130 research outputs found

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Design and Electronic Implementation of Machine Learning-based Advanced Driving Assistance Systems

    Get PDF
    200 p.Esta tesis tiene como objetivo contribuir al desarrollo y perfeccionamiento de sistemas avanzados a la conducción (ADAS). Para ello, basándose en bases de datos de conducción real, se exploran las posibilidades de personalización de los ADAS existentes mediante técnicas de machine learning, tales como las redes neuronales o los sistemas neuro-borrosos. Así, se obtienen parámetros característicos del estilo cada conductor que ayudan a llevar a cabo una personalización automatizada de los ADAS que equipe el vehículo, como puede ser el control de crucero adaptativo. Por otro lado, basándose en esos mismos parámetros de estilo de conducción, se proponen nuevos ADAS que asesoren a los conductores para modificar su estilo de conducción, con el objetivo de mejorar tanto el consumo de combustible y la emisión de gases de efecto invernadero, como el confort de marcha. Además, dado que esta personalización tiene como objetivo que los sistemas automatizados imiten en cierta manera, y siempre dentro de parámetros seguros, el estilo del conductor humano, se espera que contribuya a incrementar la aceptación de estos sistemas, animando a la utilización y, por tanto, contribuyendo positivamente a la mejora de la seguridad, de la eficiencia energética y del confort de marcha. Además, estos sistemas deben ejecutarse en una plataforma que sea apta para ser embarcada en el automóvil, y, por ello, se exploran las posibilidades de implementación HW/SW en dispositivos reconfigurables tipo FPGA. Así, se desarrollan soluciones HW/SW que implementan los ADAS propuestos en este trabajo con un alto grado de exactitud, rendimiento, y en tiempo real

    Multi-Tenant Cloud FPGA: A Survey on Security

    Full text link
    With the exponentially increasing demand for performance and scalability in cloud applications and systems, data center architectures evolved to integrate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. FPGAs differ from traditional processing platforms such as CPUs and GPUs in that they are reconfigurable at run-time, providing increased and customized performance, flexibility, and acceleration. FPGAs can perform large-scale search optimization, acceleration, and signal processing tasks compared with power, latency, and processing speed. Many public cloud provider giants, including Amazon, Huawei, Microsoft, Alibaba, etc., have already started integrating FPGA-based cloud acceleration services. While FPGAs in cloud applications enable customized acceleration with low power consumption, it also incurs new security challenges that still need to be reviewed. Allowing cloud users to reconfigure the hardware design after deployment could open the backdoors for malicious attackers, potentially putting the cloud platform at risk. Considering security risks, public cloud providers still don't offer multi-tenant FPGA services. This paper analyzes the security concerns of multi-tenant cloud FPGAs, gives a thorough description of the security problems associated with them, and discusses upcoming future challenges in this field of study

    A Modular Platform for Adaptive Heterogeneous Many-Core Architectures

    Get PDF
    Multi-/many-core heterogeneous architectures are shaping current and upcoming generations of compute-centric platforms which are widely used starting from mobile and wearable devices to high-performance cloud computing servers. Heterogeneous many-core architectures sought to achieve an order of magnitude higher energy efficiency as well as computing performance scaling by replacing homogeneous and power-hungry general-purpose processors with multiple heterogeneous compute units supporting multiple core types and domain-specific accelerators. Drifting from homogeneous architectures to complex heterogeneous systems is heavily adopted by chip designers and the silicon industry for more than a decade. Recent silicon chips are based on a heterogeneous SoC which combines a scalable number of heterogeneous processing units from different types (e.g. CPU, GPU, custom accelerator). This shifting in computing paradigm is associated with several system-level design challenges related to the integration and communication between a highly scalable number of heterogeneous compute units as well as SoC peripherals and storage units. Moreover, the increasing design complexities make the production of heterogeneous SoC chips a monopoly for only big market players due to the increasing development and design costs. Accordingly, recent initiatives towards agile hardware development open-source tools and microarchitecture aim to democratize silicon chip production for academic and commercial usage. Agile hardware development aims to reduce development costs by providing an ecosystem for open-source hardware microarchitectures and hardware design processes. Therefore, heterogeneous many-core development and customization will be relatively less complex and less time-consuming than conventional design process methods. In order to provide a modular and agile many-core development approach, this dissertation proposes a development platform for heterogeneous and self-adaptive many-core architectures consisting of a scalable number of heterogeneous tiles that maintain design regularity features while supporting heterogeneity. The proposed platform hides the integration complexities by supporting modular tile architectures for general-purpose processing cores supporting multi-instruction set architectures (multi-ISAs) and custom hardware accelerators. By leveraging field-programmable-gate-arrays (FPGAs), the self-adaptive feature of the many-core platform can be achieved by using dynamic and partial reconfiguration (DPR) techniques. This dissertation realizes the proposed modular and adaptive heterogeneous many-core platform through three main contributions. The first contribution proposes and realizes a many-core architecture for heterogeneous ISAs. It provides a modular and reusable tilebased architecture for several heterogeneous ISAs based on open-source RISC-V ISA. The modular tile-based architecture features a configurable number of processing cores with different RISC-V ISAs and different memory hierarchies. To increase the level of heterogeneity to support the integration of custom hardware accelerators, a novel hybrid memory/accelerator tile architecture is developed and realized as the second contribution. The hybrid tile is a modular and reusable tile that can be configured at run-time to operate as a scratchpad shared memory between compute tiles or as an accelerator tile hosting a local hardware accelerator logic. The hybrid tile is designed and implemented to be seamlessly integrated into the proposed tile-based platform. The third contribution deals with the self-adaptation features by providing a reconfiguration management approach to internally control the DPR process through processing cores (RISC-V based). The internal reconfiguration process relies on a novel DPR controller targeting FPGA design flow for RISC-V-based SoC to change the types and functionalities of compute tiles at run-time

    Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Platforms

    Get PDF
    Technological advances of recent years laid the foundation consolidation of informatisationof society, impacting on economic, political, cultural and socialdimensions. At the peak of this realization, today, more and more everydaydevices are connected to the web, giving the term ”Internet of Things”. The futureholds the full connection and interaction of IT and communications systemsto the natural world, delimiting the transition to natural cyber systems and offeringmeta-services in the physical world, such as personalized medical care, autonomoustransportation, smart energy cities etc. . Outlining the necessities of this dynamicallyevolving market, computer engineers are required to implement computingplatforms that incorporate both increased systemic complexity and also cover awide range of meta-characteristics, such as the cost and design time, reliabilityand reuse, which are prescribed by a conflicting set of functional, technical andconstruction constraints. This thesis aims to address these design challenges bydeveloping methodologies and hardware/software co-design tools that enable therapid implementation and efficient synthesis of architectural solutions, which specifyoperating meta-features required by the modern market. Specifically, this thesispresents a) methodologies to accelerate the design flow for both reconfigurableand application-specific architectures, b) coarse-grain heterogeneous architecturaltemplates for processing and communication acceleration and c) efficient multiobjectivesynthesis techniques both at high abstraction level of programming andphysical silicon level.Regarding to the acceleration of the design flow, the proposed methodologyemploys virtual platforms in order to hide architectural details and drastically reducesimulation time. An extension of this framework introduces the systemicco-simulation using reconfigurable acceleration platforms as co-emulation intermediateplatforms. Thus, the development cycle of a hardware/software productis accelerated by moving from a vertical serial flow to a circular interactive loop.Moreover the simulation capabilities are enriched with efficient detection and correctiontechniques of design errors, as well as control methods of performancemetrics of the system according to the desired specifications, during all phasesof the system development. In orthogonal correlation with the aforementionedmethodological framework, a new architectural template is proposed, aiming atbridging the gap between design complexity and technological productivity usingspecialized hardware accelerators in heterogeneous systems-on-chip and networkon-chip platforms. It is presented a novel co-design methodology for the hardwareaccelerators and their respective programming software, including the tasks allocationto the available resources of the system/network. The introduced frameworkprovides implementation techniques for the accelerators, using either conventionalprogramming flows with hardware description language or abstract programmingmodel flows, using techniques from high-level synthesis. In any case, it is providedthe option of systemic measures optimization, such as the processing speed,the throughput, the reliability, the power consumption and the design silicon area.Finally, on addressing the increased complexity in design tools of reconfigurablesystems, there are proposed novel multi-objective optimization evolutionary algo-rithms which exploit the modern multicore processors and the coarse-grain natureof multithreaded programming environments (e.g. OpenMP) in order to reduce theplacement time, while by simultaneously grouping the applications based on theirintrinsic characteristics, the effectively explore the design space effectively.The efficiency of the proposed architectural templates, design tools and methodologyflows is evaluated in relation to the existing edge solutions with applicationsfrom typical computing domains, such as digital signal processing, multimedia andarithmetic complexity, as well as from systemic heterogeneous environments, suchas a computer vision system for autonomous robotic space navigation and manyacceleratorsystems for HPC and workstations/datacenters. The results strengthenthe belief of the author, that this thesis provides competitive expertise to addresscomplex modern - and projected future - design challenges.Οι τεχνολογικές εξελίξεις των τελευταίων ετών έθεσαν τα θεμέλια εδραίωσης της πληροφοριοποίησης της κοινωνίας, επιδρώντας σε οικονομικές,πολιτικές, πολιτιστικές και κοινωνικές διαστάσεις. Στο απόγειο αυτής τη ςπραγμάτωσης, σήμερα, ολοένα και περισσότερες καθημερινές συσκευές συνδέονται στο παγκόσμιο ιστό, αποδίδοντας τον όρο «Ίντερνετ των πραγμάτων».Το μέλλον επιφυλάσσει την πλήρη σύνδεση και αλληλεπίδραση των συστημάτων πληροφορικής και επικοινωνιών με τον φυσικό κόσμο, οριοθετώντας τη μετάβαση στα συστήματα φυσικού κυβερνοχώρου και προσφέροντας μεταυπηρεσίες στον φυσικό κόσμο όπως προσωποποιημένη ιατρική περίθαλψη, αυτόνομες μετακινήσεις, έξυπνες ενεργειακά πόλεις κ.α. . Σκιαγραφώντας τις ανάγκες αυτής της δυναμικά εξελισσόμενης αγοράς, οι μηχανικοί υπολογιστών καλούνται να υλοποιήσουν υπολογιστικές πλατφόρμες που αφενός ενσωματώνουν αυξημένη συστημική πολυπλοκότητα και αφετέρου καλύπτουν ένα ευρύ φάσμα μεταχαρακτηριστικών, όπως λ.χ. το κόστος σχεδιασμού, ο χρόνος σχεδιασμού, η αξιοπιστία και η επαναχρησιμοποίηση, τα οποία προδιαγράφονται από ένα αντικρουόμενο σύνολο λειτουργικών, τεχνολογικών και κατασκευαστικών περιορισμών. Η παρούσα διατριβή στοχεύει στην αντιμετώπιση των παραπάνω σχεδιαστικών προκλήσεων, μέσω της ανάπτυξης μεθοδολογιών και εργαλείων συνσχεδίασης υλικού/λογισμικού που επιτρέπουν την ταχεία υλοποίηση καθώς και την αποδοτική σύνθεση αρχιτεκτονικών λύσεων, οι οποίες προδιαγράφουν τα μετα-χαρακτηριστικά λειτουργίας που απαιτεί η σύγχρονη αγορά. Συγκεκριμένα, στα πλαίσια αυτής της διατριβής, παρουσιάζονται α) μεθοδολογίες επιτάχυνσης της ροής σχεδιασμού τόσο για επαναδιαμορφούμενες όσο και για εξειδικευμένες αρχιτεκτονικές, β) ετερογενή αδρομερή αρχιτεκτονικά πρότυπα επιτάχυνσης επεξεργασίας και επικοινωνίας και γ) αποδοτικές τεχνικές πολυκριτηριακής σύνθεσης τόσο σε υψηλό αφαιρετικό επίπεδο προγραμματισμού,όσο και σε φυσικό επίπεδο πυριτίου.Αναφορικά προς την επιτάχυνση της ροής σχεδιασμού, προτείνεται μια μεθοδολογία που χρησιμοποιεί εικονικές πλατφόρμες, οι οποίες αφαιρώντας τις αρχιτεκτονικές λεπτομέρειες καταφέρνουν να μειώσουν σημαντικά το χρόνο εξομοίωσης. Παράλληλα, εισηγείται η συστημική συν-εξομοίωση με τη χρήση επαναδιαμορφούμενων πλατφορμών, ως μέσων επιτάχυνσης. Με αυτόν τον τρόπο, ο κύκλος ανάπτυξης ενός προϊόντος υλικού, μετατεθειμένος από την κάθετη σειριακή ροή σε έναν κυκλικό αλληλεπιδραστικό βρόγχο, καθίσταται ταχύτερος, ενώ οι δυνατότητες προσομοίωσης εμπλουτίζονται με αποδοτικότερες μεθόδους εντοπισμού και διόρθωσης σχεδιαστικών σφαλμάτων, καθώς και μεθόδους ελέγχου των μετρικών απόδοσης του συστήματος σε σχέση με τις επιθυμητές προδιαγραφές, σε όλες τις φάσεις ανάπτυξης του συστήματος. Σε ορθογώνια συνάφεια με το προαναφερθέν μεθοδολογικό πλαίσιο, προτείνονται νέα αρχιτεκτονικά πρότυπα που στοχεύουν στη γεφύρωση του χάσματος μεταξύ της σχεδιαστικής πολυπλοκότητας και της τεχνολογικής παραγωγικότητας, με τη χρήση συστημάτων εξειδικευμένων επιταχυντών υλικού σε ετερογενή συστήματα-σε-ψηφίδα καθώς και δίκτυα-σε-ψηφίδα. Παρουσιάζεται κατάλληλη μεθοδολογία συν-σχεδίασης των επιταχυντών υλικού και του λογισμικού προκειμένου να αποφασισθεί η κατανομή των εργασιών στους διαθέσιμους πόρους του συστήματος/δικτύου. Το μεθοδολογικό πλαίσιο προβλέπει την υλοποίηση των επιταχυντών είτε με συμβατικές μεθόδους προγραμματισμού σε γλώσσα περιγραφής υλικού είτε με αφαιρετικό προγραμματιστικό μοντέλο με τη χρήση τεχνικών υψηλού επιπέδου σύνθεσης. Σε κάθε περίπτωση, δίδεται η δυνατότητα στο σχεδιαστή για βελτιστοποίηση συστημικών μετρικών, όπως η ταχύτητα επεξεργασίας, η ρυθμαπόδοση, η αξιοπιστία, η κατανάλωση ενέργειας και η επιφάνεια πυριτίου του σχεδιασμού. Τέλος, προκειμένου να αντιμετωπισθεί η αυξημένη πολυπλοκότητα στα σχεδιαστικά εργαλεία επαναδιαμορφούμενων συστημάτων, προτείνονται νέοι εξελικτικοί αλγόριθμοι πολυκριτηριακής βελτιστοποίησης, οι οποίοι εκμεταλλευόμενοι τους σύγχρονους πολυπύρηνους επεξεργαστές και την αδρομερή φύση των πολυνηματικών περιβαλλόντων προγραμματισμού (π.χ. OpenMP), μειώνουν το χρόνο επίλυσης του προβλήματος της τοποθέτησης των λογικών πόρων σε φυσικούς,ενώ ταυτόχρονα, ομαδοποιώντας τις εφαρμογές βάση των εγγενών χαρακτηριστικών τους, διερευνούν αποτελεσματικότερα το χώρο σχεδίασης.Η αποδοτικότητά των προτεινόμενων αρχιτεκτονικών προτύπων και μεθοδολογιών επαληθεύτηκε σε σχέση με τις υφιστάμενες λύσεις αιχμής τόσο σε αυτοτελής εφαρμογές, όπως η ψηφιακή επεξεργασία σήματος, τα πολυμέσα και τα προβλήματα αριθμητικής πολυπλοκότητας, καθώς και σε συστημικά ετερογενή περιβάλλοντα, όπως ένα σύστημα όρασης υπολογιστών για αυτόνομα διαστημικά ρομποτικά οχήματα και ένα σύστημα πολλαπλών επιταχυντών υλικού για σταθμούς εργασίας και κέντρα δεδομένων, στοχεύοντας εφαρμογές υψηλής υπολογιστικής απόδοσης (HPC). Τα αποτελέσματα ενισχύουν την πεποίθηση του γράφοντα, ότι η παρούσα διατριβή παρέχει ανταγωνιστική τεχνογνωσία για την αντιμετώπιση των πολύπλοκων σύγχρονων και προβλεπόμενα μελλοντικών σχεδιαστικών προκλήσεων

    Reconfigurable Computing Systems for Robotics using a Component-Oriented Approach

    Get PDF
    Robotic platforms are becoming more complex due to the wide range of modern applications, including multiple heterogeneous sensors and actuators. In order to comply with real-time and power-consumption constraints, these systems need to process a large amount of heterogeneous data from multiple sensors and take action (via actuators), which represents a problem as the resources of these systems have limitations in memory storage, bandwidth, and computational power. Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that require real-time processing, high bandwidth, and low latency. One of the fundamental advantages of FPGAs is their flexibility in designing hardware tailored to specific needs, making them adaptable to a wide range of applications. They can be programmed to pre-process data close to sensors, which reduces the amount of data that needs to be transferred to other computing resources, improving overall system efficiency. Additionally, the reprogrammability of FPGAs enables them to be repurposed for different applications, providing a cost-effective solution that needs to adapt quickly to changing demands. FPGAs' performance per watt is close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of being reprogrammable. Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the robotics community has not fully included them so far as part of their systems for several reasons. First, designing FPGA-based solutions requires hardware knowledge and longer development times as their programmability is more challenging than Central Processing Units (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or parts of it) from software to an accelerator requires adequate interfaces between software and FPGAs. Third, the robotics workflow is already complex on its own, combining several fields such as mechanics, electronics, and software. There have been partial contributions in the state-of-the-art for FPGAs as part of robotics systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature, which is the primary goal of this dissertation. Three main objectives have been established to accomplish this. (1) Define all components required for an FPGAs-based system for robotics applications as a whole. (2) Establish how all the defined components are related. (3) With the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy them, and integrate them into existing solutions. The component-oriented approach proposed in this dissertation provides a proper solution for designing and implementing FPGA-based designs for robotics applications. The modular architecture, the tool 'FPGA Interfaces for Robotics Middlewares' (FIRM), and the toolchain 'FPGA Architectures for Robotics' (FAR) provide a set of tools and a comprehensive design process that enables the development of complex FPGA-based designs more straightforwardly and efficiently. The component-oriented approach contributed to the state-of-the-art in FPGA-based designs significantly for robotics applications and helps to promote their wider adoption and use by specialists with little FPGA knowledge

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    A Model based design flow for Dynamic Reconfigurable FPGAs

    Get PDF
    International audienceAs System-on-Chip (SoC) based embedded systems have become a de-facto industry standard, their overall design complexity has increased exponentially in recent years, necessitating the introduction of new seamless methodologies and tools to handle the SoC co-design aspects. This paper presents a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard, permitting us to raise the abstraction levels and allows to model fine grain reconfigurable architectures such as FPGAs. Extensions of this methodology have enabled us to integrate new features such as Partial Dynamic Reconfiguration supported by Modern FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in a graphical language like UML (Unified Modeling Language) and afterwards transformation of these models, automatically generate the necessary code for FPGA synthesis

    Towards Efficient Resource Allocation for Embedded Systems

    Get PDF
    Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebetteten Systemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehr auf einem MPSoC. Die Idee besteht darin, eine Pipeline für die Verarbeitung von Mobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienz der Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch des dynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auch Hardwaremodule werden auf Hotspots im Ressourcenverbrauch untersucht und optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signalverarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben werden können, wird deren dynamisches Scheduling optimiert, um den Ressourcenverbrauch gegenüber dem üblicherweise verwendeten statischen Scheduling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, der die Vorteile von Processing-Networks und der Planung von Task-Graphen kombiniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Parallelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwägen. Der resultierende dynamisch erstellte Schedule reduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Vergleich zu einem statischen Schedule nur um 20% erhöht wird. Zusätzlich wird ein verteilter dynamischer SDF-Scheduler vorgeschlagen, der das Scheduling in verschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, um mehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu einem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufenden Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhandene Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler für eine typische Signalverarbeitungsanwendung verwendet werden können. Das neue dynamische Scheduling-System setzt das Vorhandensein von drei verschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen voraus. Bei der Emulation auf Basis des häufig verwendeten RDMA-Protokolls treten Leistungsprobleme auf. Sehr gut kann RDMA für einmalige Punkt-zu-Punkt-Datenübertragungen verwendet werden, wie sie bei der Ausführung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Datenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO-basierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl im Sender als auch im Empfänger implementiert, um diesen Bedarf zu decken. Die Pufferbehandlung und die Datenübertragung zwischen ihnen erfolgen ausschließlich in Hardware, um den Software-Overhead aus der Anwendung zu entfernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nutzer auf flächen-effiziente Single-Port Speichermodule. Es werden 0,8 der theoretisch möglichen Bandbreite, die normalerweise nur mit flächenmäßig teureren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus definiert eine einfache Message-Passing-Implementierung, die ohne einen Verbindungszustand auskommt. Dieser Modus wird für eine effiziente prozessübergreifende Kommunikation des verteilten Scheduling-Systems und der engen Ansteuerung der restlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher, dass eine große Anzahl von Sendern Nachrichten an denselben Empfänger senden kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen werden, ohne dass eine Verbindung hergestellt werden muss und die Nachrichtenlaufzeit gering bleibt. Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hardware und Software, um die kompromisslose Ressourceneffizienz der dynamischen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf die Abhängigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems gelegt, das auf der Verfügbarkeit spezifischer hardwarebeschleunigter Kommunikationsmethoden beruht.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 SummaryThe main topic is the dynamic resource allocation in embedded systems, especially the allocation of computing time and network traffic on an multi processor system on chip (MPSoC). The idea is to dynamically schedule a mobile communication signal processing pipeline on the chip to improve hardware resource efficiency while not dramatically improve resource consumption because of dynamic scheduling overhead. Both software and hardware modules are examined for resource consumption hotspots and optimized to remove them. Since signal processing can usually be described with the help of static data flow (SDF) graphs, the dynamic handling of those is optimized to improve resource consumption over the commonly used static scheduling approach. A hybrid dynamic scheduler is presented that combines benefits from both processing networks and task graph scheduling. It allows the scheduler to optimally balance parallelization of computation and addition of dynamic scheduling overhead. The resulting dynamically created schedule reduces resource consumption by about 50%, with a runtime increase of only 20% compared to a static schedule. Additionally, a distributed dynamic SDF scheduler is proposed that splits the scheduling into different parts, which are then connected to a scheduling pipeli ne to incorporate multiple parallel working processors. Each scheduling stage is reworked into a load-balanced cluster to increase the number of parallel scheduling jobs further. This way, the still existing dynamic scheduling bottleneck of a centralized scheduler is widened, allowing handling 7x more processors with the pipelined, clustered dynamic scheduler for a typical signal processing application. The presented dynamic scheduling system assumes the presence of three different communication modes between the processing cores. When emulated on top of the commonly used remote direct memory access (RDMA) protocol, performance issues are encountered. Firstly, RDMA can neatly be used for single-shot point-to-point data transfers, like used in task graph scheduling. Process networks usually make use of high-volume and high-bandwidth data streams. A first in first out (FIFO) communication solution is presented that implements a cyclic buffer on both sender and receiver to serve this need. The buffer handling and data transfer between them are done purely in hardware to remove software overhead from the application. The implementation improves the multi-user access to area-efficient single port on-chip memory modules. It achieves 0.8 of the theoretically possible bandwidth, usually only achieved with area expensive dual-port memories. The third communication mode defines a lightweight message passing (MP) implementation that is truly connectionless. It is needed for efficient inter-process communication of the distributed and clustered scheduling system and the worker processing units’ tight coupling. A hardware flow control assures that an arbitrary number of senders can spontaneously start sending messages to the same receiver. Yet, all messages are guaranteed to be correctly received while eliminating the need for connection establishment and keeping a low message delay. The work focuses on the hardware-software codesign optimization to increase the uncompromised resource efficiency of dynamic SDF graph scheduling. Special attention is paid to the inter-level dependencies in developing a distributed scheduling system, which relies on the availability of specific hardwareaccelerated communication methods.:1 Introduction 1.1 Motivation 1.2 The Multiprocessor System on Chip Architecture 1.3 Concrete MPSoC Architecture 1.4 Representing LTE/5G baseband processing as Static Data Flow 1.5 Compuation Stack 1.6 Performance Hotspots Addressed 1.7 State of the Art 1.8 Overview of the Work 2 Hybrid SDF Execution 2.1 Addressed Performance Hotspot 2.2 State of the Art 2.3 Static Data Flow Graphs 2.4 Runtime Environment 2.5 Overhead of Deloying Tasks to a MPSoC 2.6 Interpretation of SDF Graphs as Task Graphs 2.7 Interpreting SDF Graphs as Process Networks 2.8 Hybrid Interpretation 2.9 Graph Topology Considerations 2.10 Theoretic Impact of Hybrid Interpretation 2.11 Simulating Hybrid Execution 2.12 Pipeline SDF Graph Example 2.13 Random SDF Graphs 2.14 LTE-like SDF Graph 2.15 Key Lernings 3 Distribution of Management 3.1 Addressed Performance Hotspot 3.2 State of the Art 3.3 Revising Deployment Overhead 3.4 Distribution of Overhead 3.5 Impact of Management Distribution to Resource Utilization 3.6 Reconfigurability 3.7 Key Lernings 4 Sliced FIFO Hardware 4.1 Addressed Performance Hotspot 4.2 State of the Art 4.3 System Environment 4.4 Sliced Windowed FIFO buffer 4.5 Single FIFO Evaluation 4.6 Multiple FIFO Evalutaion 4.7 Hardware Implementation 4.8 Key Lernings 5 Message Passing Hardware 5.1 Addressed Performance Hotspot 5.2 State of the Art 5.3 Message Passing Regarded as Queueing 5.4 A Remote Direct Memory Access Based Implementation 5.5 Hardware Implementation Concept 5.6 Evalutation of Performance 5.7 Key Lernings 6 Summar
    corecore