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Resumen

Los automóviles han evolucionado significativamente desde que fueran
comercializados por primera vez, y, junto a ellos, la conducción [1]. Pa-
ra afrontar dichos cambios, aparecen los sistemas de asistencia a la
conducción (DAS: driving assistance systems) [2] inicialmente como una
forma de liberar a los conductores de llevar a cabo ciertas tareas repe-
titivas, tales como mantener una velocidad constante. Estos sistemas
fueron evolucionando gradualmente para actuar en caso de que ocurra
algún evento que comprometa la seguridad, como puede ser la pérdi-
da del control de la trayectoria del vehículo, viéndose drásticamente
mejorada la seguridad [3].

En ese sentido, la tecnología implementada en los automóviles ac-
tuales se encuentra en un estado de avance y madurez tal que permite el
despliegue de sistemas avanzados de asistencia a la conducción (ADAS:
advanced driving assistance systems), que, a diferencia de los DAS más
convencionales, también tienen en cuenta variables externas al vehículo,
como pueden ser las condiciones de la carretera o del propio ambiente,
proporcionando funciones más avanzadas [4]. Así, estos sistemas pue-
den leer señales de tráfico, mantener la distancia de seguridad con el
vehículo anterior e, incluso, frenar automáticamente en caso de riesgo
inminente de colisión.

Sin embargo, a pesar de su complejidad y nivel de refinamiento,
estos ADAS normalmente carecen de funciones de personalización por
parte del conductor, llegando incluso a mostrar comportamientos que
muchos automovilistas podrían considerar poco naturales [5]. Estas res-
puestas, por un lado, pueden perjudicar la propia experiencia de conduc-
ción, y, por el otro, pueden ocasionar una sensación de falta de confort
en los ocupantes del coche. Por estas razones, el nivel de utilización
de los ADAS por parte de los conductores es menor de lo que podría
ser, reduciendo el impacto positivo de estos sistemas en la mejora de la
seguridad.

Del mismo modo, la influencia del automóvil no solamente se refleja
en el entorno de la carretera, sino también en el medio ambiente, im-
pactando notablemente en el calentamiento global. Es sabido que los
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vehículos con motor de combustión interna se encuentran entre los ma-
yores contribuyentes en las emisiones de gases de efecto invernadero
(GHG: greenhouse gasses), y que el estilo de conducción (DS: driving
style) ejerce un efecto directo en dichas emisiones [6]. Por ello, pa-
rece razonable pensar que, si de alguna manera pudiese analizarse el
estilo de conducción de forma automática, este podría corregirse para
mejorar los niveles de emisiones y la conducción ecológica. Este en-
foque, desarrollado para los coches de conducción manual, es también
válido para generar directrices de eficiencia energética orientadas a los
futuros coches autónomos.

En lo que respecta a la falta de confort, es de destacar que, además
de por el comportamiento poco natural de algunos ADAS, también pue-
de originarse en ciertos tipos concretos de DS [7]. Así, del mismo modo
que para la conducción ecológica, el análisis y diagnóstico automáti-
cos se postulan como una alternativa prometedora para mejorar ciertas
tendencias en la conducción que perjudican el confort.

Por estas razones, el objetivo principal de este trabajo es contribuir
al desarrollo y perfeccionamiento de diversos ADAS. El enfoque segui-
do se centra particularmente en la personalización de ADAS basados
en datos de conducción. Para ello, se utilizan algoritmos de machine
learning tales como redes neuronales artificiales (ANN: artificial neural
networks) [8] y sistemas neuro-borrosos [9], que, conjuntamente con ba-
ses de datos de conducción en situaciones reales, sirven para modelar
estilos de conducción. Este modelado tiene como propósito obtener pa-
rámetros característicos del estilo de cada conductor para personalizar
ADAS ya existentes, como el control de crucero adaptativo (ACC: adap-
tive cruise control) [10]. Además, es también útil para proponer nuevos
ADAS que ayuden a los conductores a mejorar sus estilos de conducción.
Todas estas contribuciones están diseñadas para aumentar el nivel de
confianza en los sistemas automatizados, influyendo de manera positiva
en la seguridad, la conducción ecológica [11] y en el confort de marcha
[12]. Para terminar, se desarrollan y prueban soluciones hardware que
puedan ejecutar en tiempo real las aplicaciones para ADAS propuestas.

En el Capítulo 1 se lleva a cabo una contextualización histórica,
desde el mismo comienzo de la automoción hasta las tecnologías más
innovadoras. Además, se repasan los algoritmos de machine learning,
haciendo especial hincapié en los algoritmos utilizados en este trabajo,
como son las redes neuronales, los sistemas neuro-borrosos y los mapas
auto-organizados (SOM: self-organizing maps). Seguidamente, se in-
troduce el concepto de estudio de conducción naturalista (obtenido con
conductores no-controlados, conduciendo sus propios vehículos) y no-
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naturalista (obtenido bajo un estricto control experimental, y utilizando
un mismo coche altamente instrumentalizado). Se utilizan asimismo
bases de datos de ambos tipos (SHRP2 de Virginia Tech [13] y Uyanik,
de la Universidad de Sabançi, Estambul [14]). Estos datos se utiliza-
rán para entrenar los ADAS propuestos. Para terminar el capítulo, se
realiza un repaso de diferentes soluciones hardware para implementar
ADAS, como las FPGA (field-programmable gate arrays), los PSoC (pro-
grammable system-on-chips) o los recientes ACAP (adaptive compute
acceleration platform).

El Capítulo 2 introduce un sistema para la personalización de la res-
puesta de los sistemas ACC. Este sistema se desarrolla utilizando datos
de conducción naturalista, y un sistema neuro-borroso que identifique
los comportamientos más deseables de seguimiento de vehículos.

Dado que la implementación de un sistema de personalización de
la conducción para su integración en el automóvil requiere un modelo
de agrupamiento y clasificación (clustering) de estilo de conducción
con alta velocidad de respuesta, la solución adoptada se basa en la
aproximación de alto rendimiento de los clusters mediante un sistema
neuro-borroso de tipo ANFIS (ANFIS: adaptive neuro-fuzzy inference
system). La capacidad de aproximación universal de los ANFIS, junto
con su topología de capas inherentemente paralelizable, hacen que este
modelo sea adecuado para una implementación eficiente en hardware
(HW). El sensor neuro-borroso es implementado con éxito utilizando
un dispositivo FPGA que proporciona alta velocidad y bajo consumo
de energía para la ejecución de ADAS en tiempo real. Finalmente, se
desarrolla un software que ajusta automáticamente el intervalo temporal
con el vehículo precedente de acuerdo con el estilo de conducción de
cada persona.

En el Capítulo 3, se analiza el consumo de combustible con el obje-
tivo de fomentar la conducción ecológica. Para ello, se procesan datos
de conducción reales con resultados de simulación de consumo de com-
bustible, para corregir comportamientos contrarios a las directrices de
conducción ecológica mediante la generación de recomendaciones di-
dácticas. Seguidamente, se seleccionan las características con mayor
correlación con el consumo de combustible y se agrupan mediante una
red neuronal no-supervisada de tipo SOM. Este agrupamiento permi-
te clasificar a los conductores y diagnosticar las causas de su elevado
consumo de combustible.

Se desarrolla y testea además un acelerador hardware basado en
PSoC que permite al sistema funcionar en tiempo real. Para concluir el
capítulo, se describe el software que proveé recomendaciones basadas
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en el estilo de conducción. Es importante resaltar, además, que estas
recomendaciones están diseñadas para ser válidas para la gran mayoría
de los conductores, utilizando un lenguaje natural y fácil de entender,
abarcando desde el uso de los pedales de acelerador y freno hasta
el manejo del cambio de marchas. Así, se obtiene una mejora en el
rendimiento de los sistemas de ahorro de combustible ya existentes,
con mejoras esperables en el consumo de combustible y en la emisión
de gases de hasta el 31,5 %.

El Capítulo 4 describe un sistema para mejorar el confort de marcha.
Así, con los mismos datos que en el anterior, se propone proporcionar
consejos didácticos de conducción personalizados para corregir com-
portamientos al volante que puedan perjudicar la sensación de confort
en el automóvil. Para ello, se seleccionan características de conducción
que influyan en en confort de marcha, y se agrupan mediante una red
neuronal no-supervisada de tipo SOM. Dicho agrupamiento ayudará a
diagnosticar las causas que originan las perturbaciones de la como-
didad de los ocupantes del vehículo. Se desarrollan recomendaciones
didácticas de estilo de conducción basadas en lenguaje natural y se
comprueba y verifica que sean compatibles con los consejos proporcio-
nados en la solución descrita en el Capítulo 3. Al igual que previamente,
las recomendaciones proporcionadas involucran el uso de los pedales,
de la palanca de cambios y del volante, permitiendo potencialmente ob-
tener una mejora de los parámetros de evaluación del confort de hasta
el 57,7 %.

En el Capítulo 5, se propone una solución integrada para implemen-
tar ADAS en un único chip. Este enfoque utiliza un tipo novedoso de
dispositivo hardware reconfigurable, conocido como ACAP, para mejorar
el rendimiento de los dispositivos FPGA y PSoC, alcanzando rendimien-
tos punteros tanto para la partición hardware como para la software.
En este sistema se despliegan los módulos propuestos en los Capítulos
2, 3 y 4, para integrarlos en el mismo dispositivo y se rediseña la ar-
quitectura de la solución completa con el fin de optimizar al máximo el
rendimiento.

Con ese objetivo, se adaptan los módulos para ser compatibles con
el sistema novedoso de interconexión de Xilinx, conocido como red en un
chip (NoC: network-on-a-chip), que permite ligar diversos módulos con
un rendimiento inédito en dispositivos reconfigurables. Es de destacar
que esta matriz de interconexión, a pesar de su complejidad, se gestiona
de manera transparente para el diseñador, lo que permite desarrollar
potentes aplicaciones en un ciclo de tiempo relativamente corto. En lo
que respecta al software, se efectúa una migración e integración de los
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desarrollos de los capítulos anteriores.
Para terminar, se efectúa el análisis del rendimiento del sistema, y

se compara con las implementaciones descritas en los apartados an-
teriores, obteniéndose frecuencias de reloj hasta un 42,2 % superiores.
Estas frecuencias permiten tiempos de latencia extremadamente bajos
que, junto a las capacidades de escalabilidad de los ACAP, implican
la posibilidad de implementar la práctica mayoría de los ADAS de un
vehículo en el dispositivo, con el ahorro de consumo y la simplicidad
que esto supone. Finalmente, se analiza el consumo de potencia.

Finalmente, las conclusiones y trabajos futuros se indican en el Ca-
pítulo 6. Así, en esta tesis se presenta un marco de trabajo para el
desarrollo de ADAS basados en el DS. Este marco, que se deriva de
datos de conducción real, proporciona no solo herramientas para me-
jorar la conducción no-autónoma, sino también información conductual
que puede ser de ayuda a la hora de mejorar el rendimiento y el com-
portamiento de los coches autónomos del futuro en términos de control
longitudinal, ahorro de combustible y confort de marcha. Estos aspec-
tos son de vital importancia para dar soluciones en aspectos como la
seguridad vial y la eficiencia energética en el contexto actual de con-
tinuo aumento del tráfico y de las emisiones de contaminantes. Otros
ADAS podrían beneficiarse también de esta aproximación basada en
datos, imitando mejor la conducta humana, y así mejorando el nivel de
confianza de los usuarios en estos sistemas, impulsando la adopción y
la aceptación de los mismos.

En lo que respecta al HW y al software (SW), en este trabajo se
demuestra que los ACAP son herramientas eficientes para implementar
una amplia gama de nuevas funcionalidades, pudiendo incluso llegar
a sustituir las unidades de control electrónico (ECU: electronic control
units) actualmente en los coches, incrementando, por otro lado, la po-
tencia computacional disponible y reduciendo el consumo energético.
Además al utilizar HW reconfigurable, se abre la posibilidad de actua-
lizar no solo el SW de los vehículos, sino también su HW, pudiendo
incorporar nuevas funcionalidades incluso después de ser fabricados.





Á miña familia, por
coidardes sempre de min

Sen choiva,
non habería flores





1

Abstract

Automobiles have noticeably evolved since they were put into market
firstly, and driving has changed by their side. To face these changes,
driving assistance systems (DAS) appeared at the beginning as a man-
ner to relieve drivers of performing repetitive tasks, such as keeping a
fixed speed. These systems gradually evolved to act if a safety condition
that might compromise the handling of the vehicle happened, drastically
improving the general safety ratings of automobiles.

In that sense, the technology boarded in current automobiles is ad-
vanced and mature enough to implement more advanced driving assis-
tance systems (ADAS), that, in contrast with the more typical DAS, also
take into account external variables of the vehicle (i.e. environmental
and road conditions) to provide more complete functionalities, such as
reading traffic signs or keeping the safety distance with the precedent
vehicle, and even braking when a collision is about to happen.

Nevertheless, these ADAS, despite their complexity and refinement,
often lack driver-selected personalization functions, showing responses
that look unnatural for many drivers. These responses, on the one hand,
could impair the driving experience when using them, and, on the other
hand, may cause discomfort in all the car occupants. Consequently, the
level of engagement with these systems is lower than it could, reducing
their effectiveness on increasing safety.

On the other hand, not only do cars influence the road environment,
but also play an important role in global warming. It is well known
that automobiles are one of the main contributors to the emissions of
greenhouse-effect gases (GHG), and that driving style (DS) has a di-
rect effect on those emissions. Thus, it seems reasonable that if the DS
could somehow be automatically assessed and diagnosed, it could be
corrected to improve emissions and eco-driving. This approach, devel-
oped for the current context of cars still being manually driven, is valid
for generating fuel efficiency guidelines for the emerging autonomous
driving paradigm.

Regarding discomfort, it should be remarked that not only may be
caused by the unnatural response of ADAS, but also by certain types
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of DS. Hence, in the same manner as for eco-driving, the automatic
assessment and diagnostic seems a promising alternative to improve
DS-related uncomfortable trends.

For those reasons, the main objective of this work is contributing to
the development and refinement of ADAS. Particularly, the spotlight is
put on the data-based personalization of ADAS. For that purpose ma-
chine learning algorithms such as artificial neural networks (ANNs) and
neuro-fuzzy systems jointly with real-word driving databases have been
used to model DSs with the aim of obtaining characteristic parameters
for each individual driver. These parameters can be used to personal-
ize already existing ADAS, such as adaptive cruise control (ACC), and
to propose novel ADAS that help drivers to modify their DS. All these
contributions are intended to increase the level of confidence on the au-
tomated systems, presumably influencing on car safety, eco-driving and
ride-comfort positively. Finally, hardware solutions that can run the
developed applications in real time with very high performance rates
are developed and tested.

This work is organized as follows:
Chapter 1 puts this document in historical context, from the very

beginning of the automotive era to the most innovative technologies. On
the other hand, an overview on the machine learning algorithms, with the
stress put over the algorithms used to carry out this work is performed.
Additionally, the concepts of naturalistic and non-naturalistic driving
studies are introduced, and datasets of both the types (i.e. SHRP2 and
Uyanik instrumented car, respectively) are presented. These data are
going to be used to train the proposed ADAS. Finally a review on several
ADAS-intended hardware solutions, such as field-programmable gate
arrays (FPGAs), programmable system-on-chips (PSoCs) and adaptive
compute acceleration platfors (ACAPs), is performed.

Chapter 2 introduces a system to personalize the response of ACC.
This system is developed by using real-word data. With these data,
a neuro-fuzzy based system that identifies the desired car-following
behavior is developed. Since this type of algorithms are computing
intensive, a FPGA)-based hardware accelerator is developed and tested
to improve the general performance. Finally, a piece of software that
automatically tunes the desired time gap with the precedent vehicle
according tho each individual’s DS is developed.

In Chapter 3 fuel consumption is assessed with the aim of improving
eco-driving. This system is also developed by using driving data, and
is intended to correct eco-driving-compromising DSs by providing ed-
ucational advice to drivers. For that purpose, fuel consumption-related
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features are properly selected and clustered by an unsupervised neural
network. This allows to group drivers and to diagnose the causes of their
high level of fuel consumption. An FPGA-based hardware accelerator is
developed and tested to enable this system to run in real time. Finally,
a piece of software that automatically provides drivers with natural-
language DS-based advice is described. This system could help drivers
to achieve potential reductions of the 31.5% in fuel consumption and
GHG.

Chapter 4 describes a system to improve ride comfort from a data-
based approach. This solution is intended to correct ride comfort-
compromising DS by providing educational advice to drivers. For that
purpose, ride comfort-related features are properly selected and clus-
tered by an unsupervised neural network to diagnose the causes of dis-
comfort. Natural-language DS-based advice to improve ride comfort is
described and its compatibility with the fuel consumption-improvement
solution of Chapter 3 is tested and verified. This system could help
drivers to achieve potential improvements of the 57.7% in ride comfort
parameters.

Chapter 5 proposes an integrated solution on a single chip to imple-
ment ADAS. This approach uses a novel type of re-configurable device,
called ACAP, to supersede the performance of the FPGA and PSoC de-
vices, achieving state-of-the-art performance rates for both HW and SW
developments. In this system, the modules proposed in Chapters 2, 3
and 4 are deployed in ta single chip and the timing performance and
consumption of power and resources are checked.

Finally, the conclusions and future works are enumerated in Chap-
ter 6.





5

Chapter 1

Introduction

Automobiles have drastically changed since Karl Benz patented his first
vehicle in 1886, in Mannheim [1]. These first cars were clearly derived
from the horse-drawn carriages they intended to substitute, with the
same elements as in the previous centuries except for the animal trac-
tion. As a matter of fact, these initial cars were little more than an
extravagance for the richest, with few advantages and many drawbacks
when compared with the animal-drawn wagons, particularly regarding
mechanical reliability. Concerning the advantages, the main one was
the ability of reaching speeds of around 20 km/h, which do not appear
to be very high for the today’s standards, but they were ludicrous by
the road standards of the late 19th century [15]. As a consequence,
and due to the fact of pedestrians, carriages and automobiles shared
the same space, even though cars were rare at the time, the combus-
tion engine car-related pedestrian injuries and deaths began to rise
and quickly surpassed those caused by traditional means of transporta-
tion, specially in urban roads and during night-countryside trips. These
safety conditions were aggravated by the fact that no additional safety
requirements, such as driving licenses or medical exams, were required
for driving a car, so no minimal car-handling abilities were guaranteed.

Because of the aforementioned safety issues, authorities, majorly
city councils, began to elaborate the very first set of road safety regu-
lations, as soon as in 1879, with the Red Flag laws. These regulations
imposed several restrictions while driving a non-animal-traction vehicle
through urban areas, with the main objective of reducing the fatalities
among pedestrians. For that reason, they mandated several exotic mea-
sures, such as notifying in advance that a car was going to go through
the urban area, so that a waiter could be ready to escort the car while
blowing a whistle and waving a red flag to warn the other road users
of its presence [16]. This measure, despite its exoticism, can be con-
sidered as the first speed limit, clearly intended to minimize the road
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fatalities. However, this was only practical when cars were a luxury
for the very few and many days could pass between transits, so, when
the revolution of the mass-produced automobile was carried out by the
Ford Motor Company with the Model T [17], it was proven insufficient
and further regulations had to be passed by authorities [18].

Regarding the improvement of both the task of driving and the auto-
mobiles themselves, the efforts at the dawn of the automotive era were
focused on improving comfort, reliability and usefulness of a mean of
transportation that suffered from many mechanical failures and lacks
on ergonomics, with little attention paid to safety. Thus, despite auto-
mobiles becoming faster and more comfortable during the years, their
safety measures did not really improve at all, and, consequently, road
fatalities did not stop increasing. It was in the 1950s when the car
safety paradigm experimented a turning point with the invention of the
3-point seat belt by Volvo [19]. This car maker freed the patent so that
all manufacturers could implement it while paying no royalties, and con-
sequently, they began incorporating this advance to their automobiles.
This fact contributed to reducing the severity of the injuries resulting of
car accidents, and, thus, the likeliness of dying in a crash [19].

However, despite the risk of severe injuries and the likeliness of
dying as a result of a crash was drastically alleviated by the use of
seatbelts, the number of fatalities did not stop increasing in the subse-
quent years. This fact, despite apparently being contradictory, becomes
evident if we consider the sinistrality as a consequence of mobility [20].
Global mobility has grown non-stop since the end of the World War II
due to the development of both automotive technology and the trans-
portation network [21]. Nonetheless, although the automobiles clearly
evolved in terms of comfort and mechanical reliability, the task of dri-
ving did not evolve too much since the consolidation of the standard
commands of the car, such as the pedals, the gear stick, the steering
wheel or the turning lights’ lever. These controls have remained barely
unchanged for almost a century, and consequently, driving has always
been an eminently manual task exposed to the errors and distractions
that human drivers are prone to commit, specially in the case of acci-
dents with human fatalities [22]. For that reason, the automation of the
most unpleasant driving tasks would, on the one hand, help to alleviate
the human-related risks, and, on the other hand, increase the perceived
comfort.

It was in the late 20th century when original equipment manufac-
turers (OEMs) decided to focus on measuring the internal status of the
vehicle, such as wheels’ angular velocity, accelerations and rotational
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velocity. These variables allow to know how the vehicle is behaving at
a given moment, and consequently, control the dynamics of the vehicle,
mainly by selective actuations on braking and throttling systems.

Those actuations enabled the car manufacturers in the late 1970s
and 1980s to effectively put the spotlight into the real improvement of
safety. For that purpose, several systems were deployed in cars to, on
the one hand, minimizing the injuries in the event of an accident (i.e.
passive safety systems), such as pyrotechnical seat belt pretensioners
or airbags; and, on the other hand, to alleviate the factors that could
cause an accident to occur (i.e. active safety systems).

On this topic, the first, fully-functional driving assistance system
(DAS) was successfully developed in 1978 by Bosch with the anti-lock
braking system (ABS) [23], which, inherited from the landing gear brak-
ing system of airplanes, avoids the tires from blocking in very critical
braking situations, preventing them from sliding and, subsequently, re-
ducing the braking distance.

The following evolution of ABS was the traction control system (TCS
- 1986) [24], which, using the same sensors as ABS, prevents the wheels
from loosing grip when starting march by reducing torque, recovering
adherence.

Nevertheless, one of the biggest breakthroughs on DAS is the elec-
tronic stability control (ESC - 1995), which, using an electronic gyro-
scope and the ABS sensors and actuators, can correct the path of a skid-
ding vehicle, improving trajectory following and consequently improving
safety [3]. This system is probably one of the major breakthroughs in
the field of safety systems since the invention of the 3-point seat belt,
and enabled vehicles to present dynamic characteristics of stability that
previously could only be achieved by very complex and expensive sus-
pension and geometric designs.

The aforementioned systems, being marketed before as optional
equipment in top tier models, have drastically improved automotive
safety, leading to the obligation of fitting these systems in every new car
in the United States of America (USA) since 2011, and in the European
Union (EU) since 2014.

1.1 Driving Tasks Automation
Despite DAS being helpful to ease the consequences of a variety of
human-originated handling mistakes, they cannot be considered as task
automation at all since they do not act until the mistake and the safety
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condition has happened. Additionally, due to these systems having been
intended to somehow correct the actuation of the driver on the com-
mands of the vehicle, it means that the driver has to actually operate
the car command so that the system can actuate to make corrections.

Task automation, on the other hand, began with the American grand-
luxury cars of the 1950s which automated the most inconvenient driving
tasks, such as keeping a fixed speed or switching the high beam lamps,
by the development of cruise control (CC) and auto-switching high beam
lamp systems. Nonetheless, they were very expensive options and very
prone to malfunction, and, hence, the adoption was marginal until car
microelectronics boomed in the late 20th century. These systems, spe-
cially CC, despite helping drivers on reducing mental load and fatigue
during long trips, might bring about a variety of dangerous situations,
such as rear end collisions. These situations occur because conventional
CC systems are not aware of the distance from the preceding vehicle,
that is, they only take into account the internal variables of the car.

1.1.1 Automated Driving or Autonomous Driving?
Nowadays, and maybe because of the aggressive marketing campaigns
from the car makers, terms of automated driving and autonomous driving
are usually confused. This is specially misleading for the current con-
sumers of the highly automated cars and has already caused fatalities.

The main difference between an automated car and an autonomous
car is, basically, the complexity of the tasks required to the driver. In
this context, the Society of Automotive Engineers (SAE) has defined
a scale of 5 automation levels suitable to classify if an automobile is
conventional, automated or autonomous [25],[26]. This scale is depicted
in Table 1.1.

Coherently with the ideas shown in [25], [26], most of the current cars
fitted with the mandatory DAS fit into the 1st level: driver assistance
since although the driver must carry out all the tasks, including the
safety-critical ones, he/she is assisted mainly in traction loss scenarios,
but without acceleration/deceleration and steering being performed si-
multaneously. Due to this definition, even adaptive cruise control (ACC)-
fitted cars are placed in this first level.

When both acceleration/deceleration and steering are performed si-
multaneously in an automated way, the vehicle fits into the 2nd level:
partial automation. In this level, cars are able to drive along a lane,
recognizing speed limits and setting the speed according to the preced-
ing vehicle and the maximum speeds, but they are not able to decide
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SAE 
level 

 
Name 

 
Narrative Definition 

Execution of 
Steering and 
Acceleration/ 
Deceleration 

Monitoring 
of Driving 

Environment 

Fallback 
Performance 
of Dynamic 
Driving Task 

System 
Capability 
(Driving 
Modes) 

Human driver monitors the driving environment  

 0 No 
Automation 

the full-time performance by the human driver of all aspects of the 
dynamic driving task, even when enhanced by warning or intervention 
systems 

 
Human driver 

 
Human driver 

 
Human driver 

 
n/a 

1 
 

Driver 
Assistance 

the driving mode-specific execution by a driver assistance system of 
either steering or acceleration/deceleration using information about the 
driving environment and with the expectation that the human driver 
perform all remaining aspects of the dynamic driving task 

 

Human driver 
and system 

 
 

Human driver 

 
 

Human driver 

 

Some driving 
modes 

2 
 

Partial 
Automation 

the driving mode-specific execution by one or more driver assistance 
systems of both steering and acceleration/ deceleration using 
information about the driving environment and with the expectation 
that the human driver perform all remaining aspects of the dynamic 
driving task 

 
 

System 

 
 

Human driver 

 
 

Human driver 

 
 

Some driving 
modes 

Automated driving system (“system”) monitors the driving environment   

3 
 

Conditional 
Automation 

the driving mode-specific performance by an automated driving 
system of all aspects of the dynamic driving task with the expectation 
that the human driver will respond appropriately to a request to 
intervene 

 

System 
 

System 

 

Human driver 

 
Some driving 

modes 

4 
 

High 
Automation 

the driving mode-specific performance by an automated driving system 
of all aspects of the dynamic driving task, even if a human driver does 
not respond appropriately to a request to intervene 

 
System 

 
System 

 
System 

 
Some driving 

modes 

5 
 

Full 
Automation 

the full-time performance by an automated driving  system of all 
aspects of the dynamic driving task under all roadway and 
environmental conditions that can be managed by a human driver 

 
System 

 
System 

 
System 

 
All driving 

modes 

 

Table 1.1: SAE automation levels (from SAE International and J3016).

whether or not to perform an overtaking manoeuvre. Tesla AutoPilot
and some Volvo and Mercedes models include automation enough to fit
here. However, despite the marketing campaigns, specially for Teslas,
there exists the misconception that the car assumes automatically the
safety-critical functions. For this reason, some drivers overtrusted on
the system, resulting on fatalities [27].

About level 3, no current commercially-available cars fit into this
category, while companies such as Google or Uber have covered sev-
eral millions of kilometers with their prototypes [28]. Cars in this level
of automation can control all the environmental aspects and drive ac-
cording to them in certain environments, such as highways. Human
drivers have to perform monitoring tasks though, provided that some
glitches may occur or the car may have to face scenarios unforeseen in
its programming, and should be ready to intervene if the car requests
it.

Level 4 automated cars can go from a starting point to an arrival
point in almost every situations, except in very complex traffic situations
or severe weather conditions. However, they can handle emergency stop
in case of a system failure. Nevertheless, drivers can still handle the
car if they feel like to or in off-road, non-mapped scenarios.
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Finally, the higher level of automation is the 5th one. In this level,
cars are not even fitted with physical controls and the users are simply
passengers with the only task of selecting the desired destination. Con-
sequently, they are designed around productivity and comfort of their
passengers, looking like working offices or entertainment lounges.

With this hierarchy, the main difference between 4th and 5th level
cars is, precisely, that whilst 4th level cars can be considered fully
automated, they still need a human driver to solve some complex and
infrequent situations, while the 5th level ones are fully autonomous.
However, although maximum level of automation reached by production
cars is the 2nd one, these cars are not affordable for the general public,
so, it can be said that the current level of automation of the traffic is
the first one.

1.1.2 Advanced Driving-Assistance Systems (ADAS)
To give response to the challenges of driving tasks automation, exter-
nal world data-based systems arose as an alternative to provide en-
hanced safety and comfort functionalities. This type of systems, known
as advanced driving-assistance systems (ADAS) [2], are based on com-
plex intelligent sensors that measure external parameters through high-
bandwidth signals such as radar, light detection and ranging (LIDAR),
or video.

ADAS rely on a continuous stream of data from multiple sensors that
measure internal and external variables to provide advanced function-
alities [29]. In the same fashion as for safety systems, ADASs can be
classified into two categories taking into account their actuation level:
passive and active ADAS. The former provides advice or information to
the driver. Examples of passive ADAS are blind-spot sensors that use
ultrasound sensors to detect obstacles in the blind spot of the rear-view
mirrors. Collision-avoidance systems use radar, and seldom LIDAR or
video, to detect potential front collisions, warning the driver (front col-
lision warning (FCW)) [30]. Lane-departure warning systems (LDW) [31]
detect lane marks by video signals and inform the driver about lane-
departure events. Finally, traffic sign identification/recognition systems
(TSI/TSR) are able to detect speed limits displaying warnings in the
dashboard of the vehicle. The latter, active ADAS, can perform ac-
tions on the car, which include systems such as autonomous emergency
braking (AEB) [30], that can automatically stop the car. Lane-keeping
assistance (LKA) [31] is a step forward from LDW systems; it can cor-
rect the trajectory of the vehicle by performing autosteering manoeuvres
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by itself to avoid unintended lane changes. Other examples of active
ADAS are the above introduced ACC and automatic speed assistants
(ASA), which, based on TSI/TSR and jointly acting with global navi-
gation satellite systems (GNSS) signal, automatically apply the speed
limit of the road to the car [32].

Radar-Based ADAS

One of the most popular ADAS may be the ACC [33]. ACC is an evolu-
tion of the conventional CC system in terms of keeping a fixed speed,
however, ACC uses radar technology (previously a very expensive and
energy consuming technology) and electronic braking and throttle to
keep the distance with the preceding vehicle at a user-defined maxi-
mum speed [4]. It is described in Figure 1.1. This development consid-
ers many other variables apart from distance with the precedent vehicle
and speed, such as the slope of the terrain, being able to actuate on the
braking system or switch to a shorter gear in order to keep a constant
speed even in descending, steep slopes.

Figure 1.1: Representation of an ACC system. Through radar sensing, the red
vehicle measures the time gap with the preceding one and adjust its speed to

keep it constant.

Since radars are becoming a more frequent default equipment in cars
of all ranges, new functionalities are being developed to take advantage
of that feature, such as FCW [30], able to eventually stop the car when
a frontal collision is about to happen.

LIDAR-Based ADAS

LIDAR is a pulsed laser beam based range detection method used to
determine the distance from the emitter to an object. The distance to
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the object is determined by measuring the time it takes to the pulsed
beam to return to the emitter after being reflected on a surface. If the
LIDAR is mounted on a rotary device, it enables to create a 3D cloud
of points that allows to be aware of all the objects on its surroundings.
Additionally, LIDAR can detect objects that radar struggles to correctly
identify, such as pedestrians, trees or wildlife. This allows to improve
the already existing radar-based ADAS, and to predict the behavior
of all the agents implied in road transit, potentially increasing safety.
Thus, LIDAR is a topic of interest for the development of ADAS [34],[35].

Video-Based ADAS

Another mainstream safety feature is LDW [31], which making use of a
front camera, detects the lines delimiting the lane we are driving in, as
shown in Figure 1.2. In the case of driving through a lane mark with
the turn signals switched off, the system notifies the driver by a tone or
a rumble [36]. This feature contributes to reduce the risk of front/side
collision, specially in densely populated roads [37].

Additionally, in the line of lane marks detection [38], front cameras
can be used to implement lane-tracking auto-steering. Using them in
conjunction with the radar sensors needed for ACC [39], they provide
some models with automation of the tasks of steering, throttling and
braking, noticeably relieving drivers from the most tedious tasks. The
ACC radar adds the feature of detecting vehicles beyond the camera’s
visual field [40],[41], preparing the field to autonomous driving. This
builds an intermediate scenario of cars fitted with a kind of auto-pilot
instead, such as Tesla AutoPilot [5]. More advanced systems, such as
Tesla Navigate on AutoPilot [42], use video jointly with GNSS-based
location to provide fully automated door-to-door navigation.

Front cameras contribute to ease the implementation of many other
safety systems and amenities which can be based on image processing.
Among these systems, we can include glare-free headlights [43], which,
coupled with the front camera, automatically switch off a portion of the
LED lamps to allow the driver to keep using the high beam lights but
avoiding dazzling the incoming drivers. Pedestrian, cyclist and obsta-
cle detection [44] are video-based safety applications being currently
deployed in some selected models.
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Figure 1.2: Video-based ADAS can detect lane marks in almost any visibility
condition. Through border detection algorithms and the computation of the
perspective, LDW systems can determine if the wheel of the vehicle is stepping

over the lane mark by only using a front camera.

Figure 1.3: An example of traffic sign recognition. As shown, these systems
can identify the location of one or several traffic signs, display them on the
vehicle’s dashboard and give advice or perform automated actions according

to them.

TSR [32] is another video-based application. TSR relies on a variety
of algorithms to fit the vehicle with the ability of recognizing, basically,
speed limits, warnings and obligations and displaying them to the driver
via on-screen advices (see Figure 1.3). It is worth noting that this system
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will be mandatory for all new cars sold in the EU from 2024, under the
name of intelligent speed assistant (ISA), and, in addition to the advice
function itself, this system will be enabled to restrict the maximum speed
of the vehicle according to the corresponding speed limit sign. This is
expected to reduce the number of speed-related collisions by the 20%
and the number of fatalities by the 30%.

Hyperspectral Imaging

An evolution of the conventional-video based techniques is hyperspec-
tral imaging. This technique divides the visible spectrum in more bands
than red-green-blue (RGB), including wavelengths beyond visible light
[45]. Hyperspectral imaging is intended to obtain the spectrum of each
individual pixel in order to find objects, identify materials or detecting
processes [46],[47]. These applications take advantage of the fact that
many objects and substances leave a characteristic and unique “spec-
tral signature”. With these signatures, it is easier and more reliable to
identify specific phenomena.

For these reasons, hyperspectral imaging is a highly interesting field
for the automotive industry, since it has the potential to outperform
the current applications of rain detection, glare-free headlighting [48],
anti-fog lighting, pedestrian detection, and sliding surface detection
among others [49]. However, due to the high cost and complexity of
the hyperspectral cameras currently marketed [50], it is not feasible to
implement this feature in today’s production cars, but it is expected to
be possible in the future.

1.1.3 Driving Style Personalization
ADAS have been demonstrated to improve safety in cars since they
relieve drivers from some of the most safety-critical tasks [51]. The con-
junction of all of these intelligent sensors, together with high-speed
wireless communications, have allowed car-makers for the first time to
develop intelligent vehicles with automated driving systems [52]. Nonethe-
less, the acceptance of these systems by drivers mainly depends on the
engineering factors of the system, predefined by technicians and im-
plied by system functional specifications [53]. However, despite these
systems being relatively easy to use and contribute to improving road
safety, acceptance by the motorists has been limited [54]. This lack of
acceptance is caused by drivers perceiving the car as not as natural and
stable as expected, despite it being programmed to be as conservative
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and safe as possible, making motorists prone to dismiss this advice or
even to disengage the system [55]. This lack of use causes their effect
on global sinistrality rates to not be as good as previously foreseen,
despite ACC systems having been gradually installed in new production
cars and demonstrated to contribute in reducing accidents’ severity,
even eliminating them [56].

Hence, it seems reasonable that if these systems showed a more
adaptable behavior, they would be considerably more accepted by the
users, and, consequently, their adoption would noticeably increase [10].
With that objective in mind, car-makers have introduced a slight level
of ADAS customization, allowing users to manually select a variety of
pre-engineered parameters from a knob in the steering wheel or a lever
in the steering column. These selection of parameters is particularly
available for ACC systems, where the time interval with the preceding
vehicle, known as time headway (THW) can be selected from a set of
memory-stored parameters. Nevertheless, not many drivers appreci-
ate this option, and, particularly when drivers are not familiarized with
these control systems, they are particularly hard to operate, so, this
personalization option is often set aside.

For that reason, if this personalization could be automatically per-
formed in some fashion, with no driver intervention at all, these systems
would be much easier to operate, and, consequently, those drivers set
aside by their complexity would be encouraged to use them [10], increas-
ing with that the level of adoption. Regarding trust, several studies point
out that ADAS that mimic the behavior of real human drivers tend to be
more trusted by the users than more artificial ones, no matter if those
are designed with better-than-human standards [57]

1.1.4 Eco-Driving
Pollution has been an issue since the popularization of the automobile,
and it has become an even more concerning point in recent years due
to the global warming, and because of the harmful effects on people’s
health and lives [58].

Jointly with the appearing of the first DAS, it was in the 1980s when
pollution became a main issue for both the public and for the developed
countries’ health systems [59], [60]. Several pieces of research observed
that pollution mainly contributed to climate change and worsened the
health condition of people suffering from breathing system pathologies
in cities with high emission levels [61].
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For those reasons, alternative energy-based means of transporta-
tion, which mainly rely on electric energy, emerged as a way to mitigate
those harmful effects. However, because electricity-powered automo-
biles needed an evolution in both power storage and power train tech-
nologies, hybrid cars arose as a trade-off solution between electric and
petrol cars. Despite hybrid automobiles still being a polluting means
of transportation, the addition of electric engines into their power train
contributes to increasing their power efficiency and, consequently, their
eco-friendliness [62]. Nevertheless, the outstanding advances in battery
technology and energy converters in recent years have changed the
paradigm of non-polluting transportation, since they made electric cars
a market reality [63], [64]. Since the early 2010s, electric cars’ sales
have consistently risen in countries, such as Norway, where this kind
of automobile is mainly sold [65]. These cars, though, still have several
problems, such as the impact of their complete life cycle. Though ad-
vances in recycling several components, such as batteries [66], have
been made, the use of energy-intensive materials causes a noticeable
impact on greenhouse gasses (GHG) emissions [64], [67]. On the other
hand, at least for the current decade, fuel-powered cars are expected
to continue as the mobility standard [68], [69]. Thus, the development of
systems to change low-efficiency driving behaviors, such as driving at
high regimes, seems to be a good alternative in efforts to increase the
eco-friendliness of the current fleet of fuel-powered cars.

Driving Style and Eco-Driving

On the other hand, as found in several studies, the manner motorists
operate the throttle and brake pedals, their desired rate of acceleration,
speed control, and control stability play a major role in fuel consump-
tion, regardless of the driven vehicle. Thus, we can learn how some
drivers have a higher energy cost than others by studying the impact of
their driving behavior on fuel consumption, thus helping high-energy-
cost drivers to achieve energy-efficient driving style (DS). Factors, such
as personality, ability and skills, attitudes, perceptions, socio-economic
characteristics, age, gender, and experience, among others, have been
identified to be related to riskier and more aggressive driving events,
such as extreme accelerations, excess revolutions per minute (RPM),
extreme braking, and hard starts, events that cause high fuel consump-
tion [6]. In consequence, eco-driving emerges as a set of rules and pa-
rameters to be followed with the aim of improving the energy efficiency
while reducing the GHG emissions [70]. Hence, any autonomous car



1.1. Driving Tasks Automation 17

related development should take into account these rules to minimize
the impact of pollution.

1.1.5 Ride Comfort
The paradigm of transportation is experiencing technological advances,
causing new challenges to emerge [71]. The breakthrough of the au-
tonomous driving scenario aims to relieve motorists from the tasks and
risks of driving a car, with the subsequent improvement of safety and
perceived comfort [72], [73]. Thus, while the former is expected to be
clearly enhanced since most of the road accident-associated injuries
and fatalities depend on the human factor [74], mostly due to reckless-
ness and distractions [75], the latter requires further attention. This
change of the driving scenario will turn drivers into mere passengers,
and, hence, new challenges to their wellness will appear [76], being
passenger comfort one of them.

There exist many factors that contribute to the global ride comfort.
These aspects are derived from both the environment within the vehicle
(e.g. smell, temperature, humidity, etc.), as well as from the character-
istics of the passenger (e.g. gender, age, health conditions, etc.) along
with his/her behavior (keeping or not his/her gaze on the road). Be-
sides, vibrations affect the overall comfort perception. Several pieces
of research link perceived distress, motion sickness and the frequency
components of the vibrations with the resonance frequencies of the or-
gans of the human body [77], [78]. Although some vibrations are caused
by the constructive characteristics of either the roadway or the vehi-
cle itself including the handling of the automobile, those derived from
the driving behavior and handling skills of the driver have a noticeable
influence in compromising ride comfort.

Motion sickness is the most severe vibration-originated comfort con-
dition, causing from mild effects such as cold sweating and dizziness to
nausea and vomit, which strongly impair passengers [79], [80]. This con-
dition, highly related to low-frequency vibrations, happens because the
brain perceives a mismatch between the expected movements and the
real accelerations detected by the vestibular apparatus of the inner ear
[81]. For that reason, the vast majority of drivers do not get motion-sick,
since they receive a more complete range of stimuli that helps the brain
to have a more accurate insight into the actual dynamics of the car [82].
Motion sickness is very frequent among passengers due to the fact of
not perceiving as many stimuli as drivers do, consequently making the
sensory conflict between the sight and the hearing senses more notice-
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able. It is worth noting that these effects are worsened as passengers
get involved into secondary tasks, such as surfing the internet, reading
or working on a PC [83].

Driving Style and Ride Comfort

Several works have been carried out on DS as a main conditionant
for both the driver and the occupants in terms such as lack of com-
fort, energy efficiency and even the increase on the risk of accident
[84]. The aforementioned behaviors are mainly influenced by the expe-
rience/inexperience of the drivers, as well as his/her age, gender and
general health state [85].

In the same fashion of eco-driving, if we assume that most of the
discomfort causing vibrations are derived from each individual’s DS [7],
drivers might be classified among a variety of DSs, cycles and scenar-
ios, regarding their driving patterns’ characteristics [12]. Consequently,
since the autonomous driving paradigm encourages passengers to per-
form the secondary tasks, they are expected be more prone to suffer
motion sickness [86], [87], becoming a public health concern, and, thus,
any autonomous driving-intended development should consider the im-
pact of vibrations on passengers’ discomfort.

1.2 Machine Learning Algorithms
Machine learning (ML) is a term coined in the year 1959 at the IBM com-
pany [88]. It refers to giving the computation systems the ability to learn
how to perform a task without the need of being directly programmed to
do so. This area of Computer Science evolved from the study of pattern
recognition and computational learning theory in artificial intelligence
(AI) with the aim of allowing the computers learn automatically with no
human intervention. After the learning procedure has been completed,
the machine is able to carry out predictions, in short, it becomes able
to generalize the previously learned “concepts” or behaviors.

The main motivation of using this kind of techniques in the field of
driving automation are the situations to be dealt with when deploy-
ing ADAS, which require the processing of big amounts of data that
shows strong non-linearities and complex behaviors, as well as a very
high level of uncertainty. Due to these characteristics, classic comput-
ing techniques may sometimes not be appropriate because they require
their inputs and outputs to be strongly determined, otherwise, the sys-
tem could fail.
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There exist several manners of classifying ML algorithms [89], [90]
attending to a variety of criteria. One of the most popular criteria is the
availability of labels for training data. In case of not-labeled training
data (data which are not previously classified), the algorithms used to
classify or approximate them are known as unsupervised ML methods
[91], [92], while the supervised ML methods [93] are focused on labeled
training data. In the following description, the methods utilized in this
work are remarked in bold typeface.

1.2.1 Supervised Algorithms
Supervised ML groups the techniques that use an input training dataset
with an associated response values (labels) dataset to make predictions.
The supervised learning algorithm searches for building a model able
to fit the predicted outputs for the input training data with the labels of
the response values dataset. Once the model is properly trained, it is
able to predict the response values of a new input dataset of the same
type as the training one. These techniques can be used for classification
and regression:

• Support vector machines (SVM) [94]: they are a kind of binary
classifier. They split the input data classes into several spaces as
broad as possible by means of a separating hyperplane defined
in terms of the vector joining the nearest points of the adjacent
spaces. This vector is known as the support vector. Using, among
others, Gaussian kernels is a valid approach as well.

• Artificial neural networks (ANN) [8]: emulating the structures in
biological brains, they use a set of interconnected nodes to model
complex behaviors. These networks can rely on several topologies,
regarding either the arrangement of the elements of nodes or the
disposition of the nodes themselves in layers. Each node modifies
the state of activation of the adjacent ones by the manipulation
of their input values by a set of weights. Features of the ANN
algorithms will be detailed in Section 1.2.3.

• Naïve Bayes classifier [95]: these classifiers do not take for granted
relationships between characteristics of the input data that, for the
human experience, are known to be implicit for each object. This
characteristic is highly desirable because each probability thresh-
old can be tuned individually in order to provide good classification
rates.
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• Decision trees [96]: all the possibilities are contained in a tree-
type structure. Thus, depending on the characteristics of each
sample, some branches are activated, leading to the class it be-
longs to.

• Discriminant analysis [97]: is a method used to find a linear com-
bination of features to characterize or separate the input objects
into two or more different classes. These linear combinations can
be interpreted as dimension reduction steps that help to simplify
further classification procedures.

• Nearest neighbors (k-NN) [98]: the input consists of the k closest
training examples in the feature space. Thus, for classification
purposes, the output is a class membership. An object is classified
by a majority vote of its neighbors, with the object being assigned
to the class most common among its k nearest neighbors.

• Regression models [99]–[101]: these classic algorithms are based
on modeling the relationship between two or more variables. Thus,
they link the value of a scalar response (dependent variable) with
one or more explanatory variables (independent variables). Basi-
cally, they predict the expected value of the output of a black-box
system by computing the combination of its input variables.

• Fuzzy logic-based systems [102]: based on human logic, in which
not only must a logical statement be true or false, but also it can
take intermediate values. For that purpose, first a fuzzyfication of
the inputs, which consists on assigning a value within the interval
[0, 1], has to be performed according to a fuzzy set. After that, the
fuzzyfied values are operated by fuzzy operators and, finally, IF -
THEN linguistic rules are used to map the computed values into
the outputs, that are defuzzified again from the range [0, 1]. More
details of these systems are provided in Section 1.2.4.

1.2.2 Unsupervised Algorithms
Unsupervised ML groups the techniques able to infer patterns among
non-labeled data. Thus, the main goal of this type of learning meth-
ods is modeling the implicit relationships between samples. Differing
from supervised ML, there is not a singular-correct solution and there
is not real teaching, but rather algorithms are left on their own to dis-
cover these hidden structures. These methods can be grouped into two
classes: clustering and association.
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• Clustering: in these problems, data is analyzed to discover com-
mon patterns among the experiments, such as grouping drivers by
their driving behavior. Thus, objects in the same group (cluster)
are more similar to each other than to those in other groups. Into
this category, the most common algorithms are:

– Hierarchical agglomerative clustering (HAC) [103]: it builds
a tree (hierarchy) of clusters attending to the measure of
dissimilarity between sets of data. Clusters are usually pre-
sented on a dendrogram.

– k-means clustering [104]: it consists on building k clusters
among which, observations will be distributed. Each obser-
vation will be located in the cluster with the nearest mean
value.

– Gaussian mixture models (GMM) [105]: these models are
based on the probability distribution of the observations. In
these particular models, the probabilities are modelled by
means of the Gaussian (normal) distribution.

– Self-organizing maps (SOM) [106]: they use ANNs to learn
the topology and distribution of the data by producing a low-
dimensional representation map. They differ from other ANN
topologies by the fact that they use a neighborhood function
to preserve the properties of the input space. These ANNs,
with a proper size, allow to extract characteristics of the input
space on the map itself, enabling them as a powerful clus-
tering tool. A further insight on this topology is shown in
Section 1.2.5.

– Hidden Markov models (HMM) [107]: assume that the system
intended to be modeled is a Markov chain with hidden states.
It is worth to remark that a Markov chain is an stochastic
model describing a sequence of possible events in which the
probability of each event depends only on the state attained
in the previous event.

• Association: these methods are intended to find correlations be-
tween large datasets, identifying strong rules discovered in data-
bases using some measures of interest [108]. Some well-known as-
sociation algorithms are Apriori [109], Eclat [110] and FP-Growth
[111].
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1.2.3 Artificial Neural Networks (ANNs)
An artificial neural network is set of interconnected nodes, known as ar-
tificial neurons, able to model and represent high complexity problems.
In contrast with human brain (with up to 100 billions of neurons) [112],
ANNs rely on a more reduced set, ranging from tens to a few millions
depending on each topology.

The Artificial Neuron

As displayed in Figure 1.4, there is a parallelism between the structure
of a biological neuron and that of an artificial one. These similitudes
occur in the following way [112]:

• Dendrites: weighted inputs.

• Nucleus: adder and activation function.

• Axon: output of the activation function to the weighted inputs
(dentrites) of other neurons.
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Figure 1.4: Structure of a biological neuron vs. an artificial neuron.

For each input, a weight is applied, then, each weighted input is
added by the adder, and the result is trimmed by an activation function.
These calculi are performed in the subsequent manner:

H(wi, bi) = g




N∑

j=1
xjwj + bi



 , (1.1)

where xj is each input term, wj its associated weighting factor, bi is
the bias constant of each neuron i, g(x) an activation function and j =
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1, ..., N the number of inputs. Thus, in matrix form, given a set of weights
wi = (w1, ..., wN )T for neuron i, a vector of inputs x = (x1, ..., xN ) and an
activation function g(x), the output of neuron i H(wi) of equation 1.1 is
reformulated such that:

H(wi, bi) = g (x · wi + bi) (1.2)

Artificial Neural Network Topologies

Once the mathematical model of the artificial neuron is defined, they
must be interconnected in order to solve a variety of complex tasks.
Generally, ANNs’ structure is organized into layers. Therefore, we can
distinguish two main types of ANNs depending on how their layers are
organized: single layer (Figure 1.5) [113] and multi-layer (Figure 1.6)
[114]. Independently of their topology, each neuron from a given layer
is connected to all the neurons on its preceding and subsequent layers.
However, the names of these topologies may be misleading since they
refer to the amount of layers between the input layer and the output
layer (hidden layers). Thus, a single-layer feedforward ANN (SLFN),
also known as shallow neural network, has actually 3 layers: input
layer, hidden layer and output layer; while multi-layer ANNs have more
than 3 layers of nodes: input layer, 2 or more hidden layers and output
layer.

1
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Figure 1.5: Structure of a single-layer artificial neural network (SLFN) or
shallow neural network with N input nodes, M hidden nodes and P output

nodes.

According to Figure 1.5 and Equation 1.2, the input nodes corre-
spond with the dendritical input vector x and the outputs of the hidden
nodes are grouped in a matrix H(wi, bi) with a number of hidden nodes
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i = 1, ..., M . Finally, for the output nodes, a vector β = (β1, ..., βM )T
of output weights is defined. Once the neural network is described
on its matrix form, the output product of the ANN is computed in the
subsequent manner:

Y = H(wi, ..., wM ; bi, ..., bM ) · β (1.3)

Multi-layer neural networks, also known as deep neural networks,
(see Figure 1.6) rely on hidden neurons organized in multiple layers.
Each neuron in a layer is connected with all the neurons in the previous
layer. Thus, a multi-layer neural network consists of a set of input nodes,
multiple hidden neurons organized in multiple layers, and a set of output
nodes.
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Figure 1.6: Structure of a multi-layer artificial neural network with N input
nodes, L hidden layers with Ml hidden nodes each and P output nodes.

These ANNs’ weights can be tuned by means of a wide variety of
methods, while the most widely used one is the gradient-descent back-
propagation (BP) algorithm.

Gradient-Descent Backpropagation

This algorithm is based on propagating the error, i.e., the difference of
the desired output with the actual, in the reverse direction of the ANN
dataflow to calculate a cost function that needs to be optimized to find
its minimum. [115]

The approach stated in the latter paragraph is contained in the tradi-
tional, well-known gradient-based solution of SLFN on which, intending
to train a SLFN, and given a set of weights and biases W(wi, βi, bi), with
i = 1, ..., M , the proposed objective is to find a specific set of weights
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and biases (ŵi, β̂, b̂i) such that:

T − H
(

ŵi, ..., ŵM , b̂i, ..., b̂M
)
β̂ = min

wi,β,bi
T − H (wi, ..., wM , bi, ..., bM )β,

(1.4)
where T − Hβ to be minimized is a cost function with an expanded form:

E = 1
2

N∑

j=1

(
tj −

M∑

i=1
βig

(
wi · xj + bi

)
)2

. (1.5)

H is usually unknown, so, gradient-based learning algorithms are
generally used to find the minimum of T − Hβ. The set W(wi, βi, bi),
with i = 1, ..., M of weights and biases is iteratively updated in the
following way:

Wk = Wk−1 − η∂E (W)
∂W , (1.6)

where η is a learning rate. This method, known as BP learning algo-
rithm, is able to compute gradients efficiently by propagation from the
output to the input.

Nevertheless, although the efficiency in the computation of the gra-
dients is the main advantage of the BP algorithm, there are several
issues that must be considered before deploying this technique such as
the adjustment of the learning rate η. For instance, since a too large
learning rate may destabilize the convergence of the cost function and
a very small η can cause the algorithm to slow down excessively, the
adequate value of the rate should be a trade-off solution between speed
and stability [116]. In addition, since the iterative updating algorithm
only uses the first derivative of the cost function, calculations might stop
if a local minimum is found far enough from the global minimum, which
is an undesirable behavior.

Extreme Learning Machines (ELM)

As stated in the previous section, gradient-descent BP training algo-
rithms are an utterly consolidated form of optimizing cost functions in
order to tune the parameters of a variety of ANN topologies. How-
ever, they have some critical problems, such as their sensitivity to local
minima and the difficulty of adjusting the learning rate η to its optimal
value. Although the mathematical problem to be solved is still the same,
the approach to finding a minimal solution must be changed in order
to reduce, or even, eliminate the influence of the challenges indicated
above.
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The new approach, a type of SLFN known as extreme learning ma-
chine (ELM) [117], pursues the same objective as BP on SLFNs, but
instead of adjusting the weights and biases of all layers, wi and bi
are initialized randomly, and only the weights β of the output layer
are tuned. This drastically simplifies the mathematical problem to the
solution of a system of linear equations, reducing training times. Ad-
ditionally, it has been observed that not only does ELM reduce SLFN
training times, but also improves the generalization performance with
respect to BP-trained SLFNs [118].

Thus, only a set of output nodes’ weights β̂ must be found such that
Equation 1.4 is simplified to:

T − H (wi, ..., wM ; b1, ..., bM ) β̂ = min
β

T − H (wi, ..., wM ; b1, ..., bM )β.
(1.7)
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Figure 1.7: ELMs are SLFNs with the particularity of having random weights
wi and biases bi for the hidden layer.

Extreme Learning Machine training algorithm

This section presents the algorithm for computing the matrix β of output
nodes’ weights in Equation 1.7.

Thus, given a number of samples K , a number of hidden nodes
M , a number of input nodes N , a number of output nodes P , and
an activation function g(x), a training set ℵ = (X, T) is defined, such



1.2. Machine Learning Algorithms 27

that X = (xk , ..., xK ) and T = (tk , ..., tK ), with xk = (x1, ..., xN ) and
tk = (t1, ..., tP ).

Once all variables taking part in this process are defined, the algo-
rithm can be displayed:

1. Initialize matrices w and b with random values.

2. Calculate the hidden layer output matrix H (wi, bi) with i = 1, ..., M
as follows:

H (wi, bi) = g (X · w + b) (1.8)

3. Compute the output weight matrix β as:

β = H†T (1.9)

To obtain an array β such that:

Hβ = T (1.10)

with H† the Moore-Penrose generalized inverse matrix of H [117].

1.2.4 Fuzzy Systems
Fuzzy systems are based on the fuzzy set theory proposed by Zadeh
in the 1960s [9]. These are systems that can deal with imprecision,
vagueness or incomplete information. Fuzzy logic is used as a means of
representing and manipulating imprecise data. Fuzzy logic provides an
inference morphology that enables approximate human reasoning ca-
pabilities to be applied to knowledge-based systems [119]. The theory
of fuzzy logic provides a mathematical framework for capturing the un-
certainties associated with human cognitive processes, such as thinking
and reasoning. Conventional approaches to knowledge representation
lack the means for representing the meaning of fuzzy concepts. As
a consequence, the approaches based on first order logic and classi-
cal probability theory do not provide an appropriate conceptual frame-
work for dealing with the representation of common sense knowledge,
as such knowledge is, by its nature, both lexically imprecise and non-
categorical.

Fuzzy Sets and Membership Functions

If X is a collection of objects, each denoted generally by x , then, a fuzzy
set A in X is defined as a set of ordered pairs:
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A = {(x, µA (x)) |x ∈ X} , (1.11)
where µA (x) is the membership function (MF) for the fuzzy set A. The
MF maps each element of X to a membership grade between 0 and 1.

There are a number of common MFs as shown in Figure 1.8:
3.4 Fuzzy systems

Figure 3.9: Typical membership functions of the term set T (speed).

Fuzzy rules A linguistic “IF-THEN” fuzzy rule is an expression of the form:

IF x1 is A AND x2 is B THEN y is C, (3.16)

where A and B are linguistic values defined by fuzzy sets. Typically, “x1 is A AND x2 is B”
is known as the antecedent or premise, while “y is C” is the consequence or conclu-
sion. Several example of fuzzy rules are:

• IF speed is “very fast”, THEN driving is “dangerous”.
• IF temperature is “cold” THEN heater is “high”.
• IF temperature is “high” AND humidity is “high” THEN room is “hot”.

3.4.3 Fuzzy inference systems

Fuzzy inference systems (FISs) are based on the concepts of fuzzy set theory. Fuzzy
inference is the process of formulating mapping from a given input to an output
using fuzzy logic. There are two main types of FISs [150]:

• Mamdani inference systems: These are composed of a rule base and inference
mechanism, where the rules are of the IF-THEN type:

Rj : IF x1 is A1j(x1) AND x2 is A2j(x2) AND xn is Anj(xn)
THEN y is Bj, (3.17)

where Rj is the j≠th rule (1 Æ j Æ m), xi (1 Æ i Æ n) are input variables,
y is the output, Aij (xi) are linguistic labels, each associated with a member-
ship function µij (xi), and Bj (y) are linguistic labels, each associated with a
membership function µj (y).

61

Figure 1.8: Typical MFs, such as generalized bells (red and light blue), sig-
moidals (dark blue and green) or trapezoidal (purple), are displayed. In this

case, they correspond to of a term set T (speed).

Linguistic Variables

Linguistic variables are those variables whose values are not numbers
but words or sentences in a natural or artificial language [120]. The
motivation for the use of words or sentences rather than numbers is that
linguistic characterizations are, in general, less specific than numerical
ones. For example, “speed” is interpreted as a linguistic variable, which
can take the values as “slow”, “fast”, “very fast”, and so on.

A linguistic variable is characterized by a quintuple (x, T (x), X , G, µ)
where x is the name of the variable; T (x) is the term set of x (that is,
the set of its linguistic values); X is the universe of discourse; G is a
syntactic rule that generates the terms in T (x); and µ is a semantic
rule which associates terms in T (x) to fuzzy sets in X . In the previous
example, if “speed” is interpreted as a linguistic variable, then its term
set T (speed) could be:

T (speed) = {slow, fast, very slow, not very fast,
too fast, not slow, not very slow and
not very fast} ,

(1.12)
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where each term in T (speed) is characterized by a fuzzy set of a uni-
verse of discourse X , as for example X = [0, 120], as shown in Figure 1.8.
In the expression “speed is fast”, the linguistic value “fast” is applied to
the linguistic variable “speed”. On the other hand, in the expression
“speed= 85”, speed is interpreted as a numerical variable, assigning a
numerical value of 85. The syntactic rule refers to the way the linguis-
tic values in the term set T (speed) are generated. The semantic rule
defines the MF of each linguistic value of the term set. The five MFs
for defining the linguistic variable “speed” are shown in Figure 1.8.

Fuzzy Rules

For a particular case of 2 linguistic variables, an “IF-THEN” fuzzy rule
is an expression of the form:

IF x1 IS A AND x2 IS B THEN y IS C, (1.13)

where A and B are linguistic values defined by fuzzy sets. Typically,
“x1 IS A AND x2 IS B” is known as the antecedent or premise, while “y
IS C ” is the consequence or conclusion. Several example of fuzzy rules
are:

• IF speed is “very fast”, THEN driving is “dangerous”.

• IF temperature is “cold” THEN heater is “high”.

• IF temperature is “high” AND humidity is “high” THEN room is
“hot”.

Fuzzy Inference Systems

Fuzzy inference systems (FISs) are based on the concepts of fuzzy set
theory. Fuzzy inference is the process of formulating mapping from a
given input to an output using fuzzy logic. Consider a set of rules such
that:

Ri : IF x1 IS A1i(x1) AND x2 IS A2i(x2) AND · · · xn IS Ani(xn)
THEN y IS ci,

(1.14)

where Ri is the i-th rule (1 ≤ i ≤ M), xj (1 ≤ j ≤ N) are input vari-
ables, y is the output, ci is a constant consequent, and Aji(xj ) are lin-
guistic labels, each one associated with an MF, µji(xj ). In one of the
most utilized FISs, the zero-order Takagi–Sugeno fuzzy model [121], the
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inference procedure used to derive the conclusion for a specific input
x =

(
x0

1 , x0
2 , · · · , x0

N
)

consists of two main steps. First, the firing strength
or weight wi of each rule is calculated as

wi =
N∏

j=1
µji
(

x0
j

)
. (1.15)

Next, overall inference result y is obtained by means of the weighted
average of the consequents

y =

M∑

i=1
wici

M∑

i=1
wi

= Num
Den . (1.16)

Neuro-Fuzzy Systems

The term neuro-fuzzy systems (NFs) refers to a combination of tech-
niques from neural networks and fuzzy systems [122]. Ever since fuzzy
systems were applied industrially, the community has perceived that the
development of a fuzzy system with good performance is not an easy
task. The problem of finding MFs and appropriate rules is frequently a
tiring process of trial and error. Therefore the idea of applying learning
algorithms to fuzzy systems was considered early on. One of the first
studies that proposed a combination of neural network learning meth-
ods with fuzzy system concepts was published in 1985 [123]. Several
other approaches date from the beginning of the 1990s, including those
of Jang [124]–[126], Lin and Lee in 1991 [127], Berenji in 1992 [128], and
Nauck in 1993 [129], [130]. The majority of the first applications were
in the field of process control. Gradually, it began to be applied to
all areas of knowledge, including data analysis, data classification, im-
perfection detection, and support to decision-making. The aim of NF
systems is to combine the advantages of ANNs and FISs. Knowledge of
the system is expressed as a linguistic fuzzy relationship while neural
network learning schemes, capable of learning nonlinear mappings of
numerical data, are used to train the system by tuning the parameters
of the MFs. Furthermore, an NF system is capable of extracting fuzzy
knowledge from numerical data. In this particular work, the well-known
adaptive neuro-fuzzy inference system (ANFIS) algorithm proposed by
Jang in 1993 was used [125].
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On the other hand, as detailed in Figure 1.8, MFs µij associated
to these labels can be, for example, bell-shaped functions, which are
defined as follows,

µji(x; a, b, e) = 1
1 +

∣∣ x−e
a
∣∣2b , (1.17)

where a defines the width of the MF, b is the steepness of the curves
at each side of the center plateau, and e is the center of the function.

To train the ANFIS, a combination of a least-squares estimator (LSE)
and a gradient-descent method were used. Each epoch of this learning
process was composed of a forward pass and a backward pass. In the
forward pass, consequent parameters, ci, were identified by the LSE
method, and in the backward pass, antecedent parameters a, b, and e
were updated by the gradient-descent method.

1.2.5 Self-Organizing Maps (SOMs)
SOMs are a particular type of unsupervised ANN suitable for clustering
and visualization of complex multi-dimensional data [131]–[133]. It de-
fines a mapping or projection from a set of high-dimensional input data
onto a regular low-dimensional discrete grid. This grid, which is known
as a feature map, preserves the principal features of the input data. Un-
like conventional feed-forward ANNs, which are generally trained using
the supervised back-propagation learning algorithm, SOMs are trained
through an unsupervised strategy; that is to say, in a SOM, there are
no known target outputs that are associated with the input samples.
On the contrary, during the training phase, SOMs process a collection
of data, only input data, in order to discover unknown clusters hidden
in the data.

The architecture of a SOM consists of a single layer neural network
with neurons set along a regular grid: the output layer. Each input
to the SOM is fully connected to every neuron in the output layer.
Figure 1.9 depicts two typical two-dimensional output layers with M =
25 neurons set along a rectangular grid (a) and a hexagonal grid (b).
Although most of the SOMs are based on a two-dimensional grid, many
applications also use three or more dimensional spaces.

Each neuron in the output layer has a double representation: an N-
dimensional vector mi, known as the weight vector, and its position in
the grid. The number of components of the vector is equal to the number
of input features N . Figure 1.10 shows the structure of the SOM that
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was used in this work, and it is based on a two-dimensional hexagonal
grid.

mi = (mi1, mi2, · · · , miN ), 1 ≤ i ≤ M. (1.18)
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Figure 1.9: Typical SOM topologies: a rectangular output grid (a) and a hexag-
onal output grid (b).

Competition layer: hexagonal grid
Neurons
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x1 x2 xn

Figure 1.10: Typical SOM topology: structure of an N-input SOM, x =
(x1, x2, · · · , xN ), and M=77 output neurons distributed into a 7x11 two-

dimensional hexagonal grid.

Clustering a dataset by means of a SOM paradigm is carried out
using a two-level approach: first, the SOM is trained; afterwards, the
prototype vectors of the SOM are clustered. The advantage of using
this approach, instead of clustering the data directly, is that the com-
putational load decreases considerably, which makes it suitable for an-
alyzing different pre-processing and initialization strategies in a short
time. In addition, a two-level approach is less sensitive to noise than a
single-level strategy. Obviously, this solution is only valid if the clusters
found using the SOM are representative of the original data [134].
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Training Self-Organizing Maps

First, an initial weight is assigned to each neuron connection. There
are simple initialization approaches, such as using random numbers or
using input samples randomly selected from the dataset. Although so-
phisticated algorithms that are based on data analysis (e.g., principal
component analysis (PCA)) can also be used, it was observed that ran-
dom initialization performed rather well for non-linear datasets [135].

Thus, in each training step, one input sample xk = (xk
1 , xk

2 , · · · , xk
N ),

1 ≤ k ≤ K , from the dataset is chosen randomly, and the distances
between this sample and all of the neuron weights of the SOM are
computed. The most popular distance measure in real applications is
the Euclidean distance ∥·∥.

∥∥∥xk − mi

∥∥∥
2

=
N∑

j=1
(xk

j − mij )2. (1.19)

The output neuron whose weight vector is closest to the k-th input
sample, according to Equation (1.19), is the best matching unit (BMU)
or the winner neuron, which is usually denoted by c.

∥∥∥xk − mk
c

∥∥∥ = min
i

∥∥∥xk − mi

∥∥∥ . (1.20)

The BMU is used to update the weight vectors of the SOM. In this
process, the BMU and its neighbors are moved towards the k-th input
sample, bringing them closer. For each neuron of the SOM, the weight
vector is updated, as follows:

mi(n + 1) = mi(n) + α(n)hci(n)
∥∥∥xk (n) − mi(n)

∥∥∥ (1.21)

where n denotes the iteration step, xk (n) is an input sample randomly
selected from the training dataset at iteration n, hci(n) is a neighbor-
hood function or kernel around the BMU, and α(n) is the learning rate.
Both α(n) and hci(n) are decreasing functions approaching zero with
each iteration in order to guarantee the convergence and stability of
the training process. The neighborhood function specifies how much
the i-th neuron has to move toward the input sample at iteration step
n. It is a radial basis function, usually a Gaussian function that is cen-
tered at the BMU:

hci(n) = exp
(

−
∥∥mc(n) − mi(n)

∥∥2

2σ2(n)

)
. (1.22)
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Equation (1.22) defines the region of influence of the current input
sample, with σ2(n) being the neighborhood radius.

Concerning the learning rate in Equation (1.21), different functions
have been proposed, such as linear or exponential functions. In this
work, a decaying exponential function, with initial learning rate α0, has
been selected:

α(n) = α0e(− n
T ), (1.23)

where T is the number of iterations or training length. It is worth noting
that Equation (1.21) is also suitable for the online training of the SOM
by substituting n by t (i.e., discrete time).

In sum, the sequential training of SOMs involves the following steps:

1. Initialization. Initial weights are randomly selected from the data-
set.

2. Competition. For a randomly selected input sample, all of the
neurons in the output layer compete with each other to be the
BMU (Equation (1.20)). The neuron that is closer to the input
sample is the winner.

3. Cooperation. The BMU also excites the neurons in its topological
neighborhood. This cooperative process decays as neurons are
further away from the winning neuron (Equation (1.22)).

4. Adaptation. The BMU and its neighboring neurons are pulled
closer to the input sample. For each neuron in the SOM, the
weight vector is updated according to Equation (1.21).

After initialization, the remainder training steps are repeated until
a stop criterion is achieved.

Clustering of Self-Organizing Maps

The above unsupervised learning algorithm preserves data topology,
that is to say, samples that are close together in the high-dimensional
input space have close positions in the map. After training, the SOM
provides a nonlinear mapping of the dataset onto a two-dimensional grid
that allows for identifying groups of samples with similar characteristics
(i.e., clusters) by taking all features into account simultaneously.
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Figure 1.11: SOM organized into an 8 × 8 neuron grid. (a) Neighbor weight
distances. The blue hexagons represent the output neurons, while the red lines
are neuron connections. Darker colors represent larger distances between
neighboring neurons, and lighter colors represent smaller ones. (b) Sample
hits. This image shows how many training samples are associated with each

neuron.

The unified distance matrix (U-matrix) provides the distances of the
weight vectors to each of its immediate neighbors in the grid. It can
be used with the aim of displaying the distance structures, while using
a color scale in the two-dimensional array of neurons, maintaining the
topology, and allowing for the identification of the clusters, boundaries,
and representative neurons. See, for example, Figure 1.11(a), where
the U-matrix of an 8 × 8 hexagonal SOM topology is shown. The U-
matrix is not only a useful visualization tool but also a powerful analysis
tool suitable for mathematically identifying clusters. Another useful
visualization method consists in displaying the number of hits in each
neuron of the map. This information can also be applied in clustering
the SOM using low-hit neurons to locate cluster borders (see Figure
1.11(b)). In this work, the U-matrix based clustering algorithm was used
[136].

1.3 Data Information Sources and Data Mining for
Intelligent Vehicles

Since ADAS depend on ML algorithms, a reliable data source is needed,
on the one hand, to model real-world contexts properly, and, on the
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other hand, to select and understand the best sensors and actuators for
each driving situation.

Many research works have been conducted in the field of intelligent
vehicles, and their sensors, to understand how drivers and traffic behave
and to determine which sensors are suitable for each situation. Most
of these studies rely on cars instrumented with controller area network
(CAN)-bus loggers, inertial measurement units (IMUs), radars, LIDARs,
and video cameras to collect meaningful data. There exist two main
branches in driving studies: non-naturalistic and naturalistic.

Non-naturalistic driving studies (non-NDS), such as NU-Drive [137],
UYANIK [14], and UTDrive [138] make use of dedicated instrumented
cars, which simplifies data collection and logistics by increasing the
number and complexity of the boarded sensors. The selected human
subjects (motorists) do not drive their own cars, but, on the other hand,
the driving conditions can be controlled, assuring the good quality of the
results. This approach also involves simulator-based road-safety stud-
ies, self-report studies, statistical analysis, and authority-investigated
crashes. However, despite the fact that these methods have greatly
contributed to understanding how road users behave and which factors
involving crashes are the most important, they do not reflect completely
realistic situations. Therefore, naturalistic driving studies (NDSs) have
been conducted to compile data that faithfully reflects driver behavior
in every-day traffic situations. NDSs, pioneered by the Virginia Tech
Transportation Institute (VTTI) [139], are the most recent trend in traffic
safety and ADAS research.

Meaningful examples of NDSs are UDRIVE [140], carried out in the
EU, and the 100-Car NDS [141] and SHRP2-NDS [142], carried out by
the VTTI. These studies focused on collecting data from drivers (human
subjects) in their own vehicles and environment in everyday trips with-
out interfering in any normal behavioral patterns, that is to say, with no
experiment control. Thus, NDSs allow for the observance of normal dri-
ver situations, providing much better feedback to correctly understand
drivers’ behavior in normal, unguided traffic situations, as participants
do not have the feeling of being involved in an experiment.

In this chapter, the non-NDS Uyanik and the SHRP2-NDS datasets
are introduced. These datasets allow us to explore the differences on
the concrete characteristics of NDSs and non-NDSs to decide whether
they are adequate or not for the concrete applications to be developed,
and their advantages and drawbacks when used to develop ML-based
ADAS.
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1.3.1 Uyanik Non-NDS Description
Uyanik [14], [143] is a Renault Mégane sedan, fitted with a reinforced
front bumper, a high-power battery, a 1500 W DC-AC power converter,
a CAN-bus output socket, an instrument bench at the navigator’s seat,
and power and signaling rewiring (see Figure 1.12). The complete
dataset that was compiled by the vehicle on each test drive comprises
three channels of uncompressed video from the left and right sides of
the driver and the road ahead.

GPS 

receiver

Driver and roadway

cameras

IMU XYZ 

accelerometer
Brake and gas pedal 

pressure sensor

CAN-bus 

signals

Laser 180º distance

scanner

EEG 

system

Microphones

Figure 1.12: Data-acquisition systems and sensors installed in the Uyanik
car [14].

It also includes three audio recordings, GPS, and CAN-bus readings,
including vehicle speed (VS), engine RPM (ERPM), steering wheel an-
gle (SWA), and brake pedal status (pressed or idle) (see Table 1.2).
Gas pedal engagement percent (PGP) is sampled at either 10 or 32
Hz, whereas brake pedal and gas pedal pressure sensors (BP and GP,
respectively) are sampled at the same CAN-bus rate. Finally, a laser
distance measuring device was fitted in the front bumper jointly with
an IMU XYZ Acceleration measuring sensor set-up and an electroen-
cephalogram (EEG) monitor. All of the signals were handled jointly,
which requires a re-sampling of the data streams to the highest fre-
quency of 32 Hz.

Video channels were collected by means of a digital video recorder,
audio by a data acquisition system, and digital data by a merge of all
the signals with RS-232 and USB buses into a laptop computer running
custom software (SW) that was developed by the Technical University
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Table 1.2: Significative variables of the Uyanik dataset [14].

Features Signals (Time Series)

CAN bus

Steering wheel angle (SWA)
Steering wheel speed (SWS)
Vehicle speed (VS)
Percent gas pedal (PGP)
Engine RPM (ERPM)

Pressure sensors
Brake pedal pressure (BP)
Gas pedal pressure (GP)

IMU unit

Roll rate (RR)
Pitch rate (PR)
Yaw rate (YR)
X axis accelerometer (XACC)
Y axis accelerometer (YACC)
Z axis accelerometer (ZACC)

Laser Distance to obstacle (d_90)
GPS Coordinates (GPS)

of Istanbul [14]. It is worth noting that the audio and video feeds, as
well as the digital data, were properly synchronized.

This re-synchronization was carried out by displaying the video
feeds jointly with the plain data of Uyanik, resulting in a set of spreadsheet-
like data chunks that can be easily processed automatically.

The driving behavior data collection was performed in Istanbul. The
car route is around 25 km (about 40 minutes), and includes different
kinds of sections: city, highway, secondary roads, and a university cam-
pus. The age range for female drivers was 21–48, and the corresponding
male range was 22–61. The route was the same for all 20 drivers, how-
ever, the road conditions differ depending on traffic and weather.

1.3.2 SHRP2-NDS Description
The main objective of the SHRP2 project is to address the influence of
driver performance and behavior on traffic safety. This involves under-
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standing the way the driver handles and adapts to a vehicle, roadway
characteristics, traffic lights, signs, infrastructure, and other environ-
mental features. SHRP2-NDS offers two key advantages: detailed and
accurate precrash information, including objective information about dri-
ving behavior, and exposure information, including the frequency of be-
haviors in normal driving. To take part in this study, the participants’
vehicles are checked for their suitability to fit the systems used in the
NDS. Next, while the data acquisition system and instrumentation are
installed, the participant serves several driver-assessment tests as well
as medical examinations for a total of 2–3 h.

SHRP2-NDS is the largest NDS ever conducted, involving 2360 par-
ticipants as of the ending moment of the study (September 2012). These
participants were recruited in six different locations across the United
States of America. Each location hosted 150 to 450 vehicles, and these
locations with their coordinating groups were:

• Bloomington, Indiana—Indiana University, 150 vehicles.

• Central Pennsylvania—Pennsylvania State University, 150 vehi-
cles.

• Tampa Bay, Florida—CUBRC and University of South Florida, 441
vehicles.

• Buffalo, New York—CUBRC, 441 vehicles.

• Durham, North Carolina—Westat, 300 vehicles.

• Seattle, Washington—Battelle, 409 vehicles.

The study, designed by the VTTI, required the same number of par-
ticipants for each of age and gender groups. SHRP2-NDS adheres to
the principles of informed consent and privacy requirements and each
institution operated under the monitoring of either their own Institu-
tional Review Board (IRB) or the VTTI IRB. The participants receive an
annual incentive of $500, and they must authorize access to the vehicle
so as to replace the hard disk in which the data are recorded every 4–6
months.
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Figure 1.13: Data acquisition systems and sensors installed in the vehicles
that participated in the SHRP2-NDS. IR: infrared; SW: software.

Table 1.3: Significative variables of the SHRP2 NDS dataset.

Features Signals (Time Series)

CAN bus

Steering wheel angle (SWA)
Steering wheel speed (SWS)
Vehicle speed (VS)
Percent gas pedal (PGP)
Engine RPM (ERPM)

IMU unit

Roll rate (RR)
Pitch rate (PR)
Yaw rate (YR)
X axis accelerometer (XACC)
Y axis accelerometer (YACC)
Z axis accelerometer (ZACC)

Radar Distance to front vehicle (d_90)
GPS Coordinates (GPS)
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The VTTI developed a custom data acquisition system for the SHRP2-
NDS [142]. This system, whose main blocks are displayed in Figure
1.13, was manufactured by American Computer Development Inc. and
includes a forward radar, four video cameras (with a forward-facing one,
color, and wide-angle view), an IMU with XYZ accelerometers and gy-
roscopes, vehicle network (CAN bus) data logging, GPS-based location,
computer vision-based lane tracking, and data-storage capability (re-
fer to Table 1.3). Additionally, the data acquisition system has cellu-
lar connectivity to provide emergency-call functionalities, system health
checks, and SW updates. The captured data, including the radar, are
uniformly sampled at a rate of 10 Hz, and all the different sources are
properly synchronized.

1.4 Hardware Solutions
The deployment of the aforementioned ADAS requires of the develop-
ment of high-performance embedded systems. These systems must al-
low, on the one hand, to achieve all the required specifications regarding
timing and throughput and, on the other hand, they must have a energy
consumption low enough to not having a significant impact on the en-
ergy efficiency of the vehicle, which can be critical in the emerging
scenario of electric automobiles.

Currently, ADAS-intended system-on-chips (SoCs) are being offered
by semiconductor manufacturers. However, these systems typically
are not optimized enough, increasing both the costs and the energy
consumption. This happens because they are ADAS prototyping plat-
forms, ready to run systems that are not completely debugged. Con-
versely, application-specific integrated circuits, despite meeting all the
specifications regarding utilization and energy efficiency, are expen-
sive to design and produce, particularly for short life-cycles and small
series. In that sense, on-demand optimized solutions based on field-
programmable gate array (FPGA)+CPU, known as programmable system-
on-chip (PSoC) can be considered as a trade-off solution that provides
the strictly necessary resources for each application, enabling cost re-
duction and power efficiency. Finally, in recent years, due to the size of
the PSoCs available in the market growing non-stop, application scal-
ability issues began being identified. These issues, on the one hand,
were strongly related to the internal interconnections, and, on the other
hand, to the available resources not being heterogeneous enough. For
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those reasons, adaptive compute acceleration platforms (ACAPs) were
released to market to improve the milestones already reached by PSoCs.

1.4.1 Field-Programmable Gate Arrays
FPGAs are a trade-off solution between the high performance of an
application specific integrated circuit (ASIC) and the attempt to bring
high performance, cost-effective solutions [144]. As ASICs, they still
allow to perform very different operations all together and in parallel.
Basically a FPGA is an integrated circuit that is configured after being
manufactured [145]. For that purpose, FPGAs rely on structures known
as configurable logic blocks (CLBs) as their fundamental blocks. These
CLBs are divided into slices, each of them containing flip-flops (FFs),
look-up tables (LUTs), multiplexers, etc., as shown in Figure 1.14.

Figure 1.14: Typical architecture of a CLB.
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Figure 1.15: Block diagram of a hard Xilinx DSP Block.

In addition, since there are high-resource consuming applications,
such as long word-length products, accumulators and comparisons, FPGA
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manufacturers include “hard” resources such as dedicated multipliers,
comparers and accumulators in order to free up CLBs for other pur-
poses. The most known hard blocks are digital signal processing (DSP)-
dedicated ones [146], with block diagrams like the one in Figure 1.15.
In this Figure, it can be seen that DSP blocks include resources to im-
plement all the operators described in this paragraph, operators that if
they were implemented by using only CLB logic would consume a very
high number of them, impairing both energy efficiency and performance.

Several manufacturers have developed their FPGA families regard-
ing several considerations and applications. On the one hand, Intel
FPGA, formerly known as Altera, and Xilinx offer similar solutions in
terms of size and variety of resources, being focused on general pur-
pose FPGAs, handling almost the entire market. Well known solutions
of these manufacturers are the Intel Cyclone, Arria and Stratix, and the
Xilinx Spartan, Artix and Kintex. On the other hand, manufacturers like
Lattice Semiconductor are focused on application-specific FPGAs, with
a portfolio of ultra-low power consumption, small form factor devices in-
tended for applications where size and battery life are a critical design
specification.

The last iteration of hard blocks is the incorporation of microcontroller-
like peripherals, such as UARTs, Ethernet switches and even full micro-
processor systems, turning FPGAs into PSoCs [147].

1.4.2 Programmable System-on-Chips (PSoCs)
PSoCs are, essentially, FPGAs fitted with hard microprocessor systems.
Therefore, besides hardware (HW) implementations, they are suitable
for running SW applications as well as mixed HW/SW designs [147]. This
is specially to discharge the microprocessor system from the most in-
tensive, parallelizable, calculation stages, with the application running
on SW but using FPGA-deployed accelerators to perform operations
that can be paralleled, drastically reducing computation times if used
properly. Furthermore, since the microprocessor system and the FPGA
logic are built in the same silicon wafer, printed circuit board (PCB) lay-
outs turn simpler and timing gets improved, topping the performance.
Additionally, manufacturers include rugged, automotive-standard com-
pliant models that enable developers to reach more easily the reliability
standards.

PSoCs are suitable for the implementation of ADAS. PSoCs combine
Microprocessors and FPGAs, hence, this range of devices is specially
suitable for these mixed-approach developments since they allow to
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implement complex algorithms taking advantage of the C language on
their microprocessor while the most calculation-intensive stages can be
HW accelerated.

Mainly two manufacturers have developed their PSoC families re-
garding several considerations and applications: Intel FPGA and Xilinx.
These manufacturers offer quite similar solutions in terms of size and
variety of resources, being focused on HW-based acceleration of SW
applications. Well known solutions of these manufacturers are the Intel
Cyclone, Arria and Stratix, and the Xilinx ZynQ-7000, ZynQ Ultrascale
and ZynQ Ultrascale+. In the case of Xilinx, the FPGA included in the
PSoC is derived of any of the FPGA families, despite having different
names.

The individual implementations of this work will be deployed on a
ZynQ-7000 XC7Z045 FFG900 – 2 PSoC [147], embedded in a ZynQ-7000
SoC ZC706 Evaluation Kit [148], which includes all the JTAG program-
ming interface, peripherals and other accessories needed for the SoC to
work properly.

This FPGA, derived from the Xilinx Kintex-7 family, has the following
logic resources:

• 54 650 logic blocks, each one conformed by four six-input LUTs
and FFs;

• 19.2 Mbits of high-speed RAM blocks;

• 900 DSP blocks; and,

• An analog-to-digital converter (ADC).

ZynQ-7000 SoC include in the same silicon wafer a microprocessor,
called processing system (PS); and a FPGA, called programmable logic
(PL). The PS is connected to the PL as well as its peripherals through
a variant of the Advanced Microcontroller Bus Architecture (AMBA),
known as Advanced eXtensible Interface-4 (AXI4) [147], [149].

The AXI4 interface has become the standard specification for Xilinx
to interconnect the IP cores deployed in the PL between them and with
the PS. The main advantage of using this interconnection methodology
is, basically, its consistence and standardization. In addition, it is fully
specified and parametrized, which makes the users able to adopt it
directly, with no adaptations needed to be performed.

The general architecture of ZynQ-7000 SoCs is displayed on Fig-
ure 1.16. As it can be seen, the block named as MPCore relies on a
Dual-Core ARM Cortex-A9 RISC microprocessor to perform the logic
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Figure 1.16: ZynQ-7000 SoCs’ architecture.

operations. In addition, this MPCore has a JTAG interface, a global in-
terrupt controller (GIC), timers, DMA, etc. The rest of peripherals are
connected to the MPCore by means of AMBA-AXI4, which has a dual
purpose: this allows the peripherals to be accessed by both the micro-
processor and the PL. Thus, for instance, if a designer wanted to add
a CAN-bus interface to an hypothetical PL design, it would not be not
necessary to implement it on FPGA-logic, because the CAN-bus PS
peripheral could be accessed through AMBA-AXI4.

1.4.3 Adaptive Compute Acceleration Platforms (ACAP)
ACAPs are the next step on the field of PSoCs. Based on a novel het-
erogeneous compute architecture, they combine the following elements
[150]:

• Scalar processing elements: they are based on CPU cores, which
are very efficient at complex algorithms with diverse decision trees
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and a broad set of libraries. However, they are limited in perfor-
mance scaling.

• Vector processing elements: they are based on DSP and graphic
processing unit (GPU) architectures. These elements are more
efficient at parallelizable compute functions. On the other hand,
they experience latency and efficiency lacks as a trade-off due to
the inflexible hierarchy of their memories.

• Programmable logic (PL): this element is basically an FPGA. This
architecture can be precisely parameterized and customized to a
particular compute function or user-designed topology. This fact
makes them the best choice in terms of low latency and real-time
applications, such as those for ADAS. However, these implemen-
tations require of expert-level knowledge of the algorithms to be
implemented, and each change may take several hours of compi-
lation.

As can be seen, these platforms show a level of heterogeneity that,
despite not differing very much from PSoCs, enables to perform a seg-
mentation of the different types of operations that could be necessary to
implement a concrete application as well as extreme data throughput.

In the same maner as for PSoCs, Intel FPGA and Xilinx are the
companies that control the market of these particularly novel devices,
particularly with the Intel Agilex and Xilinx Versal families.

The integration of all the developed applications in a single-chip so-
lution will be performed on a Xilinx Versal ACAP, more precisely, the Ver-
sal XCVM1802-2MSEVSVA2197 [150], embedded in a Versal VMK180
Evaluation Kit [151]. This kit includes all the peripherals and accesories
needed for the ACAP to work properly.

The PL section of the ACAP, that is to say, the embedded FPGA,
relies on the following list of resources:

• 28 120 logic blocks, each one conformed by thirty-two six-input
LUTs and sixty-four FFs;

• 33.5 Mbits of high-speed RAM blocks;

• 130.2 Mbits of ultra-high-speed RAM blocks; and,

• 1 968 single precision floating point-enabled DSP engines.

The selected device is part of the Versal Prime series, which means
that it does not count on the GPU-like vector processing elements,
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known as AI engines by Xilinx, but, on the other hand, it has an enormous
set of logic resources that allows to implement virtually any HW/SW de-
velopment.

So as to increase the performance of the SW partition, the scalar pro-
cessing elements are grouped in two subsets, the APU, based on a dual-
core ARM Cortex-A72 RISC microprocessor able to run very complex
top-level applications; and the RPU, based on a dual-core ARM Cortex-
R5F RISC microprocessor to run time-critical applications in real-time
[150]. The block interconnection runs on an evolution of the AMBA AXI4

Versal Architecture and Product Data Sheet: Overview
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Device Layout (Architecture and Interconnect)
Versal devices are built from a library of building blocks dedicated to processing, compute, acceleration, 
and connectivity. Figure 1 shows the layout of an ACAP with the NoC connecting to an external host 
processor via the CPM and the various heterogeneous processing elements: PL, vector-based accelerators 
(AI Engines), and scalar processing accelerators.

Serial transceivers are located on the east and west edges of the device with XPIO and memory controllers 
on the south and north of the device. In the Versal AI Core Series, there is an acceleration array on the 
north edge of the device in place of the XPIO and memory controllers. Connectivity IP is located in 
columns close to the serial transceivers. Resources are connected together through a matrix of 
programmable interconnect routes for local and regional signal connectivity as well as the NoC for high 
bandwidth and long distance communication around the device.
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Figure 1: Versal ACAP Device Layout
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Figure 1.17: Versal ACAP’s architecture.

interface used in the ZynQ series, known as the programmable network-
on-chip (NoC). The NoC easily enables high-bandwidth connections to
be routed around the device, to connect together areas of the device
that demand and use large amounts of data, alleviating the possible
bottlenecks that might occur [150]. In Figure 1.17 the architecture of a
Versal device along with the paths through the NoC runs is displayed.

As can be seen, and, as the main difference with the ZynQ archi-
tecture of Figure 1.16, when compared with the AXI4 bus, besides sur-
rounding the Logic, DSP and Memory gray block, which are nothing
else than the PL of the device, the NoC goes through the middle of it,
achieving drastic improvements of the timing performance of the inter-
connection of the implemented blocks. This happens because, with this
topology, the logic path of the blocks to the NoC is minimized due to
the synthesis tools placing them by its sides. On the other hand, it can
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also be observed that the NoC extends along the upper and lower edges
of the PL to bring the most direct access to the remaining blocks of the
system, which, jointly with the 7 nm manufacturing process, drastically
improves the performance of the entire solution.
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Chapter 2

An FPGA-Based Neuro-Fuzzy
Sensor for Personalized
Driving Assistance

2.1 Overview
This chapter describes an FPGA-based neuro-fuzzy system to personal-
ize ADAS with the aim of providing DS-based, human-like driving assis-
tance, particularly for the case of ACC. To achieve this objective, firstly,
a real-world driving database was used to get access to DS knowledge
obtained in real-life situations. Since ACC is designed for car-following
scenarios, the search of data stretches was limited to those instants
when car-following-related driving behavior was happening. For that
purpose, in this chapter, definitions about car-following are provided.
Once the stretches are delimited according to the definitions, different
driving behaviors are identified and labeled through a k-means cluster-
ing algorithm. A Takagi-Sugeno ANFIS was trained with the labeled
data to provide real-time, high-performance DS identification. To guar-
antee its high-performance execution, it was deployed on a Xilinx PSoC.
Finally, different following profiles were developed and configured to
enable the system to automatically mimic the time gap kept by human
drivers at car-following situations.

Thus, this chapter is organized as follows. Section 2.2 introduces the
concept of personalization for ADAS. Section 2.3 provides an outline
of the proposed DS personalization system. In Section 2.4, the DS
characterization methods in car-following scenarios are presented. The
neuro-fuzzy modeling approach of DS groups is provided in Sections
2.5. Then, Section 2.6 exposes the implementation of the FPGA-based
intelligent sensor and provides experiment results for a personalized
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ACC in a steady car-following situation. Finally, concluding remarks
are summarized in Section 2.7.

2.2 Personalization Approaches in ACC
ACC systems are a reality in an increasing number of recently manu-
factured cars [152]. These systems, as they are provided, help drivers,
on the one hand, to keep a constant speed, just in the way that conven-
tional CC systems do, and, on the other hand, to keep the time gap with
the preceding vehicle, known as THW. Thus, not only do these systems
keep a constant speed, with the decreasing of the workload that implies,
but also force to maintain a safety distance with the preceding vehicle,
reducing the risk of a rear-end collision [153].

However, not all drivers are familiarized with these systems, and
many car owners even ignore that their car fits any of these features.
On the other hand, among those that are aware, only a marginal rate
uses ACC frequently. This fact might respond to many factors, but the
main one is related to the acceptance of the system. The main problem
that forces drivers to neglect the use of ACC is by itself the experience
of using it [54]. This happens because many ACC systems are too con-
servative at keeping the distance with the preceding car, prioritizing a
very rigid safety gap at the cost of impairing the constant speed feature.
This causes constant accelerations and decelerations that many car oc-
cupants find annoying, making them prone to disengage the system.
For that reason, and with the aim of improving the driver experience,
a variety of car manufacturers allow to adjust some system parameters
[154].

In recent years, several car-makers have introduced a slight level of
ADAS customization by allowing users to manually select the THW pa-
rameter from a knob or a lever in the steering wheel, always within the
pre-engineered parameters. However, despite a group of drivers appre-
ciating the freedom that manually adjustable parameters provide them
in automatic longitudinal control modes; this personalization process,
including the operation of the system itself, can be complicated for
other drivers not so familiarized with control systems in automobiles.
Therefore, it seems reasonable to introduce personalization strategies
that need no driver intervention to make the adoption of these systems
easier for that sector of the automotive community [155]. ADAS person-
alization embeds characteristics of motorists’ DS into the system. The
DS is the manner the driver operates a vehicle in terms of steering,
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acceleration and braking, and how this driver relates to the other ones
in terms of predictability and aggressiveness [57]. There exist two ap-
proaches to personalize ADAS depending on DS: individual-based and
group-based.

Individual-based personalization strategies try to reproduce or iden-
tify the DS of a given individual using ML techniques or mathematical
models. Within this scope, in the works by the authors of [156], [157],
ACC was adapted to individual drivers in real time based on DS ob-
servations, achieved by the recursive least-squares (RLS)-based fitting
of a linear car model. The model reproduced the time gaps observed
in a short manual-driving session (learning mode) and mimicked these
learned time gaps when the personalized ACC was enabled (running
mode). In of [158], an ACC was developed with the same approach as
previous, but introducing a forgetting factor with the learning of the
driver parameters occurring when the driver is manually controlling the
vehicle while following a lead vehicle. A different approach was chosen
in [159], where a learning, HMM-based driver model, combined with
a model predictive control (MPC) algorithm, was used to create per-
sonalized driver assistance able to imitate different DSs. Regarding
FCW/AEB, in [160], the personal DS was statistically modeled to esti-
mate driver-specific probability distribution of danger level to determine
the activation threshold of the system. Individual-based strategies have
the main advantage of entirely mimicking the DS but, despite this fea-
ture being very desirable, it generally requires intensive computation,
hard to be achieved in real-time. Moreover, the modeled behaviors
would require safety verification since not all drivers handle vehicles in
a correct way. To mitigate these drawbacks, group-based approaches
have emerged.

Group-based personalization strategies locate drivers in a small
number of representative DSs for which a control strategy is imple-
mented. In [161], a group-based approach of the driver’s ACC preferred
time gap is presented. The drivers were clustered to create three gen-
eral driver profiles to be used, together with demographic information,
to predict the gap by using a regression model and decision trees. The
authors of [162] describe a stop-and-go ACC system that groups drivers
into three clusters depending on their DS, with the cluster membership
determining the reference acceleration profile to adjust the ACC con-
troller. Recently, in [163], an SVM-based approach was used to classify
driving behavior into two different clusters in order to select a person-
alization parameter for an ACC. These strategies, despite not entirely
mimicking DS, are computationally more efficient, requiring less com-
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putation since they work on a previously offline-trained classification
algorithm, allowing online, real-time computation. On the other hand,
as they represent a class-averaged DS, they can easily be validated
and verified to always operate in safe margins.

In this chapter, a hybrid personalization strategy for DS modeling
is proposed. To perform system development, data from a subset of
real-world trips of the SHRP2 NDS [13] described in Section 1.3.2, are
used. First, a group-based technique was used with the aim of building
a three-cluster DS classifier. Then, each the clusters was approximated
by means of an ANFIS obtaining identification rates higher than 85.7%
for the three clusters. Finally, an individual-based algorithm was used
to adapt the behavior of the group to a particular driver. The whole
system was successfully implemented using an FPGA device of the Xil-
inx’s ZynQ PSoC. The system can mimic the typical timing parameters
of a group of drivers as well as tune these typical parameters to model
individual DSs. The neuro-fuzzy intelligent sensor provided high speed
for real-time active ADAS implementation and could personalize its be-
havior into safe margins without driver intervention. In particular, the
personalization procedure of the THW parameter for an ACC in steady
car-following scenarios is described.

2.3 Outline of Driving-Style Personalization Sys-
tem

The intelligent sensor developed relies in two well-differentiated stages:
an offline design stage and the online in-car operation stage. The se-
quence of tasks involved in the offline design stage are depicted in
Figure 2.1.

The first task comprises the segmentation of SHRP2-NDS trips with
the aim of selecting car-following scenarios, and the computation of a
set of meaningful car-following parameters or features for each segment
of the trip (e.g., THW, time-exposed THW (TETH) and time-integrated
THW (TITH) [56], which will be defined later in Section 2.4.1). Next,
an unsupervised clustering technique, the k-means algorithm, already
introduced in Section 1.2.2, was used to group DSs into a number of
clusters in car-following circumstances. Then, an ANFIS, described in
Section 1.2.4, was trained in order to develop a high-performance model
of the DS classifier. The main advantage of using an ANFIS-like model
is that it was suitable for the development of high-speed parallel-HW
architectures, allowing in-car DS classification for ADAS personaliza-
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Figure 2.1: Offline sequence of tasks involved in the design and development
of a neuro-fuzzy sensor for ADAS personalization.

tion in the online stage. Thus, the ANFIS model was implemented using
an FPGA of the Xilinx ZynQ device family. More precisely, as displayed
in Section 1.4.2, it is a PSoC that integrates microprocessors and their
peripherals with PL.

The FPGA-based DS classifier acted as an intelligent sensor able
to adapt the ADAS response to driver preferences in longitudinal car-
following scenarios. In particular, a steady car-following application
was developed: a personalized ACC.

2.4 Driving Style Characterization in Car-Following
Scenarios

Car-following describes a driver following another driver in a traffic
stream. For that purpose, drivers operate throttle and brake pedals to
maintain a desired range of distance from the preceding vehicle. The
main objective of modeling car-following behavior is predicting the fol-
lowing VS and distance based on stimuli provided by the preceding
vehicle for a set of road and driver characteristics. A retroactive ap-
proach can be applied in this topic, that is, based on DS and speed,
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predicting the desired distance between the following and the leading
vehicle. This is the base of several ADAS, such as ACC, FCW, or AEB.

2.4.1 Driving Parameters and Driving-Style Characterization
The main step to correctly identify DSs is determining the adequate
variables to provide a robust enough identification. The signal choice
depends, however, on the desired application, which is crucial as any
further processing of that data will entirely depend on that choice.
Therefore, due to the plurality of applications, ranging from ADAS per-
sonalization [164] or driving correction for safety and comfort improve-
ment [165] to fuel economy advice, there is no recommended set of pa-
rameters. Thus, for identifying aggressive drivers, high accelerations
must be monitored. On the other hand, speed profiles should be moni-
tored to analyze fuel efficiency. Additionally, the acceleration variable
is generally combined with brake activation and speed measurements.
In other works, pressure on the brake and throttle pedals are used as
reliable indicators to identify DSs [166], [167]. Furthermore, the selec-
tion of which signals are the most adequate for each application might
be guided by the identification or apparition of some circumstances, or
the restriction of the identification problem to some contexts or driving
events, such as braking, distance-keeping, roundabouts, cornering, lane
changes, or even car-following.

In this Chapter, the DS characterization problem was restricted to
steady car-following scenarios where clear distance-keeping behavior
was observed. In car-following scenarios, the most relevant variables
are the speed of the host vehicle (v ), the relative speed of the host to the
leading vehicle (vr), and the distance between host and leading vehicle
(d). With these variables as a starting point, we derived features to
parameterize car-following scenarios such as THW and the inverse of
time-to-collision (TTCi), which are commonly used.

T HW = d
v (2.1)

T TCi = vr
d . (2.2)

THW (Equation (2.1)) is the time difference between two successive
vehicles when they cross a given point, whereas TTCi (Equation (2.2))
is the inverse of the time two vehicles would require to crash if they
kept the same speed and trajectory. These parameters are often used to
assess car-following styles. Nevertheless, other parameters can be used
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to provide more complete insight into DS in car-following scenarios.
These parameters are TETH and TITH [56]. Thus, TETH (Equation (2.3))
represents the time exposure to a THW lower than a predefined safety
threshold during a ride.

T ET H =
∑

t≤T
δi(t)τs

δi =
{

1 ∀ 0 ≤ T HWi(t) ≤ T HW ∗ else,
0

(2.3)

where T is the total time interval considered, δi(t) is a binary activa-
tion parameter, τs is the sampling period, T HWi(t) is the instantaneous
value of THW at a given moment t, and T HW ∗ is the predefined safety
threshold value (Figure 2.2(a)). On the other hand, TITH (Equation
(2.4)), is the summation of the difference between T HW ∗ and T HWi(t)
restricted to time intervals when T HWi(t) < T HW ∗ (Figure 2.2(b))

T IT H =
∑

t≤T
[T HW ∗ − T HWi(t)] δi(t)τs

δi =
{

1 ∀ 0 ≤ T HWi(t) ≤ T HW ∗ else.
0

(2.4)
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Figure 2.2: Representative example of car-following features: (a) TETH and
(b) TITH.

The above parameters have been found to characterize the car-
following behavior in both motorists used to activate the ACC mode and
non-ACC users [56]. Thus, as TETH is the time a driver rides behind a
leader car below a certain THW threshold, we can determine which per-
centage of that trip occurs at a time distance below the recommended
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values. Simultaneously, TITH enables to measure how close a following
vehicle has got to its leader during the TETH. Consequently, the use of
these parameters jointly with the THW root-mean-square (RMS) value
THWRMS provides a good measure of driver behavior. As seen later, this
set of features is very helpful to identify car-following DSs.

2.4.2 Steady Car-Following Premises
Car-following scenarios include accelerating, braking, approaching, and
steady following [168]. Steady car-following circumstances occur when
the relative speed between vehicles is low and |T TCi| ≤ 0.05 s−1 [168].
The statements used to segment the trips into steady car-following
stretches are the same as those used in [169]. Thus, it was assumed
that there was a lead vehicle in front of the host vehicle and this leader
traveled in the same lane. Additionally, the lead vehicle must have been
at a maximum distance of 120 m and the host vehicle must have been
traveling at 20 km/h at least. The maximum distance was constrained
because the radar sensor could detect targets beyond that 120 m range,
and following behaviors with vehicles at such distance are negligible.
On the other hand, a minimum-speed constraint was applied to filter
traffic jams, which cannot be considered real car-following. Addition-
ally, the segments of interest were restricted to those lasting more than
30 s.

2.4.3 Car-Following Stretches in the SHRP2-NDS Trips
The selected car-following stretches were extracted from 48 different
trips of 40 different drivers [170]. Each driver was identified with a nu-
meric code that eased identification of the driving data while preserv-
ing their privacy. Most of the trips contained mixed-environment dri-
ving, ranging from parking lots and streets to motorways and highways.
These trips were selected so as to involve different traffic situations
as well. Different traffic situations enable researchers to better under-
stand driver behavior and how drivers relate to each other in complex
contingencies in both regular transit and safety compromising events.
The segmentation of trips into car-following stretches is not trivial, and
many parameters should be considered to perform it.

Steady Car-Following Segments

After applying the premises of Section 2.4.2 over the 48 trips, a total
of 115 continuous car-following stretches were segmented. Neverthe-
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less, these 115 stretches were extracted from 28 of the 48 selected trips,
as the 20 remaining trips did not contain stretches that gathered the
characteristics delimited in steady car-following premises. It is worth
noting that the segmented stretches were not evenly distributed among
the 28 trips. Thus, in order to uniformize the length of the segmented
stretches and consequently reduce standard deviation to increase com-
parability, all stretches were split into smaller ones lasting between 30
and 59.9 s. Additionally, those with T HW RMS > 4.5 s were discarded
because with this THW we could not assure significant car-following
events. This new partition was composed of 176 uniformized segments
with a duration of TRMS = 37.3 s and a standard deviation of σ = 8.18 s.

2.5 Neuro-Fuzzy Modeling of Driving-Style Clus-
ters

As depicted in Figure 2.1, the first task involved in the design of the
neuro-fuzzy sensor was the segmentation of the SHRP2-NDS trips into
the set of steady car-following segments introduced in Section 2.4.3
and the computation of the selected features: THWRMS (Equation (2.1)),
TETH (Equation (2.3)), and TITH (Equation (2.4)) for each one of the
176 segments. These parameters are representative of a longitudinal
DS in steady car-following situations; therefore, they could be used to
personalize ADAS. Consequently, this task consists in grouping together
similar DSs using a clustering approach.

2.5.1 Driving-Style Clustering
Throughout bibliography, several clustering algorithms have been used
to distinguish DSs and DS-class labeling [171]. The selection of a con-
crete algorithm depends on the trade-off between complexity and per-
formance. Mean-shift clustering is based on finding high-density data
areas by means of a sliding window of a specified radius, aiming to
locate the centroid of each area. This algorithm has the advantage of
not needing to know the number of desired clusters, as the algorithm
detects them by itself, but as a weakness, it should be pointed out that
the selection of the window radius may be nontrivial. Another used
clustering algorithm is density-based spatial clustering of applications
with noise (DBSCAN) [172], which can filter outliers and find arbitrarily
shaped and sized clusters, but does not perform well when clusters have
variable density. Some of the following algorithms, already introduced
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in Section 1.2.2, have been also used. Expectation–maximization (EM)
clustering using GMM is a flexible algorithm in terms of cluster co-
variance [173], which bridges the restriction of distance-based solutions
that only work on circular-shaped clusters. Additionally, since GMMs
use a probability cluster, a given datapoint can belong to several data
clusters with different probability, allowing mixed membership. HCA re-
lies on building a tree depending on the similarity/dissimilarity between
data points/clusters [174], and due to this characteristic, HCA does not
need to preselect a number of clusters and it is particularly suitable to
recover underlying hierarchical data structures. However, when there
are particularities in some of the input data, HCA tends to group all
of those particular points together, causing cluster unbalance. Finally,
several research pieces in driver identification [175] and road condition
monitoring [176] have successfully used the k-means algorithm, as it is
useful for the proposed group-based DS identification application. The
k-means algorithm is simple and quick since it is based on computing
distances between each point and the groups’ centroids. However, since
the number of clusters must be previously specified, and the centroids
of each cluster are randomly initialized, the repeatability of this type
of clustering is not always assured. Nevertheless, it is quick enough to
execute multiple runs in a reasonable period of time. Additionally, input
data groups elaborated by k-means can easily be interpreted. Hence,
due to prior characteristics, the k-means algorithm has been used to
carry out DS grouping.

K-Means Clustering Results

First, the selected THWRMS, TETH, and TITH features were computed
for each of the 176 driving segments and normalized into the [0,1] range.
According to the minimum following safety threshold of [53] and the
selected THW in the work by the authors of [56], TETH and TITH were
calculated for a critical value of THW∗ = 1.5 s. After that, three-group
k-means clustering of those segments was performed. The obtained
cluster structure is depicted in Figure 2.3. Note that, for THWRMS values
higher than THW∗ 1.5 s, TETH and TITH were always 0, generating the
blank zone at the right TETH − THWRMS semiplane of the figure.
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Figure 2.3: Clusters obtained applying the k-means algorithm to the car-
following segments; THWRMS, TETH, and TITH values were normalized.

DS groups were found to be stable and highly reproducible despite
the randomness of the cluster centroid initialization. Therefore, within
these data, a unique solid structure could be found. In Figure 2.4, the
distribution of THWRMS, TETH, and TITH values according to this nor-
malized cluster structure is shown. Given the distributions displayed in
the figure, the clusters could be described as follows:

• Cluster 1: groups the drivers with the lowest THWRMS and the
highest TETH and TITH. This cluster is representative of the most
aggressive car followers.

• Cluster 2: groups the drivers with high THWRMS values and min-
imum TETH and TITH. Thus, it incorporates the least aggressive
car followers.

• Cluster 3: groups the drivers with low THWRMS values, medium to
low TETH and the lowest TITH, representing medium aggressive
car followers.
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Figure 2.4: Histogram of THWRMS, TETH, and TITH values distribution for (a)
Cluster 1, (b) Cluster 2, and (c) Cluster 3. Red line represents average value

of each distribution.

2.5.2 ANFIS-Based Identification
Following the workflow of Figure 2.1, the second task in the develop-
ment of the proposed intelligent sensor was the development of a high-
performance model of the DS classifier obtained above. As the proposed
system was intended to accomplish online DS identification, clustering
techniques could not be directly used. There is a variety of solutions
suitable for efficient real-time HW implementation. Thus, ANNs, intro-
duced in Section 1.2.3, were used in [177] to score drivers depending
on the safety of their DS. In [178], finite-state machines (FSMs) were
used to decide whether a driver belongs to a DS class depending on
their driving decisions. Nevertheless, an outcoming line of work in DS
identification is based on fuzzy-logic implementations [9] (refer to Sec-
tion 1.2.4). Thus, in [179], anomalous DS was identified applying an FIS
on accelerometer data, and an FIS-based dangerous DS identification
application was proposed in [180]; in [57], fuzzy logic was applied to
identify DSs in an online fashion.

To accomplish this task, an ANFIS was used since this system was
suitable to model clusters with online performance. Thus, once the k-
means clustering algorithm classified the steady car-following segments
of Section 2.4.3 into three DS clusters depending on their THWRMS,
TETH, and TITH, an ANFIS was trained for each one of the three clus-
ters. Each ANFIS model returned a continuous value indicating the
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fitting of the prior input parameters into each of the clusters. Attend-
ing to those output values, the ANFIS model with the maximum output
identified the cluster to which the inputs belong.
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Figure 2.5: (a) ANFIS 1 (Cluster 1), (b) ANFIS 2 (Cluster 2), and (c) ANFIS
3 (Cluster 3). Training data shown in red; response of corresponding trained

ANFIS shown in blue.

ANFIS Training

The 176 segments from Section 2.4.3 were labeled in accordance with
the clustering described in Section 2.5.1 (see Figure 2.3). Once the seg-
ments were labeled, they were partitioned into a training set (75% of the
samples) and a test set (25% of the samples). Each ANFIS cluster was
trained and tested with the same set of data since they were designed
to decide whether the input data belong to the cluster they represent.
Consequently, membership was represented with a value of “1” if the
data belonged to the cluster modeled by that ANFIS, and with “0” if
not.
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As can be seen in Figure 2.5, THWRMS and TETH values were the
same for all the clusters, and despite this figure being a 3D plot and
TITH not being able to be displayed, it also coincided for all three
ANFIS models. It could also be observed that the value of the Z-axis
was “1” when data points belonged to the cluster to be modeled, and
“0” when not.

ANFIS Testing and Identification Results

After the training stage, the remaining 25% of the steady car-following
segments (see Section 2.4.3) are used to test the identification perfor-
mance of the ANFIS-based DS identifier. Thus, the test segments were
simultaneously input to the three ANFIS-clusters, and the neuro-fuzzy
system with the highest output was considered to be the class to which
the segment belonged. With this procedure, the outputs of the system
were evaluated, showing an accuracy mark of 95.45%. This mark was
much higher and the classification more detailed than those obtained in
previous works from other authors, such as [163], where, using an SVM,
a given driver’s DS was classified between only two clusters with an
accuracy of 85%.

Table 2.1: Confusion matrix of ANFIS-based DS identifier.

Actual/Identified Cluster 1 Cluster 2 Cluster 3
Cluster 1 6 0 0
Cluster 2 0 27 0
Cluster 3 1 1 9

Additionally, the confusion matrix in Table 2.1 gives deeper insight
into this accuracy result. By analyzing this matrix, accuracy rates of
85.71% for Cluster 1, 96.43% for Cluster 2, and 100% for Cluster 3 were
reached by the final ANFIS. Nevertheless, confusions reflected in the
matrix happened between contiguous clusters; hence, no erratic classi-
fication behavior happened while identifying DSs with this system.

2.6 Implementation of the FPGA-Based Intelligent
Sensor

The block diagram of the FPGA-based implementation of the intelligent
sensor for personalized ADAS is depicted in Figure 2.6.
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Figure 2.6: Block diagram of the FPGA-based intelligent sensor for online
car-following ADAS.

It is a hybrid HW/SW architecture implemented on the Xilinx XC7Z045-
2FFG900 PSoC [147] using the Xilinx ZC706 development board [148].
The entire HW partition of the system (deployed in the PL of the PSoC)
was implemented using VHDL language and the Xilinx Vivado 2018.1
design suite. On the other hand, the remainder of the proposed sys-
tem with its functionalities was programmed at the PS by developing a
bare-metal C application that can acquire vehicle bus data; compute the
THW, TETH, and TITH features; share them with the PL; retrieve the
ANFIS accelerators’ results; compute the personalization parameters;
and send them to the ACC electronic control unit (ECU).

Considering the characteristics of PS and PL, the distribution of
the tasks to be performed by the proposed system is explained in the
following lines.

The PS, apart from performing global system monitoring, was in-
tended to be connected to the vehicle systems through field buses,
managing the I/O interface of the vehicle’s systems with the proposed
solution. Therefore, the PS was responsible for capturing the input data
from both the radar sensor and the standard information from the CAN-
bus. Regarding input data signals, the system is fed with the distance
with the preceding vehicle and relative speed between the host vehicle
and the preceding one (both from the radar sensor), and with the host
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vehicle speed (standard information from the CAN-bus). With those sig-
nals, the PS computes the driving features that allow to perform DS
classification. These features, stated in Figure 2.6, are computed ac-
cording to Equations (2.1), (2.3) and (2.4) from Section 2.4.1. Inside the
PSoC, once the features have been computed, they are sent from the
PS to the PL by means of an internal bus, on which the entire PSoC
architecture is based: the AXI4-bus. According to features sent from the
PS to the PL through the AXI4 bus, the VHDL-based PL-implemented
ANFIS clustering accelerator classifies DS and sends the classification
results back to the PS through the AXI4-bus. With the received classifi-
cation results, the PS computes the ACC personalization parameter and,
finally, sends it through the vehicle’s CAN-bus to its ECU, responsible
for the ACC.

Thus, in summary, and according to Figure 2.6, the PS executes the
tasks of interfacing with the vehicle buses to collect the input data,
computes selected identification features, sends them to the ANFIS ac-
celerator deployed in the PL through AXI4 bus, collects the outputs of
the accelerator, computes the personalized ACC parameters, and sends
them to the ACC module. On the other hand, as it is computationally
intensive, the PL implements an ANFIS-based classification that needs
to be executed as fast as possible.

2.6.1 Hardware Partition: ANFIS Accelerators
The building blocks on which the ANFIS HW accelerators rely were
structured according to the Takagi–Sugeno Inference System (Equa-
tions (1.15)–(1.17)). After several tests, system inputs (THW0

RMS, TETH0

and TITH0) were represented using an 8-bit fixed-point fractional data
format, the bit widths of the intermediate operations were properly prop-
agated and trimmed for not losing precision, and output y was trimmed
to a 32-bit two-complement fixed-point representation, chosen to match
with the AXI4 bus width.

As can be seen in Figure 2.7, the proposed ANFIS architecture was
organized in four layers. In the first layer, the membership of the system
inputs to the antecedents of the rules were evaluated. Then, in the
second layer, rule activations were concurrently computed (Equation
(1.15)). Next, in Layers 3 and 4, the weighted average of the consequents
was calculated (Equation (1.16)). The HW partition was composed of
three ANFIS accelerators, one per cluster.
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Figure 2.7: Block scheme of the parallel architecture of a three-input ANFIS
implemented in the PL of the PSoC. Three ANFIS cores, one per cluster, were

implemented in the HW partition.

Membership Function Evaluation and Fuzzy-Rule Computation

The generalized bell-shaped MFs were precalculated and stored as
LUTs (remarked in black in Figure 2.7) at the PL block RAMs (BRAMs).
Therefore, evaluation of the input membership to each antecedent was
straightforwardly obtained by addressing those values, lasting only one
clock cycle. Once the input MFs were evaluated, fuzzy-rule activations
were calculated. As there were three MFs for each of the three inputs,
27 weights were to be computed. These fuzzy-rule activations were
three-input products, computed by a fuzzy-rule activation module re-
marked in blue in Figure 2.7. These products were efficiently computed
by a full-VHDL design intended to only use Xilinx DSP resources [146],
improving timing performance. To achieve this DSP-only implementa-
tion, the three-input products were done two by two. Thus, first the
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product of two of the inputs was calculated and stored in an intermedi-
ate result pipeline register and second, the stored partial product was
multiplied by the remaining input and saved in the output register. This
product pipeline required two clock cycles.

Computation of Sum and Weighted Sum of Rule Activation

In [181], a high-performance product sum architecture, developed by the
authors, was described. This topology, shown in Figure 2.8, replaced
the tree-adder architecture. It was intended to minimize latency, save
resources, and minimize the number of used DSPs. Thus, for a given
number M of products, the proposed architecture only used M multi-
plier/adder blocks, while a tree adder would spend 2M − 1 of the same
HW resources. This architecture, with inputs u = (u1, · · · , uM ) and
v = (v1, · · · , vM ), control signals is_prod and CE, and output p operates
as follows.

1. Product signal is_prod set to “1” and all registers are reset.

2. Product ui ·vi with i = 1, ..., M computed and stored in each of the
M accumulator registers.

3. Signal is_prod set back to “0” and first accumulation is performed.
Thus, accumulator registers from 1 to M/2 contain the sum of ui ·vi
products. Registers from M/2 + 1 to M are now filled with zeros.

4. Successive ⌈log2M⌉ accumulations are performed until valid result
is present in register 0.

Two instances of this core, labeled D and N in Figure 2.7, are used
to perform the computation of the sum and the weighted sum of rules’
activation parallelly (D and N in Equation (1.16), respectively). In both
modules, M equals the number of rules, that is, M = 27. For the N-
module, ui = wi and vi = ci, whereas for the D-module, ui = wi and
vi = 1. A ROM storing the values of ci is connected to the N-module.
The latency of this architecture is ⌈log2M⌉ + 2; thus, with M = 27, the
latency of both instances is seven clock cycles.
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Divider Module

This is the last layer of the ANFIS accelerator. The divider module
was elaborated by means of the Xilinx IPCore divider generator [182].
This IPCore was parameterized to match with the size of the N and D
operands using the high-radix division implementation. This particular
implementation could be pipelined to achieve good time performance
and, as it depends on multiply–accumulate operations, it is optimally
deployed in DSP blocks. With the selected word lengths and pipelined,
this module requires 43 clock cycles to return valid results.

Parameterization and Control Signals

The complete structure of the ANFIS HW accelerator is parametric and
fully customizable. LUT ROMs containing MFs as well as consequents
were simultaneously initialized. Elements such as type depths, sig-
nal bit-widths, and number of inputs, number of membership functions,
or number of fuzzy rules were defined on a standalone package. The



68 Chapter 2. FPGA-Based Neuro-Fuzzy Sens. for Pers. Driv. Assist.

complete ANFIS was controlled by the sequence of control signals rep-
resented in the chronogram of Figure 2.9.

Control signals of the ANFIS HW accelerator were rst, CE_mult, CE,
is_prod, and CE_div (see Figure 2.9); they worked as follows.

1. rst clears pipeline registers and multiplication–accumulation units.

2. CE_mult drives multipliers of fuzzy-rule calculation.

3. CE activates multiplication–accumulation units to iteratively com-
pute N and D.

4. is_prod, in conjunction with the first cycle of CE, is used to indi-
cate that the multiplier–accumulation unit must store the products
of the fuzzy rules by their corresponding consequents instead of
performing any accumulation.

5. CE_div triggers divider module calculating the output result of the
ANFIS.

clk

CE_mult

CE

    is_prod

CE_div

index RES 1 2 3 LM+1 1 2 lat

THW_rms THW_rms

TETH TETH

TITH TITH

ready

y Y

Figure 2.9: Chronogram of the control-signal sequence of the ANFIS core. LM
stands for ⌈log2M⌉

Finishing with the ANFIS HW accelerator implementation, it is worth
noting that the three clusters of Section 2.5.1 must be modeled by this
method. Consequently, three instances of this HW accelerator had to
be deployed in the PL, each one configured with the parameters of the
ANFIS cluster to which it corresponds.
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2.6.2 Experiment Results
The three ANFIS cluster HW accelerators were implemented in the se-
lected PSoC, achieving the subsequent results.

Resource Usage

The full HW system was successfully implemented, with the postimple-
mentation results displayed in Table 3.9. The three-ANFIS system fit
into the selected PSoC’s logic, leaving enough resources available for
further system applications, escalations, or improvements.

Table 2.2: Post-implementation resources report (Xilinx XC7Z045-2FFG900).

Resource Utilization Available % Used
LUT 13 500 218 600 6.17
FFs 15 759 437 200 3.60

RAM blocks 15 545 2.76
DSP 294 900 32.76

Timing Performance

Before the deployment, the maximum operational frequency was cal-
culated. For that purpose, three-ANFIS’ architecture was implemented
with a minimum clock period of 10 ns, obtaining a slack of 2.878 ns. Thus,
the maximum operational frequency of the design can be calculated as
follows:

Fmax = 1
Timp − dslack

= 1
10 ns − 2.878 ns = 140.41 MHz. (2.5)

With the maximal clock frequency of Equation (2.5), the designed
HW implementation could be used as an AXI4 peripheral dependent on
an AXI4 bus clock frequency of 100 MHz. This design delayed 53 clock
cycles (530 ns at FCLK = 100 MHz) to return the computed outputs.
These results outperformed the timing obtained for the full-SW PC-
based (20-core Intel Xeon CPU E5-2630 v4 at 2.20 GHz with 32 GB
of DDR4 RAM) MATLAB model design, with top performance peaks of
1.829 ms to compute the same set of 3 ANFIS, as well as a PC-based,
C-coded prototype that achieved timing marks of 12.45 µs.

The obtained timing was better than in other FPGA-based ANFIS
approaches, such as the work by the authors of [183], where timings
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of ~12 µs were obtained in the computation of a system with the same
number of inputs and outputs (three and one, respectively) as that de-
veloped in this chapter. On the other hand, in [184], a novel ANFIS HW
architecture, able to reduce the timing mark of 530 ns achieved in the
present work more than 50%, was presented. Recently, several innova-
tive architectures on other ML algorithms have been proposed with the
aim of achieving extreme timing performance results. Examples of these
innovations are a HW implementation of a radial-basis function (RBF)
network, for which operational frequencies of up to 450 MHz for high
bit-width inputs were achieved [185], and an SVM implementation able
to be run up to 20 times faster than other state-of-the-art techniques
[186].

Consequently, the hybrid HW/SW implementation developed is an
innovative solution between conventional SW-based approaches and
novel FPGA-based, extreme performance architectures, which provides
an adequate trade-off between complexity, performance, and develop-
ment time.

ACC Personalization Application

The particular example of ANFIS Cluster 1 is displayed in Figure 2.10.
In this figure, each column depicts the MFs for each input of the ANFIS
system (THW0

RMS, TETH0, and TITH0, and output y, respectively), where-
as each row corresponds to a fuzzy rule. Thus, for the selected example,
with THW0

RMS = 0, TETH0 = 0.5, and TITH0 = 0.18, ANFIS Cluster 1
returned an output value y = 0.965. Since this value was close to 1, and
the input data fulfilled the description of Cluster 1 in Section 2.5.1, this
ANFIS correctly identified this value as a member of the cluster it mod-
eled. Additionally, this datapoint was input to the ANFIS of Clusters 2
and 3, with returning output values of 0.017 and 0.31, respectively. As
a result, considering the maximum output value of the three ANFIS, the
system successfully classified the inputs as Cluster 1.

Regarding ANFIS HW accelerator verification, in Figure 2.11, a sim-
ulation of the ANFIS Cluster 1 HW accelerator is depicted. As can be
seen in this figure, with the same input values, the system returned
output y = 0.958. The results obtained with the HW accelerator agree
with Figure 2.10. The outputs of the three ANFIS clusters were recov-
ered through the AXI4 bus by the SW programmed in the PS partition
of the PSoC. The PS determined which the highest recovered value was,
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hence identifying the corresponding cluster.

Plot points:Input:
 [0;0.5;0.1797] 101

Move:

Help Close

left right down up

Opened system fis9, 27 rules

THW_rms=0.0 TETH=0.5 TITH=0.18 output=0.965

Figure 2.10: Rules and MFs of ANFIS Cluster 1 for a given input.
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Software Partition: Individual-Based Personalization for ACC ADAS

Once the DS classification of each individual has been performed, the
last step to be performed is the automatic tuning of the THW each
user wants to keep. For that purpose, the SW partition in the PS im-
plemented a plane-shaped that models a continuous range of possible
THW for each cluster depending of the characteristic car-following pa-
rameters of each driver. Thus, given three clusters 1 ≤ i ≤ 3, the ith
plane was defined, such that

̂T HW i = f
(
T HW RMSi , T IT Hi

)
, (2.6)

where ̂T HW i is the individualized THW adjustment, T HW RMSi is the
average THWRMS value observed during the learning period of the sys-
tem for a particular driver in a steady car-following situation, and T IT Hi
is the normalized TITH value for the same period.

These planes were defined by the three-point method depending
on the minimal, maximal, and average values for THWRMS and TITH
for each cluster according to Figure 2.4. With these distributions, the
T HW RMSi and σi for each cluster were:

• Cluster 1: T HW RMS1 = 1.08 s, with σ1 = 0.27 s.

• Cluster 2: T HW RMS2 = 2.44 s, with σ2 = 0.59 s.

• Cluster 3: T HW RMS3 = 1.61 s, with σ3 = 0.17 s.

For each cluster, the point of minimum THWRMS and maximum TITH
were assigned with a value of ̂T HW RMSi = T HW RMSi − σi, as it corre-
sponded to drivers from that cluster who like to drive with a shorter
time gap. On the other hand, drivers who would rather drive with
longer time gaps (that is, those who are represented by the point of
maximum THWRMS and minimum TITH), have a value of ̂T HW RMSi =
T HW RMSi + σi assigned. Finally, intermediate drivers (average values
of THWRMS and TITH), have a value of ̂T HW RMSi = T HW RMSi . Con-
sequently, three points (T HW RMSi , T IT Hi, ̂T HW i) that defined each
THW-modeling plane i are as follows.

• pi1 = (min(T HWRMSi), max(T IT Hi), T HW RMSi − σi)

• pi2 = (max(T HWRMSi), min(T IT Hi), T HW RMSi + σi)

• pi3 = (T HW RMSi , T IT Hi, T HW RMSi)



74 Chapter 2. FPGA-Based Neuro-Fuzzy Sens. for Pers. Driv. Assist.

With these considerations, the planes modeling the individualized
̂T HW i for each cluster according to Equation (2.6) were computed and

shown in Figure 2.12.

(a) (b)

(c)

THWRMS
TITH

 T
H
W

THWRMS
TITH

 T
H
W

THWRMS
TITH

 T
H
W

Figure 2.12: ̂T HW i model planes for (a) Cluster 1, (b) Cluster 2, and (c) Clus-
ter 3.

As can be seen in Figure 2.12, for each of the models, the predicted
̂T HW i was directly proportional to T HW RMSi and inversely propor-

tional to TITH. Note that, for the Cluster 1 model, the plane was satu-
rated to ̂T HW i = 1 s to assure that the personalized THW value never
took a value lower than the minimal safe THW values [53].

In sum, once the ANFIS accelerator identified the cluster for a given
driver, one of the three models in Figure 2.12 was selected. Then, an
individualization stage measured and computed the THWRMS and TITH
during a steady car-following period. Finally, with those measurements,
the system evaluated the corresponding plane model and set a person-
alized THW value for the ACC system (see Figure 2.6).
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2.7 Concluding Remarks
Throughout this Chapter, an ML approach to face the challenges of
ADAS personalization was proposed. It is based on a hybrid person-
alization strategy for DS modeling that uses a group-based clustering
technique, namely, a k-means clustering with an individual-based model
that adapts the parameters of the clusters to an individual driver. This
solution introduces personalization strategies that need no driver in-
tervention with the aim of easing the use of ADAS and thus promoting
their adoption in daily driving, with the ultimate goal of increasing road
safety and reducing traffic accidents. The DS clusters developed in this
piece of research are representative of car-following behavior obtained
with a meaningful sample of drivers from an NDS in different kinds of
roads, weather conditions, and lighting. Nevertheless, they can eas-
ily be extended to account for the requirements of particular groups
of drivers, mainly the most vulnerable drivers (e.g., elderly or inexpert
drivers). In addition, a similar approach could be used to personalize
and improve current ADAS through different spotlights, such as the fuel
economy or passenger comfort.

The implementation of a single-chip driving personalization sys-
tem for in-car integration requires a high-speed clustering model. The
adopted solution relied on high-performance approximation of the clus-
ters using an ANFIS. The universal approximation capability of ANFIS
with its inherently parallelizable layered topology make this model suit-
able for efficient HW implementation. The whole neuro-fuzzy sensor was
successfully implemented using an FPGA device of a Xilinx ZynQ-7000
PSoC providing high speed and low-power consumption for real-time
ADAS implementation. In addition, due to the reconfigurable nature
of FPGAs, both the HW and the SW partition of the PSoC could be
updated to cope with the continuous changes that new vehicle tech-
nologies introduce.
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Chapter 3

Real-Time Assessment of Fuel
Consumption to Promote
Eco-Driving

3.1 Overview
In this chapter, we develop an eco-driving assistance system based on
DS characteristics. These characteristics are extracted from data of the
Uyanik instrumented car, as described in Section 1.3.1. Based on these
data, a realistic fuel-consumption model is developed by means of the
Gtisoft GT-Suite [187], for verification purposes. The automatic char-
acterization of DS is performed by means of SOMs (see Section 1.2.5).
For this application, this unsupervised ML algorithm is able to auto-
matically group driving behaviors, since it relies on a two-dimensional
representation of a high-dimensional complex system, known as a map,
which is suitable for a qualitative evaluation of multiple driving behav-
ior features. The car-boarded SOM assessment solution, able to give
natural language-based DS improvement recommendations, is deployed
utilizing hybrid HW/SW implementation based on a FPGA-based Xilinx
ZynQ-7000 PSoC, which, according to the statements in Section 1.4.2,
enables to reach real-time performance rates.

The remainder of this chapter is organized as follows. Section 3.2
introduces the concept of eco-driving and puts it into context. Section
3.3 describes the followed development strategy. In Section 3.4, the
driving behavior characterization methods for fuel-consumption scenar-
ios are presented, including the selection and obtainment of relevant
driving features, while Section 3.5 presents experimental results con-
cerning the fuel consumption assessment and emission reduction. Sec-
tion 3.6 exposes the implementation and validation of a hybrid HW/SW



78 Chapter 3. Real-Time Assess. of Fuel Cons. to Prom. Eco-Driving

PSoC-based fuel-consumption reduction and eco-driving advice system.
Section 3.7 summarizes concluding remarks.

3.2 Eco-Driving Approaches
In the current society, traffic restrictions and environmentally friendly
means of transportation are a reality. However, despite authorities
gradually passing more restrictive environmental regulations, such as
low-emission zones (LEZs) [188], or automotive ecological ratings, their
effects on reducing GHGs have been found to not be as significant as
expected [67]. In that sense, it has been observed that individuals’ DS
plays a more important role in emitting polluting agents than the eco-
logical rating of the vehicle itself, with studies showing that, in differ-
ent situations, aggressive driving could increase energy consumption
by 47% [189]. With these assertions in mind, it seems reasonable that
if we could assess the fuel-consumption efficiency of individuals, their
DS could be corrected in order to increase their ecological friendliness
(refer to Section 1.1.4).

Eco-driving is mainly an operational decision that allows drivers to
maximize fuel efficiency and reduce pollutants’ emissions. It is char-
acterized by the use of several techniques that help to maximize the
vehicle’s energy efficiency. Therefore, this concept can be seen as a set
of rules that differ from the driving that motorists are used to perform-
ing, including calm driving, the avoidance of unnecessary stops, and the
anticipation and elimination of idling when possible. Several authors
remark that eco-driving could effectively contribute to reducing overall
fuel consumption and CO2 emissions if adequate education about strate-
gic, tactical, and operational decisions were provided to drivers [190]–
[192]. In this sense, during the trip, and when the trip has finished,
providing practical recommendations might be useful.

In the most commonly used form of eco-driving measures, drivers
are given advice in training sessions, and the organizers measure dif-
ferences in fuel consumption and CO2 emissions before and after train-
ing [193]. Another valid approach is providing a report of the strengths
and weaknesses after each eco-driving session [194]. Nevertheless, a
natural evolution on those lessons provides instantaneous feedback of
the driver’s operational decisions [194]. It has been found that on-trip
eco-drive support is more efficient, with reductions of up to 10% on
fuel consumption when compared to post-drive assessment (which only
achieves a 5% reduction) [191]. However, the former is more expensive
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and it requires complex algorithms as well as real-time technology de-
pendence, while the latter can be provided through an end-of-trip fuel
consumption assessment [191].

For that reason, several attempts of fuel economy-intended system
implementations, acting on the aforementioned parameters, such as gear
recommendation [195] or eco-driving scoring, have been deployed in
cars [196]. These systems, despite achieving the objective of reducing
the polluting agents’ emissions, with rates of 1.63% in case of gear rec-
ommendation and 3.63% for eco-driving scoring, have not been proven
to be effective enough [195]. Consequently, and given that a personal-
ized assessment of ecological behavior might help motorists to achieve
outstanding fuel consumption results, with reductions up to 18.4% [197],
providing online DS recommendations seems reasonable. These recom-
mendations must be based on each individual’s driving behavior, and
they are intended to re-educate drivers if they follow incorrect driving
patterns (e.g., aggressive driving) like a human instructor would do.

To carry out that task, ML techniques, such as fuzzy-logic, intro-
duced in the precedent Section 1.2.4, have been used to give coaching
feedback to the driver about his/her performance [198]. Some other ap-
proaches uses ANNs (refer to Section 1.2.3) to differentiate drivers that
are classified among a plethora of driving behaviors, cycles, and sce-
narios, successfully distinguishing between aggressive and defensive
behaviors and urban and highway driving [199]–[202].

With all these considerations in mind, the main motivation of this
chapter is that several limitations regarding eco-driving assessment sys-
tems have been identified. (1) Current in-car systems are intended for
generic driving recommendations reporting reduced effectiveness. (2)
Most personalized driving assessment systems are based on training
sessions and fuel-consumption improvement tracking, normally after the
driving sessions, achieving low percentages of fuel economy. (3) ML
techniques have been successfully applied in order to classify DSs into
several aggressiveness categories; however, the full potential of these
techniques is still unexploited. (4) Most of the existing works in this
field do not analyze the handling operations of the driver on the car
commands that cause fuel consumption to rise. (5) Providing online
DS-based handling recommendations to improve fuel economy is still a
mostly unexplored path.

In contrast with the vast majority of works, not only does this pro-
posal classify DS into two or three aggressiveness categories, but it also
analyzes driving behavior by identifying up to five different DSs. This
detailed analysis allows for an insight into the concrete causes of driver-
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associated high fuel consumption and, consequently, provides personal-
ized DS recommendations to re-educate drivers for eco-friendlier han-
dling.

Thus, we present the following contributions to the development
of an eco-driving assessment system that is able to provide real-time
personalized advice:

• New applications of unsupervised neural networks to discover par-
ticular driving patterns and analyze the effect of driving patterns
in fuel-consumption.

• A novel approach for the examination of the underlying causes of
different types of non-optimal DSs from the eco-driving viewpoint
and analysis of the fuel-economy-compromising command opera-
tions.

• Personalization of the provided advices when considering the afore-
mentioned points. Those advices comprehend instructions to im-
prove the use of the gas and brake pedals as well as advice on
the shift of the selected gear.

• Improvement in the performance of the already-existing systems,
with expected enhancements in both fuel consumption and emis-
sions ranging from the 9.5% to the 31.5%, or even higher for drivers
that are strongly engaged with the system.

• Development of a SoC with real-time responsiveness.

3.3 Outline of the Overall Eco-Driving System De-
sign

A system that promotes behavioral adaptations leading to eco-driving
is more desirable to encourage drivers to fulfill those requirements, as
stated in the preceding sections of this text. For that purpose, a real-
world data-driven approach was selected. The data, used to develop a
strategy that identifies eco-driving classes regarding an individual DS,
provide eco-advice based on learning generated from data.

Figure 3.1 shows the development strategy that was used in this
chapter. It combines several algorithms and tools in a multi-stage fash-
ion. Five stages can be clearly identified from the raw data itself to the
obtainment of a hybrid HW/SW integrated system to recommend drivers
about changing their DS.
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Figure 3.1: Offline sequence of tasks involved in the design and development
of a self-organized map (SOM)-based intelligent system for fuel consumption
assessment. The dotted arrows indicate that the simulated fuel consumption
data are also used to label the SOM-based clustering for verification purposes

and to elaborate the HW implementation of the SOM.

The first stage comprises the use of several resources from two dif-
ferent sources: the Uyanik car dataset and GT-Suite simulation tool
[187]. This simulation allowed us to obtain the fuel consumption flows
that the Uyanik dataset lacked. Afterwards, the most relevant features
as well as the optimal data window size were selected. Then, a SOM
was trained in a completely unsupervised manner, that is to say, the GT-
Suite data were not used during the offline-training step, as detailed in
Section 1.2.5. The third stage consists of performing both a quantita-
tive and qualitative analysis of the trained SOM, so that several groups
are identified and labeled according to the mean fuel consumption that
was obtained by simulation with GT-Suite. After that, with the properly
labeled clusters, meaningful three-dimensional plots of the selected fea-
tures were analyzed with the aim of discovering the aspects that each
DS group can improve so that several fuel-consumption-compromising
circumstances were identified and, according to them, concrete actions
were developed. Finally, the personalized fuel consumption assessment
system was developed and implemented on a PSoC of the Xilinx ZynQ
family by means of the VHDL HW description language and the Xilinx
Vivado 2018.1 design suite [203].
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3.4 Driving Behavior Characterization for Fuel-Con-
sumption Scenarios

Energy consumption and carbon dioxide emissions of passenger cars
are affected by a combination of human, environmental, and technolog-
ical factors, according to a recent report of the Joint Research Centre
of the EU [204]. Human factors refer to driving behavior, that is to say,
the driving patterns that an individual driver or a group of drivers fol-
lows, such as acceleration, mean speed, and preferred engine gear. The
main environmental factors include both weather conditions (i.e., ambi-
ent temperature, rain, and wind) and actual characteristics of the road
(i.e., morphology, surface quality, and traffic conditions), while techno-
logical factors refer to the vehicle type and its characteristics.

In this chapter, we focused on the consequences of the DS on fuel
consumption, so the human factor had to be isolated as much as possible
from the remaining factors [205], [206]. With the aim of fulfilling the
above requirement, we considered a group of drivers exhibiting different
driving behaviors while driving the same car, along the same route, and
in similar environmental conditions. It is worth noting that the latter
factor, mainly traffic conditions, is the most difficult feature to reproduce
in live traffic.

3.4.1 Selection of Relevant Features
The dataset used in our experiments was collected using an instru-
mented car traveling a fixed route around the city of Istanbul, as al-
ready introduced in Section 1.3.1. The route is little over 25 km and
lasts about 40 min, depending on weather and traffic conditions. It in-
cludes different types of road sections: city, very busy city, highway,
and a university campus. With the aim of minimizing the impact of envi-
ronmental variations, all of the selected driving sessions were conducted
in a short period of time, from August to October, and during the central
part of the day, between 11 a.m. and 4 p.m. The driver population was
composed of 20 drivers, 17 male and three female, whose ages ranged
from 21 to 61. This is a reduced subset of a more comprehensive data
collection (i.e., about 100 drivers and a single trip per driver) provided
by the Drive-Safe Consortium [14].

Because instant fuel consumption was not available within the dataset,
we developed a model of the Uyanik car and used the GT-Suite tool to
obtain fuel consumption data during the driving sessions [207]. After-
wards, we computed two types of features: mean values and variances
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of the Uyanik signals. The whole set of time series, more than 30 inde-
pendent signals, was evaluated, including CAN-bus data, pedal pressure
sensors, a laser scanner, and IMU unit readings. In particular, the treat-
ment of the X-axis acceleration variables was divided into two parts,
positive and negative values, since they have different consequences on
fuel consumption. In fact, negative instantaneous values are associated
with zero consumption.

Subsequently, the features that provide the highest relationship with
fuel consumption were selected, while the irrelevant or redundant fea-
tures were discarded. We computed both the Pearson correlation coef-
ficients (PCCs) and the p-values of every feature. The former provides
a measure of the relevance of each feature, while the latter is used for
testing the hypothesis of no correlation (i.e., the probability of obtaining
a correlation as large as the observed value by random chance, when
the true correlation is zero). The features were computed over 8 s win-
dows (i.e., 256 samples) with a 4 s shift. That is to say, the overlapping
between consecutive windows is 4 s (i.e., 128 samples). The format of
the windows was selected by exhaustively analyzing the consequences
of both the window size and the shift on the PCC of the most relevant
features.

Table 3.1 summarizes the set of low level signals (i.e., time series)
that exhibit the strongest correlation with fuel consumption. Moreover,
the p-values are less than 0.0001 for almost all of the features included
in this table, thus guaranteeing the reliability of the correlations. The
exceptions are the mean and variance of the negative X-axis accelera-
tion, whose p-values are close to 0.05. These features were not selected
because of their low PCCs.

The features that present the strongest correlations with fuel con-
sumption are remarked in bold in Table 3.1. Four mean values (i.e., VS,
PGP, ERPM, and GP) and the PGP variance have a strong positive cor-
relation with fuel consumption, while the positive X-axis acceleration
presents moderate correlations, as can be seen. On the other hand,
BP and negative X-axis acceleration, both mean and variance, exhibit
negative correlation coefficients. This means that an increase in BP
or in X-axis deceleration is associated with a decrease in fuel con-
sumption. Although these features are meaningful concerning driving
behavior analysis, their correlations with fuel consumption are rather
weak.
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Table 3.1: Driving behavior signals and PCCs of fuel consumption with relevant
features. Mean values and variances are computed using 8 s analysis windows.

Measurement Signals (Time PCC: PCC:
Units Series) Mean Var.

CAN bus

Vehicle speed (VS) 0.59 0.15
Percent gas pedal 0.63 0.58(PGP)
Engine RPM 0.66 0.18(ERPM)

Pressure sensors

Brake pedal -0.35 -0.23pressure (BP)
Gas pedal 0.52 0.20pressure (GP)

IMU unit

Positive X axis
0.32 0.25acceleration

(XACC pos)
Negative X axis

-0.17 -0.11acceleration
(XACC neg)

Note: The boldface PCCs correspond to the strongest correlations.

Afterwards, we chose the most fuel-demanding sections of the Uyanik
route, those that ran through highway and motorway, in order to de-
velop the assessment system. Moreover, sections with traffic jams and
slow traffic (i.e., mean speed below 60 km/h) were discarded with the
aim of avoiding outliers during the training process, returning the itin-
erary shown in Figure 3.2. After limiting the type of road, the PCCs,
as presented in Table 3.1, varied slightly. The most noticeable changes
were a moderate reduction of the fuel consumption correlations with
VS and a remarkable increase in the fuel consumption correlations with
the mean and variance of positive X-axis acceleration. In view of these
results, the latter features were also taken into account in a prelimi-
nary round of SOM training experiments. Thus, the following variables
were selected as candidate features: mean values {VS, PGP, ERPM,
GP, Pos XACC} and variances {PGP, Pos XACC}. A comprehensive se-
ries of training experiments revealed that a reduced subset of only four
features is able to model the relationship between fuel consumption and
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driving behavior in a very satisfactory way. These features were mean
PGP, mean ERPM, mean GP, and Pos XACC variance.

Figure 3.2: Stretches of the Uyanik route used. An average of 9:27 minutes of
driving is available for each driver.

3.4.2 Fuel-Consumption Obtainment by Simulation
An important step of this chapter is the obtainment of a meaningful set
of fuel consumption data, as mentioned in precedent paragraphs. This
step was found to be needed, since the Uyanik dataset lacked the ECU
data regarding fuel injection or intake airflow.

Several alternatives were studied in order to obtain and measure
fuel control unit data, finally choosing a simulation environment. We
selected the Gamma Technologies GT-Suite environment [187], since it
does not only allows element-by-element simulation of mechanical sys-
tems, but also enables users to run macroscopic approximated models
of complete automobiles. Thus, while the former requires an exact pa-
rameterization of each mechanical element and link of the engine, the
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latter allows us to fit a pre-elaborated model based on telemetry (such
as speed, acceleration, brake, or selected gear) as well as on car manu-
facturer information, such as gear ratios, tire dimensions, or wheelbase
(see Figure 3.3).

Macroscopic car parameters

Real-world telemetry Model-based simulation Simulated fuel-consumption data

Figure 3.3: Flow of real-world telemetry-based fuel consumption simulation. It
has macroscopic car parameters (gear ratios, tyre dimensions, and wheelbase)
and telemetry (gas pedal, brake pedal, speed, selected gear, and accelerations)

as inputs. The model returns the simulated fuel flow as output.

Finally, the gear ratios were computed while using data about RPM
and VS, available for each instant. We computed the speed/rpm ratio
sample-by-sample and matched it with each gear’s ratio. When com-
puted ratios did not match with any of the gear ratios, we assumed that
the driver was operating the clutch pedal.

Once the car parameters were successfully extracted, we elaborated
on the model that is displayed in Figure 3.4. In this model, four main
elements can be identified for the car itself, the vehicle, transmission,
engine, and ECU blocks, while the driver is modeled by another one.
These blocks contain the characteristic parameters of their correspond-
ing real-world counterparts.

• Vehicle comprises data regarding car wheelbase, wheel radius,
friction coefficients, aerodynamics, weight, inertia, and final trans-
mission ratio.

• Transmission incorporates individual ratios for each of the user-
selectable gears, as well as clutch parameters.
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• Engine consists of parameters such as engine displacement, en-
gine type (4-stroke or 2-stroke), minimum operation speed, or fuel
characteristics.

• ECU controls the maximum engine RPM, idle speed, and fuel in-
jection cutoff and restart points.

• Driver wraps the telemetry data related to the handling of the car,
such as selected gear, accelerator pedal state, brake pedal state,
clutch, and desired speed.

Figure 3.4: Block diagram of real-world telemetry-based fuel consumption
simulation of Uyanik Renault Mégane 1.5 dCi Sedan 74 kW. It has macroscopic
car parameters (gear ratios, tyre dimensions, and wheelbase) and telemetry
(gas pedal, brake pedal, speed, selected gear, and accelerations) as inputs.

The model returns the simulated fuel flow as output.

Several checks were performed on the simulation model in order to
verify that the returned results provide an acceptable emulation of the
real car performance. Thus, given a set of selected gears, as displayed
in Figure 3.5(a), the application of the driver operation of the accelerator
and brake pedals, along with the dynamics of the car restricted to a set
of measured accelerations, brings out the simulated RPM and vehicle
speed red curves of Figure 3.5(b),(c), respectively. As can be seen, these
red curves are almost totally overlapped with the blue ones, which rep-
resent the real world-collected data, with relative errors of 1.83% for
RPM and of 0.44% for speed. These low relative errors mean that the
simulation faithfully emulates the real car behavior and, consequently,
that the returned fuel consumption simulated data is useful for carrying
out estimations in order to verify the proposed SOM-based models and
extracting conclusions.
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Figure 3.5: Comparison of measured data vs. simulation results. (a) The
inferred gear considering the computed rpm/speed ratios. (b) The measured
revolutions per minute (RPM) of the vehicle vs. the RPM simulated by the
model. (c) The measured speed of the vehicle vs. the speed simulated by the

model.

3.4.3 SOM-Based Drivers Grouping Regarding Fuel-Consump-
tion

In Section 3.4.1, the most relevant features for fuel consumption char-
acterization were selected: mean PGP, mean ERPM, mean GP, and
the variance of positive XACC. Concurrently, window size and window
shift were analyzed to preserve a high correlation between the above
features and fuel consumption. The features were computed over 256-
sample windows (i.e., 8 s) with 50% overlapping between consecutive
windows. The number of available training windows per driver varies
slightly between drivers, depending on their DS, traffic, and quality of
the measurements. On average, there are 115 windows per driver, while
the whole set of driving samples consists of 2290 windows (i.e., more
than 2.5 driving hours). Three-quarters of the four-dimensional samples
will be used to train an SOM, which is to say K = 1717, keeping the
remaining quarter for testing purposes.
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(a) (b)

Figure 3.6: This SOM organized into an 11 × 11 neuron grid. (a) Neighbor
weight distances. The limit between neuron groups is reflected by a frontier
of long distances (darker colors). (b) Sample hits. This image shows how
many training samples are associated with each neuron. Neurons with higher

distances to their neighbors show the lowest number of hits.

The number of output neurons of the SOM was initially set using
Vesanto’s rule [136], which defines the optimal number of neurons as
M = 5

√
K . Thus, a 14 × 14 SOM topology (i.e., M=196) was defined and

repeatedly trained. However, because the corresponding U-matrices
showed overly smooth maps, the size of the SOM was gradually swept
until a suitable map was obtained. Neuron maps ranging from 10 × 10
(M = 100) to 15 × 15 neurons (M = 225) were tried by using the Matlab
Neural Network Clustering App [208]. The most robust and consistent
results were obtained using 11 × 11 maps (M = 121). This training
process, as detailed in Section 1.2.5, is completely unsupervised, that
is to say, the GT-Suite data were not used during the offline-training
step.

As the number of neurons in the map (M = 121) is less than the
number of samples (K = 1717), most of the neurons in the map are the
BMU or hit of several samples in the dataset (see Figure 3.6(b)). As can
be seen, there are neurons across the map with 4 or fewer hits, which
match the regions with dark neuron connections in Figure 3.6(a). These
units could be considered to be interpolating neurons, smoothing the
transitions between clusters.
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SOM Classification Results

The above visualizations of the trained SOM can only be used to obtain
qualitative information concerning driving behavior. Interesting groups
of neurons (i.e., clusters) must be identified and labeled in order to de-
velop meaningful quantitative descriptions of driving data, suitable for a
real-time fuel consumption assessment. Although the clustering of the
SOM can be performed by means of any unsupervised clustering method,
such as K-means or hierarchical clustering, the U-matrix method was
used in this chapter. This U-matrix can be evaluated mathematically.
Thus, it is useful for identifying clusters both graphically and numer-
ically (see Section 1.2.5). This tool helps to see the cluster structure
of the map: high values of the U-matrix indicate cluster borders, while
uniform areas of low values can be identified as potential clusters. The
quantitative evaluation of the SOM was performed by means of the CIS
SOM Toolbox for Matlab [136], which uses the k-nearest neighbors algo-
rithm (k-NN) [136]. According to the identified clusters, as described in
this section, several groups were identified and labeled according to the
mean fuel consumption that was obtained by simulation with GT-Suite.

Three-Cluster Grouping First, we carried out a three-cluster grouping
of the SOM neurons. Table 3.2 presents relevant statistical values of
fuel consumption for each cluster: average value, variance, and maximum
value. Taking these values into account, the clusters were labeled as
Very Low, Low, and Medium-High. The classification results applied to
the Uyanik dataset are shown in Figure 3.7, where three-dimensional
views are provided.

The three displayed clusters are compact, their contained data are
contiguous, and they are clearly grouped, as can be seen in Figure 3.7.
Matching clusters with their associated consumption displayed in Table
3.2 by color, it is apparent that the green cluster corresponds to medium-
high fuel consumption rides, the blue one to low consumption, and the
red group represents very low fuel consumption rides. Additionally, by
analyzing clusters’ fuel consumption variances, it can be seen that the
higher the average value, the higher the variance, with this correlation
being a noticeable feature of the identified groups.

Further analysis of the relationships of the identified groups with the
driving features displayed in each sub-figure can be performed. Regard-
ing Figure 3.7(a),(b), the DS groups look similar, since the GP variable of
(a) and the XACC var of (b) are highly correlated as a measure of swift
operation of the gas pedal. On the other hand, Figure 3.7(c) shows
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a different cluster distribution. In this graph, the Low and Very low
consumption classes (blue and red, respectively) are interleaved. This
happens because the correlation between XACC var and GP is strong,
with GP vs. XACC var providing no additional meaningful information.
In contrast, the PGP vs. GP and the PGP vs. XACC var planes show that
the positioning of the clusters is interchanged with respect to Figure
3.7(a),(b). Nevertheless, this interchange is coherent with the precedent
figures, since the green cluster is placed at the upper range of the PGP
axis, while the other ones are at the lower range, the blue cluster is
related to low GP, and the red one is related to medium GP. The same
clusters’ position interchange phenomenon can be observed in Figure
3.7(d), according to the aforementioned characteristics.

Table 3.2: Fuel consumption (L/100 km) parameters of the three-cluster clas-
sification.

Cluster Label Avg. Value Variance Max. Value
Very low (red) 2.76 1.02 6.66
Low (blue) 3.04 1.53 7.80
Medium-High (green) 5.15 3.34 12.6

(a) (b)

(c) (d)

Figure 3.7: Three-dimensional views of the three-cluster fuel consumption clas-
sification results. The clusters were labeled as Very low (red), Low (blue), and
Medium-High (green). (a) Displays the cluster distribution considering PGP,
ERPM and GP. (b) Considers PGP, ERPM and XACC var. (c) Displays clusters
regarding PGP, GP and XACC var, and (d) considers ERPM, GP and XACC var.
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When considering the cluster distribution of Figure 3.7, and taking
into account that aggressiveness and fuel consumption are well corre-
lated, considering this figure as our baseline for further comparisons,
we can assert that

• Very low fuel consumption (red) corresponds to drivers who keep
the car running at its lowest regime (low PGP, low ERPM, and
medium GP).

• Low fuel consumption (blue) corresponds to drivers who use the
gas pedal gently and run the car at medium regimes (low PGP,
low GP, and medium ERPM).

• Medium-High fuel consumption (green) corresponds to drivers who
use the gas pedal extensively and run the car at high engine
regimes (high PGP, disperse GP, and high ERPM).

Nevertheless, despite interesting DS-related fuel consumption pro-
files being extracted at a joint interpretation of the information that
is depicted in Figure 3.7 and Table 3.3, driver classification cannot be
kept uniform along an entire trip, since it is far from being a binary
task. For that reason, due to driving circumstances changing during a
trip, evaluation by time windows provides a better assessment of the fuel
consumption trend. In Table 3.3, the distribution of DSs among clusters
is displayed. As can be seen, each driver shows a unique cluster distri-
bution for his/her trip. This distribution means that fuel-consumption-
related DS is not a binary feature, but a composition of several cluster
mixture ratios.

Four drivers stand out among the remaining ones: D1, D6, D11,
and D14, as remarked in bold in Table 3.3. Thus, D6 and D11 spend a
longer time classified with Very low consumption DS, with 80.2% and
the 78.6% of the total ride time, respectively, so they can be consid-
ered as eco-friendly drivers. On the other hand, D1 and D14 are the
opposite case, with 75.3% and 66.3% of the total ride time being clas-
sified as Medium-High fuel consumption drivers, totally compromising
eco-friendliness. According to the clusters identified in Figure 3.7, while
the former drivers operate the throttle pedal uniformly and keep engine
RPMs low, being an ideal operation decision, the latter ones swiftly
operate the gas pedal and keep engine RPMs at the upper range for
most of the trip. Finally, it is worth remarking that most drivers’ be-
havior evolves between contiguous classes, except D10, which exhibits
a particular behavior, leaping between extreme classes (from Very low
to Medium-High, and vice versa).
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Table 3.3: Percentage of the route that each driver travels using different fuel-
consumption DSs (three-cluster classification).

Driver Very Low (%) Low (%) Medium-High (%)
D1 4.7 20.0 75.3
D2 49.4 10.4 40.2
D3 23.0 33.3 43.7
D4 7.8 51.1 41.1
D5 33.3 26.5 40.2
D6 80.2 10.4 9.4
D7 15.1 33.7 51.2
D8 16.2 29.7 54.1
D9 8.1 38.4 53.5
D10 56.3 0 43.7
D11 78.6 11.9 9.5
D12 10.6 33.0 56.4
D13 14.0 46.5 39.5
D14 8.4 25.3 66.3
D15 2.5 45.7 51.8
D16 14.3 40.5 45.2
D17 38.1 21.4 40.5
D18 2.7 48.0 49.3
D19 15.6 30.0 54.4
D20 32.2 26.9 40.9

Table 3.4 compiles the actions drivers should perform to modify their
DS with the aim of reducing their fuel consumption attending to their
current classification. Different actions are needed, depending on the
group, as can be seen in this table. Thus, for example, since Medium-
High fuel consumers typically operate the gas pedal swiftly, keeping
RPMs high due to that aggressiveness, they are required to lower RPMs
while trying to operate the gas pedal smoothly and to a lesser extent.
On the other hand, low consumption drivers are required to switch to a
higher gear because, despite their softly operating the gas pedal, they
keep RPMs high due to the use of low gears. Finally, very low fuel
consumers are required to keep their DSs with no changes.
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Table 3.4: Actions that are associated to the three-cluster classification.

Current Cluster Required Action
Very low (red) Keep driving style
Low (blue) Lower RPM/Switch to a higher gear
Medium-High (green) Lower RPM/Keep gas steady/Lower PGP

Five-Cluster Grouping The recommendations that are indicated in Ta-
ble 3.4 could be unclear for some drivers, especially those being classi-
fied into the green cluster (Medium-High consumption). For that reason,
with the aim of personalizing the driving recommendations, SOM clus-
tering of the trained map was recomputed using a lower threshold value
in its U-matrix, so that more precise partitions could be obtained. Fig-
ure 3.8 and Table 3.5 show the five-cluster grouping obtained after this
re-computation and the associated fuel consumption for each cluster,
respectively. Nevertheless, despite the existence of a higher number
of groups, the relationships identified in Figure 3.7 remain. Thus, the
blue and red clusters (Low and Very low consumption) are kept barely
unaltered both in position and number of elements. In contrast, three
new classes appear from the former Medium-High consumption group,
namely Medium, High, and Very High (yellow, green, and magenta, re-
spectively).

Being the aforementioned partitions, extracted from Figure 3.8, jointly
analyzed with the statistical data contained in Table 3.6, we can assert
that this SOM-based grouping is finer, and more meaningful information
can be extracted when compared to the three-cluster classification.

The fuel-consumption-associated DS ratios for each driver are recal-
culated in Table 3.6 in order to verify that the five-cluster classification
adds information to the already existing groupings, mainly with the
purpose of personalizing the assessment of the most aggressive drivers.
Drivers D1, D6, D11, and D14 are analyzed again to inspect whether
the new cluster classification changes the information contained in Ta-
ble 3.3.

For these drivers, the percentages of Very low and Low consumption
remain practically unchanged with respect to the three-cluster table.
On the other hand, if we accumulate the percentages of medium, high,
and very high consumption instants, we can observe that they practically
match the Medium-High column of Table 3.3. This means that not only
does this five-cluster classification provide comparable results, but it
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also allows one to thoroughly examine the detailed behavior formerly
grouped as medium-high consumption DS.

(a) (b)

(c) (d)

Figure 3.8: Three-dimensional views of the five-cluster fuel consumption clas-
sification results. The clusters were labeled as Very low (red), Low (blue),
Medium (yellow), High (green), and Very high (magenta). (a) Displays the clus-
ter distribution considering PGP, ERPM and GP. (b) Considers PGP, ERPM
and XACC var. (c) Displays clusters regarding PGP, GP and XACC var, and (d)

considers ERPM, GP and XACC var.

Table 3.5: Fuel consumption (L/100 km) parameters of the five-cluster classifi-
cation.

Cluster Label Avg. Value Variance Max. Value
Very low (red) 2.75 1.04 6.66
Low (blue) 3.04 1.54 7.80
Medium (yellow) 4.44 2.21 10.1
High (green) 5.42 3.13 11.4
Very high (magenta) 7.81 5.38 12.5



96 Chapter 3. Real-Time Assess. of Fuel Cons. to Prom. Eco-Driving

Table 3.6: Percentage of the route that each driver travels using different fuel-
consumption DS (five-cluster classification).

Driver V. Low (%) Low (%) Medium (%) High (%) V. High (%)
D1 4.7 20.0 44.7 30.6 0
D2 48.3 10.3 2.3 32.2 6.9
D3 21.8 33.3 13.8 30.0 1.1
D4 7.8 51.1 22.2 18.9 0
D5 33.3 26.5 10.3 25.3 4.6
D6 71.9 10.4 9.4 8.3 0
D7 14.0 33.7 18.6 29.1 4.6
D8 14.9 29.7 8.1 37.8 9.5
D9 8.1 38.4 31.4 22.1 0
D10 56.3 0 16.1 25.3 2.3
D11 78.6 11.9 1.2 8.3 0
D12 10.6 33.0 37.2 19.2 0
D13 14.0 46.5 15.1 24.4 0
D14 8.4 25.3 31.3 35.0 0
D15 2.5 45.7 24.7 23.4 3.7
D16 13.1 40.5 30.9 15.5 0
D17 38.1 21.4 10.7 21.5 8.3
D18 2.7 48.0 19.2 26.0 4.1
D19 15.6 30.00 21.1 32.2 1.1
D20 32.2 26.9 22.6 18.3 0

According to Figure 3.8, the Medium-High consumption cluster of
Figure 3.7 can be detailed with the following groups:

• Medium fuel consumption (yellow): corresponds to drivers who
run the car at engine regimes similar to those achieved for the
low consumption cars, but with the difference of a more extensive
use of gas pedal, (i.e., medium PGP, low GP and medium ERPM).

• High fuel consumption (green): corresponds to drivers who run the
car at medium-high RPM, with moderate swiftness of the gas pedal
operation (medium-high ERPM, medium-high PGP, and medium
GP).

• Very high fuel consumption (magenta): corresponds to drivers who
are slightly more aggressive that those from the preceding group
(high ERPM, high PGP, and medium-high GP).
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Additionally, with this new cluster distribution, more actions can be
indicated to drivers to modify their DS. Thus, in contrast with Table 3.4,
where Medium (yellow) to Very high (magenta) consumption classes
were aggregated, in Table 3.7, actions were added for each individ-
ual newly identified cluster. In contrast, actions for Very low and Low
consumption groups remain unchanged. The action Lower RPM/Keep
gas steady was disaggregated into 3 different recommendations: Lower
RPM/Operate gas softly, Lower PGP/Lower RPM and Lower PGP/Keep
gas steady. This can be noticed when comparing Table 3.4 with Ta-
ble 3.7. This happens because, differing from the uniform DS of the
big Medium-High consumption group of the three-cluster classification
(green group in Figure 3.7), the Very high (magenta) fuel-consumers are
required to lower both RPM and PGP, because they drive at high RPM.
In contrast, High (green) consumers run engines at moderated RPM
rates. However, the latter swiftly operate the gas pedal at moderately
high percentages, consequently being required to use it less and more
smoothly. Finally, Medium (yellow) consumers operate the gas pedal
smoothly but their usage percentage is still high, so they are required
to further reduce gas pedal usage.

Table 3.7: Actions associated to the five-cluster classification.

Current Cluster Required Action
Very low (red) Keep driving style
Low (blue) Lower RPM/Switch to a higher gear
Medium (yellow) Lower RPM/Operate gas softly
High (green) Lower PGP/Lower RPM
Very high (magenta) Lower PGP/Keep gas steady

Should drivers follow the recommendations that are displayed in Ta-
ble 3.7, a noticeable reduction in fuel consumption is expected to occur.
However, because the level of engagement of motorists with the pro-
vided advice may vary depending on behavioral characteristics of each
individual, the expected improvement on fuel economy must be cau-
tiously analyzed. For that reason, Table 3.8 was elaborated to estimate
the expected improvement when considering a minimal level of engage-
ment with the system that would allow drivers to modify their DS to the
immediately adjacent cluster.
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Table 3.8: Expected fuel-consumption reduction between contiguous clusters.

Current Cluster Target Cluster Reduction (%)
Low Very low 9.5
Medium Low 31.5
High Medium 18.1

As can be seen in Table 3.8, obtained from the values displayed in
Table 3.5, if drivers could only improve their DS to the best adjacent
class, reductions in fuel consumption ranging from 9.54% up 31.5% are
expected, with even higher performances for strongly-engaged drivers,
showing that a significant reduction in polluting agents could be ex-
pected if this system was implemented in cars. It is worth to remark
that the consumption reduction from the Very high class is not analyzed
because not all the drivers show it. This potential reduction is signifi-
cantly greater than the already existing systems, which were exposed
in Section 3.1, making this approach a promising solution.

3.5 Fuel-Consumption Assessment Results
Most drivers’ behaviors vary among different clusters, and, the Very low
consumption class being the ideal one, indications should be addressed
to drivers to modify their DS if they fall into the other classes at any
moment of the ongoing ride, as has been seen in the previous section. In
the following, the driving behavior of two particular drivers, D1 and D11,
will be analyzed with the aim of verifying the suitability of the advice
provided by the fuel-consumption assessment system. In addition, the
potential impact on emissions that this advice system can achieve is
quantitatively evaluated.

3.5.1 Drivers’ Advice
Figure 3.9 depicts the Uyanik measurement of relevant CAN-bus and
IMU signals corresponding to D1 (green) and D11 (red) during five un-
interrupted minutes of the route. DS evaluation times from 8 s to 292 s
were considered for the performance analysis, as can be seen in Figure
3.10. It can be observed that the longer the evaluation time, the lower
the number of involved DS classes for each evaluation period. For many
drivers, this number of classes reached a local minimum at a length of
100 s, while overshooting for longer times until the low-pass filtering
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effects of a very long evaluation time happened, which would eliminate
the details that are needed for a correct DS evaluation.

Figure 3.9: Uyanik measurement of relevant CAN-bus and IMU signals corre-
sponding to D1 (green) and D11 (red) during five uninterrupted minutes of the
route. The driving behavior was evaluated every 100 s, and the cluster with
the maximum percentage was selected. Both D11 and D1 were classified into
a single cluster during the whole segment of the trip: D11 drives according to
the Very low cluster, and D1’s DS is mostly into the Medium cluster. GT-Suite

simulations of fuel consumption are also displayed.
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Figure 3.10: Three-dimensional bar diagram of the number of classes identified,
depending on the evaluation time for each driver.

For that reason and, according to [209], the corresponding driving
behavior was evaluated every 100 s in order to be correctly assessed
and to provide useful advice to the drivers, with the last 100 s stretch
being test data (i.e., unseen by the system). Taking into account the
evolution of the DS during each 100 s stretch, the cluster with the max-
imum percentage was selected. D11 and D1 were both classified into
a single cluster during the whole segment of the trip: D11 drove ac-
cording to the Very low cluster, and D1’s DS was mostly in the Medium
cluster. GT-Suite simulations of fuel consumption are also displayed. As
can be seen, the average fuel consumption of D11 is much lower than
D1, as expected. Again, the measured RPMs are lower for D11 than for
D1, and the same is the case for the variance of the positive XACC, as
in the cluster distribution of Figure 3.8. On the other hand, measured
speeds are not significantly different, proving that fuel consumption un-
der similar conditions has more to do with the car handling itself than
with speed. In consequence, the eco-driving system would provide the
following advice: D11: “Keep driving style”; D1: “Lower RPM/Operate
gas softly”.

In sum, most drivers’ classifiable behaviors vary among different clus-
ters and, with the Very low consumption class being the ideal one, in-
dications should be addressed to drivers to modify their DS if they fall
into the other four classes at any moment of the ongoing ride. The
eco-driving system provides advice to the driver according to a user-
configurable time interval.
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3.5.2 Fuel Consumption and Emissions Reduction
The same two drivers (D1 and D11) shown in Figure 3.9 were selected
in order to indicate the potential reduction on emissions that this advice
system can achieve. In this 300 s highway driving stretch, speeds for
both drivers are kept above 79 km/h (79.1 km/h and 85.4 km/h, respec-
tively). In these conditions, the DS identification system classifies D1
mostly into the Medium consumption class, while D11 is classified into
the Very low consumption class. Additionally, the GT-Suite simulation
data show that the mean fuel consumption measurements in that stretch
for D1 and D11 are 4.46 L/100 km and 2.61 L/100 km, respectively. As-
suming that the average composition for diesel fuel corresponds to the
formula C12H23, with a density of 0.835 g/L [210], the stoichiometric
combustion of this fuel type follows the equation

4C12H23+71O2→ 48CO2 + 46H2O. (3.1)

With the chemical reaction of Equation (3.1), the average CO2 gen-
eration rate can be calculated, with the CO2 emissions for D1 and D11
being 128.4 g/km and 75.2 g/km, respectively. That is to say, D11’s CO2
emissions are 41.4% lower than those of D1 for similar road stretches
at similar speeds. With these results, we can assert that, if the recom-
mendations of Tables 3.4 and 3.7 were provided to D1, with the aim of
being classified into the Very low cluster, then a noticeable reduction
in fuel consumption and emission rates could happen.

In sum, by using SOM algorithms, the clusters of Figures 3.7 and
3.8 were discovered and fuel-consumption-associated DS features were
extracted. Those clusters and features, jointly with the analysis of the
cluster distribution ratio for each driver of Tables 3.3 and 3.6, allowed
for the identification of complex behaviors. Finally, several actions were
described to modify individual DSs with the aim of improving fuel econ-
omy while taking the clustering as well as the distributions and the
features into account, consequently encouraging eco-driving.

3.6 Implementation of the PSoC-Based Intelligent
System

The intelligent system for real-time assessment of fuel consumption and
eco-driving was properly evaluated and tested through a specific PC-
based model. After that, the whole system was implemented, such that
it can be executed in real-time. For that purpose, the device that this
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task is implemented in must be capable of performing high-speed data
computing, while providing high throughput data outputs. For those
reasons, a hybrid HW/SW architecture was developed and implemented
on the Xilinx XC7Z045-2FFG900 Programmable PSoC [147] using the
Xilinx ZC706 development board [148].
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Figure 3.11: Block diagram of the programmable system-on-a-chip (PSoC) for
real-time fuel consumption assessment and eco-driving.

Figure 3.11 depicts a block diagram of the proposed solution. Details
on PSoC architectures are provided in Section 1.4.2. The entire HW
partition of the system, consisting of an SOM accelerator, was deployed
in the FPGA of the PSoC using VHDL language and the Xilinx Vivado
2018.1 design suite [203]. On the other hand, the remainder of the
proposed system functionalities were programmed at the microprocessor
(SW partition depicted in Figure 3.11) by developing a bare-metal C
application that can acquire data from the buses of the vehicle, compute
the windows of the ERPM, GP, PGP, and pos XACC features, share them
with the FPGA, retrieve the SOM accelerator results, and provide advice
to drivers.

3.6.1 Hardware Partition: SOM Accelerator
The HW partition is based on a digital electronic system, whose archi-
tecture, deployed within the PSoC’s FPGA, can be described as follows.



3.6. Implementation of the PSoC-Based Intelligent System 103

The SOM HW accelerator is composed of four main modules: input
registers, neurons, comparers, and internal ROMs (see Figure 3.12),
as well as a controller unit. This architecture has been designed to
be totally parallel with the aim of returning a correct response in the
minimum time lapse. The VHDL language is used in order to create a
fully scalable architecture regarding the number of input features (N)
and the number of neurons of the SOM (M).
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Figure 3.12: Scheme of the SOM HW accelerator. A four-input SOM topology
with six output neurons is shown as a case example.

Input Registers

The input registers (the black box in Figure 3.12) are used in order
to feed the input samples x = (x1, x2, . . . , xN ) into the SOM accelerator
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synchronously, with each rising edge of the clock signal. The number of
input registers depends on the number of input features, N , since each
feature needs a separate register. These registers’ inputs are read from
the AXI4 interface.

Neurons

The neuron components (the blue box in Figure 3.12) compute the squared
Euclidean distance between the input sample and a given neuron’s
weight (see Equation (1.19)). Each neuron block is shaped by two types
of components: the distance module and the adder module. Thus, while
the former computes how far each input feature xk

j is from the corre-
sponding neuron weight mij and squares that difference (squared eu-
clidian distance), the latter, which is based on a typical tree-adder, sums
the N individual squared distances to compute the total distance from
the input sample to the i-th neuron weights.

Besides, a neuron pointer, i, is added to the output. It indicates
which neuron each computed distance belongs to, with the aim of eas-
ily accessing the cluster memory once the neuron with the minimum
distance (i.e., the BMU) is found. Finally, each neuron block stores its
corresponding weights into a small ROM.

Tree-Comparer

The tree comparer (the red box in Figure 3.12) computes the BMU of
the input sample (see Equation (1.20)). The input to the module is the
array of outputs of the neuron blocks, that is to say, the distances be-
tween each neuron with the input sample, concatenated with the neuron
pointers. It returns the BMU along with its corresponding pointer (i.e.,
the BMU index).

For this design, a recursive tree-comparer was developed based on
the previous work of the authors [181]. This topology, as shown in Figure
3.13, was adapted so as to provide latency rates that were comparable to
those from traditional binary tree comparers, while minimizing resource
usage.

Thus, the proposed architecture of Figure 3.13 only uses M/2 com-
parer blocks, while a binary tree comparer would spend M − 1 of the
same HW resources. Given an input array u = (u1, u2, . . . , uM ), and a
control control signal ini, the module operates, as follows:

1. Signal ini is set to “0” and all registers are reset.
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2. First comparisons, u2j−1 < u2j with j = 1, . . . , M/2, are computed
and stored in each of the M/2 comparer registers.

3. Signal ini is set back to “1” and the next comparison is performed.
Consequently, comparisons are stored in registers 1 to M/4, while
registers M/4 + 1 to M/2 are now filled with ones.

4. Succesive ⌈log2M⌉ − 1 comparisons are computed until a valid
result is obtained.

<

<

<

<

u1

u2

uM/2-1

uM/2

uM/2+1

uM/2+2

uM-1

uM

1

1

1

1

ini

ini

ini

ini

p

BMU index

Figure 3.13: Scheme of the proposed recursive tree comparer architecture that
substitutes a traditional comparer solution.

Internal ROM

The ROM, as marked in green in Figure 3.12, stores the cluster to which
each neuron belongs. The cluster identification is performed by ad-
dressing the ROM while using the index of the BMU identified in the
tree comparer module, consequently allowing one to know which cluster
the input sample fits the most. The ROM is implemented using LUTs
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with the aim of improving the circuit speed. LUTs are typical FPGA
resources that reduce the propagation delays when compared to block
BRAM-based memories.

Parameterization and Control Signals

The complete structure of the SOM HW accelerator is parametric and
fully customizable. ROMs containing the neurons’ weights as well as
the clusters that are associated with each neuron are simultaneously
initialized. Elements such as type depths, signal bit-widths, and the
number of inputs and neurons were defined on a standalone package.

The architecture’s latency depends on two factors: a fixed time that
always delays the same number of clock cycles and a variable time
that depends on the number of features (N) and the number of neurons
(M). Thus, one clock cycle is needed to load the input registers and
two clock cycles for the computation of Euclidean distance within the
neuron’s distance modules.

On the other hand, the neurons’ adder module computes its outputs
2-by-2. Consequently, the clock cycles that are required to obtain the
output of the adder module are calculated, as follows:

ttree = ⌈log2N⌉ = min {k ∈ Z | (log2N) ≤ k} . (3.2)

As in the case of the adder module, the tree comparer decides which
neuron holds the shortest distance recursively 2-by-2. For that reason,
its latency is computed in the same way as in Equation (3.2), but using
M instead of N , since it has the array of the outputs of the neurons
as inputs. Therefore, the number of clock cycles elapsed since the in-
put signal arrives in the architecture until a valid output is provided is
computed by the following expression:

Ncycles = 3 + ⌈log2N⌉ + ⌈log2M⌉ . (3.3)

On the other hand, the control signals of the SOM HW accelerator
are rst, launch, and ini (see Figure 3.14); they work, as follows:

1. rst clears all of the architecture registers and prepares the mod-
ules for a new input array.

2. launch loads the input data into the neurons’ input registers.
Neurons’ outputs are ready after 3 + ⌈log2N⌉ clock cycles.

3. In the next clock cycle, the neurons’ outputs are loaded into the
input registers of the recursive tree comparer module.
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4. Ini is triggered to indicate to trigger the recursive comparisons
of the tree adder. The result is ready after ⌈log2M⌉ clock cycles.

clk

rst

launch

Ini

index 1 LN+3 1 2 LM

X1 X1

X2 X2

X3 X3

X4 X4

cluster cluste

ready

Figure 3.14: Chronogram of the control-signal sequence of the SOM HW ac-
celerator. LN stands for ⌈log2N⌉, and LM for ⌈log2M⌉.

3.6.2 Experiment Results
In Section 1.2.5, the SOM training as well as a classification method
were explained. Additionally, the classification was carried out on the
Uyanik dataset completed by the GT-Suite simulation data, obtaining
the weights and clusters to which the neurons belong. With that data,
the SOM network was implemented in the FPGA in order to classify the
Uyanik drivers by storing the neuron weights and their corresponding
clusters into the internal ROM of the architecture.

A PSoC of the Xilinx ZynQ-7000 family (XC7Z045-2FFG900 PSoC)
[147] is used in order to implement the SOM accelerator.

The architecture described in Section 3.6.1 has a total of M = 121
neurons and N = 4 input features. We used fixed-point binary arith-
metic to represent data. Both input data and neurons’ weights have
been represented with 8 bits, with all the 8 bits representing the deci-
mal part, because both are unsigned positive numbers. The intermedi-
ate operations’ bitwidths were selected such that neither overflows nor
rollovers could occur.
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Simulation Results

In order to verify that the developed SOM HW accelerator works as
expected, several input arrays are fed to the architecture, the control
signals displayed in Figure 3.14 are applied to the circuit, and the iden-
tified clusters are verified, as can be seen in Figure 3.15.

In this Figure, a latency of 12 clock cycles (0.12 µs at a 100-MHz
clock frequency) is shown. As will be seen, it matches with the tim-
ing indicated in Section 3.6.2. Additionally, the BMU’s distance is
checked and compared against an equivalent MATLAB SOM model
(with a value of 3.52 × 10−3), jointly with the cluster ROM position
(position = 42), which the HW, the fixed-point implementation, and the
MATLAB floating-point model results totally match.

Resource Usage

The full HW system was successfully implemented, with the post-imple-
mentation results displayed in Table 3.9. The SOM network accelera-
tion system fit into the selected PSoC’s logic, leaving enough resources
available for further system applications, scalations, or improvements.

Table 3.9: Post-implementation resources report (Xilinx XC7Z045-2FFG900).

Resource Utilization Available % Used
LUT 21 107 218 600 9.66
FFs 13 337 437 200 3.05

Timing Performance

Before the deployment, the maximum operational frequency was cal-
culated. For that purpose, the architecture was implemented with a
minimum clock period of 10 ns, obtaining a slack of 2.292 ns. Thus,
the maximum operational frequency of the design can be calculated
as indicated in Equation (2.5), obtaining Fmax = 129.74 MHz. Hence,
the designed HW implementation could be used as an AXI4 peripheral
dependent on an AXI4 bus clock frequency of 100 MHz. With this op-
erational frequency, and applying Equation (3.3) with N = 4 features
and M = 121 neurons, this design delayed 12 clock cycles (0.12 µs at
FCLK = 100 MHz) to return a valid result.
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These results outperformed the timing that was obtained for a full-
SW PC-based MATLAB model design (20-core Intel Xeon E5-2630 v4
CPU at 2.20 GHz with 32 GB of DDR4 RAM), with a timing performance
of 128.03 ± 12.01 µs to compute the same SOM, as well as a PC-based,
C-coded prototype that achieved timing marks of 1.34 ± 0.28 µs.

The obtained timing performance was better than in other FPGA-
based SOM applications, such as the work by the authors of [211], where
the highest operational frequency obtained was 101.54 MHz for a con-
siderably smaller SOM network. On the other hand, in [212], an ab-
solutely novel architecture is presented with the aim of improving the
general performance of the minimum’s finding procedure by sidelining
the use of comparers. This architecture, despite operating at even lower
frequencies (a maximum of 19.6 MHz), achieves very high throughput at
the cost of drastically increasing complexity.

In contrast, in [213], outstanding frequencies of 188.9 MHz are achieved
for a bigger SOM implementation by carrying out some simplifications
that might compromise the accuracy of smaller networks.

Consequently, we can assert that the HW partition developed in
this chapter is an appropriate solution between conventional SW-based
approaches and novel FPGA-based, extreme performance architectures,
which provides an adequate trade-off between complexity, performance,
and development time.

3.6.3 Software Partition
The PS of the PSoC (SW partition) is built around a dual-core ARM
Cortex-A9 microprocessor, as described in Section 1.4. With this archi-
tecture in mind, the SW application was developed, enabling the full
operation of the hybrid HW/SW system. These functionalities are as
follows:

• I/O management: the system retrieves the driving features from
the buses of the vehicle (e.g., CAN-bus) and outputs the natural-
language driver recommendations.

• Data logging and windowing: the microprocessor stores 8 s of
data (256 samples at 32 Hz) to compute the data windows used to
extract the driving features. Each window has an overlapping of 4
s with its preceding one; thus, with an 8 s size, a new window is
generated every 4 s.
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• Feature computation: for each data window, the microprocessor
computes the average values of ERPM, GP, and PGP, and the
variance of Pos XACC.

• Data exchange: the SW partition sends the features to the HW
accelerator through the AXI4 bus and retrieves the identification
results (DS clusters) from the HW partition.

• Cluster distribution computation: the cluster distribution of a set
of windows, evaluated during a certain time of uninterrupted dri-
ving above a certain speed threshold, is computed.

• Driver advice: natural-language advice is provided, depending on
the cluster distribution, that is to say, according to the cluster in
which the driver spends the longest time. This advice is intended
to be provided by means of non-invasive text messages in the
instrument cluster, and shown as needed.

In sum, with the aforementioned data logging, windowing, and fea-
ture computation, once the data are fed to the FPGA, the SOM HW
accelerator identifies the DS cluster for that window. With those re-
sults, the SW partition computes a cluster distribution, decides which
cluster registered the highest number of hits, and, according to that
maximum, provides eco-driving advice to drivers.

3.7 Concluding Remarks
The main motivation of this chapter was the development of ADAS on the
board vehicle contributing to the encouragement of eco-driving by pro-
viding real-time personalized advice to drivers. With this aim, a holistic
approach, based on ML techniques and FPGA technology, was pro-
posed. It uses a data-based focus to identify relevant, fuel-consumption-
associated features. For that purpose, a mix of real-world data, which
were obtained with an instrumented car and fuel consumption simula-
tion results, was jointly processed. This analysis had the goal of provid-
ing informative data to train an SOM, which, after a clustering process,
allows to classify fuel-consumption-compromising DSs.

The DS recommendations developed are designed to be valid for the
majority of drivers. They are provided using natural language, and can
be easily understood and followed by most drivers. If a given driver
follows the advice, he/she will increase in ecological awareness, modify
his/her DS, and consequently reduce fuel consumption and pollutant
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emissions, with the expected results ranging from the 9.5% to the 31.5%,
or even better in the case of a driver with a high level of engagement
with the advices that the system provides. In addition, current imple-
mentations of efficient driving strategies for autonomous vehicles could
also benefit from these results by incorporating the proposed system
at the development stage, or even after it, to improve and verify the
eco-friendliness of the developed model.

The solution adopted in this chapter relies on a high-performance,
fully parallel SOM implementation. This architecture is inherently par-
allelizable for high-performance HW implementation due to its layered
topology, and easily scalable due to its extensive parametrization. The
entire SOM-based classification system was successfully implemented
while using an FPGA device of the Xilinx ZynQ-7000 PSoC family, with
the HW partition providing high speed and low-power consumption for
real-time implementation, while its microprocessor executed comple-
mentary tasks. Moreover, due to the reconfigurable nature of FPGAs,
both the HW and SW partitions of the PSoC can be updated to cope
with the continuous changes that new vehicle technologies introduce.
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Chapter 4

A Data-Based Approach for
Ride Comfort Improvement

4.1 Overview
In this Chapter, a method to improve ride comfort is described. This
approach, that could be used to develop ADAS, aims to reduce the DS-
related discomfort in car occupants. Thus, not only driving features that
can trigger ride discomfort are identified, but also personalized advice
according to this field is provided. For that purpose, real-world data
from the Uyanik-instrumented car (refer to Section 1.3.1), such as the
CAN-bus and IMU data streams were used to model ride comfort fea-
tures without setting aside the fuel consumption characteristics. Con-
cretely, the data stretches selected in Section 3.4.1 are used. After this,
significant variables are selected and clustered by using SOMs (de-
scribed in Section 1.2.5). The main purpose of this solution is to identify
the causes of discomfort and to provide educational advice to drivers
with the aim of correcting the wellness-compromising conditions.

The remainder of this chapter is organized as follows. Section 4.2 in-
troduces ride comfort concepts. Section 4.3 provides an overview of the
proposed approach and describes the utilized instrumented car dataset.
In addition, the most relevant features concerning ride comfort are an-
alyzed and selected. In Section 4.4 the development of SOMs for ride
comfort classification is provided. Different DS clusters are identified
and natural language-based handling advice is developed in Section
4.5. In Section 4.6 system validation and analysis is presented, and its
compatibility with the eco-driving advice system presented in Section 3
is assessed. Finally, Section 4.7 summarizes the achieved improvements
and exposes some final considerations.
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4.2 SOM-Based Ride Comfort Characterization
Due to the main part of the proposed approach being based on the
characterization of DS taking into account ride comfort through the use
of unsupervised ML algorithms, some basic theory on this concept is
introduced in this section.

4.2.1 Ride Comfort Parameters
As introduced in Section 1.1.5, two types of discomfort can be distin-
guished when we analyze the ride comfort during a given trip. In [214]
the general feeling of malaise is called average discomfort, while motion
sickness is associated with dizziness, fatigue and nausea. The synergy
between these two sensations causes the feeling of discomfort.

Two complementary types of approaches can be followed to assess
the ride-quality experienced by passengers: qualitative and quantita-
tive. Regarding qualitative methods, subjective tests [215] can be used
to rate a variety of parameters from the viewpoint of the individual ex-
perience of the passenger. Conversely, several methods can be used to
quantify the ride-quality during a given trip. In this line, the sensations
caused by vibrations on the human body strongly depend on the signal
direction and its spectral content. Hence, the ISO elaborated one of
the mainly used standards: International Standard 2631 (ISO-2631-1)
[216]. This standard describes ways to evaluate vibration exposure to
the human body, defining methods to measure vibrations as well as how
to process measurement data to standardized quantified performance
measures concerning health, perception, comfort and motion sickness.

In this standard, measurements are based on the frequency weighted
RMS computations of acceleration data for each axis. This norm defines
several filter shapes that delimit the frequency bands where different
components of discomfort are present: filters wf , wd, and wk , where
filter wf is representative of motion sickness discomfort, while the fil-
ters wd and wk model the horizontal and vertical components of global
discomfort, respectively.

As shown in Figure 4.1, the frequencies that mainly cause motion
sickness are those between wf1 = 0.1 Hz and wf2 = 0.3 Hz (blue curve),
so, the motion-sickness-associated measures have to be carried out for
the input data filtered by the blue curve wf . On the other hand, the
green filter wd evaluates the sensation of general discomfort for a seated
passenger when accelerations lie in longitudinal or lateral directions.
Finally, the wk red filter is related with vertical accelerations.



4.2. SOM-Based Ride Comfort Characterization 115

10
-2

10
-1

10
0

10
1

10
2

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (Hz) 

M
a

g
n

it
u

d
e

 (
d

B
) w

d2
=20 Hz

w
f2

=0.3 Hz

w
d1

=0.4 Hz

w
f1

=0.1 Hz

Fig. 1. Amplitude responses of different weighting filters in ISO 2631, wf :
motion sickness (blue), wd: global comfort horizontal-component (green),
and wk: global comfort vertical-component (red).

combines an unsupervised clustering algorithm with a data-
driven extreme learning machine. Firstly, the driving styles
of a group of drivers are classified into a number of discrete
classes based on selected features: a hierarchical clustering
algorithm is used in this step. Since our aim is to classify
the drivers according to the ride comfort of their driving
styles, the summation of the spectral components (i.e. PSD
sum) of accelerations in each axis is selected as input feature.
This feature accounts for ride comfort in a broad sense, and
a typical inertial measurement unit (IMU) attached to the
vehicle can be used to capture the XYZ accelerations.

Then, each class is to be labeled according to a predefined
comfort criterion: the evaluation of meaningful comfort pa-
rameters, or the result of a survey filled in by the passengers.
A combined approach, that considers both criteria would be
desirable. However, in this work, the former approach will
be used because passengers’ surveys are not available.

After that, a DS recognition system is developed to model
the classifier. Extreme learning machines (ELM) with a
variety of architectures have been evaluated to implement the
classifier: single-layer ELM, ELM auto-encoders, and deep-
ELM [13]. The best performance has been obtained with a
single layer feed-forward network (SLFN) featuring 100 neu-
rons in the hidden layer. This topology has been selected to
carry out the experiments presented in the following sections.
The whole method has been evaluated using experimental
data obtained with the Uyanik instrumented car [14].

B. The Uyanik Data Set

The data set was collected using the Uyanik instrumented
car: a sedan car equipped with different sensors and mea-
surement units [14]. The car route is around 25 km, about
40 minutes, in the vicinity of Istanbul. It includes different
kinds of roads and traffic sections: city, very busy city,
highway, highway with less traffic, and a university campus.
A representative subset of the recording sessions consisting
of 22 drivers was chosen, recordings with missing values
or incomplete information were discarded. The complete
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Fig. 2. Block scheme: development process of the hybrid DS characteri-
zation system for ride comfort classification.

data set includes audio and video recordings, CAN-bus
signals, pedal-sensor recordings, a frontal laser scanner, and
an inertial measurement unit (IMU).

After a comprehensive examination of the available infor-
mation, a set of signals and variables, which are successfully
used for modeling driving behavior, was selected [5]. The
subset of low level variables (i.e. time series), and 20 high
level features (RMS value (time domain), and PSD sum
(frequency domain)) used in this research is summarized
in Table I. Several redundant variables, such as: roll rate,
pitch rate and yaw rate, were discarded because they do not
improve the driving comfort classification rates obtained with
the selected signals. The sample rate of the signals is 32
Hz and the features are computed over 128-second frames
(i.e. 4096 samples) with 1-second shift (i.e. 32 sample shift),
that is to say, with an overlapping of 127 seconds between
consecutive windows. The acceleration: XACC, YACC, and
ZACC, will be used in the development and subsequent
labeling of the ride comfort classes, while the remaining
features will be used to implement the DS recognition
system.

The driving session of each driver was partitioned into
a training segment (approximately two thirds of total trip:
around 1600 windows) and a testing segment (the remaining
third of the trip without window overlapping: around 672
windows). A subgroup of 15 drivers was involved in the
development of the DS recognition system, while 7 drivers
without previous contact with the system were used to
evaluate the performance of the ELM-based classification
model.

III. DRIVING STYLE CLASSIFICATION INSPIRED
FROM COMFORT PERSPECTIVE

An agglomerative Hierarchical Cluster Analysis (HCA)
has been used to establish coherent groups of drivers based
on the input features in the training data of every driving ses-
sion. This is a bottom-up approach that iteratively measures
the distance between any two clusters (initially single drivers)
merging the two closest ones in each step. The measurement
method in this case considers the Euclidean distance and

Figure 4.1: Amplitude responses of different weighting filters in ISO 2631, wf :
Motion sickness (blue), wd: Global comfort horizontal-component (green), and

wk : Global comfort vertical-component (red)

Regarding the time persistent discomfort, the measured accelera-
tions can be weighted and filtered in the way that ISO 2631-1 deter-
mines, where awxd, awyd and awzk are the results of being filtered by wf ,
wd and wk , respectively (see Fig. 4.1). The weighted RMS acceleration
for each axis is expressed as,

awij =

√√√√ 1
K

K∑

k=1
a2

i , wj (k), (4.1)

where i determines the direction, wj is the corresponding filter, and
K is the number of samples of the acceleration data.

Other significant parameter to be assessed is the likeliness of nausea
by means of the computation of the motion sickness dose value (MSDVi)
for each axis by particularizing the Equation 4.1 for wj = wf (with wf
being the motion sickness filter represented by the blue curve in Figure
4.1), such that,

MSDVi =
K∑

k=1
a2

i , wf (k), (4.2)

which is a standardized measure of motion sickness.
There are several works related to the analysis of those parameters

suggesting some variants. Concerning motion sickness, although the
international standard pays attention to vertical accelerations, there are
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later works that prove the influence of lateral accelerations in motion
sickness. Thus, in [217], the likeliness of nausea is represented by the
Equation 4.2 applied to lateral accelerations. Additionally, in [218], the
ISO weighting filters shown in Figure 4.1 are slightly modified to better
match with the real sensations caused by the transverse forces, being
wf1 = 0.02 Hz and wf2 = 0.3 Hz. On the other hand, in [219], the
probability of a car occupant to get motion sick enough to vomit is
suggested, as well as several weighting parameters, both for vertical
and horizontal accelerations.

In this chapter we chose the filter proposed in [218], and we ana-
lyzed motion sickness parameter using lateral accelerations, since they
depend more on driving than the vertical ones. In addition, based on
[219], we combined the contribution of both vertical and horizontal ac-
celerations by means of the new VR parameter presented in Equation
4.3. Moreover, despite those parameters being accumulative (depends
on travel length), in this chapter a window-based averaging was used.

V R =

√√√√
(

1
3

)2
MSDVz

2 +
(√

2
3

)2

MSDVy
2. (4.3)

Finally, acceleration and jerk peaks are evaluated using a methodol-
ogy based on acceleration thresholds [220]. A high value of acceleration
or jerk can cause discomfort even during shorter periods of time. When
the levels get too high the passenger will find it difficult to maintain
posture. Limit values vary between the studies. In [221] a maximum ac-
celeration value of 1.47 m/s2 is determined whereas in [214] it is argued
that since an automobile only carries seated passengers it is expected
that the thresholds should be set on the higher side than in a train or
on a bus and the limit is set closer to 2 m/s2.

Thus, we can assess the transient discomfort, by counting the accel-
eration peaks with values above a certain threshold, such that:

ni = ni + 1 when ai > Threshold, (4.4)

where i determines the direction of the acceleration in each of the
XYZ axes and the threshold was fixed at 1.75 m/s2.

4.2.2 Ride Comfort Characterization
As detailed in Chapter 3, where several approaches can be followed to
alleviate and improve the scenario of high emission levels, the DS is
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found to be the main conditionant of this aspect of driving. In the same
fashion, DS plays an important role in ride comfort too.

However, in some scenarios, the eco-driving rules can interfere with
the ride comfort viewpoint. As an example, in [222] the tradeoff be-
tween ride comfort and fuel efficiency are studied for the pulse and
glide strategies. These strategies require the clutch to be disengaged
between engine pulses to ride the car by inertia while the traction chain
is not linked to the wheels. However, this may severely condition the
passengers’ comfort, since high values of vibration and jerk can happen,
and, consequently, several levels of calibration have to be applied to not
disturbing the occupants [222]. In the same fashion, some sources pro-
pose minimizing the required time to achieve the speed setpoint so as
to minimize the fuel consumption [223], [224], which returns outstand-
ing economy rates by the cost of conditioning the passenger comfort
in both the danger sense and sensation terms (i.e., jerkiness, noise,
accelerations, etc.). For those reasons, a trade-off solution has to be
found to guarantee both the ride comfort for the vehicle occupants and
fuel economy. To better analyze the aforementioned trade-off, among
many of the previously mentioned methods, SOMs have been success-
fully used to online cluster DS regarding meaningful features and to
provide advice to modify the undesirable aspects of car handling [225].

We used the SOM unsupervised classifier to characterize the DS
[131], [132], [226], [227], as in Chapter 3. Based on this characterization,
and taking into account its interpretation, some DS recommendations
are set to be provided by the system. Moreover, this proposal has the
main advantage of the aforementioned advice being provided by means
of natural language, which makes it friendlier for the driver, always
considering his/her individual characteristics. This fact is expected to
encourage the engagement of the motorists with the system, who, other-
wise, might not notice which points of their DS could trigger discomfort
and motion sickness in their companions. Thus, we present the following
contributions:

• A novel application of unsupervised neural networks to discover
patterns that compromise ride comfort.

• Analysis of an approach to the examination of the underlying
causes of different types of non-optimal DSs for ride comfort.

• Personalization of the provided advices when considering the afore-
mentioned points. Those recommendations involve pedal, gear
stick and steering wheel operation.



118 Chapter 4. A Data-Based Appr. for Ride Comfort Improvement

• Improvement in the ride comfort parameters, with potential en-
hancements of up to the 57.7%.

These results stand out amongst those achieved by the traditional
methods of gear recommendation [195] or scoring [196] and have the
additional advantage of facing the problematic putting the spotlight on
the driver, instead of the vehicle.

4.3 System Overview and DS Features
To achieve the objective of developing an ADAS to improve ride comfort,
we performed an in-depth analysis of the DS of 20 drivers of different
age-groups and driving experience levels. We used data collected from
the real-world using an instrumented car. This information was used to
discover underlying DS characteristics, which are to be decoded from
the raw data by means of the unsupervised SOM clustering algorithm.

Online in-car driving  

style classification

SOM model

On-board sensors

Feature computation:  

RMS{SWA, XACC-neg,  

XACC-pos, YACC, ERPM}

Driver advice:

- Gas pedal

- Brake pedal

- Gear stick operation

- Steering wheel operation

Ride comfort

improvement

Ride comfort

knowledge

Figure 4.2: Block diagram of the proposed ride comfort assessment system.

Given a set of driving signals’ measurements, the devised model is
able to perform online classification and to provide the driver with per-
sonalized driving advice in real time, with the aim of improving his/her
global ride comfort. Figure 4.2 shows a block diagram of the ride com-
fort ADAS. The system is composed of a feature computation block, a
SOM-based DS classifier, and the driver advice module.

The development of the proposed ADAS for ride comfort improvement
was performed in three stages. First, the selection of a set of meaningful
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features, able to account for the ride comfort viewpoint, was performed
by means of analyzing the magnitude of their correlation coefficients.
Next, the SOM unsupervised clustering technique was applied to dis-
cover different DSs. A SOM was trained, to classify the driving data
into a number of classes that account fundamentally for ride comfort.
After a quantitative and qualitative evaluation of the trained SOM, well
differentiated DS clusters were identified and labeled according to their
ride comfort measures. After that, with these pieces of information, par-
ticular actions on the car controls (i.e. gas pedal, brake pedal, steering
wheel and gear stick) were developed in order to provide advice to the
drivers.

4.3.1 Dataset
As in Chapter 3, we used the Uyanik dataset [14], from the University of
Sabançi at Istanbul (refer to Section 1.3.1). Additionally, to monitor fuel
consumption, the data obtained by with the GT-Suite simulator [187],
[225] as described in Section 3.4.2 is used.

It is worth noting that, for this development, we selected the stretches
of route remarked in Figure 3.2, which exclusively comprehend highway-
type roads. While riding along these roads, which show fluent traffic,
vehicles acquire high mean speeds with low deviations. Additionally,
these highway stretches were selected so that their mean slopes were
lower than the 2%, so drivers had to uninterruptedly operate the gas
pedal to adjust their vehicles’ speeds to the traffic flow.

4.3.2 Statistical Analysis of Driving Behavior
With the aim of comparing the DS of individual drivers concerning ride
comfort, a statistical analysis of comfort parameters was performed. Fig-
ure 4.3 depicts mean parameter values corresponding to each driver
while completing the same route. As can be seen, the mean values of
all the parameters differ among drivers.
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Figure 4.3: Average ride comfort parameters and fuel consumption for each
driver.

The first group of drivers, namely calm drivers, exhibit low positive
and negative acceleration peaks in x axis (i.e. nx pos and nx neg), as
well as relatively low y axis acceleration peaks (i.e. ny). These dri-
vers show also low MSDVs and VRs. For example, average VRs are:
0.79 m/s2 (Driver 6), 0.76 m/s2 (Driver 11), and 0.82 m/s2 (drivers 12 and
20). In consequence, it can be concluded that the most calm drivers from
the comfort viewpoint present also a ecologic DS. On the contrary, the
drivers that consume the most fuel are not necessarily the most uncom-
fortable ones (e.g. Driver 18 shows high fuel consumption: 4.15 L/100 km
and low VR: 0.86 m/s2). Thus, it can be seen that there is a certain rela-
tionship between driving comfort and fuel consumption, but this synergy
must be analyzed in depth. Moreover, it can be highlighted that drivers
6, 11, 12, and 20 consume less than 3 L/100 km, while drivers 14 and
18 are slightly above 4 L/100 km, being the remainder drivers between
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those values.
Next, a different statistical approach to comfort and fuel consump-

tion parameters is provided. The kernel density estimation (KDE) is
used to shed light on the nonlinear relationship between the driving
behavior of selected drivers and these parameters. The KDE technique,
unlike histogram, produces smooth estimate of the probability density
function and is able to suggest multimodality [228]. It is useful to esti-
mate the probability density function of datasets difficult to be modeled
by parametric density functions.

Figure 4.4 depicts the bivariate kernel density function of VR and
fuel consumption corresponding to six representative drivers that ex-
hibit different statistical driving behavior. The probability density func-
tion shows different shapes by each one of the selected drivers. The
positions of the surface peaks indicate maximum likelihood of VR and
fuel consumption. Furthermore, the sharper the surface, the more reg-
ular the DS. To carry out this selection, the kernel density function for
each driver was elaborated, and consequently, two main trends were
identified between all the drivers.

As can be seen, both Driver 6 and Driver 20 present a rather regular
and comfortable DS, while Driver 6 peaks at the lowest values both
in VR and fuel. In contrast the peak values corresponding to Driver
20 are slightly greater than the former ones. However, concerning fuel
consumption, Driver 6 shows a more disperse trend than Driver 20.

Opposite, the coordinates of the peak for Drivers 8, 14 and 18 show
high average fuel consumption and irregular driving patterns (i.e. flat-
tened surfaces). Moreover, Driver 18 exhibits a clear bimodal DS. It is
worth noting that although the secondary peak is unlikely, it increases
the average fuel consumption.

These results are consistent with those shown in Figure 4.3. In sum,
the driving data construct different KDE surfaces according to the dri-
vers’ preferred DS. Some drivers are more regular than others, although
external factors such as weather or road conditions, could also be in part
responsible of these differences.
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Figure 4.4: 3D KDE, computed on the driving windows, links VR and fuel con-
sumption for some of the most representative drivers of the sample population.
Wider projections onto the horizontal plane mean higher variances of the VR

and the fuel consumption measured for the driver.
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4.3.3 Feature Selection
With the aim of choosing DS variables with a significant level of re-
lationship with the comfort parameters introduced in Section 4.2, we
performed a correlation analysis with the real-world driving signals.
The features were computed over 256-sample windows (i.e., 8 s at a
32 Hz sample rate) with 50% overlapping between consecutive windows
(i.e., 128 samples, or 4 s). It is worth noting that the same driving
sections as in Chapter 3 were selected, that is to say, those that ran
through highway and motorway. Moreover, sections with traffic jams
and slow traffic (i.e., mean speed below 60 km/h) were discarded with
the aim of avoiding outliers.

Table 4.1 summarizes the PCCs of the set of selected driving charac-
teristics with different discomfort parameters. The first column of each
variable represents the RMS of the signal whereas the second repre-
sents the variance. As can be seen, the features with the strongest
correlations with the selected discomfort measures are highlighted. For
those features concerning the X-axis of the car (longitudinal direction,
see Figure 1.12), we can see that both the RMS and variance of XACC
pos and XACC neg signals present strong correlation with nx pos and
nx neg, respectively. Moreover, the variance of VS and both RMS and
variance of XACC correlate with nx neg positively.

In the same way, for those features concerning the Y-axis of the car
(transverse direction, see Figure 1.12), both RMS and variance of YACC
and SWA are strongly correlated with MSDVy and VR. It is worth not-
ing that the Z-axis features, despite having a noticeable contribution on
worsening the motion sickness felt by the passengers, were discarded
since they do not directly depend on the DS, but on the road charac-
teristics.

In sum, the results displayed in Table 4.1 show that the features
with the strongest correlation with ride comfort are: RMS{SWA, XACC,
XACC neg, XACC pos, YACC} and variance{SWA, VS, XACC, XACC neg,
XACC pos, YACC}.

4.4 Development of the SOM-Based Classifier
According to the scheme depicted in Figure 4.2, an unsupervised SOM
clustering algorithm was used to classify drivers regarding their ride
comfort ratings. With this purpose, we selected the entire set of sam-
ples which comprises driving data of 20 drivers. As an average of 115
windows is available per individual, the whole set of driving samples
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consists of 2290 windows (i.e., more than 2.5 driving hours). The 75%
of the five-dimensional samples will be used to train a SOM, which is
to say K = 1717, keeping the remaining quarter for testing purposes.
The data were normalized before training in order to avoid distortion in
the results due to the use of Euclidean distances (Equation 1.19).

A comprehensive series of training experiments revealed that a re-
duced subset of only five independent features is able to model the
relationship of ride-comfort with driving signals in a very satisfactory
way. These features are: RMS{SWA, XACC neg, XACC pos, YACC}.
Additionally, RMS{ERPM} was also incorporated due to the trends
displayed in Figure 4.4 to consider the fuel-consumption perspective.
In contrast, despite a number of variances show high correlation co-
efficients, they were found less suitable for modeling driving behavior
than the corresponding RMS values. The above selected features will
be used to develop a SOM-based DS model and provide drivers with
specific recommendations.

The number of output neurons of the SOM was initially selected with
the Vesanto’s rule [136], which defines the optimal number of neurons as
M = 5

√
K . Thus, a 14 × 14 SOM topology (i.e., M = 196) was defined

and recursively trained. However, we carried out experiments ranging
from 13×13 to 15×15 maps, achieving the best results for the latter, so,
a 15 × 15 map was built and trained to improve the feature extraction
capabilities.

In Figure 4.5 the SOM results are analyzed by means of displaying
the input weight planes. These planes depict the weights associated
with each input for each neuron, and reflect the input magnitudes that
are expected to cause a hit for each neuron (i.e., the neuron is the best
matching unit for that particular input). Thus, considering that lighter
colors represent the higher values, several assertions can be made by
visually analyzing the weight values. As can be seen, all the 5 planes
are clearly different, which indicates that the inputs show no correlation
between them.

It can also be seen that drivers with high values of SWA tend to show
also high levels of YACC, fact that conditions the ride comfort of the car
occupants (see top left corner). On the other hand, several neurons of the
bottom left part of both ERPM and XACC pos show high values as well,
which also might show a relationship with discomfort. Regarding XACC
neg, high values for this variable are displayed at the top-right part of
its corresponding map, which could show a certain level of relationship
with negative acceleration peaks, derived of spurious braking. Finally,
it is worth noting that the weight map for ERPM is particularly uniform,



126 Chapter 4. A Data-Based Appr. for Ride Comfort Improvement

which indicates that the addition of this variable does not contribute to
the modeling of fuel-consumption.

Weights from RMS(XACC neg) Weights from RMS(XACC pos)

Weights from RMS(YACC) Weights from RMS(ERPM)

Weights from RMS(SWA)Weights from RMS(SWA) Weights from RMS(XACC neg) Weights from RMS(XACC pos)

Weights from RMS(YACC) Weights from RMS(ERPM)Weights from RMS(SWA) Weights from RMS(XACC neg)

Weights from RMS(YACC) Weights from RMS(ERPM)

Weights from RMS(XACC pos)

Weights from RMS(SWA) Weights from RMS(XACC neg) Weights from RMS(XACC pos)

Weights from RMS(ERPM)Weights from RMS(YACC)Weights from RMS(SWA) Weights from RMS(XACC neg) Weights from RMS(XACC pos)

Weights from RMS(YACC) Weights from RMS(ERPM)

Figure 4.5: Input weight maps for the five selected input features,
RMS{SWA,XACC neg,XACC pos} and RMS{YACC,ERPM}, from left to right
and top to bottom. Lighter colors represent higher values of the corresponding

features for each of the 15 × 15 neurons of the SOM.

To extract more solid conclusions that those provided by the visual
inspection of the input planes, several partitions can be made on the map
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in order to exploit the granularity of the algorithm and to group similar
neurons into defined clusters. It should be remarked that, according to
the k-NN algorithm referred to in Section 1.2.5, generally, the finer the
partition, the greater the number of clusters found in the SOM. In this
case, a 3-cluster partition was used as an starting point to assess the
relationship with the ride comfortof drivers. This partition is shown in
Figure 4.6.

Figure 4.6: SOM partitioned to separate neurons between 3 clusters of ride
comfort. This partition is based on the weights obtained during the training
of the 15 × 15-neuron SOM and produced by carefully selecting the k of the

k-NN partitioning algorithm.

When comparing Figure 4.6 with Figure 4.5, we can see several
similarities, particularly with the input maps of SWA and YACC. Thus, if
we compare again the top left section of the input map of SWA, we can
see that the light neurons surrounded by the dark ones of the upper
left corner match with the red neurons of the upper left corner of Figure
4.6. The same happens with the bottom left corner of YACC, for which,
when comparing with the bottom left corner of Figure 4.6, it can be seen
that the lighter neurons correspond with the elements of the red cluster,
while the darkest ones correspond with the blue colored elements.

Once the 3 different clusters are displayed and analyzed, a quanti-
tative evaluation of the ride comfort is performed. For that purpose, the
mean values and variances of the selected variables are computed and
displayed in Table 4.2.
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Table 4.2: Average values and variances for discomfort for the 3-cluster clas-
sification.

Variable / Cluster Blue Green Red
MSDVy Avg. 1.27 1.36 3.00
(m/s2) Var. 0.31 0.33 1.24
Vomit rate Avg. 0.73 0.81 1.50
(m/s2) Var. 0.07 0.07 0.27
nx pos Avg. 0.05 1.40 2.73

Var. 0.19 36.8 94.2
nx neg Avg. 2.30 0.42 3.69

Var. 76.7 11.3 175.7
ny Avg. 0.42 0.68 4.78

Var. 1.95 3.87 48.0

As can be seen, the red cluster, which according to the descrip-
tion of the input planes has high values of SWA and YACC, depicts
average values of the continuous discomfort variables that double those
for the green and blue clusters, which compile much lower SWA and
YACC values. In the same fashion, Table 4.2 shows that nx pos and ny,
which model transient discomfort peaks, are noticeably higher for the
red cluster than for the blue one. This trend, however, is not kept for nx
neg, which has a minimum for the green cluster, increasing for the blue
one. Regarding variances, a general increasing trend of variance jointly
with the average values can be seen. This trend is related to the KDE
graphs on Figure 4.4, where low motion sickness, low consumption dri-
vers show more pointy surfaces with their probabilities lying in a much
smaller area, reflected in the low variance of the low motion sickness
drivers. Thus, in the case of the motion sickness variables, their vari-
ances are relatively low, which means that the generated clusters are
fairly compact and well separated for the assessment of this feature. In
contrast, the transient discomfort peaks’ variance values are high due to
some drivers being more likely to present spurious acceleration peaks
above a certain threshold, as displayed in Figure 4.3.

It is worth to remark that the average values of comfort variables
are slightly lower for the blue cluster than for the green one, being the
difference between the average values of nx pos the major determinant
for their separation. For these reasons, this partition can be considered
valid for ride comfort. Nonetheless, with the aim of uniforming the gra-
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dient of the average values for each group, the fineness of the clustering
was further increased until a 5-class grouping was achieved.

Table 4.3: Average values and variances for discomfort for the 5-cluster clas-
sification.

Variable / Cluster Blue Green Yellow Magen. Red
MSDVy Avg. 1.09 1.19 1.65 1.85 3.25
(m/s2) Var. 0.18 0.22 0.56 0.46 1.58
Vomit rate Avg. 0.64 0.72 0.94 1.01 1.62
(m/s2) Var. 0.04 0.05 0.11 0.09 0.34
nx pos Avg. 0.02 0.18 3.70 0.39 0.98

Var. 0.05 0.78 116.3 1.84 17.3
nx neg Avg. 1.20 0.21 0.37 5.27 2.21

Var. 26.9 1.87 7.18 229.8 61.6
ny Avg. 0.05 0.23 1.02 2.02 5.74

Var. 0.16 0.89 5.43 10.5 69.2

To assess how the finer clustering affects to the discomfort ratings,
the average and variance values were extracted and displayed in Ta-
ble 4.3. In this case, the red cluster stands out among the remaining
4 clusters in terms of VR and MSDVy, which are, by far, the highest.
With respect to the other clusters, it can be seen that a full spectrum
of classes, ranging from intermediate to low VR and MSDVy, has been
found. Regarding the discontinuous discomfort variables, the trend dis-
played for 3-clusters is kept. Thus, from the maximum displayed for the
magenta class, nx neg uniformly decreases jointly with VR and MSDVy
until the blue cluster is reached, increasing. Nevertheless, the yellow
cluster stands out among the others, since, despite having an interme-
diate level of VR, it shows an increase on nx pos. This means that the
continuous ride discomfort is not always related to the spuriusness of
drivers.

Nonetheless, when inspected 2-by-2, the addressed clusters, partic-
ularly the couple blue-green and the couple yellow-magenta are very
similar in terms of ride comfort. This resembles a 3-cluster classification,
so, instead of using the latter 5-class clustering, the former 3-class one
seems simpler and still useful to extract conclusions about ride comfort.
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4.5 Deployment of the Driver Advice Module
With the SOM-based in-car DS modules properly developed and trained,
achieving meaningful separation of the input samples into clusters, theride
comfort improvement module is to be deployed, according to Figure 4.2.
For this purpose, the causes of the ride comfort characteristics of the
selected clusters are assessed and meaningful recommendations are
provided according to them.

4.5.1 Ride Comfort Clusters’ Characteristics
According to Table 4.2 in Section 4.4, three ride comfort clusters are
enough to distinguish drivers regarding their VR and MSDVy, being the
red one the cluster with the highest rate, while the blue one represents
the lowest.

Intermediate motion sickness data is compiled into the green cluster.
Thus, with the clustering corresponding with Table 4.2, Figure 4.7 is
elaborated, and, with the depicted characteristics, we can classify the
clusters as follows:

• High discomfort (red) corresponds to drivers with high values of
VR and MSDVy, and, consequently, with elevated SWA and YACC,
which means that the main feature of these motorists is that they
tend to use the steering wheel aggressively, following swift cor-
nering and overtaking strategies.

• Medium discomfort (green) drivers show moderate to low values of
VR and MSDVy, and, consequently, with moderate to low SWA and
YACC, while their values of XACC pos are medium-high, pointing
out that the extensive use of the gas pedal is the main conditionant
of ride comfort.

• Low discomfort (blue) class shows the lowest values of VR and
MSDVy, so SWA is also kept in the lower range, XACC pos is kept
low too, which means that these drivers tend to operate the gas
pedal smoothly. Conversely, the values of XACC neg are higher
than for the green class, which, jointly with the high correlation
with nx neg, suggest that these drivers could use the brake pedal
more thoroughly with spurious braking peaks.
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Figure 4.7: Two-dimensional views of the three-cluster distribution for ride
comfort. The clusters were labeled as high discomfort (red), medium discomfort

(green) and low discomfort (blue).

Additionally, by the inspection of Figure 4.7, it can be seen that
no separation is achieved for ERPM, which is coherent with the input
planes displayed in Figure 4.5.

Thus, according to the enumerated characteristics, as well as with
the comfort variables displayed in Table 4.2 taken into consideration,
the advice shown in Table 4.4 could be provided to drivers to improve
their DS regarding ride comfort.
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Table 4.4: Suggested actions to improve ride-comfort.

Comfort cluster Driver Advice
High (red) Operate steering wheel more smoothly
Medium (green) Release gas pedal
Low (blue) Avoid braking peaks*

*Note: This advice is only provided when a braking peak above a certain threshold
occurs.

With these recommendations, and with the foregoing considerations
in mind, we can elaborate Table 4.5 to show up the potential decrease
on the likelihood of occupants to get motion sick in case of the DS
recommendations were completely followed by the drivers.

Table 4.5: Expected VR reduction between clusters.

Current Target Vomit rate MSDVy
Cluster Cluster Reduction (%) Reduction (%)
Medium (green) Low (blue) 9.88 6.62
High (red) Medium (green) 46.0 54.7
High (red) Low (blue) 51.3 57.7

As depicted in Table 4.5, a reduction of up to the 57.7% can be
expected if a highly discomfortable driver could modify his/her DS so as
to mimic a low motion-sickness motorist. Nevertheless, if he/she could
only make it to drive like a medium motion-sickness driver, a promising
reduction of up to the 54.7% in ride discomfort parameters could be
achieved.

This system, which responds to a 5-input 15 × 15 SOM, can be
easily accelerated by using the HW core developed in Section 3.6.1,
which, according to Equation 3.3, would return its evaluation results in
14 clock cycles, allowing the very-high-performance evaluation of ride
comfort parameters and the integration of the system with the existing
electronics of the vehicle.

4.6 System Robustness Verification
Throughout this chapter it is shown that, with an appropriate selection
of features, unsupervised ML methods can be used to extract conclu-
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sions according to ride comfort regarding each driver’s characteristics.
For that purpose after the window size was properly sized and the dri-
ving signals were carefully selected regarding their PCCs, a SOM for
the assessment of the ride comfort was properly sized and trained. Fi-
nally, the classes identified by the SOM were thoroughly examined to
check that they did match with the already existing knowledge, and,
analyzing their members’ values, recommendations according to their
characteristics were elaborated to create 3 comfort clusters.

To prove that the ride-comfort classification is robust, coherent with
the previous knowledge, and tends to classify drivers according to the
KDE displayed in Figure 4.4, it is cross compared with the 3-cluster,
fuel-consumption classification described in Section 3.4.3. Thus, heat
maps for drivers 2, 6, 8, 14, 18 and 20 were elaborated. Figure 4.8 rep-
resents the distribution of the cross classification for each of the drivers.
If these distributions are compared with their corresponding KDE sur-
faces (Figure 4.4), it can be seen that drivers with the sharpest kernel
density distribution, such as Driver 2 and Driver 6, tend to show a pre-
dominant medium discomfort and low fuel consumption cluster, driving
during more than the half of the samples in this class. In contrast, for
drivers such as Driver 8, Driver 14, or Driver 18 the distribution is more
disperse, with several clusters having a high predominance, lacking a
single predominant driving cluster.

On the other hand, conclusions about either ride comfort (i.e. by
rows) or fuel consumption (i.e. by columns) can be extracted by analyz-
ing Figure 4.8. Thus, the predominant cluster for Driver 2 is medium,
with the 72.5% of his/her windows laying into this category. Regarding
fuel consumption, it can be seen that low is the winning classification,
with 67.4% of his/her windows being classified for this category. Driver
6 behaves similarly to Driver 2, the most frequent combination is also
medium-low, with 74.8% and 56.8%, respectively. For Driver 8, medium-
low, with 43.5% and 53.9%, is again the winner combination. But, in this
case, the very low consumption class is also remarkable, with the 27%.
Driver 14 and Driver 18 are very similar, with the highly discomfortable
class outstanding among the others, with the 59.5% and the 60.9% of the
driving windows, while most of the times they are classified as very low
consumption drivers (45.7% and 54.8%).

Finally, Driver 20 shows a fairly uniform distribution, so, this driver
cannot be clearly classified separately for ride comfort or fuel consump-
tion. In contrast, the cluster intersection shows 9 clearly separated
categories that can be easily distinguished, proving that the followed
approach is useful to perform a deeper insight into driving behavior,
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specially for drivers with no predominant class.

Figure 4.8: Heatmaps of the percentage distribution of the intersection of the
ride comfort and fuel consumption clusters for drivers 2, 6, 8, 14, 18 and 20. B

stands for blue, G for green, and R for red.

Regarding recommendations, this section suggests that advice for
both eco-driving and ride comfort could be provided simultaneously, due
to the coherence of the intersection of the two types of classification.
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4.7 Concluding Remarks
The main motivation of this chapter was the development of an ADAS
to increase ride comfort of the passengers, while taking into account
the eco-driving viewpoint. The proposed solution provides the driver
with a set of recommendations, in natural language, with the aim of
improving his/her DS. The system is composed of two main subsystems:
a SOM-based DS classifier and the driver advice module. The first one,
consists of a SOM that was trained with real-world driving data. The
classifier subsystem is able to group drivers regarding their ride comfort
characteristics. The second subsystem identifies the underlying causes
of the DS-associated lack of comfort, and provides advice according to
them.

The aforementioned recommendations are designed to be easily un-
derstandable by most of the drivers, and, if they were completely fol-
lowed, noticeable reductions in the comfort compromising parameters
could happen. As shown, if a driver could modify his/her DS with the
help of the recommendations from the most discomfortable group to the
most comfortable one, the discomfort indicators would improve up to the
57.7%, improving the comfort perception of the vehicle occupants dras-
tically and being compatible with the previously existing eco-driving
knowledge.

The 5-input 15 × 15 SOM of this system, can also be easily accel-
erated by using the development described in Section 3.6.1, to return
a valid solution in 14 clock cycles, allowing the very-high-performance
evaluation of ride comfort parameters and the integration of the system
with current vehicle designs.
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Chapter 5

ACAP-Based HW/SW
Solution for ADAS

5.1 Overview
In this chapter, a HW/SW solution to deploy a variety of ADAS in au-
tomobiles is proposed. This solution allows to integrate heterogeneous
HW and SW applications in the same device while keeping high perfor-
mance rates. For that purpose, all the pieces of HW developed along
the precedent chapters of the document are deployed in the proposed
architecture. To shape a very high-performance solution, an ACAP from
the Xilinx Versal family (refer to Section 1.4) has been used.

This chapter is organized as follows. In Section 5.2, the proposed
solution is displayed and described. Section 5.3 presents how the HW
blocks have been created with the spotlight put on the design. The
development of the complete HW/SW block design is displayed in Sec-
tion 5.4. Finally, resource consumption, timing performance and power
consumption are assessed in Section 5.5.

5.2 Proposed Solution
The block diagram of the ACAP-based implementation of the HW/SW
solution for ADAS is depicted in Figure 5.1. It is a hybrid HW/SW archi-
tecture implemented on the Xilinx Versal XCVM1802-2MSEVSVA2197
ACAP [150] using the Xilinx VMK180 development board [151]. The
HW partition of the system, displayed over the gray zone correspond-
ing to the logic, DSP and memory resources, was implemented using
VHDL language and the graphic tools of the Xilinx Vivado 2021.2 design
suite. This partition includes the HW accelerators of the applications
developed in Chapters 2, 3 and 4, for ACC personalization, eco-driving
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advice, and ride-comfort advice, respectively. On the other hand, the
SW partition, developed by means of the Xilinx Vitis 2021.2 SDK [229],
is proposed to be deployed through a bare-metal C application running
in the PS of the device. This SW is intended to acquire the vehicle
bus data, compute all the ADAS significant features, share them with
the HW partition, retrieve the responses of the HW blocks, compute the
personalization parameters and DS advice, and send these personal-
ization parameters to the vehicle’s ECU to adjust the THW setpoint of
ACC and to provide DS advices to drivers.

SOM 

Accelerator for

fuel 

consumption

classification

SOM 

Accelerator for

ride comfort

classification

ARM Cortex-A72 (PS) 

Network-on-Chip

Input: On-board sensors

Output: ACC setpoint/DS 

advice

CAN-bus 

interface

ACC personalization

Fuel consumption/Eco-driving advice

Ride comfort advice

-I/O management (through CAN-bus)

-Feature computation

Logic, DSP and 

Memory (PL)

3-ANFIS-based

classification for

ACC

Figure 5.1: Block diagram of the ACAP-based HW/SW solution for ADAS.
The HW accelerators are deployed in the PL partition, remarked in gray, and

connected to the NoC. The SW partition is ran in the PS.

The PS, apart from all the tasks above, performs the system monitor-
ing and is the responsible of the interfacing between the outer side (i.e.
the vehicle’s bus) and the inner side (i.e., the HW/SW solution itself).
According to Figure 5.1, all the blocks are connected through the NoC,
which, as described in Section 1.4, allows extremely high-throughput
communications between blocks by seamlessly connecting the different
domains of the device.
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5.3 HW Partition Blocks
With the design displayed, the blocks of the HW partition have been
developed by adapting their already developed PSoC-based architec-
tures to the ACAP paradigm. As shown in Figure 5.1, two types of HW
blocks needed to be deployed: the ANFIS block (whose internal archi-
tecture has been thoroughly described in Section 2.6), and the SOM
block (refer to Section 3.6). These blocks are fully parameterized and
re-configurable.

To enable the modules to be connected to the internal NoC of the
Versal device, they have been wrapped as AXI4 bus peripherals. This
means that their inputs and outputs are linked to registers that interface
with the bus. After that, the Vivado design suite transparently manages
the interfacing with the NoC. These peripherals are shown in Figure
5.2.
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Figure 5.2: View of the ready-to-connect ANFIS and SOM HW blocks.
S00_XX_AXI are the AXI4 connections of the blocks that link them to the
NoC. s00_xx_axi_aclk are the bus clocks and the clock signals of the blocks.

s00_xx_axi_aresetn are the reset signals.

It is worth noting that, in the case of the ANFIS block, the para-
meters of number of inputs, number of fuzzy rules and their structure,
the number of MFs and their shapes, and the input and output reso-
lutions can be adjusted. As for the SOM block, the number of inputs
and outputs, the number of neurons and their weights, and the input
and output resolutions can be adjusted. This fact makes these modules
highly versatile and flexible enough for a wide range of applications.
Thus, for the application described in Figure 5.1, three ANFIS blocks
for the ACC personalization solution of Chapter 2 are required. In addi-
tion, two SOM blocks for the eco-driving and ride comfort solutions of
Chapters 3 and 4, respectively, had to be configured and deployed.
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5.4 HW/SW Complete Design
Once the AXI peripherals are correctly wrapped and validated, the de-
sign that follows the guidelines of Figure 5.1 to incorporate these blocks
is made by means of the Vivado IP integrator. The design shown in Fig-
ure 5.3 is next-to-totally automated, with only needing to perform the
aggregation of the ANFIS and SOM AXI4 peripherals described in Sec-
tion 5.3, labeled as ANFIS_IP_0, ANFIS_IP_1, ANFIS_IP_2, SOM_IP_0 and
SOM_IP_1.

These modules are remarked in orange in Figure 5.3. The remaining
blocks apart from the Versal’s SW core (which corresponds with the PS)
are automatically added to setup the interface between the HW and the
SW partitions through the NoC.

After this step is performed, the tool automatically allocates the ad-
dresses of the AXI registers of the elaborated peripherals in the memory
space of the Versal’s SW core in order to be accessed by the micro-
processor and, consequently, enabling the information to be exchanged
transparently from/to the the HW and the SW partition. The automati-
cally elaborated address map is displayed in Figure 5.4.

Figure 5.4: Structure of the address map of the peripherals integrated in the
system. The range of addresses reserved for each peripheral is displayed in

blue, while the blank addresses are shown in gray.

It is worth to remark that despite the developed HW cores relying
on a AXI4 interface to be connected with the SW partition of the system,
the real connection between these elements does not happen through
an AXI4 bus anymore, but through a NoC, as described in Section 1.4.



142 Chapter 5. ACAP-Based HW/SW Solution for ADAS

Hence, the previously described memory map peripherals are physically
connected and allocated as described in Figure 5.5.

Figure 5.5: Overview of the implemented NoC with 5 wrapped cores in green.
The blue block represents the gateway between the PS and the NoC, and the
NoC’s paths are visible in dark gray. The free paths, ready to feed more HW

blocks (with green lines), are displayed in light gray.

In Figure 5.5, 6 different blocks can be seen: 1 blue block and 5
green blocks. The blue block corresponds with the connection of the PS
of the Versal platform to the NoC, and the green ones with the phys-
ical interface between the NoC and the wrapped peripherals. As can
be seen, they are connected by a system of pipes that represents the
chip-embedded NoC. The management and routing of this network is
automatically performed by the NoC master and is completely trans-
parent. This means that the HW/SW communications can be performed
in the same way as for the traditional AXI4 bus, reducing the level of
complexity for the user.

Finally, the design is validated and the synthesis and implementa-
tion stages are run to deploy the development in the Versal platform.

As for the Xilinx Vitis-developed SW, the computation of data win-
dows, sampling time and driving features, as well as the ADAS ap-
plications, are migrated directly from the SW partitions of Chapters2
and 3, with no additional work apart from the integration needed to
be performed. Additionally, the sequence of operations needed to in-
tegrate the HW core that accelerates the ride comfort-dedicated SOM
is incorporated. It is worth noting that, to communicate the HW and
SW partitions, the Vivado 2021.2 design suite and the Vitis 2021.2 SDK
automatically elaborate the board support package (BSP), that incorpo-
rates functions and definitions that ease the reading of the results and
the input of the driving-related data from and to the AXI peripherals.
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To finish with the complete application, a CAN bus peripheral, that
would receive and send the ADASs-related information from and to the
already existing systems of the car, would be used.

5.5 Resource Consumption and Performance
In this Section, the usage of the resources of the gray partition that
represents the PS in the proposed architecture of Figure 5.1 is analyzed.
Additionally, the timing performance of the entire solution is compared
with that of the individual blocks described in Sections 2.6 and 3.6.
Finally, the power consumption is analyzed.

Logic, DSP and Memory Resources Usage

The full HW platform was successfully implemented, with the post-
implementation results displayed in Table 5.1. The three-ANFIS plus
the two SOM integration platform fit into the selected ACAP’s logic,
leaving enough resources available for further system applications, es-
calations, or improvements.

Table 5.1: Post-implementation resources report (Xilinx Versal XCVM1802-
2MSEVSVA2197).

Resource Utilization Available % Used
LUT 53 408 899 840 5.94
FFs 39 331 1 799 680 2.19

RAM blocks 1.5 967 0.15
DSP 372 1968 18.90

Timing Performance

Before the deployment, the maximum operational frequency was calcu-
lated. For that purpose, the three-ANFIS plus two SOM architecture
was implemented with a minimum clock period of 8 ns. This period se-
lection was performed according to the maximum operation frequencies
of the peripherals developed in Sections 2.6.2 and 3.6.2, where maximum
clock frequencies of 140.41 MHz and 129.74 MHz were obtained for the
ANFIS and the SOM developments, respectively. Thus, the initial pe-
riod selection of t = 8 ns ⇒ F = 125 MHz, was selected so that it
matched with the lowest time performance peripheral.
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After implementation, a slack of 2.479 ns was obtained, which means
that, according to Equation 2.5, the maximum clock frequency this HW
integration can work at is Fmax = 181.12 MHz. This frequency is much
higher than those displayed in Sections 2.6.2 and 3.6.2 and is an evi-
dence that, due to both the NoC and the 7 nm manufacturing process
(both mentioned in Section 1.4), the performance of the Xilinx Versal
platforms clearly supersedes that of ZynQ architectures, allowing com-
puting on the edge.

The three ANFIS blocks present the same latency of 53 clock cy-
cles (see Section 2.6.2), which means that, for the new maximum clock
frequency of 181.12 MHz, these modules can return their solution in
292.61 ns. On the other hand, the latency for the 11 × 11, 4-input SOM
developed in Chapter 3, according to Equation 3.3, is 12 clock cycles,
returning its results in 66.25 ns. In the same manner, for the 15 × 15,
5-input SOM of Section 4.4, the latency is 14 clock cycles, that is to
say, 77.29 ns. These results imply that the timing performance has
been improved by the 28.99% for the ANFIS cores and by the 42.20%
for the SOM cores when compared with the ZynQ family of devices.
These processing times are fast enough for virtually any ADAS appli-
cation and, due to the extraordinary scalability of the ACAPs, allow to
even implement solutions that require very fast reaction times, such as
safety-critical ADAS.

Power Consumption

In the light of Figure 5.6, the entire integrated system requires 12.166 W
to operate, corresponding the 22% of this consumption to the dynamic
power and the remaining 78%, to the static power. Thus, while the
former corresponds to the energy spent by the developed design itself,
the latter happens due to the leakage currents of the ACAP architecture,
which is significant due to its size when compared to other solutions.

This power consumption information can be put into the context of
current cars by considering that an average car relies on a range of 70
to 100 ECUs, and each of them consumes a current of 100 mA at 12 V
[230]. This means that the electronics of a current car spent from 84 to
120 W to run its normal functionalities. On the other hand, in [231] the
power consumption of several ADAS-intended sensors and processing
elements is displayed, with rates from 12 W for LIDAR to 80 W to the
ADAS ECU. Thus the 12.166 W of power consumption of the developed
solution is in the line of the already existing systems, and even better
if the comparison is limited to the ECU.
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Consequently, the hybrid HW/SW implementation developed is an
innovative solution between conventional SW-based approaches and
novel FPGA-based, extreme performance architectures, which, provides
an adequate trade-off between complexity, performance, and develop-
ment time.

Figure 5.6: Power consumption post-implementation results, extracted from
Vivado 2021.2. The maximum power consumption is 12.166 W.

5.6 Conclusions
In this chapter, a HW/SW design that integrates an heterogeneous set of
ADAS-intended HW architectures has been described. The whole sys-
tem has been successfully developed by means of a Xilinx Versal ACAP,
a state-of-the-art device for high performance electronic implementa-
tions. This design joins both the HW and the SW domains to provide
very high performance assessment of DS characteristics to personalize
ADAS in real-time. It allows to adapt the accelerator architectures de-
veloped in Sections 2.6 and 3.6 to virtually any application that requires
ANFIS or SOM algorithms with little design effort paid in only adjust-
ing some parameters. Additionally, this development demonstrates the
power of the Xilinx Versal devices to achieve timing performances that
supersede those of the previously existing device families. Finally, this
chapter shows the possibility of integrating several systems of an au-
tomobile into a re-configurable device, so that new features and HW
updates could be implemented without physically changing any of the
elements of the car systems’ layout.

It is also worth to remark the adaptability of this type of platform
not only for ADASs, but also for general purpose ML techniques, due to
the HW allowing an unforeseen level of parallelism, with multiple cores
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running at several speeds adapted to each concrete application. The SW
partition plays an important role tool, with heterogeneous ARM cores
for both high demanding applications and real-time processing, enabling
SW scalability. This means that ACAPs could potentially substitute
many of the systems of current cars, increasing the performance of the
boarded electronics and reducing its power consumption.
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Chapter 6

Conclusions and Future Work

In this work, several contributions to the state of the art of ADAS have
been proposed and successfully developed. These systems, since they
are intended to be implemented in automobiles, must be compact and
energy efficient. On the other hand, the must also be powerful enough
to manage and process the input data flow and to execute the deployed
algorithms in real time. Hence, application-specific HW/SW architec-
tures have been developed.

For the development of these systems, a data-based development
strategy has been used, were data from naturalistic and non-naturalistic
driving studies has been mined. This data mining-based strategy has
allowed us to identify significant characteristics of human driving and,
on the other hand, to isolate features of each individual’s DS.

Several types of ML algorithms have been used to identify DS char-
acteristics, thus, each system is able to infer the driving details by itself,
and to group individual drivers regarding their handling features.

Thus, for the personalization of ACC systems, the SHRP2 NDS data
base has been used to develop an ANFIS-based approach that classifies
DS among three car-following styles. For that purpose, each DS is mod-
eled by its corresponding ANFIS network, and the classification is done
by identifying the one with the strongest activation. This method shows
an state-of-the-art level of accuracy, with barely no confusions between
groups and allows to select the desired THW for each individual.

Regarding eco-driving considerations, the Uyanik instrumented car
non-NDS dataset has been used to develop a SOM-based eco-driving
assessment system. To properly select the training variables of the
system, a correlation analysis with simulated fuel consumption-data
has been performed. With these highly correlated variables, the size of
the SOM network has been selected and meaningful fuel-consumption
driving behaviors have been clustered so that DS features automatically
emerged. This has allowed to diagnose the weaknesses and strengths of
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human drivers, and to provide them with instructional advice according
to their particular characteristics, potentially allowing state-of-the-art
fuel consumption and GHG reduction rates.

As for ride comfort, the same non-naturalistic dataset has been used
to assess the DS-related compromising features by the use of SOMs.
The training variables have been selected through a correlation analysis
with significant ride-comfort compromising variables, and an SOM has
been sized according to them. This SOM has been clustered and DS-
related comfort compromising features emerged, enabling to assess the
conflictive points of individual DS regarding discomfort, so that advice
to correct these drawbacks could be provided.

Both the eco-driving and ride comfort advice systems have been
jointly tested and evaluated to check if they are compatible with each
other, showing that these systems have a high level of coherence when
used together, which allows to provide simultaneous advice. Both sys-
tems’ influence in potentially improving DS for eco-driving and ride
comfort supersede the already existing techniques.

As for electronic implementation, VHDL-coded, PSoC-based generic
HW cores for ANFIS and SOM neural networks have been designed.
These cores have been parametrically coded so that their architecture
automatically re-configures according to the particular parameters of
each application. These cores allow very high performance, real-time
DS evaluation and stand out when compared to other proposed solu-
tions.

Regarding the final implementation, an integrated HW/SW solution
for ADAS is proposed. This solution, based on a Xilinx Versal ACAP,
enables to integrate a variety of heterogeneous HW and SW architec-
tures within the same chip, ensuring high performance. This device also
allows to seamlessly connect the designed architecture to the vehicle’s
buses through its communication peripherals. To develop the HW archi-
tecture, the PSoC-based generic HW-cores are adapted to the ACAP
architecture, enabling them to connect to the NoC. The usage of the
NoC allows vey high performance communication between the HW and
the pieces of SW developed in the microprocessor of the ACAP. Addi-
tionally, it is shown that the Versal-based implementations outperform
those carried out with other devices.

In sum, in this work a framework for the development of DS-based
ADASs is provided. This framework, derived from human driving data,
not only provides us with tools to enhance the non-autonomous dri-
ving scenarios, but also with behavioral information that could help to
improve the attitude of the future autonomous cars in terms of longitu-
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dinal control, eco-driving and ride comfort. These aspects are extremely
important in the current context of steadily increasing road traffic and
GHG emissions as a solution to improve road safety and energy effi-
ciency. The former concept has a positive impact on potentially reducing
the number of road fatalities, while the latter, has a positive impact on
energy consumption and, consequently on economy, in a context of non-
stop increasing energy prices. Many other ADAS, such as LKA/LDW,
distracted driving advice or automated navigation could benefit of this
data-based approach, showing more human-like behaviors that would
increase the trust of car occupants in the system, encouraging the ac-
ceptance.

Regarding HW/SW development, in this work ACAPs are proven to
be an efficient tool to implement a plethora of new functionalities in
automobiles. These systems, due to their generous resources might po-
tentially substitute the ECUs present in the currently marketed cars,
increasing, on the other hand, the computational capabilities and re-
ducing the consumption of energy. It is also worth to remark that, due
to these devices being completely re-configurable, manufacturers could
not only update the SW of the vehicle, but also the HW, allowing the
implementation of new after-market functionalities.

Future Works
In future works, neuro-fuzzy sensor-based ACC capabilities could be
enhanced by broadening the diversity of car-following scenarios. Both
acceleration and braking will be analyzed. Moreover, a finer cluster-
ing approach could be investigated with the aim of categorizing driving
scenarios according to, among others, weather conditions or lighting.

Regarding eco-driving, more SOM-based intelligent system appli-
cations could be investigated, adding more driving scenarios to those
already researched for DS-related fuel consumption on highways and
roads. It is worth remarking that further work can be done to decide
which advice should be provided to drivers whose predominant DS is
divided between non-contiguous clusters.

As for ride-comfort, SOM-based applications will be broadened, adding
more driving scenarios to those already researched for DS-related ride
comfort on highways and roads. On the other hand, the improvement
on passenger ride comfort could be enhanced by using complementary
questionnaires.
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Additionally, we plan to deploy the ACAP-based HW/SW solution for
ADAS in an actual car, so as to test the engagement of real drivers with
the recommendations and personalizations provided by the system, as
well as their effects on actual fuel consumption and discomfort reduction
compared to built-in driving recommendation modes. Finally, for eco-
driving, estimations of NOx, CO, and HC emissions could be performed
to further analyze the effects of the system presented in this work.
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