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Abstract

In this work we introduce a system pipeline for the analysis of earth’s electromagnetic
field that is used to analyse precursors to earthquakes. Data gathered by the Swarm
satellites are used to present the utility of our system. Our objective is to provide a
streamlined method to analyze electromagnetic data over a region and investigate the
relationship of precursory signals to seismic events. The process follows three distinct
stages: data extraction, data pre-processing and anomaly detection. The first stage
consists of the region selection and data extraction. The second stage consists of four
different pre-processing methods that address the data sparsity problem and the cause
of artificial anomalies. The last stage is the Anomaly Detection (AD) of the Swarm
satellite data, over the investigated region. The different methods that are implemented
are known to perform well in the field of AD. Following the presentation of our system,
a case study is described where the seismic event of 6.2 Mw is in Ludian, China and
occurred on 3rd August 2014. The event is used to present the usefulness of our
approach and pinpoint some critical problems regarding satellite data that were
identified.

1 Introduction 1

Visualization of time series data focuses on the understanding of patterns, anomalies 2

and variations in the context of data mining. For a long time the only available method 3

for time series analysis was the visualization and subsequent analysis from a human 4

expert [1], [2]. The expert becomes accustomed to the visualisation process and is able 5

to understand patterns and distinguish between normality and abnormality in time 6

series data. 7

Since the advent of the information era, the visual inspection of such time series by 8

human experts is still a useful approach for verification or data labelling purposes. 9

However, the continuous growth of data availability makes the manual analysis task 10

slow and impractical. The automation of this process contributes to the quick, reliable 11

and efficient detection of anomalous patterns in time series. Moreover, the automation 12

advances the exploration and deeper understanding of the causes of unexpected 13

variations. In combination with the knowledge of human experts, a system can outweigh 14

the benefits of only a human visual approach. In geoscience, as in other fields, data 15

growth will be especially crucial to understand the causes of such variations with the 16

aim of making possible predictions in the future. 17

Satellites sensors have been used to provide a more reliable source of electromagnetic 18

(EM) data and give a bigger picture of analysis of time series models for many years. 19
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Swarm satellites’ sensors complemente the magnetic field variations with plasma, 20

accelerometer and electric field measurements. The Swarm satellite constellation [3], 21

monitors earth’s magnetic field (EMF) and it consists of three satellites. Satellites A 22

and C fly side by side and at an altitude close to 450km and a distance of 100km from 23

each other. Swarm B flies at an altitude close to 510km on an orbit almost 24

perpendicular to that of A and C. It was thought that in order to address the problem 25

of data availability a data combination from the satellites that fly in parallel could be 26

used. The data density alone is an opportunity to address some of the limitations 27

present in the literature and focus on algorithm parameter selection, Anomaly Detection 28

in a short time window and simplicity as described in [4]. Other limitations such as 29

data quality, data gathering frequency and data integrity have also been a problem 30

described in [5] that do not allow reliable forecasting. It is our objective to address 31

those problems and propose new solutions. 32

The evaluation and analysis of Swarm data is the focal point of our study. A visual 33

analysis of time series data is nowadays an inefficient task that is better handled by the 34

addition of automated methods [6]. Therefore, we propose an automated analysis tool 35

that streamlines the process of Swarm data by presenting different methods to handle 36

data sparsity and other data quality limitations. AD methods are here used to identify 37

possible precursory variations in the earth’s magnetic EMF due to seismic events. 38

Aside from the use of visual feedback or simple statistical analysis, the main 39

question is the accuracy of AD and to find a reliable way to eliminate any possible 40

interference from other sources (human, space or other natural causes). Moreover, not 41

many software packages exist that streamline the process from satellite sources and 42

perform data analysis towards AD. The adoption of such software packages is slow 43

because there is no standard format that exists in either satellites or terrestrial sources. 44

This fact makes data extraction a painstaking process. Furthermore, frequently there is 45

missing data, data quality issues, and general data availability problems that pose a 46

significant obstacle to the analysis and streamlining of a process. Most existing 47

solutions circumvent those problems by focusing on each stage one by one. It is then 48

understandable, that this makes the processing slower and does not show the whole 49

picture of where the difficulties in processing lie. It is our objective to do so and provide 50

an insight into how to address some of the previously mentioned problems. The 51

proposed prototype that combines data extraction, visualization and AD, adds another 52

integral part to the body of work concerning satellite data sources and EM variations 53

for studying seismic events. 54

The paper is organized as follows. In Section 2, the related work is discussed and 55

how this work fits in the visualization analysis scope. Section 3 describes the 56

architectural design of the prototype and the functional design. Section 4 discusses the 57

nature of the real data used. Section 5 presents a real world application and its results 58

are discussed. In Section 6 we give a summary and further possible directions regarding 59

the future work and possible solutions within the field of data mining. Finally, a 60

Appendix section is included at the end that defines the main terms used in our work. 61

2 Literature Review 62

The movement of earth’s lithosphere releases large amounts of energy through seismic 63

events. Even though those large seismic events are rare, they provide a unique 64

opportunity to test the hypothesis that seismic events could be anticipated after EM 65

variations. Nowadays, the large breadth of sensors available provide the necessary data 66

that make this investigation easier than ever before. There is a large body of scientific 67

evidence that implies the existence of precursory signals in different datasets. Most 68

studies are predicated on the fact that EM anomalies can occur prior to seismic 69
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events [7] [8]. Moreover, they confirm the presence of EM disturbances prior to seismic 70

events within an effective distance (ED) of up to 4000km where an anomaly can be 71

detected [9]. 72

Different kinds of data have been used to investigate this relationship. In an early 73

study, Lie et al. uses the Total Electron Content (TEC) measurements using the 74

interquartile (IQR) and median range as thresholds to detect any precursory anomalies 75

in the ionosphere [10]. TEC data were also analyzed with an Artificial Bee Colony 76

Optimization algorithm in [4]. More recently in [11] the authors propose a statistical 77

approach, the Geometric Moving Average for change detection in Outgoing Longwave 78

Radiation with promising results. Variations in the very low and ultra low frequency 79

bands have been the focus in [12], [13]. 80

Satellites have provided bigger and more accurate datasets to assess the connections 81

of precursors and seismic events. Data from the CHAMP and DEMETER satellites 82

were used to study ionospheric perturbations in [14]. In [15], the ionospheric ion density 83

by the DEMETER satellite was investigated. Ultra Low Frequency (ULF) signals in 84

that range have been explored as potential precursors to seismic events since several 85

decades ago [16]. More recently, adding to that theory, similar studies with Swarm data 86

have published positive results regarding EM variations as precursors to seismic 87

events. [17], [18] with the focus being the Pc3(22-100 mHz) wave range [19]. 88

The constant data growth has caused need for more elaborate methods for the 89

analysis of time series data, in the name of reducing and approximately modelling the 90

original time series. A common family of time series representation methods are 91

approaches that map numbers to symbols directly from the time series without any 92

transformation to another domain. Most methods used in our prototype use some form 93

of symbolic approximation. The following methods are implemented as part of our 94

system: HOT-SAX [20], 1D-SAX [21], Fuzzy Shape-based [22] and CUSUM-EWMA 95

(CE) [23] . The inclusion of such methods into software models has not been a priority. 96

However, a few software solutions exist that provide both a visualization tool and an 97

AD process and are going to be discussed below. 98

As far as streamlining the process of data processing and data AD a few tools have 99

been developed but do not go so far as to combine the two. A visualization tool for 100

Swarm data is supplied by the European Space Agency (ESA) [24]. The amount of data 101

gathered everyday from such missions provides a first class opportunity to analyze and 102

visualize geomagnetic data in an open source environment. The user can select which 103

sensor’s data and on which dates to visualize. There is also the ability to generate 104

histograms and a time series view of the data and analyse them manually. 105

Elsewhere, an AD tool for pattern discovery in time series was implemented in [25]. 106

GrammarViz is a tool that presents a visualization and a grammar rule mining of time 107

series data. It utilizes the SAX approach for symbolic representation and discretization 108

and it is able to find subsequences of variable length. It is also useful to classify 109

patterns based on their symbolic representation. However this tool addresses only the 110

AD requirement in time series analysis. 111

The project COPEPOD [26] is another time series analysis tool. It analyses 112

phytoplankton data gathered by satellites which are processed into time series graphs. 113

It is used for long-term ecosystem monitoring. This tool fulfils only the visualization 114

requirement in data analysis. It is useful to see that many of these approaches would 115

benefit from a unified framework that would provide forecasting, AD or any other 116

analysis method. 117

A recent work in the field of EM variations acting as precursors to earthquakes has 118

been carried out by [27] based on a theoretical framework proposed in [28]. This work 119

lays the foundations of data analysis in a geophysical environment on the 120

earthquake-ionosphere coupling. They present promising results but their analysis is 121
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Fig 1. Data structure throughout the different stages of the process

only based on ground-based stations. The main difference in our work is that gathering 122

data from satellites introduces more problems as the data is not continuous in the 123

region we investigate. 124

TIMESAT, a tool for processing satellite time series sensor data based on their 125

seasonality was proposed in [29]. The use of MODIS sensor data has generated a 126

number of applications for both visualization [30] and AD. The premise of this 127

visualization method is that the user is required to create a grid of interest for data 128

extraction, something similar to our prototype. Using MODIS data, a method called 129

Breaks For Additive Season and Trend (BFAST) was developed to monitor changes in 130

land use and performs change detection in [31]. Carrying the work forward, a toolbox 131

for downloading and processing MODIS data has been developed in [32]. 132

Taking the above into account it becomes apparent that the research community 133

focuses on (a) either the data extraction and visualization from different data products 134

or (b) in the data analysis. This happens in two distinct stages without a streamlined 135

and unified framework. Therefore, the two stages of data analysis are considered as two 136

entirely different processes. This is due to the different formats available that do not 137

allow the existence of a global framework that can handle all kinds of satellite or 138

terrestrial data. This causes difficulties in assessing the utility of data mining methods 139

because there are far too many issues ranging from different kinds of data, problems 140

with data quality and data sparsity. In this work it will be shown that the creation of a 141

prototype which bridges the gap from data extraction to algorithmic processing for AD 142

is a pertinent issue that has not been explored in the literature. 143

More importantly, none of the above cases considers the triptych of data extraction, 144

data analysis and AD into a single system. It is our interest to be able to address this 145

problem by looking at it through a specific data tool. This way we are able to focus on 146

all the stages of geophysical data analysis in satellite data and will be able to better 147

pinpoint where the problems from that perspective lie in every stage of the data 148

analysis process. 149

3 Design 150

3.1 Architectural Design 151

An overview of the proposed framework together with the data structures in the 152

processing stages is shown in Fig. 1. The tool is comprised of three distinct functional 153

components: (i) data extraction, (ii) pre-processing and (iii) AD. Each output provides 154

the input to the next stage in a streamlined process. In the following subsections each 155

stage will be described in detail. 156

3.1.1 Data Extraction 157

In this work, the magnetic Vector Field Magnetometer (VFM) Level 1B(1Hz) data were 158

used. All data were downloaded from [33] and are stored in cdf (Common Data 159

Format), which is used for the storage of scalar and multidimensional data [34]. Each 160

cdf file is comprised of 22 attributes, each of which has 86,400 records. That is equal to 161

one reading per second in a single day, provided there are no data gaps. The fields of 162

interest to our study are the date of the measurement, the longitude, the latitude and 163

Magnetic Field Intensity (MFI) from the VFM frame. The resolution of the VFM works 164

in a per second basis and each reading measures the intensity of EMF. In its raw format 165

the EMF is a vector quantity. It has three orthogonal strength components (bX North, 166
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bY East and bZ vertical), which describe the directions and their respective strengths of 167

intensity. In order to obtain the total intensity of the magnetic field we need to convert 168

the three axis components to a single intensity given by Eq. 1, 169

| ~B| =
√
b2X + b2Y + b2Z (1)

Data extraction includes the definition of the region under investigation. Each 170

satellite overpass has close to 100km distance from the next. The region under 171

investigation also alludes to the data gathering problems the Swarm trajectories cause. 172

For a deeper understanding, Fig. 2 shows the raw plot of data from the center-point grid 173

without any pre-processing. The periodic oscillation is due to the latitudinal difference 174

on the satellite orbit. When the satellite approaches the equator, i.e. the latitude is 175

close to zero degree, the magnetic field is getting the weakest, whereas approaching the 176

poles, i.e. the latitude is close to ±90 degree, the magnetic field is getting the strongest. 177

Fig 2. Raw data before pre-processing and magnetic field removal

We notice two main problems in: (a) Irregular gaps in readings (the satellite might 178

not pass from the defined Grids), or (b) Irregular number of readings per day due to the 179

satellite’s overpass. This introduces problems such as irregular patterns in the time 180

series. Fig. 4, shows two different cases of satellite overpass. One complete for each Grid 181

and one incomplete, that enters into neighboring Grids. To balance these problems and 182

give equal weight to each day with readings, four different pre-processing methods are 183

introduced in the second stage. Last but not least the processed outputs are fed to the 184

final AD stage. 185

The architectural design of the prototype can be seen in Fig. 3, in which a class 186

diagram of the processing stages is presented. The proposed streamlining prototype 187

consists of three distinct stages: (a) Data Extraction and study area definition by the 188

Create Grid function, (b)Data Pre-processing and (c) Anomaly Detection. The first and 189

an integral part of the algorithm is the extraction of the time series sequence from the 190

area in which we want to conduct our research. Every other component is based on the 191

data extracted by the first stage. This function accepts as inputs the parameters of the 192

seismic events. This includes its coordinates: longitude and latitude, the radius and the 193

date when the seismic event occurred. Its function is to extract the data we require 194

from the already imported Swarm files to the system. It then compares them against 195

the satellites’ longitude and latitude overpass in order to place and extract each 196

measurement to the corresponding reference Grid as shown in Fig. 4. 197

Fig 3. Class Diagram of the proposed prototype

In order to implement the square Grid, the function has to set the the limits of the 198

Grid and extract the relevant data. The center-point of the study area is the epicenter 199

of the seismic event. By using the coordinates as the center-point, a square grid with 200

dimensions corresponding to the user’s set radius is created. Each degree corresponds to 201

100km. After creating the grid, the measurements have to be aligned in the correct 202

order. This problem occurs due to missing dates in our dataset. Dates without data at 203

all caused by instrumentation errors cause gaps in the time series. Moreover and more 204

importantly, each date has a day and a night cycle. A satellite might pass from the 205

same square Grid twice within the same date. Because there is a natural diurnal 206

variation in the intensity of the geomagnetic field during different times, if those 207

measurements are aggregated important information is lost during the aggregation 208

phase. Therefore each single date has to be composed of two consecutive data points: 209

one for daytime measurements and one for night-time. 210
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Once the above problems are addressed the vector that includes all the 211

measurements of the square Grid is created and is ready for analysis. Data sparsity is 212

another problem that has to be addressed by our tool. The irregular overpasses of the 213

satellites (when an incomplete pass occurs) over a square Grid creates a data integrity 214

problem. The Swarm satellites have a 4 day revisit period which can be higher if the 215

satellite makes an overpass outside the predefined square grid. For that reason, some 216

well defined aggregation methods had to be implemented. Each one of them may or 217

may not introduce artificial anomalies. This is clearly visible in the visualization stage, 218

where the user is able to select which of the available data pre-processing methods they 219

want to proceed to the AD stage. 220

The problems described show why the pre-processing stage is so important. The user 221

can select which aggregation method to apply. The aggregation method does not 222

aggregate together the dates with measurements, but it aggregates the measurements 223

gathered within the same daytime or nighttime cycle. It is required because satellites 224

gather measurements with different amount of data per each pass. Throughout the 225

pre-processing stage, inconsistent measurements were causing anomalies. For example, 226

it was noticed that if there are only 5 seconds of measurements in a nighttime cycle and 227

60 seconds of measurements in the next nighttime cycle an artificial anomaly is created 228

due to the inconsistent number of readings. We circumvent artificially induced 229

anomalies by implementing four different pre-processing methods. 230

3.1.2 Pre-processing Methods 231

As mentioned earlier, we expect to discover anomalies caused by seismic events in the 232

ULF band of the signal and specifically in the range of 22-100 mHz, a type known as 233

Pc3. Therefore, following the data extraction and the careful data munging, the next 234

step is to bring into focus the Pc3 type waves. In this case we calculated the CHAOS 235

geomagnetic model [35] in conjunction with applying a high pass (16 mHz) Butterworth 236

filter, in order to filter out the main magnetic field, the ring current and to minimize 237

the effect of any other interference/noise. The final AD is going to be performed on the 238

residuals. Actually the problem of different strengths of intensity over different altitudes 239

could be corrected by a global model, such as CHAOS. This is very important to the 240

sensitivity of the algorithms because each small variation causes a significant change in 241

the time series. 242

The pre-processing methods give a picture of the data quality we have in an instance. 243

In this section, we performed different aggregation methods in order to validate the 244

algorithms and test the possibility of introducing artificial anomalies when an 245

aggregation method in the residuals is applied. It is shown that there is a slight 246

variation that it is difficult to assess visually for potential anomalies. It was decided 247

that the mean method will be used for the experimental section. 248

Mean Visualization: This method takes the mean for each date with 249

measurements. 250

Minimum Visualization: This method can be thought as a local mean within 251

each Grid. It first calculates what is the smallest number of readings per each Grid, 252

that is the day with the smallest overpass. It then calculates the mean using the 253

minimum number, that might be different for each Grid, separately. 254

Median Visualization: This function takes the median for each date with 255

observations. Because in most cases we have 52 to 53 readings for a full overpass the 256

median and the mean have similar results. 257

User Defined Mean: This function gives the user the ability to select how many 258

data points they want to aggregate per each day and evaluate the time series for 259

artificial anomalies visually. It is a form of global mean that applies to every Grid. 260

However, if this mean is higher than the available measurements within a Grid’s date 261
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then this smaller number, that represents the smallest amount of readings available in 262

this date, is selected instead of the user selected mean. The default value is the five first 263

samples. 264

HeatMap: The notion of average is different when the user selects the heatmap 265

function. The heat map function only uses one value for each grid and that is the mean. 266

The user selects a value of how many dates the algorithm will take the mean. The 267

usefulness of the heat map is based on the mean number the user sets. Fig. 4 uses the 268

default value of 5, meaning we aggregate sets of 5 days. It represents different EMF 269

levels in each grid. In that case, it helps to visually detect intensity variations in the 270

investigated region during the 35th day from the start of the observations, on 5th May. 271

Due to the limitations imposed by the orbital paths of the satellites there are many 272

dates within the grids that have no data. A small aggregation value will have many 273

empty valued cells. Selecting a larger mean value will have less empty cells and will give 274

a better overall picture of the difference between dates. The heatmap function helps the 275

user understand the magnetic variations per aggregation basis. 276

Fig 4. The intensity heatmap created with the default value of 5 days overlayed with
the region under investigation

3.1.3 Anomaly Detection 277

The output of the pre-processing method is used as the input to any of the selected AD 278

methods. In Fig. 1 the structure of the data with the mean as the preprocessing method 279

is shown. Each dataset in its final form before AD consists of: (a) the number of grids 280

based on the selected region, (b) the number of dates (both day and night) in separate 281

data points that we have a reading, and (c) the final EMF per each day or night 282

aggregated by the selected pre-processing method. All other data preprocessing 283

methods have the same data structure with slight variations in the intensity of certain 284

dates, as seen from the figures. A brief description of the AD methods is given in the 285

Appendix section. 286

3.2 Functional Design 287

3.2.1 Tool Interface Design 288

A view of the GUI is shown in Fig 5. A brief description of its parameters is given below. 289

Latitude: A float data type in the algorithm is the geographic coordinate that 290

specifies the north-south position of the epicentre of the seismic event. 291

Longitude: A float data type in the algorithm is the geographic coordinate that 292

specifies the east-west position of the epicentre of the seismic event. 293

Date: In DD/MM/YYYY format is the date that the seismic event under 294

investigation occurred. We are interested in anomalies that occurred before and after 295

the seismic event. This will allow us to understand the influence of such events to the 296

geomagnetic field. 297

Fig 5. GUI of the developed software tool
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Radius: A float data type can be of value [1..N ] with N being up to a few 298

thousands of kilometers based on [9]. The Radius defines the distance from the 299

epicenter to the edge of the Grid. 300

In Table 1 we provide the parameters’ working range for each method. This working 301

range is based on hundreds of experiments in benchmark data [20], [22]. 302

Table 1. Ranges of parameters for AD

CE
(K,λ)

Fuzzy
(P,w)

1D-SAX
(p,s,w)

SAX
(p,w)

Parameters (0.1-10.0,1-N) (1-10,1-10) (2-8,2-8,2-8) (1-10,1-10)

For CE the range of the λ value has a direct relation to the size of the input dataset 303

because it denotes the amounts of historical values the algorithm is going to take into 304

account. 305

For the Fuzzy Shape-based method, the peak distance has to be selected in direct 306

proportion to the size of the input dataset. The peak distance parameter affects the 307

selectivity and the final number of peaks that describe the reduced, after the 308

pre-processing, signal. 309

For SAX, all parameters have to be selected in proportion to the size of the input 310

dataset but there is no other requirement. 311

1D-SAX can accept only parameters on the power of two. The conversion stage to 312

symbols is based on a binary conversion. The PAA has to be of a larger value than the 313

slope. 314

3.2.2 Time Sequence of Functions 315

A sequence diagram of the prototype is shown in Fig. 6. The first step is the data 316

extraction that is performed by the Create Grid function from the cdf files. This 317

accepts four parameters, the longitude, latitude, radius and date of the seismic event. 318

The date is required for the time series plots because it shows where the seismic event 319

occurred in time. The plots are the different pre-processing methods implemented to 320

eliminate the possibility of artificial anomalies. 321

Two of the pre-processing methods, the heatmap and the user defined mean require 322

the user’s input before they return a result. If the selection is left empty then the 323

default value of five data points is used to aggregate the first five data points in each 324

date with measurements for both cases. The next stage is the AD stage. All of the AD 325

methods make use of the last representational method used for pre-processing and 326

perform AD in this particular time series sequence. The AD methods return their 327

results to the plots printed by the pre-processing methods. As a final step an output file 328

is also created. The output file shows the accuracy, the identified anomalous locations 329

and the respective dates of the anomalies. 330

Fig 6. Sequence Diagram of the proposed prototype

4 Experimental Method 331

As a case study, we selected the Ludian earthquake with a scale of 6.2 Mw. This 332

earthquake occurred within the south-north seismic belt, mainland China, which was 333

regarded as a strike-slip event, with the strike along 70 ◦ and 160 ◦ for the two nodal 334

planes [36]. For the desirable evaluation criteria we need to make sure that we attribute 335

the results to the right cause. For that reason we have to use two more regions in 336
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addition to the investigation. Any anomalies detected are expected to appear in this 337

region. The second region is adjacent to the region of the seismic event and is regarded 338

as the control region. This region is selected to eliminate the possibility of other seismic 339

events causing EM anomalies because of ”leakage” onto the other region. A third region 340

has also been defined, which will be the ground truth and is a physically dormant 341

region. The defined regions are the main control and ground truth (U.K.) and provide 342

the experimental data. Their coordinates are shown in Table 2. Moreover, as part of 343

our analysis, a useful indicator of classifying the anomalies is the Kp-index [37]. Kp 344

index is estimated every 3 hours by measurements of the intensity of the magnetic field. 345

In Fig 7, we have annotated the times of high intensity with a star symbol. They are 346

the following : (a) 05-05-2014 00:00-03:00, (b) 22-06-2014 21:00-00:00 and (b) 347

19-08-2014 09:00-12:00. 348

Fig 7. Planetary Kp-index, with the periods of high intensity annotated

Table 2. Investigated seismic regions and their coordinates
Location, Magnitude, Depth Epicenter Control Region Ground Truth (U.K.)

(Mw), (km) (Lat, Lon) (Lat, Lon) (Lat, Lon)
China, 6.2, 12 27.19◦ N 103.41 ◦ E 27.19 ◦ N 113.4◦ E 54.59◦ N 5.93 ◦ E

Based on the trajectory of the satellites the overpass of each from the predefined 349

square grid can give a different number of readings. The number ranges from 5 to 64 350

per day or night cycle. Data extraction is not a simple task, the data has to be 351

evaluated for the processing. The first issue identified with the data was the size of each 352

square grid. We need as many data points as possible from each square grid to create a 353

reliable and consistent time series sequence. However, the larger the square the higher 354

the probability of interference from other sources. Increasing the resolution of the 355

square is disproportionate with data quality. The optimum distance between the seismic 356

event and the satellite projection was estimated using the Dobrovolsky formula 357

R = 100.43∗Mw [9] with Mw the magnitude scale, giving a proposed formula to select the 358

Effective Distance in kilometers. Effectively, this was translated to cover ±5◦ in 359

longitude and ±5◦ in latitude from the epicenter, making the grid 1000x1000km. 360

When we were confident about the validity of the measurements, the next step was 361

to create the time series sequence. It is known that the satellites have a revisit period of 362

4 days on average, this leaves us with a gap of 4 days per each square, something that 363

was not always the case. This also poses another significant problem. The satellite 364

might not make a full pass over the grid every time. This creates inconsistent results as 365

in each square we have a variable number of measurements. If a satellite does an 366

incomplete pass through a square grid it provides less data points to work with. In 367

order to make sure that no artificial anomalies are introduced, four aggregation methods 368

are implemented, described in Section 3. In addition, with the removal of the main 369

magnetic field with the CHAOS model, these variations are kept at a minimum. 370

The MFI has a daily oscillation called diurnal variation with a periodicity of almost 371

a day [7]. The satellites pass in different times from each square and sometimes might 372

pass twice during a given date. This creates another inconsistency problem because we 373

have both day and night measurements within a square but the same does not occur in 374

all square grids. Following that, we have to divide each date into day and night cycles. 375

This process also creates more data points as described in the algorithm. 376

One last problem is concerned with missing data due to different reasons with the 377

satellite instruments. This leads to null measurements, irregular passes, erroneous 378

measurements etc. As a consequence the gap between two consecutive data points can 379

be greater than 4 days. This can pose a problem for certain AD algorithms that work 380
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with periodic signals. This problem was addressed with the data pre-processing 381

methods in stage 2 of the algorithm. 382

4.1 Experimental Results and Discussion 383

The choice of the algorithms to use is up for debate and there are many off the shelf 384

algorithms. Two, the CE and the Fuzzy Shape-based method, were developed by 385

ourselves and two are an implementation of already existing algorithms. They all have 386

been extensively evaluated on benchmark and real datasets. The choice of their 387

parameters is a direct result of the benchmark experiments. Data gathered by all three 388

Swarm satellites were evaluated against four different AD methods in the selected study 389

area. 390

Table 3 shows the parameters used for the algorithms. The parameters selected for 391

all algorithms are based on extensive experimental research on real and benchmark 392

data [22] and [20]. Both SAX and the Fuzzy Shape-based have a similar function range, 393

hence they have the same parameter tuning. According to [21], the best 1D-SAX 394

parameters are for slope 4 and PAA 2. The word length w, was kept in-line to the 395

previous symbolic representational methods at 4. In algorithms the alphabet a, is 396

hard-coded to the value of 3 based on the best experimental results suggested in [20]. 397

Table 3. Parameters used for the AD methods

CE
(K,λ)

Fuzzy
(P,w)

1D-SAX
(p,s,w)

SAX
(p,w)

Parameters (1,6) (6,4) (4,2,4) (6,4)

Figs 8 - 10 show a common pattern among all algorithms used. All algorithms 398

detect anomalies prior to the seismic event but we cannot confidently assess the impact 399

because there are similar findings in both the control and ground truth regions. All 400

algorithms detect anomalies even when we do not expect them, indicating that there is 401

either: (i) a problem with the data collection, (ii) interference from other sources or 402

causes (e.g solar activity) (iii) False Positives from the algorithms, (iv) other fore-shocks 403

that were not taken into account originally or (v) a different region of interest has to be 404

set with respect to boundaries/grids. Because of the aforementioned issues, nothing can 405

be suggested about the results with certainty. 406

Fig 8. AD results Swarm A, red: CE, black: Fuzzy,blue: D-SAX, green: SAX

Fig 9. AD results Swarm B, red: CE, black: Fuzzy,blue: D-SAX, green: SAX

Fig 10. AD results Swarm C, red: CE, black: Fuzzy,blue: D-SAX, green: SAX

In Tables 4- 6 the detected anomalous dates for the Ludian seismic event on 407

03/08/2014 by all algorithms are shown for Swarm A, B, C respectively. As seen a 408

strong case against the data quality can be advocated. We know by empirical results 409

that all the algorithms provide reliable and accurate results. Data sparsity poses a big 410

problem and as we can see even in the main, control and ground truth region the 411

algorithms have detected anomalies. 412

The R Metric, sometimes returns an accuracy, as seen in the brackets. Some 413

detected anomalies fall within the algorithm’s predefined window. This means that an 414

anomaly is detected before or after the date of the seismic event. However, it can not be 415
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used for evaluation purposes simply because the results are not consistent. The causes 416

can not be directly attributed to a seismic event because the patterns are repeatable 417

across all areas and satellites. 418

What is more, there is a visible trade-off in subdividing a region into smaller grids in 419

order to better evaluate and locate anomalies, with that of a revisit period of 4 days. 420

For a single satellite, there are not enough measurements for the precise monitoring of 421

EM variations. Data interpolation techniques such as kriging [38] might provide a 422

solution but with such sparse data it is difficult to use them in that stage. The creation 423

of an accurate model of normality needs as much data as possible in order to provide 424

high density and high resolution coverage. This will provide an almost continuous time 425

series model that can be used to deliver consistent and confident results for our purpose. 426

It should be noted that all these techniques introduce data loss and it is something that 427

belongs to an entirely different field. In the end, these techniques are changing the 428

landscape of the patterns of the original time series and must be used only when enough 429

raw data is available. 430

Table 4. Swarm A Grid 5, Ludian Experimental Results
Seismic Control Ground Truth

HOT-SAX 29-05-2014 (0%) (0%) (0%)
Fuzzy 17-05-2014 22-06-2014 30-07-2014 (0%) 10-6-014 08-07-2014 09-09-2014 (0%) 01-09-2014 10-09-2014 12-07-2014 (0%)
1D-SAX 12-12-2014 (0%) 10-10-2014 09-09-2014 (0%) 02-07-2014 (0%)
CE 14-04-2014 (0%) 10-05-2014 24-08-2014 (0%) 10-10-2014 08-08-2014 (0%)

Table 5. Swarm B Grid 5, Ludian Experimental Results
Seismic Control Ground Truth

HOT-SAX 18-09-2014 (0%) 12-12-2014 0(%) 26-07-2014 (0%)
Fuzzy 01-04-2014 21-04-2014 31-05-2014 03-07-2014 (0%) 10-10-2014 08-08-2014 (13%) 09-06-2014 13-10-2014 02-01-2015 (0%)
1D-SAX 01-04-2014 08-05-2014 (0%) 10-10-2014 08-08-2014 (0%) 10-09-2014 10-07-2014 04-06-2014 (0%)
CE 12-12-2014 10-09-2014 (25%) 10-08-2014 08-09-2014 (33%) (0%)

Table 6. Swarm C Grid 5 Ludian, Experimental Results
Seismic Control Ground Truth

HOT-SAX 25-04-2014 (0%) 07-05-2014 12-12-2014 30-07-2014 (20%) 10-08-2014 (43%)
Fuzzy 18-05-2014 02-06-2014 (0%) 10-10-2014 25-08-2014 10-08-2014 (20%) 24-05-2014 04-11-2014 11-02-2015 (22%)
1D-SAX 14-Apr-2014 (0%) 05-04-2015 10-10-2014 13-07-2014 10-09-2014 (10%) 10-10-2014 08-08-2014 (40%)
CE 14-04-2014 15-05-2014 (0%) 10-10-2014 12-08-2014 (33%) 06-06-2014 01-02-2015 08-12-2014 (7%)

Furthermore, the use of three identical satellites to provide measurements for a 431

single region was originally thought to provide more data when combined. It would 432

overcome the problem of monitoring the daily EM variation above a specific region. In 433

contrast, because the satellites fly side-by-side this was not the case. Their trajectories 434

instead of increasing data availability, produce data that were duplicates in terms of 435

time and could only be used for validation purposes. 436

The problem is very constrained from data, meaning it needs data in very small time 437

windows and time intervals to get a meaningful indication. In this respect, another 438

problem is that one satellite’s measurements cannot be used to complement the others. 439

Moreover, measurements of satellites A and C are of different intensity to B due to the 440

satellites’ altitude and cannot be used to provide an immediate solution regarding data 441

sparsity. Most of the issues are caused by the satellites’ data availability which is 442

difficult to overcome. The amount of data available for each date also plays a significant 443

role but it does not affect the processing as much as data availability. Nevertheless the 444

results provide us with a clear picture of what needs to be done and what steps can be 445

taken to overcome most of the problems. Overall, and that needs to be restated based 446

on our findings, the main problem points to that of data quality. A unified data format, 447

the combination of ground based sources with satellite, all within the same system can 448

help solve the data problem and move forward to the critical stage of algorithm 449
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evaluation. The fact that we are not entirely confident about the data quality hampers 450

all the subsequent stages of the processing, namely the algorithm evaluation. 451

5 Conclusion and Future Work 452

The work presented describes a system framework that provides a solution to: (i) 453

extract data and select the region of investigation (ii) pre-processing with the aim of 454

reducing artificial anomalies (iii) AD in Real world data and its evaluation with a new 455

R metric. The system provides a pipeline for the automatic processing of Swarm data 456

that was never explored before. It lays the foundation for an intuitive approach for the 457

user to select a region and investigate EM variations as precursors to seismic events. It 458

is a unique approach that bundles all three required functions together. The most 459

important finding is that it reveals the problem faced with data gathered by the Swarm. 460

Data sparsity not only in the Swarm constellation continues to be an insurmountable 461

problem to establish a relationship between EM variations and seismic events. Further 462

deep analysis is not possible and progress is slow despite some evidence for the opposite. 463

Problems can also be traced back to the choice of algorithms. Nevertheless, it is 464

important to keep in mind that these are two entirely separate issues. 465

Algorithm choice should be based both on non-periodic and periodic AD methods. 466

The unknown nature of data and its irregular sampling have to be taken into account. 467

In future work, more unsupervised algorithms such as Long-Short Term Memory 468

(LSTM) [39] networks that have no parameter tuning can be used as a means to solve 469

this problem. Furthermore, data collection continues to be a problem. A standard 470

format for data products can advance the scientific understanding of anomalies and help 471

streamline the data analysis. The combination of ground based and satellite data can 472

be used in future studies and provide a more densely populated grid. Only by 473

pinpointing the problem to data quality and addressing it can we confidently move to 474

AD evaluation and that is what was proven in this study. 475

Potential problems can also be solved as in the case of Swarm by setting satellites 476

into different orbits instead of side by side. The Zhangheng 1 (CSES-1) [40] satellite 477

was launched in early February 2018 and will provide more data in that respect. 478

Moreover, another satellite CASSIOPE [41] can also be used to increase the plurality of 479

the data. Investigating and combining data from different satellites will provide a higher 480

resolution in terms of data points and solve the main of the identified problems in this 481

work. Addressing the data quality problem should be the first priority, with a careful 482

pre-processing and data cleaning. In terms of detectable anomalies and their intensity, 483

larger seismic events will be the focus of further research as the literature review 484

suggests. Once the data cleaning problem is addressed, the focus should be on 485

evaluating different data methods in an efficient and reliable manner. 486
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6 Appendix

In this section functions and parameters used in our prototype are going to be defined.
Grid: The study area can be defined by the user’s input. In most research the study

area is defined by using R = 100.43∗Mw [9], that based on empirical observations. In our
work, we create a square grid with dimensions 1000km x 1000km. This selection
achieves enough resolution by enabling us to include as much data as possible without
straying too far from the empirical observations. The central point of the grid is based
on the latitude and longitude coordinates of a seismic event in China.
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PAA: Piecewise Aggregate Approximation (PAA), is a dimensionality reduction
method that works by simply aggregating data points. It is the core function of
HOT-SAX and the Fuzzy Shaped-based method.

SAX: HOT-SAX [20] is a symbolic approximation and AD algorithm used as one of
the AD schemes in our prototype. It originally has three input parameters, but in our
implementation it uses two: (a) the PAA for the compression of the raw signal and (b)
the word length, w of the subsequence to consider. Based on findings by the original
authors an alphabet, a, of 3 yields the best results and it is hardcoded in our
implementation.

Fuzzy Shape-based method: Introduced in [22], the Fuzzy Shape-based method
uses a symbolic approximation based in three functions: (a) the shape, (b) the PAA
based on equally segmented areas, and (c) the PAA that segments the hyperplane
according to a Gaussian distribution based on equiprobable segments.

CUSUM-EWMA: A statistical method introduced in [23], is a product of two
distinct algorithms, the CUSUM and the EWMA. Two parameters, the CUSUM
statistic K and the number of the historical values the algorithm is going to consider,
also known as EWMA statistic, λ are used.

From a statistical point of view, the CUSUM-EWMA (CE) is not constrained by the
length of the anomaly. However, it also requires parameter tuning. The overall objective
is to illustrate how different AD methods perform in a constrained real-world
environment with sparse data. All algorithms are compared by using a novel metric, R,
introduced in [42] which takes into account the subsequence length, the predicted
anomalous location by the algorithm and the true anomalous location.

1D-SAX: An improvement upon HOT-SAX presented in [21], accepts the slope of
each subsequence as an additional and more accurate symbolic representational
parameter. The algorithm therefore uses three parameters: (a) the PAA, the slope, s
and the word length w for each subsequence.

R Metric: All algorithms are evaluated using a novel metric, R with Real world
data using the metric defined in [42]. It is a unique metric because it uses a pre-defined
length to measure the accuracy of each AD method and is specifically tuned to account
for the localization of the anomaly. A predefined length is what research has shown to
be an appropriate time to expect precursory signals before the occurrence of a seismic
event. In other words it measures the accuracy between the expected actual anomaly
(date/time of the seismic event) and the identified anomaly by the algorithm.
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