimates ŝt (solid lines) and ĥt (dashed lines). Black
points indicate the minimum CED for each setting
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f ¼ 0:02. These results as well as the others from Type C anomalies are summarised

in Table 6. As we can observe, if the change is too small, then both groups of control

charts created on the basis of ĥt and ŝt need relatively long to detect it. In case when

f ¼ 0:05, representing a substantial anomaly, the change is identified quickly by

both options. However, when the change is of a moderate degree, for example,

f ¼ 0:02, then the control charts based on ĥt signal the anomalous behaviour

considerably quicker. Whether the main reason for such difference is the particular

type of anomaly, namely it is an example of a point change, cannot be said generally

as additional variations of such anomalies should be examined. However, from the

evidence in this work, the authors hypothesise that the estimates ĥt might be more

suitable for general network monitoring when it is assumed that a point, as well as a

persistent change can occur, though the comparison between the performance of ĥt
and ŝt is worth further investigation.

To summarise, the effectiveness of the presented charts to detect structural

changes depends significantly on the accurate estimation of the anomaly size one

Table 6 Summary of the CED results to detect anomalies of Type C with the additional test case

f ¼ 0:02

CED ŝt ĥt

Case C.1 C.2 C.3 C.1 C.2 C.3

Parameter f 0.005 0.01 0.02 0.05 0.005 0.01 0.02 0.05

MEWMA with z ¼ 7 Min. 36.26 17.83 1.85 1.00 29.70 3.16 1.00 1.00

kmin 0.1 1.0 1.0 0.7 0.2 0.5 0.9 0.4

Max. 42.55 25.62 7.16 2.26 36.36 8.92 2.56 1.60

kmax 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1

MEWMA with z ¼ 14 Min. 35.92 24.26 3.57 1.00 35.60 8.60 1.00 1.00

kmin 0.1 0.3 0.9 1.0 0.2 0.3 1.0 0.5

Max. 43.78 28.75 9.90 3.25 42.21 12.94 3.49 1.89

kmax 1.0 0.1 0.1 0.1 1.0 0.1 0.1 0.1

MCUSUM with z ¼ 7 Min. 29.59 23.20 6.66 1.94 29.17 5.52 2.10 1.22

kmin 0.5 1.1 1.5 1.5 1.0 1.5 1.5 1.5

Max. 40.38 26.19 18.70 5.07 33.68 12.51 3.91 2.32

kmax 1.5 1.5 0.5 0.5 1.4 0.5 0.5 0.5

MCUSUM with z ¼ 14 Min. 29.11 23.56 9.45 2.98 30.57 10.88 3.14 1.72

kmin 0.7 1.0 1.5 1.5 0.6 1.4 1.5 1.5

Max. 36.62 27.58 18.86 7.04 35.22 14.56 6.19 3.00

kmax 1.4 1.4 0.5 0.5 1.2 0.5 0.5 0.5

The corresponding smoothing and reference parameters k and k are provided under the respective CED.

The minimum CED for each case and the control chart group are underlined. The maximum CED

represents the ‘‘worst-case’’ scenario. In case several values of the parameter k correspond to the CED

result, only the smallest value is reported
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aims to detect. Thus, to ensure that no anomalies were missed, it can be effective to

apply paired charts and benefit from the strengths of each of them to detect varying

types and sizes of anomalies, if the information on the possible change is not

available or not reliable.

4 Empirical illustration

To demonstrate the applicability of the described method, we monitor the daily

flight data of the United States (US) published by the US Bureau of Transportation

Statistics using the parameter estimates ĥt. Each day can be represented as a directed

network, where nodes are airports and directed edges define flights between airports.

In Fig. 6, examples of flight network data in 2018, 2019 and 2020 (until the end of

April) are presented.

Flexibility in choosing the network terms, according to the type of anomalies one

would like to detect, enables different perspectives on the same network data. In our

case, we aim to identify considerable changes in network development. The

intuition of how the flight network usually operates guides the choice of its terms.

At the time of writing, due to the current Coronavirus disease (COVID-19)

pandemic in the year 2020, some regions have paused the operation of transport

systems with the aim to reduce the number of new infections. However, the

providers enable mobility by establishing connections through territories which

allow travelling. That means, instead of having a direct journey from one

geographical point to another, currently the route passes through several locations,

which can be interpreted as nodes. Thus, the topology of the graph has changed:

instead of directed mutual links, the number of intransitive triads and asymmetric

links starts to increase significantly. We can incorporate both terms, together with

the edge term and a memory term (v ¼ 1), and expect the estimates of the respective

coefficients belonging to the first two statistics to be close to zero or strongly

negative in the in-control case.

Initially, we need to decide which data are suitable to define observations coming

from Phase I, i.e., the in-control state. There were no considerable events which

Fig. 6 Illustration of the flight network on April 1 of each year excluding isolated vertices. It can be seen
that the topology of the network has changed. The red coloured nodes represent the 30 busiest airports
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would seriously affect the US flight network known to the authors in the year 2018,

therefore, we chose this year to characterise the in-control state. Consequently, the

years 2019 and 2020 represent Phase II. To capture the weekly patterns, a time

window of size z ¼ 7 was chosen, so that the first instant of time when the

monitoring begins represents January 8, 2018. In this case, Phase I consists of 358

observations and Phase II of 486 observations. To guarantee that only factual flight

data are considered, we remove cases when a flight was cancelled. Additionally, we

eliminate multiple edges. The main descriptive statistics for Phase I and II are

reported in Table 7. There are no obvious changes when considering the descriptive

statistics. Hence, control charts, which are only based on such characteristics, could

fail to detect the possible changes in 2019 and 2020. When considering the

estimates ĥt of the TERGM described by a series of boxplots in Fig. 7, we can

observe substantial changes in the values.

Before proceeding with the analysis, it is important to evaluate whether a

TERGM fits the data well (Hunter et al. 2008). For each of the years, we randomly

selected one period of the length z and simulated 500 networks based on the

parameter estimates from each of the corresponding networks. Figure 8 depicts the

results for the time frame April 3–9 2019, where the grey boxplots of each of the

statistics represent the simulations, and the solid black lines connect the median

values of the observed networks. Despite the relatively simple definition of the

model, some typical network characteristics such as the distributions of edge-wise

shared partners, the vertex degrees, various triadic configurations (triad census) and

geodesic distances (the value of infinity replicates the existence of isolated nodes)

match the observed distributions of the same statistics satisfactory.

To select appropriate control charts, we need to take into consideration the

specifications of the flight network data. Firstly, it is common to have 3–4 travel

peaks per year around holidays, which are not explicitly modelled, so that we can

detect these changes as verifiable anomalous patterns. It is worth noting that one

Table 7 Descriptive statistics of

the US flight network data
2018 2019 2020

Phase I II II

Number of nodes 358 360 354

Density Min. 0.031 0.033 0.022

Median 0.037 0.038 0.038

Max. 0.039 0.040 0.041

Min. 0.97 0.96 0.89

Reciprocity Median 0.99 0.99 0.99

Max. 1.00 1.00 1.00

Min. 0.315 0.322 0.263

Transitivity Median 0.339 0.339 0.326

Max. 0.357 0.354 0.345

Density is calculated on networks without multiple edges
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could account for such seasonality by including nodal or edge covariates. Secondly,

as we aim to detect considerable deviations from the in-control state, we are more

interested in sequences of signals. Thus, we have chosen k ¼ 1:5 for MCUSUM and

k ¼ 0:9 for the MEWMA chart. The target ARL0 is set to 100 days, therefore, we

can expect roughly 3.65 in-control signals per year by the construction of the charts.

Figure 9 depicts the results of both charts for monitoring the US flight network

data. In Phase I there are slightly more in-control signals than expected, which we

leave without investigation as they occur as single instances. Considering Phase II,

there are several anomalous behaviours which were detected. The first series of

signals in summer 2019 is due to a particularly increased demand for flights during

the holidays. The second sequence of signals corresponds to the development of the

COVID-19 pandemic. On March 19, the State Department issued a Level 4 ‘‘do not

travel’’ advisory, recommending that United States citizens avoid any global travel.

Although this security measure emphasises international flights, it also influences

domestic aerial connections. The continuous sequence of the signals in case of the

MEWMA begins on March 21, 2020. In case of the MCUSUM, the start is on

Fig. 7 Distribution of the estimated coefficients ĥt in 2018, 2019 and 2020
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March 24. Although in both cases the control statistic resets to zero after each

signalling, the repeated violation of the upper control limit is a clear indicator of this

shift in network behaviour.

To identify smaller and more specific changes in the daily flight data of the US,

one could also integrate nodal and edge covariates, which would refer to further

aspects of the network. Additionally, control charts with smaller k and k can be

applied.

5 Conclusion

Statistical methods can be remarkably powerful for the surveillance of networks.

However, due to the complex structure and potentially large size of the adjacency

matrix, traditional tools for multivariate process control cannot directly be applied,

as the network’s complexity must be reduced first. For instance, this can be done by

statistical modelling of the network. The choice of the model is crucial as it decides

constraints and simplifications of the network which later influence the types of

changes we are able to detect. In this paper, we show how multivariate control

charts can be used to detect changes in dynamic networks generated by the

TERGM. The proposed methods can be applied in real time. This general approach

is applicable for various types of networks in terms of the edge direction and

Fig. 8 Illustration of the goodness of fit assessment for the TERGM. The considered networks belong to
the period April 3–9 2019
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topology. Moreover, it enables the integration of nodal and edge covariates and

considers temporal dependence.

The performance of our procedure is evaluated for different anomalous scenarios

by comparing the CED of the calibrated control charts. According to the

classification and explanation of anomalies provided by Ranshous et al. (2015),

the surveillance method presented in this work is applicable for event and change

detection in temporal networks.

Finally, we illustrated the applicability of our approach by monitoring daily

flights in the United States. Both control charts were able to detect the beginning of

the lock-down period due to the COVID-19 pandemic. The MEWMA chart signalled

a change just two days after a Level 4 ‘‘no travel’’ warning was issued.

Despite the benefits of the TERGM, such as the incorporation of the temporal

dimension and representation of the network in terms of its sufficient statistics, there

Fig. 9 The MCUSUM control chart (above) and the logarithmic MEWMA control chart (below). The
horizontal red line corresponds to the upper control limit and the red points to the occurred signals
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are several considerable drawbacks. Other than the difficulty to determine a

suitable combination of the network terms, the model is not applicable for networks

of large size (Block et al. 2018). Furthermore, the temporal dependency statistics in

the TERGM depend on the selected temporal lag and the size of the time window

over which the data is modelled (Leifeld and Cranmer 2019). Thus, the accurate

modelling of the network strongly relies on the analyst’s knowledge about its

nature. A helpful extension of the approach would be the implementation of the

STERGM. In this case, it could be possible to subdivide the network monitoring

into two distinct streams, so that the interpretation of changes in the network would

become clearer.

Considering a network where the number of vertices differs over time, the current

TERGM framework would model it by either removing or incorporating particular

nodes as structural zeroes. However, the development of alternative solutions to

address this issue (for instance, Krivitsky et al. (2011) introduce an offset term for

the ERGM), as well as the expansion of the presented approach for monitoring the

node composition, is subject to future research.

Another topic that demands additional research is the determination of cases

when it is reliable to use the averaged network statistics ŝt to construct the

monitoring procedure and not the parameter estimates ĥt, as their calculation is

more complex than of ŝt. Also, it would be beneficial to consider other estimators to

compute ŝt and compare their effectiveness to detect anomalies. In addition, the

construction of a generator that simulates the network time series directly from a

TERGM with the desired configuration would enhance the further analysis of the

considered methods and support the development of novel approaches.

Concerning the multivariate control charts, there are also some aspects to regard.

Referring to Montgomery (2009), the multivariate control charts perform well if the

number of process variables is not too large, usually up to 10. Also, a possible

extension of the procedure is to design a monitoring process when the values for R
can vary between the in-control and out-of-control states. Whether this factor would

beneficially enrich the surveillance remains open for future research.

In this paper, we customise the application using simulation methods to calibrate

the charts. Hence, further development of adaptive control charts is interesting as

they could remarkably improve the performance of the anomaly detection (cf.

Sparks and Wilson 2019).
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