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A Fuzzy Curve-based Anomaly Detection and its
application to Electromagnetic data

Vyron Christodoulou, Yaxin Bi, George Wilkie

Abstract—The problem of data analytics in real world electromagnetic (EM) applications poses a lot of algorithmic constraints. The
process of big datasets, the requirement of prior knowledge, unknown location of anomalies and variable length patterns are all issues
that need to be addressed. In this application we address those issues by proposing a Fuzzy Symbolic Representational method with
anomaly detection (AD). This method is evaluated against twelve benchmark datasets of different kinds of anomalies and provides
promising results based on the use of a new performance metric that takes into account the distance between predicted and actual
anomalies. Real-world EM data from the Earth’s magnetic field are provided by the SWARM satellite constellation using regions in
China, Greece and Peru. The seismic events that occurred in those regions are compared against the SWARM data. Moreover, three
other methods: GrammarViz, HOT-SAX and CUSUM-EWMA are also applied to further investigate the possible linkeages of EM
anomalies with seismic events. The findings further our understanding of real-world data analytics in EM data and seismicity. Some
proposals regarding the limitations of available data for the real-world datasets are also presented.

Index Terms—Anomaly Detection, Symbolic Representation, Fuzzy Logic, Electromagnetic Data, SWARM Satellites
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1 INTRODUCTION

In recent years the advent of data mining has seen an
increase in the interest in discovering complex data struc-
tures in order to improve the performance of data analyt-
ics techniques. Improvements in time series classification,
clustering, mining interesting patterns, data representations,
AD and others have all been at the center of data research.
Even though a lot of interesting results and improvements
are evident in the field, a major issue in processing comes
from the continuous growth of data. The fact that big time
series data are essentially high-dimensional, causes a high
computational cost in both time and storage.

An equally important problem in time series AD is that
existing methods do not address the issue of identifying
where the location of an anomaly is. Most methods require
the user to provide as a minimum a window length param-
eter or to have prior knowledge of the data. In that sense,
our aim is twofold: (a) Address the high dimensionality
through a symbolic approximation and (b) the localization
of AD. Moreover and equally importantly, we introduce a
metric to measure the performance of such algorithms that
combines the following: (a) the identified window length, (b)
the predicted anomalous location and (c) the true anomalous
location. Without such a metric any algorithmic comparison
is difficult to be complete.

From our point of view, an AD method can benefit from
the symbolic representation of a time series at the pre-
processing stage. A symbolic representation with AD can
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be used in different scenarios that require the detection of
anomalous patterns of various forms. The main benefit is
the time series reduction which affords a quick and efficient
AD that can also be used to precisely identify the sequence’s
pattern and anomalous location. High precision combined
with little or no prior knowledge is what is needed for in
todays AD systems. What is more, there is a need for systems
to perform robustly in an ever-changing data stream along
with on-line AD capabilities in fields such as social media,
networks, fraud detection etc. [10]. There exist many meth-
ods that require prior knowledge, however, the main focus
in this work is to propose and compare similar methods with
little to no parameter tuning for AD. As a consequence, there
is an attempt to bridge this gap by bringing together these
research areas.

Our aim is to utilize a fuzzy system for the symbolic
representation of the signals and join it with an AD method
in order to evaluate its capability as a model for the represen-
tation and AD in geophysical signals. These facts put several
constraints on our problem. To address these limitations the
algorithm has to fulfil several criteria:

• Handle Big Datasets with the symbolic representa-
tion and subsequent appropriate reduction of the
time series to symbols.

• Detect anomalies of variable length and unknown
patterns and be flexible in doing so.

• Be robust to noise.
• Anomaly localization.
• Perform all of the above with little prior knowledge.

Therefore, at its first stage, our method will be focused
on the quality of the representation and its description of
the time series. Specifically, it will be useful to understand
how the time series reduction to symbols from the original
form, compensates for the loss of information in terms
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of AD. It will be shown that the different representation
methods in the proposed algorithm, model the specific cases
of anomalies differently after the conversion phase. They can
better highlight and represent in more detail the nature of
the anomalies. Each representation benefits from the fact that
it gives weight to a different factor and can model unique
kinds of anomalies within the same sequence. This gives the
user a better understanding of what kinds of anomalies one
has to deal with and from our point of view it will shed more
light on the unknown nature of geophysical EM anomalies
and their relation to seismic events.

The rest of the paper is organized as follows. In Section 2,
the related work is discussed and how this work fits in this
scope. Section 3, discusses the data gathering process and a
brief description of the real world data is given. Section 4,
lays the foundation of the background knowledge. Section
5, provides a step by step description of the process of the
overall AD. Section 6, presents and discusses the results
and finally Section 7 gives a summary and further possible
directions regarding the results.

2 RELATED WORK

There is a large body of literature concerning AD algo-
rithms [19]. Most AD algorithms are classified in five cat-
egories: Probabilistic, Reconstruction-based, Domain-based,
Distance-based and Information Theoretic. As there is not a
universally accepted definition of an anomaly, algorithms
focus on different aspects ranging from point, context or
pattern anomalies. In our case, the difficulty lies in the
unknown nature of the anomaly. We do not know if it is
a point anomaly or of a specific pattern. As a result, most
AD algorithms are based on evidence and are data-based
approaches.

Probabilistic algorithms for AD have been well re-
searched. Their main benefit is that they require no pa-
rameter tuning and they are based on a sound theory. The
CUSUM, detects variations in the mean of a process and
assumes that the generative process is Gaussian. In [26] the
focus was on the on-line update of CUSUM’s K parameter
with the implementation of a runs rules approach. A variety
of CUSUM and EWMA combinations have been proposed in
different forms in, [28], [27] and [29]. All the above methods
improved the change detection in terms of sensitivity of
the algorithm but it is known that it is difficult to detect
frequency changes. A more complex probabilistic approach
for AD was also proposed in [2] where the authors combine
martingales with a Geometric Moving Average to detect
anomalies. This method , although it does not make use of a
user selected window length still needs parameter tuning.

In [18], a combination of a reconstruction and a statistical
approach is applied. An Artificial Bee Colony Algorithm for
training a predictor that estimates the future valueof electron
content is used and a statistics based threshold flags the
anomalies with promising results.

Distance based approaches such as HOT-SAX [8] are
appropriate to our case because they address both the high
dimensionality and the anomaly localization problem. For
SAX a symbolic representation is combined with an AD
method. The authors propose a bruteforce discord discovery
(BFDD) and a Heuristic Discord Discovery (HDD) for the
AD. A Piecewise Aggregate approximation (PAA) is used to

discretize the original time series but it causes information
loss and can miss anomalous patterns. Numerous different
representation methods have been spawned following the
success of SAX, in [20], [11] using similar principles.

A Piecewise Aggregate Pattern Representation (PARP)
method was proposed in [12] in order to address the PAA-
induced information loss. Instead of the euclidean distance
a new similarity measure is defined to assess the similarity
between subsequences. However, this method also involves
parameter tuning.

Once it became evident that the parameter tuning is also
an obstacle, a less time consuming method with minimal
parameter tuning was featured in [24]. The authors pro-
posed a grammar rule based system for AD. Their method,
utilizes the SAX approach for symbolic representation and
discretization and it is able to find subsequences of variable
length. Similarly, in [25] the authors propose SLADE-TS.
An algorithm that even though it requires some parameter
tuning for the discretization step, it is parameter-less during
the AD and can also perform on-line AD. The AD scheme in
the previous works follows the same pattern as in our work:
(a) Time Series Discretization, (b) Symbolic approximation,
(c) Subsequence extraction and last but not least, the AD
method.

The same challenge was again addressed in [17]. What
is essentially at stake is the discovery of subsequences
of varying lengths and patterns, which alludes to a pa-
rameter free method. To overcome this problem, a new
location-based discord discovery method was envisioned.
The authors propose a two pass adaptive window discord
discovery (AWDD) approach. In contrast to BFFD, pro-
posed in SAX, which is a one pass approach, this method
demonstrates faster processing time but it does not use a
symbolic representation step. The detection of patterns of
varying length is also the focus of [30], where a dynamic
time warping (DTW) approach is used to calculate similarity
patterns of varying length. The patterns have been identified
by another quadratic regressions algorithm. The authors
present a promising performance but their method still
needs parameter configuration in the first step and because
the second step is highly dependable different parameters
lead to very time consuming demands.

In terms of fuzzy logic, the Fuzzy symbolic represen-
tation has not been very well investigated. Recently, some
work has been carried out in [14]. The authors proposed
a fuzzy representation of linear piecewise segments in time
series using linear regression in combination with a growing
window. Another fuzzy representation concept, this time
characterizing temperature records is used in [15]. In this
case the Fuzzy System is both a fuzzy descriptor and an
anomaly detector. This is achieved by assigning different
confidence levels to the output membership function for
the AD. In our case such an approach is impossible since
there is no prior knowledge of the nature of the anomaly
and specifically whether it is of high or low amplitude, if
it differs in shape etc. In both approaches however, none of
them proceeds to symbolize the fuzzy system’s output into
symbols by characterising the time series curve.

A clustering-based AD was implemented in [22], where
the extracted subsequences are given a linguistic description
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and are clustered into normal and abnormal with the use
of a fuzzy-c-means algorithm. As seen, a fuzzy system can
be used both as a symbolic representation scheme and in
AD. However, without prior knowledge of what constitutes
an anomaly in the time series sequence, it is difficult to
assign confidence levels to the output anomaly MF of the
Fuzzy System. Therefore in our case, the Fuzzy System does
not perform AD but it encodes the time series to symbols.
Following that, the AD bruteforce scheme is incorporated
with the Fuzzy System. In our case it plays an active role in
linking the appropriate Fuzzy representation by configuring
its parameters to perform the final AD. Given enough prior
knowledge or used in conjunction with another AD scheme
the system can achieve very promising results.

3 DATA SELECTION

3.1 Benchmark Datasets

The experimental evaluation is split into two segments:
(i) Evaluation under benchmark data and (ii) evaluation
under real-world EM data gathered by the SWARM Satellite
constellation.

Twelve benchmark datasets were downloaded from the
physionet website 1 that hosts publicly accessible databases
from a variety of physiological datasets. The data used are
from the chfdb database that contains heart failure data and
the mit database that contains arrhythmia data. A hierar-
chical structure for the selection of the data had to be used
in order to evaluate the algorithm under diverse categories.
These categories are :

• High-Amplitude
• Low-Amplitude
• Complex Anomalies

Complex anomalies refer to anomalies in frequency,
shape, amplitude or all of the above within a single se-
quence. Finally, the type and exact locations of the anomalies
in the datasets were marked by cardiologists.

3.2 Real World Dataset

The electromagnetic (EM) data used in our experiment were
gathered by the SWARM satellite constellation. Such new
data offer an opportunity for the detection of EM anomalies
during or before seismic activity. The three identical satel-
lites follow a polar orbit at a height of 450km for SWARM A
and C and at 530km for SWARM B and have a revisit time
of 4 days on average. A fundamental question that remains
unanswered is whether there is any correlation between
seismic events and anomalies in the Earth’s geomagnetic
field.

The real-world dataset starts from 31st March 2014 until
25th February 2015. In order to eliminate any possibilities of
artificial anomaly introduction or anomalies caused by other
sources, it was decided that three geographical regions will
be investigated. The choice of a region has to conform to the
following rules:

1. https://physionet.org/cgi-bin/atm/ATM

TABLE 1: Investigated seismic regions and their coordinates

Location, Magnitude Epicenter Control Region Date
(Lat, Lon) (Lat, Lon)

China, 6.2 27.189◦N 103.409 ◦E 27.18 ◦N 113.4 ◦E 03-08-2014
Peru, 6.8 14.598 ◦S 73.571 ◦W 14.598 ◦S 83.571 ◦W 24-08-2014

Greece, 5.8 36.685 ◦N 23.706 ◦E 36.68 ◦N 33.706 ◦E 29-08-2014
U.K 54.59◦N 5.93 ◦E N/A N/A

• Its amplitude has to be above or close to a momentum
Magnitude (Mw) of 6 as defined in 2. This choice is
in-line with the literature [13].

• The seismic event must have occurred approximately
in the middle with respect to the time of the available
data to allow for an adequate time series dataset
before and after to be extracted.

• Belong to a different region.

}

}

333km

1000km

Fig. 1: China, Winpeng region of investigation

Fig. 1 depicts one of the selected regions and its di-
mensions. The number of readings gathered depend on the
number of passes the SWARM satellites have made. The
first region is defined as the true anomalous region were
the epicenter of the seismic event was. If any anomalies
are present they are expected to appear in this region. The
second region is adjacent to the region of the seismic event
and is regarded as the control region. This region is selected
to eliminate the possibility of other seismic events causing
EM anomalies to ”leak” into the adjacent (control) region we
investigate. A third region has also been defined, a seismi-
cally dormant region is regarded as the ground truth. The
regions separated in main and control for the experiment
and their details are shown in Table 1.

Now we can observe some simple rules: If there is an
anomaly present in both the control and the anomalous
region then a second seismic event is probably the root of it.
If there is an anomaly present only in the anomalous region
then the seismic event that is currently under investigation
is likely the cause of it. If there is an anomaly only in
the control region then another event, which we do not
examine, likely took place. If anomalies are present in all
three regions then the disturbance is due to other unknown
sources such as EM storms, human-related emissions etc.
and is discounted.

The SWARM observations are in the Common Data For-
mat (CDF) and consist of 22 fields that provide information
such as coordinates, altitude, date/time, error correction

2. https://earthquake.usgs.gov/learn/glossary/?term=
seismic∼moment
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vectors etc. The observations used are from the Vector Field
Magnetometer (VFM) of each SWARM satellite. The VFM
instrument, measures the earth’s geomagnetic field. The
geomagnetic field can be best described by three orthogo-
nal components. Let B, be the geomagnetic field. X, is the
northerly intensity, Y the easterly and Z the vertical. The
Eq. 1 below gives a better understanding on how to convert
the three separate values to the EM vector.

| ~B| =
√
b2X + b2Y + b2Z (1)

The process followed for the data preprocessing is the
following:

• Extract the values from the coordinates that belong
to the region of study.

• Convert the X, Y, Z intensity vectors to a single vector.
• Subdivide the region of investigation into a grid and

create nine different vectors from each grid point.

4 DEFINITIONS OF TERMINOLOGY
Before delving deeper, we have to give the definition of some
of the terminology used.

Definition 1. Time Series: A time series T = t1, . . . , tm
is an ordered set of m real-values.

Definition 2. Subsequence: Given a time series T of
length m, a subsequence C of T is a sampling of length n ≤
m of adjacent position from T, that is, C = tp, . . . , tp+n−1
for 1 ≤ p ≤ m− n+ 1.

Definition 3. Non-self match: Given a time series T, a
subsequence C of length n beginning at position p and a
matching subsequence M beginning at position q, we define
that M is a non-self match to C if the condition p − q ≥ n
holds true .

Definition 4. Anomaly: Given a time series T, the sub-
sequence D of length n beginning at position p is said to be
the highest anomaly of T if D has the largest distance to its
nearest non-self match.

Definition 5, Euclidean Distance: Euclidean distance
(EDist) is a function that takes two subsequences C and M
of length m and returns a non-negative result Z, that is said
to be the distance between pairs of symbolic values from C
and M. The EDist also fulfils the symmetric property, that is
EDist(C,M)=EDist(M,C) and it is defined as follows:

Z(M,C) =
√
(M1 − C1, . . . ,Mm − Cm)2 (2)

Definition 6. Triangular Fuzzy Membership Function:
A membership function (MF) for a fuzzy set S on the
universe of discourse X is defined as µA : X ∈ [0, 1],
where each element of X is mapped to a value between 0
and 1. This value, called the membership value or degree
of membership, quantifies the grade of membership of the
element in X to the fuzzy set S. A Triangular membership
function therefore is defined by a lower limit a, an upper
limit b, and a value m, where a < m < b.

The Fuzzy System is used as a symbolic approximation
system that provides three different outputs, each with its
own distinct symbolic approximation. The first is based
in the shape conditions of the time series, the second is
amplitude-based and uses an equiprobable segmentation of

the y-axis and the last one is amplitude-based but on the
equal segmentation of the y-axis. The work is an extension
of [23] and while it is known that an equally segmented
space introduces a different amount of bias to the symbolic
approximation, it addresses the unknown generative process
of the signals by making no assumptions as to whether a
Gaussian distribution is the generative process.

At the start of the process, each time series subsequence
is normalized between [0,1] before attempting to symbolize
and before calling the distance function. It is well under-
stood that in all settings, it is meaningless to compare time
series of different variance [8] [17].

5 PROPOSED METHOD

5.1 Peak Finding

The core mechanism of the algorithm is its peak finding
function. A lot of the functionality of the method depends
on the detected peaks that act as one of the inputs to the
fuzzy system (the second being the gradient). The standard
approach to peak finding is to use a smoothing function.
A de-noising function helps smooth the signal in order
to avoid getting trapped in local minima that result from
noise. The choice of the smoothing function depends on the
domain and the nature of the data. In this case, a Savitzky-
Golay (S-G) filter was the selected method. It is accepted
that an attractive property of the S-G filter is the ability
to provide both: (i) a thorough de-noising method, and (ii)
preserve the peak-shape of time series signals [4]. For that
reason it is now used in medical research studies [1] and this
is also the reason it was used as the first step in the proposed
algorithm.

Before applying the filter, a min-max normalization is
applied to the data seen in Eq. 3.

m′ =
m−min(T )

max(T )−min(T )
(3)

This normalization maps a value m of a time series T to
a value m’ in the range of [0 1]. The peak finding process
creates two vectors, vectors A ⊂ T for the Amplitude, and
G ⊂ T for the gradient. In that case, vector A consists of i
peak elements and vector G consists of g gradient elements.
An element g ∈ G can be computed by the following
equation and is used as the second MF input,

g =
∂m′i
∂i

(4)

Additionally, the peak distance is a critical parameter for
the system since it is the only configurable parameter. The
system changes the length of one identified peak to the next
adjacent one, with the aim to find the optimal length that
will best resemble the shape morphology of the original.
With each iteration a different signal is fed to the fuzzy
system which in turn provides a new representation. The
bruteforce method used provides a way to find a solution to
identify the correct peak distance that provides the represen-
tation which more accurately resembles the original data.
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5.2 Fuzzy System
A Fuzzy Inference System (FIS) processes information in a
similar way to human language. It uses imprecise linguistic
terms to provide precise (crisp) answers. As such, it is
especially useful when a system combines vague terms or
uncertainties. Their advantage is the ability to incorporate
the human reasoning into a system that responds by turning
uncertainty into appropriate actions. Fuzzy reasoning com-
prises of three steps which will be discussed in detail in the
following sections. These steps are : (i) Fuzzification, (ii) Rule
Inference and (iii) Defuzzification.

In the proposed system, uncertainty refers to two param-
eters: (i) the amplitude, A, and (ii) the gradient, G, of the
process. Each of these two parameters can be described by
fuzzy linguistic terms. The fuzzy terms that are applied to
the first input can be seen in Fig. 2.

Output

0 0.25 0.5 0.75 1

D
O
F

0

0.5

1
Low HighMedium

Membership Function

Output

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

D
O
F

0

0.5

1
QuickFall MedFall SlowFall SlowClimb MedClimb QuickClimb

Membership Function

Output

0 0.25 0.5 0.75 1

D
O
F

0

0.5

1
HQFHMFHSFMQFMMFMSF LQFLMF LSF LQCMS LSCSLS LMC MSCMMCMQC HMCHQCHSC

Membership Function

Fig. 2: Top to Bottom: The two input Membership functions
used for the Amplitude and the Gradient and the output

Fig.2(top) shows the MF, A, used for the min-max nor-
malized peak amplitude in the interval of [0,1]. The gradient
MF, G’, shown in the mid figure is set in the interval of [-1
+1] and the output MF, O, that signifies their relationship.
The relationship of the MFs leads to a complex rule-base
system with twenty one rules in total. A detailed description
is given in the following sections.

5.2.1 Fuzzification
The first issue to consider when constructing a FIS is the
cardinality of the MFs in the universe of discourse of the in-
put values. A high number of MFs increases the complexity
of the system, introduces more rules and increases the time
complexity for the computation of the results. Each value
of the universe of discourse must belong to at least one of
the fuzzy sets so that every input will fire a rule at least
once. The optimal choice of the cardinality is based on the
application at hand and, in the case of our work it is a matter
of precisely modelling the input variables to the system.

A problem that often comes with a FIS is the choice of
MF. Choices range from triangular, gaussian, rectangular etc.
functions. The right selection of an MF is problem specific
and plays a significant role in the overall performance of

Fig. 3: Completeness of Membership Functions [7]

the system and its fuzzy representation. A rule of thumb
for the selection of the MF is to match the behavior of a
variable. In this case the peak or the shape are modelled
with a triangular MF. Our choice is further justified by the
well established fact that in practice triangular functions are
able to model most processes very well [16].

An important characteristic of the MFs is their overlap,
known as completeness. For clarity the definition of complete-
ness is provided.

Definition 7: Completeness The completeness E of a set
S of F fuzzy subsets, Si(m′), i = 1, 2...F that describes the
characteristics of the normalized input variable m’ is defined
as the minimal level of E for which the E-level covers the
input variable set T [6].

∀m′ ∈ U∃1≤i≤FSi(m′) > 0 (5)

Furthermore, a measure of completeness can also be
defined that measures the fuzzy partition in Eq. 6.

E(m′) =

F∑
i=1

Si(m
′) (6)

A visual interpretation of the level of completeness or
overlap can also be seen in Fig. 3 where a 0.5 overlap is used
between MFs.

Based on some heuristic considerations, authors in [9]
argue that a completeness level ranging from 0.25 to 0.5
provide the best results. A completeness level of 0.5 was
selected in this work because, for every input value i, there
is bound to be a dominant rule with a selected membership
grade of 0.5 or above, something that can be verified from
Fig.2. A higher level of completeness can lead to redundancy
and destabilize the system. It also becomes clear that when
a lower level of completeness is selected the universe of dis-
course is characterized by more regions with a low maximal
degree of truth of the rules they activate and the system
becomes unstable. Moreover, an incomplete FIS, with no-
overlapping MFs in both input and output, reduces the FIS
to the function of a boolean logic system [7].

5.2.2 Rule Inference
The uncertainty that is contained in a fuzzy inference system
(FIS) is evaluated through simple If-Then rules. The prece-
dent part of these rules conforms to a nonfuzzy condition
that is possible to express a conclusion in the antecedent
part once this condition holds true. Consequently, a fuzzy
rule can be obtained by combining two crisp rules. More
specifically, let us consider the rule,

If i ∈ A′and g ∈ G′then o ∈ O (7)
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where A’, G’ are ordinary subsets in the domains A, the
amplitude, and G, the gradient respectively. O represents
their combination in the domain of W and is the set that
describes their relation. The descriptive analysis of the curve
in linguistic terms using these rules leads to a complex rule-
based system. For example, one rule can be that Low Mag-
nitude (Peak) AND Quick Fall (Gradient) gives an output of
LQF (Low Quick Fall), which can be verified by the actual
MFs seen in Fig.2.

Assuming there is prior knowledge of the value of g
in relation to G’, this kind of information can be formally
defined as

πg(G
′) =

{
1 if g ∈ G′

κ < 1 if g /∈ G′
(8)

This information expresses the degree of certainty or
probability distribution that g ∈ G′. A higher value of κ
means that there is a higher probability that g /∈ G’ and less
that g ∈ G’ . Conforming to the same model used previously,
the rule-based inferring model can also be described as:

πo|i,g(W,A,G) ≤ n(µA′(A)) ∨ n(µo(W )) ∨ n(µg(G′)) (9)

This translates as: if i ∈ A it is certain that the value of i
is in O and if g ∈ G then the value of g is in O.

supG(min(π(w)), πo|i,g(W,A,G) =
πi|g(A,G) ≤ max(n(µA(u))), µB(u), κ)

(10)

Now, Eq. 10 means that the probability distribution ob-
tained, expresses that the possible values for o, when the
value of i is in A, are in O with a probability of almost equal
to 1 and outside O, with a probability at most κ. The fuzzy
rule obtained can then be finally translated to a crisp value
with an uncertain conclusion of the form: ”’if i ∈ A then o is
O is (1 - κ)-certain”. Table. 2 shows the rules that were used
to describe the function of the fuzzy system used for this
work [3]. All twenty one rules give a description of input
to output and decide which rule is fired each time the two
input values of the amplitude and the gradient are input into
the system.

TABLE 2: Decision Table for the FIS

AND Magnitude
Low Average High

Gradient

Quick Fall LQF AQF HQF
Average Fall LAF AVF HAF
Slow Fall LSF ASF HSF
Stable LS Stable HS
Quick Climb LQF AQC HQC
Average Climb LAV AAC HAC
Slow Climb LSC ASC HSC

5.2.3 Defuzzification
Defuzzification involves the process of transposing the fuzzy
outputs to crisp outputs. There are a variety of methods
to achieve this, however this discussion is focused in the
method utilized in this work. The method, known as Center
of Gravity (COG), is a method of averaging the output

values by calculating centroids of sets. The output MFs to
which the fuzzy outputs are transposed are restricted to a
set containing a single object (singletons).The fuzzy outputs
are transposed to their membership functions similarly as
in fuzzification. With COG the singleton values of outputs
are calculated using a weighted average method. The crisp
output is the result and is passed out of the fuzzy inferencing
system for the symbolization process.

5.3 Symbolic Representation

After the three steps finish, the representation has produced
a single value, i.e 0.45. In fuzzy linguistic terms this is trans-
lated to Low Quick Fall. This provides a basic description
of the encoded subsequence based on the peak and the
gradient that defines it. In this system three different en-
codings are used. The purpose of using different encodings
is the additional information they provide, which comes
intuitively. That is, when an anomaly is detected in the
shape-based encoding, it implies a shape related anomaly,
whereas an anomaly detected in the amplitude encoding,
implies an amplitude related anomaly.

With the limitation set by the real world problem, in [21]
two different approaches were proposed. The first encoding
uses simple equidistant breakpoints to encode the signal
based on each value i’ ∈ A’, without any assumption.
The number of break points were decided based on the
empirical evaluation and can be seen in Fig 4. The encoding
translates into: [0,0.2)=E, [0.2,0.4)=D, [0.4,0.6)=C, [0.6,0.8)=B
and [0.8,1]=A.
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Fig. 4: The equally segmented space for the Amplitude
Representation

As a continuation of the experimentation with the real
world signals, an additional encoding is proposed. This time
the assumption followed for the encoding is that the signal
follows a Gaussian distribution. While this may not always
be true for EM signals [18], it is required to better understand
their nature and eliminate any unidentified possibilities.
Therefore, a segmentation of the x-axis has to be obtained
based on the Gaussian distribution. We therefore define the
breakpoints accordingly.

Definition 8. Breakpoint: A list of numbers that indicate
the bounds under the normal density curve from [∞, n]. If
m, is a single observation of a sequence T, then it is normally
distributed in the non-standarized normal distribution with
mean µ and a standard deviation of σ.

Therefore it is easily understood that the values used to
calculate the break points are calculated from a Gaussian
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Distribution table, scaled by the bounds set by µ and σ. The
general formula of the cumulative distribution of the normal
distribution that the breakpoints are computed from can be
seen in Eq.11

F (m) =

∫ m

−∞

e−(m−µ)
2/2σ2

σ
√
2π

(11)

The shape encoding is based on an intuitive description
of shapes. By taking into account three consecutive values
o ∈ O that the FIS has produced one can define the most
elementary shape in a 2D space. As already mentioned, both
amplitude and gradient information are incorporated in the
output o. Therefore, eight different configurations can be
defined. As a consequence, the whole time series is broken
down and analyzed by those shapes. The defined shapes
that were used as part of the encoding can be seen in Fig. 5.
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Fig. 5: The Shape representation scheme

5.4 Evaluation Metric
In order to evaluate the efficiency of each algorithm an
overview of the used metric is presented in this section.
A more detailed description was given in [5]. It is known
that precision, recall and F1-Score ignore the True Negative
(TN) values and can have a positive bias. Nevertheless, our
interest lies specifically in the positive class, meaning the
class or set of correctly or incorrectly predicted anomalous
cases or the True Positive (TP) and False Positives (FP).
Therefore, this set is used as the main factor in the definition
of our accuracy measure. In all, the defined accuracy gives
the average error rate for the correctly predicted values
based on a factor of the window length.

In the case of AD for seismic AD, our interest lies in the
localization of the anomaly. In other words this means to
be able to define an accuracy metric between the expected
actual anomaly (date/time of the seismic event) and that
identified by the algorithm. To our knowledge, there has not
been a definition of a metric that combines these character-
istics. In pursuit of covering this gap, the proposed metric
uses the widely known F1-Score, by additionally using the
length of the anomaly in the form of a window to compute
the difference between the predicted and the true (expected)
anomalous locations. The proposed metric is defined by the
following equation:

R =

l∑
1

F1 − (Zl × F1)

N
(12)

where,

Zl =
| tl − pl | ∗W

2
(13)

where, for each anomalous location l a degree of accuracy
R is calculated by subtracting the true location, tl, from the
predicted, pl as a factor of the window length, W. The index,
l is defined as the mid-point of the anomaly of length W. The
value Z is consequently used to calculate the proportion of
F1-score divided by the value N that represents the TP.

5.5 Anomaly Detection
With the symbolic representation of the time series, the time
series is converted to one symbolic sequence. A common
method to detect anomalies is to define subsequence S of a
window length n and calculate the EDist among all the pos-
sible subsequences of the same size. A bruteforce algorithm
specifically tuned for AD is used in our case. In this work,
we do not assume any prior knowledge, therefore the use of
a bruteforce approach for AD without a predefined anomaly
length is used for the purpose of our proposed algorithm.
The bruteforce algorithm is shown in the following figure:

Algorithm 1 Proposed Bruteforce Algorithm
figure
procedure BFDD(Bruteforce(T,n,scale))

for p=1 to T -n+1 do
NearestNeighborDist =∞
for q=1 to T -n+1 do

if p− q ≥ n then
if NearestNeighborDist = 0 then

break
else pdist(T (p...p+n−1), T(q...q+n−1)) < N

N = pdist(T (p...p+n−1), T(q...q+n−1))
end if

end if
end for // end inner loop

end for // end outer loop
if NearestNeighborDist > dist then

dist(p) = nearest
loc(p) = p

end if
FinalLocs = actualLocation = (T, loc, scale)

The algorithm has two loops one inner and one outer. In
the outer loop a subsequence is selected and is compared
against every subsequence with equal length. The last dis-
tance is then stored and the algorithm proceeds to the inner
loop. Only the subsequences which have higher distance
than the previous ones evaluated in the loop are considered
as anomalies. We can make two observations here, the first
one is that in fact we do not need to evaluate each and every
distance in the inner loop. Once the distance drops to zero,
we can safely assume that this is not an anomalous subse-
quence and proceed to the outer loop. A second addition is
to be able to detect more than one anomaly.

Admittedly, a bruteforce method is a naive method to
traverse through the search space. In this work however, the
aim is twofold: (i) Multiple anomalous subsequences can be
detected but more importantly variable length subsequences
can be detected. Depending on the length n of the subse-
quence that is input to the bruteforce algorithm, one can
identify the distance between peaks that is used by the peak
finding algorithm. This information indicates the length of
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the anomalous subsequence without prior knowledge as in
the case of SAX. BFDD, a simple method that guarantees
best results, helps understand how a representation method
with AD helps identify different kinds of anomalies and how
the reduced time series links back to the original raw time
series through the anomaly localization.

For HOT-SAX, the only parameter that affects the actual
results is the length of the anomalous subsequence. This
parameter needs prior knowledge of the dataset. The same
is stated in [8] therefore for a true no parameter AD method,
the optimization needs to be focused on the length of the
subsequence. A SAX word encompasses all the information
that the subsequence length gives, since they are linked
together. A single symbol is the length of the subsquence
divided by the length of the word. In the solution proposed
in this work, by using the bruteforce algorithm we show an
AD method to identifying both the location of the anomaly
and the peak distance (window length) for the representa-
tion method with minimal prior knowledge.

6 PERFORMANCE EVALUATION

6.1 Benchmark Algorithms
To evaluate the effectiveness of the proposed algorithm the
strategy followed in this section is to assess their perfor-
mance with similar methods that require a symbolic ap-
proximation and are considered state-of-the art. One of the
main issues to be addressed in the real datasets is the non-
periodicity of the data. Due to the nature of data collection,
there is a varying length of gaps between observations.
In fact, most algorithms consider periodic data, something
that is easy to address with a predefined window for the
symbolic approximation. In that respect we decided to
evaluate algorithms that use both approaches. Fuzzy and
GrammarViz can address both periodic and non-periodic
data while HOT-SAX addresses only periodic data.

HOT-SAX utilizes a PAA to compress the signal from
the original data points. It requires three parameters: (a) the
length of the subsequence to consider, (b) the word length,
w, for the encoding and (c) the alphabet ,a, that segments the
distribution space into a Gaussian equiprobable segments.
In contrast, GrammarViz does not require a word length
parameter.

From a statistical point of view, the CUSUM-EWMA (CE)
is not constrained by the length of the anomaly. However, it
also requires parameter tuning. The two parameters used
are the CUSUM statistic, K, and the number of past values
we are going to consider based on the EWMA statistic, λ.
The overall objective is to illustrate whether current more
complex methods with less parameter tuning are appropri-
ate for AD and how they perform in a constrained real-
world environment. All algorithms are compared by using a
novel metric, R, introduced in [5] and summarized in Section
5.4, which takes into account the subsequence length, the
predicted by the algorithm anomalous location and the true
anomalous location.

6.2 Benchmark Datasets
An increasing order of complication based on each kind of
anomaly is applied in the benchmark experiments. For the

Fuzzy method, the upper limit for the peak finding distance
was set from 10 to 150. Moreover, in HOT-SAX, GrammarViz
and the Gaussian-based fuzzy representation the alphabet
size is hardcoded to 3. It is known that a higher number
of breakpoints makes the AD more complex by unecessar-
ily increasing the Euclidean distance without carrying any
information. In [8] the authors point out that during their
experiments hardcoding the alphabet size to 3, produced
the best results but in cases with a high variability over
time a higher number might be preferable. Both parameters,
the subsequence length and the alphabet size, do not affect
the results of SAX but affect the efficiency of the algorithm.
In GrammarViz there were different results among different
starting conditions. Although the length does not affect the
AD, it affects the location and it is useful to evaluate the
algorithm under different lengths and starting conditions
based on our metric.

More specifically, for HOT-SAX the configurations exam-
ined where based around the two tunable parameters: the
length and the word. The best length/word configuration
is selected and compared against our algorithm. A variable
anomaly length from 100 to 250 was used as the length N
and four different word configurations, based on how many
data points are encoded into a single symbol from 3 to 7
were tested. The word length, w is used as the input to the
bruteforce algorithm.

For GrammarViz the same conditions as in HOT-SAX
were selected. As mentioned earlier, the algorithm can find
variable length anomalies and the starting condition serves
only as a starting point. Lastly, for the CUSUM-EWMA, the
EWMA statistic was set to a length from 10 to 100, this
ensured that the evaluation of the algorithm used a low to
a high memory statistic and the CUSUM statistic was tuned
to start from 1 to 100. A varying threshold was set from 0.1
to 1 and the best result was selected.

The use of the benchmark datasets will help us under-
stand the process and find the optimal configuration for all
algorithms. In the fuzzy algorithm the configuration leads
to an estimate of the length of the anomaly via the peak
distance parameter, which will be adjusted for the real-world
data accordingly.

6.2.1 High Intensity Anomalies

The high intensity case with similar anomalies as seen in
Fig. 6 was proven trivial for all algorithms. In the general
case, all anomalies are visible. The core components of
each algorithm, the PAA for SAX, SAX for GrammarViz
and peak finding for the Fuzzy, are able to easily decipher
the interesting cases and accurately model them on to the
representation stage.

The CUSUM-EWMA however is inconsistent as it detects
many false positives and gives less confident results. How-
ever, the dataset shown in Fig. 6 proves challenging even
for the more intelligent methods. In that case the CUSUM’s
AD remains acceptable because it has limited variation in
its FP/TP ratio. Even though GrammarViz is based on SAX
for it symbolic representation and discretization it offers
a better detection scheme. GrammarViz’s variable window
length can better model the more inconspicuous change in
the 2160th data point, pictured in Fig. 6. Both Fuzzy and
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SAX had issues with this specific anomaly. The detection
for SAX is difficult due to the insignificant change in the
mean and a fixed window length does not help to point out
the anomaly. As a result, the outcome is not visible in the
representation. For the Fuzzy method, some True Positive
(TP) values appear due to the inflexibility of the peak finding
algorithm when it comes to similar amplitude changes, as
there is no threshold or a tolerance level to reduce its peak
selectivity in terms of amplitude. However, the anomaly is
detected because the periodicity of the signal also changes
something that makes it easier for the algorithm to detect it.

Table 3 shows the best accuracy and its configuration. It
also provides a picture of how the accuracy metric works. As
seen in the magnified graphs around the anomalies in Fig. 6
the algorithm that detects the anomaly in a further point
than where the truth is has a worse accuracy calculated by
the R metric, Eq. 12.
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Fig. 6: AD achieved for the chf15 feat1 dataset: SAX( ), Nor-
malized Amplitude( ), Amplitude( ),Shape( ), CUSUM-
EWMA( ), GrammarViz( ), True anomalous( )

TABLE 3: The R Metric,Eq. 12 for the High Intensity Case

Amp. Norm.Amp. Shape SAX CE GrammarViz
(w,n) (w,n) (w,n) (w,n) (k,N) (w,n)

Chf01 feat1 (21,2) (48,3) (24,2) (133,5) (2,4) (179,7)
Accuracy (R) 100 100 99 99 77 84.53
Chf02 feat1 (21,4) (13,6) (15,2) (155,6) (17,179) (118,5)
Accuracy (R) 85.5 88.5 66.67 66.67 41.14 85.38
mitdb101 feat2 (13,8) (30,5) (25,5) (200,4) n/a (131,4)
Accuracy (R) 97 99 66 80 n/a 98.76
mitdb108 feat2 (38,2) (128,6) (126,4,6) (250,5) (5,191) 194,3)
Accuracy (R) 77.2 56.33 67.6 47 51.6 51.56

6.2.2 Low Intensity Anomalies
Fig. 7 provides an example of AD in the low intensity
datasets. Consistent with the previous results, SAX achieves
lower accuracy even when it detects the anomalies. The
issue identified is that with each different configuration, the
approximation causes significant loss of information because
the mean used by the PAA component tends to smooth the
curve. The level of smoothing causes the representation to be

less sensitive to abrupt changes, thus making it more prone
to misrepresenting important changes in the time series.
Moreover, when the sequence has a high variability as in the
case shown in Fig. 7, SAX and GrammarViz misidentifies the
interesting pattern. Interestingly, the CE is able to succeed in
this example because the process has a dramatic change in
its mean which is easy for the statistic based algorithm to
detect.

In the same case, even though the fuzzy representation
also loses information the algorithm compensates by apply-
ing a representation based on the original time series via the
peak finding. The use of both the amplitude and additionally
the gradient, provides a more robust AD as seen in Table 4.
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Fig. 7: AD achieved for the chf15 feat1 dataset: SAX( ), Nor-
malized Amplitude( ), Amplitude( ),Shape( ), CUSUM-
EWMA( ), GrammarViz( ), True anomalous( )

TABLE 4: The R Metric,Eq. 12 for the Low Intensity Case

Amp. Norm.Amp. Shape SAX CE GrammarViz
(w,n) (w,n) (w,n) (w,n) (k,N) (w,n)

Chf01 feat2 (17,2) (44,2) (27,5) (137,4) (8,186) (107,6)
Accuracy (R) 100 92 90 100 46 92.18
mitdb101 feat1 (15,10) (58,6) (11,4) (158,4) n/a (150,4)
Accuracy (R) 66.67 66.67 99 89 n/a 100
chf15 feat1 (15,10) (59,2) (15,4) (145,5) (2,119) (199,4)
Accuracy (R) 97 95 88 78.5 100 66.13
chf15 feat2 (13,8) (30,5) (17,9) (112,4) (4,164) (172,4)
Accuracy (R) 89.5 90 92.5 58.9 93 49.42

6.2.3 Complex Anomalies
The complex anomalies proved to be challenging for all
algorithms, something that can be seen in Fig. 8. In a similar
scenario to the lower case shown in Fig.7, algorithms get
trapped in the local trend change around the 1500th data
point, seen in Fig. 9 and misidentify the anomalies. How-
ever, the variable window in GrammarViz proves to be an
important characteristic that improves the detection rate.
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Fig. 8: The chf02 feat 2 dataset with its anomalous subse-
quences marked
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The scenario with three anomalies of variable length and
shape is shown in Fig. 9. When presented with different
kinds of anomalies within the same dataset, the fuzzy rep-
resentation retains a more faithful approximation in the en-
coding stage. Both the amplitude and the gradient, provide
the necessary information to better represent differences in
frequency and amplitude. The accuracy can be misleading
since the shape and the amplitude representations provide
different anomalous points. One can identify that in point
4083 the anomaly is amplitude related, whereas in point
10014 the anomaly is shape related. This kind of information
is useful to understand the nature of the change in the time
series and it can be exploited when processing the real-
world datasets. It is important to notice that GrammarViz
also works well in contrast to SAX and understand that
the variable window provides a good improvement for non
periodic signals in AD.

On the other hand, SAX, fails to impress when chal-
lenged with an unknown length and a different type of
an anomaly other than amplitude related such as frequency
related. Dataset mitdb100 provides such a case, and Gram-
marViz and SAX have some difficulties. It seems more often
than not that the SAX can be a hampering factor because its
representation mode only takes into account the mean and
not any other factors such as the gradient of a subsequence.
The CE method, also using the mean for the detection, is
unable to perform AD-something that is to be expected. The
results can be seen in Table 5.
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Fig. 9: AD achieved for the chf15 feat1 dataset: SAX( ), Nor-
malized Amplitude( ), Amplitude( ),Shape( ), CUSUM-
EWMA( ), GrammarViz( ), True anomalous( )

TABLE 5: The R Metric,Eq. 12 for the Complex Case

Amp. Norm.Amp. Shape SAX CE GrammarViz
(w,n) (w,n) (w,n) (w,n) (k,N) (w,n)

chf02 feat2 (51,3) (54,3) (36,6) (150,6) (4,91) (179,3))
Accuracy (R) 66.67 66.67 66.67 66,67 58 81.96
mitdb100 feat1 (23,5) (36,4) (141,2) (113,5) n/a (195,3)
Accuracy (R) 66.67 66.67 58 66.67 n/a 48.51
mitdb100 feat2 (24,5) (21,6) (40,3) (189,6) n/a (173.6)
Accuracy (R) 65.3 65.3 65.3 56.67 n/a 52.25
mitdb108 feat1 (69,3) (4,9) (82,4) (120,4) (1,3) (191,3)
Accuracy (R) 73.2 50 47 46.5 61.6 80.14

6.3 Real World Datasets
The real world data were gathered by defining a region
similar to the one seen in Fig. 1. Each satellite collects a
varying number of readings per date based on how long
it stays above the defined region. This is a result of their
different orbital trajectories. This behavior causes a data
collection problem because it provides inconsistent data.
Despite taking great care not to introduce artificial anomalies
and making sure to use as many data points as available, it
is difficult to eliminate information loss. In Fig. 10 artificial
anomalies are clearly visible. In that case taking the median
of each date, that has readings, introduces artificial anoma-
lies. The same occurs when we take the mean for each date
because of the variable number of readings problem. Four
different cases were considered: (a) the mean, (b) the me-
dian, (c) the first data point of each day and (d) division by
a user set divisor. After some consideration it was decided
to utilize method (d) this introduces the smallest number of
artificial anomalies. The scale of the experiments requires to
run each algorithm in all 189 different time series leading
to over one thousand results. Due to space limitations, we
present the results from the central grid of each investigated
region similar to Fig. 1. That is the most representative
region and includes the seismic event where appropriate.
Nevertheless, as the experiments were run for all the grids,
similar conclusions can be drawn.
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Fig. 10: Artificial anomalies caused by the median

The experiments carried out in this section derive knowl-
edge based on the empirical results from the benchmark
datasets. In that case, in each experiment with the bench-
mark datasets a common theme arises. Each algorithm has
two parameters: (a) the subsequence window length chosen
and (b) the total time series sequence length. This ratio can
be used as a guiding principle for the parameters to be
applied in the real world dataset. The ratio ranges from 12
to 20. This means that the anomalous subsequence is 12 to
20 times smaller than the entire sequence’s length. In these



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

datasets we will apply a ratio of 12 times since this is closer
to what was used in the smaller datasets with a length of
2,500, which is closer to the number of real world data points
we could gather. This means that the window length is set
to 6 in both SAX and GrammarViz with the word length set
to 4 and the alphabet to 3. Similarly for the Fuzzy algorithm
the peak distance is also set to 6.
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Fig. 11: Swarm A, B, C center grid for U.K

The CE also uses a length that is the memory element of
the EWMA statistic and a similar ratio factor is used. This
translates for the CUSUM statistic, k, to 1 and for the EWMA
lambda to 6.

As seen from the experiments, the results that prevail
from the experiments carried in time series do not inspire
confidence. All algorithms were tested in the benchmark
datasets and their AD capabilities are well documented.
However, in Table 6 the algorithms detect anomalies even
when they should not, indicating that there is either: (i)
a problem with the data collection, (ii) interference from
other sources, (iii) False Positives from the algorithms (their
drawbacks are already known from the benchmark data)
or (iv) other aftershocks that were not taken into account
originally. Because of the aforementioned issues, nothing can
be suggested about the results with certainty.

In Table 6, the detected anomalous dates by all algo-
rithms are shown. For China, the data range was from Febru-
ary to October. The seismic event occurred on 03/08/2014.
Nevertheless, there is no specific pattern among the Swarm
data or even among the main and the control regions that
can be deciphered. While we know for a fact that all al-
gorithms are able to perform AD convincingly as seen in
the benchmark experiments, here we are presented with
conflicting results. Similarly, for Greece’s 29/08/2014 seis-
mic event in Fig. 14 and Table 6 a range of February to
January can be seen. Lastly, for Peru the data from January to
February can also be seen in Fig. 13. The detected anomalies

in Table 6 show no specific pattern once again. As already
mentioned, the algorithms were specifically selected to ad-
dress the unknown nature of the EM signals with respect
to their duration, their amplitude and frequency changes.
In the case of the real-world data the results fall short but
nevertheless there are some interesting points to consider.

The main issue can be attributed to the real-world data
sources. Even with the employment of artificial anomaly-
avoidance techniques, the data are in reality very sparse.
A revisit period of 4 days for a single satellite is not
enough for the precise monitoring of EM variations above
a specific region. To create an accurate model of normality
there needs to be as much data as possible in order to
provide high density and high resolution coverage. This
will provide an almost continuous time series model that
can be used to deliver consistent and confident results for
our purpose. Solutions provided by data interpolation, or
aggregation techniques, are employed to alleviate the sparse
data problem but cause information loss themselves, thereby
either unwittingly introducing new anomalies when they
should not or causing others to fade. In the end, they are
undoubtedly changing the landscape of the patterns of the
original time series.

Furthermore, the use of three identical satellites to
provide measurements for a single region was originally
thought to provide more data if combined. Therefore it
would enable us to overcome the problem of monitoring the
daily EM variation above a specific region. On the contrary,
because the satellites fly on parallels this was not the case.
Their orbital paths instead of increasing data availability,
produce data that are duplicates in terms of time and can
only be used for validation purposes.

Moreover, SWARM B’s data alone cannot be used to
counter this problem. Measurements and instrument cali-
bration are different and they cannot be used to provide
an immediate solution regarding data sparsity. Most of the
issues are caused by the satellites’ data availability which
is difficult to overcome. The amount of data available for
each date also plays a significant role but it does not af-
fect the processing as much as data availability. This issue
can comfortably be addressed by the aggregation methods
available as described earlier, and does not change the time
series landscape.

7 CONCLUSION AND FUTURE WORK

The work presented, provides guidelines that can be used
to: (i) avoid introducing artificial anomalies, (ii) counter any
issues with data sparsity and (iii) show how variable length
AD methods work in different cases by using a new metric.

The experiments show that the proposed method can
model more accurately each kind of anomaly through the
separate representation model in its three forms. In the
more complex cases both SAX and GrammarViz disappoint
because the PAA uses the mean, thus it only picks changes
in the amplitude as shown by the experiments. When the
anomaly becomes more complex than an amplitude change,
even with prior knowledge of the length both SAX and
GrammarViz have the same limitations. As for the CE al-
gorithm, it comes as no surprise that it provides good AD
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Fig. 12: Time Series for the China region
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Fig. 13: Time Series for the Peru region
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Fig. 14: Time Series for the Greece region
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TABLE 6: Dates with EM anomalies as identified by the algorithms

Swarm A
China Greece Peru

Method Main Control Main Control Main Control
CE 03-04-2014, 15-11-2014 12-10-2014, 05-08-2015 10-10-2014 12-09-2014, 19-10-2014 02-08-2014, 14-06-2015, 15-08-2014 14-02-2015
Amp 14-02-2015 21-09-2014, 15-08-2014, 21-08-2014 10-08-2014, 20-08-2015 25-09-2014 10-10-2014, 14-04-2015 20-09-2014, 14-02-2015
Amp Norm. 12-06-2014, 24-07-2014 20-05-2014 24-06-2014, 14-05-2014 14-12-2014 08-08-2014, 30-07-2014 29-10-2014
Shape 02-08-2014, 19-08-2014, 11-11-2014 09-09-2014 14-06-2014 24-09-2014, 07-08-2014 29-09-2014 13-09-2014, 03-08-2014, 20-06-14
GrammarViz 27-07-2014 23-05-2014, 17-12-2014, 21-07-2014 20-09-2014, 14-02-2015 20-09-2014, 14-02-2015 11-10-2014 15-07-2014, 14-02-2015
HOT-SAX 22-09-2014, 14-10-2014 09-09-2014 15-08-2014 13-06-2014 12-07-2014, 10-06-2014 05-09-2014

Swarm B
China Greece Peru

Method Main Control Main Control Main Control
CE 20-09-2014, 14-02-2015 20-09-2014, 14-02-2015 20-09-2014, 14-02-2015 24-07-2015, 11-08-2014, 14-01-2015 12-01-2015 14-08-2015
Amp 01-09-2014 13-11-2014 20-09-2014, 14-02-2015 20-02-2015, 29-08-2014, 14-10-2014 01-07-2014, 15-07-2014, 14-02-2015 07-07-2015
Amp Norm. 13-08-2014, 10-07-2015, 05-09-2014 11-09-2014 04-06-2014, 19-07-2014 20-09-2014, 14-02-2015 20-09-2014, 14-02-2015 10-08-2014, 19-08-2014
Shape 04-08-2014, 11-08-2014 03-10-2015 01-08-2014, 15-08-2014 19-08-2014 20-08-2014 20-08-2014, 09-09-2014
GrammarViz 08-05-2014, 23-10-2014,18-09-2014 26-06-2014, 18-09-2014 20-09-2014, 14-02-2015 01-08-2014, 19-08-2014 10-08-2014, 09-09-2014, 21-09-2014 20-08-2014, 14-09-2014
HOT-SAX 20-09-2014, 14-02-2015 15-09-2014, 22-09-2014 10-09-2014 24-09-2014 14-09-2014, 14-02-2015 28-09-2014, 04-11-2014

Swarm C
China Greece Peru

Method Main Control Main Control Main Control
CE 20-09-2014, 14-02-2015 20-09-2014, 14-08-2014 20-09-2014, 14-02-2014 06-06-2014 02-10-2014, 14-02-2015 04-08-2014, 21-08-2014
Amp 11-10-2014 20-09-2014, 20-07-2014 10-08-2014 28-08-2014, 14-02-2015 05-09-2014, 14-09-2015 14-10-2015
Amp Norm. 20-09-2014, 05-03-2015 20-09-2014, 14-02-2015 22-09-2014, 06-10-2014 08-09-2014, 08-08-2014 14-07-2014 20-09-2014, 14-02-2015
Shape 20-06-2014, 14-07-2015 25-08-2014, 09-09-2015 20-08-2014, 14-02-2015 29-09-2014 11-01-2015 02-10-2014, 28-09-2015
GrammarViz 10-05-2014, 12-10-2015 30-05-2014, 26-10-2014 19-08-2014, 20-09-2014, 01-09-2014 04-09-2014, 14-08-2014 09-11-2014, 02-19-2015 02-11-2014
HOT-SAX 14-09-2015 15-09-2014 03-06-2014 05-09-2014 15-10-2014, 28-10-2014 02-09-2014, 14-02-2015

in terms of changes in the mean but it underperforms in
different anomaly cases.

For the Fuzzy method, an important function to notice is
that different anomalies are detected when using the differ-
ent representations and one can decipher multiple anomaly
types. This is a useful feature to understand the type of
anomaly depending on the representation used. This can
be further exploited in the future to provide a combined
metric based on the kind of anomalies that are detected.
However, there are also some shortcomings, specifically in
the complex cases. Because of the complexity of the fuzzy
system and its rule-base, the system becomes oversensitive
to changes, something that is to be expected based on the
research. One solution would be to exclude some of the
descriptive fuzzy membership functions. A better solution
that can be investigated in the future is to include adaptive
membership functions based on the input variables.

In all, it is unclear whether there is a relationship be-
tween EM anomalies and seismic events. Despite the current
research suggesting otherwise, in our case it is difficult to
assess whether the shortfalls lie in the choice of algorithms,
the data quality or both. Nevertheless, it is important to keep
the issues separate.

Regarding algorithms, all kinds of anomalies presented
in our work should be of equal focus. More specifically,
the attention has to be on non-periodic data. The unknown
nature of data and its collection methods have to be taken
into account. In future work, more unsupervised algorithms
that employ (true) free parameter tuning will be the focus of
our research.

Furthermore, regarding data collection, a few points are
worth mentioning. While satellites observe the whole earth,
it can be said that their revisit time and orbit prove to be
an insurmountable constraint. This fact alone is an issue in
terms of data quality and data sparsity. As such, it might
be worthwhile to rethink their use in terms of geomagnetic
observations above a specific region.

Potential problems can be solved as in the case of
SWARM by setting different orbital paths instead of fixed
parallel flights. With the same configuration, data from more
satellites can be combined. Satellite data quality and its
shortfalls, is something that to our knowledge has not been
addressed in our field and this study has provided some
valuable insight into a real-world application.
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