
Fakultät Elektrotechnik und Informationstechnik

Towards Efficient Resource
Allocation for Embedded Systems

Mattis Hasler

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

VorsitzenderProf. Dr. Mikolajick
GutachterProf. Dr. Gerhard FettweisProf. Dr. Ulrich Rückert
Eingereicht am: 1.2.2022Verteidigt am: 9.6.2022

Mattis Hasler
Towards Efficient Resource Allocation for Embedded SystemsDissertation
Technische Universität Dresden
Vodafone Chair Mobile Communications SystemsInstitute of Communication TechnologyFaculty of Electrical and Computer Engineering01062 Dresden, Germany

I would like to thank Gerhard and Emil for the guidanceand supervision. I’d also thank everybody that considershimself my family for believing in me to finish this.Further, Robert shall be thanked for one or two goodideas “over a cup of coffee”.

Inhaltsverzeichnis

Zusammenfassung xi
Kurzfassung xiii
1 Introduction 11.1 Motivation . 11.2 The Multiprocessor System on Chip Architecture 41.3 Concrete MPSoC Architecture . 71.3.1 NoC . 71.3.2 Processing Core . 91.3.3 Memory Management . 111.3.4 Networking Unit . 121.4 Representing LTE/5G baseband processing as Static Data Flow . . 131.5 Compuation Stack . 151.5.1 The Algorithm and Application Layer 171.5.2 The Language Layer . 181.5.3 The Runtime Environment Layer 181.5.4 The Operating System Layer 191.5.5 The Driver and Library Layer 191.5.6 The Hardware Layer . 201.6 Performance Hotspots Addressed 201.7 State of the Art . 221.8 Overview of the Work . 23

vii

Inhaltsverzeichnis

2 Hybrid SDF Execution 252.1 Addressed Performance Hotspot 252.2 State of the Art . 262.3 Static Data Flow Graphs . 272.4 Runtime Environment . 282.5 Overhead of Deloying Tasks to a MPSoC 302.6 Interpretation of SDF Graphs as Task Graphs 322.7 Interpreting SDF Graphs as Process Networks 342.8 Hybrid Interpretation . 342.9 Graph Topology Considerations . 352.10 Theoretic Impact of Hybrid Interpretation 372.11 Simulating Hybrid Execution . 402.12 Pipeline SDF Graph Example . 452.13 Random SDF Graphs . 462.14 LTE-like SDF Graph . 502.15 Key Lernings . 53
3 Distribution of Management 553.1 Addressed Performance Hotspot 553.2 State of the Art . 563.3 Revising Deployment Overhead . 573.4 Distribution of Overhead . 583.5 Impact of Management Distribution to Resource Utilization 593.6 Reconfigurability . 643.7 Key Lernings . 64

viii

Inhaltsverzeichnis

4 Sliced FIFO Hardware 674.1 Addressed Performance Hotspot 674.2 State of the Art . 694.3 System Environment . 714.4 Sliced Windowed FIFO buffer . 724.5 Single FIFO Evaluation . 744.6 Multiple FIFO Evalutaion . 774.6.1 Traffic Model . 784.6.2 Evaluation Setup . 804.6.3 Effective Channel Bandwidth 814.6.4 Memory Access Model . 834.7 Hardware Implementation . 864.8 Key Lernings . 87
5 Message Passing Hardware 915.1 Addressed Performance Hotspot 925.2 State of the Art . 925.3 Message Passing Regarded as Queueing 935.4 A Remote Direct Memory Access Based Implementation 955.5 Hardware Implementation Concept 975.6 Evalutation of Performance . 995.7 Key Lernings . 107
6 Summary 109
Abbreviations 113
Symbols 115
Publications 117
Bibliography 127

ix

Abstract

The main topic is the dynamic resource allocation in embedded systems, espe-cially the allocation of computing time and network traffic on anmulti processorsystem on chip (MPSoC). The idea is to dynamically schedule a mobile commu-nication signal processing pipeline on the chip to improve hardware resourceefficiency while not dramatically improve resource consumption because of dy-namic scheduling overhead. Both software and hardware modules are exam-ined for resource consumption hotspots and optimized to remove them. Sincesignal processing can usually be described with the help of static data flow (SDF)graphs, the dynamic handling of those is optimized to improve resource con-sumption over the commonly used static scheduling approach. A hybrid dy-namic scheduler is presented that combines benefits from both processing net-works and task graph scheduling. It allows the scheduler to optimally balanceparallelization of computation and addition of dynamic scheduling overhead.The resulting dynamically created schedule reduces resource consumption byabout 50%, with a runtime increase of only 20% compared to a static sched-ule. Additionally, a distributed dynamic SDF scheduler is proposed that splitsthe scheduling into different parts, which are then connected to a schedulingpipeline to incorporate multiple parallel working processors. Each schedulingstage is reworked into a load-balanced cluster to increase the number of parallelscheduling jobs further. This way, the still existing dynamic scheduling bottle-neck of a centralized scheduler is widened, allowing handling 7x more proces-sors with the pipelined, clustered dynamic scheduler for a typical signal pro-cessing application.

The presented dynamic scheduling system assumes the presence of threedifferent communication modes between the processing cores. When emu-lated on top of the commonly used remote direct memory access (RDMA) pro-tocol, performance issues are encountered. Firstly, RDMA can neatly be usedfor single-shot point-to-point data transfers, like used in task graph scheduling.Process networks usually make use of high-volume and high-bandwidth datastreams. A first in first out (FIFO) communication solution is presented that im-plements a cyclic buffer on both sender and receiver to serve this need. Thebuffer handling and data transfer between them are done purely in hardware toremove software overhead from the application. The implementation improvesthe multi-user access to area-efficient single port on-chip memory modules. Itachieves 0.8 of the theoretically possible bandwidth, usually only achieved witharea expensive dual-port memories. The third communication mode defines alightweight message passing (MP) implementation that is truly connectionless.It is needed for efficient inter-process communication of the distributed andclustered scheduling system and the worker processing units’ tight coupling. Ahardware flow control assures that an arbitrary number of senders can spon-taneously start sending messages to the same receiver. Yet, all messages areguaranteed to be correctly received while eliminating the need for connectionestablishment and keeping a low message delay.Thework focuses on the hardware-software codesign optimization to increasethe uncompromised resource efficiency of dynamic SDF graph scheduling. Spe-cial attention is paid to the inter-level dependencies in developing a distributedscheduling system, which relies on the availability of specific hardware-acceleratedcommunication methods.

Kurzfassung

Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebettetenSystemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehrauf einemMPSoC. Die Idee besteht darin, eine Pipeline für die Verarbeitung vonMobiler Kommunikation auf demChip dynamisch zu schedulen, umdie Effizienzder Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch desdynamischen Schedulings dramatisch zu erhöhen. Sowohl Software- als auchHardwaremodule werden auf Hotspots im Ressourcenverbrauch untersuchtund optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signal-verarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben wer-den können, wird deren dynamisches Scheduling optimiert, um den Ressour-cenverbrauch gegenüber dem üblicherweise verwendeten statischen Schedu-ling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, derdie Vorteile von Processing-Networks und der Planung von Task-Graphen kom-biniert. Es ermöglicht dem Scheduler, ein Gleichgewicht zwischen der Paral-lelisierung der Berechnung und der Zunahme des dynamischen Scheduling-Aufands optimal abzuwägen. Der resultierende dynamisch erstellte Schedulereduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Ver-gleich zu einem statischen Schedule nur um 20% erhöht wird. Zusätzlich wirdein verteilter dynamischer SDFScheduler vorgeschlagen, der das Scheduling inverschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, ummehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu ei-nem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufen-den Scheduling-Jobs weiter zu erhöhen. Auf diese Weise wird dem vorhande-ne Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers

entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-Dynamic-Scheduler für eine typische Signalverarbeitungsanwendung verwen-det werden können.Das neue dynamische Scheduling-System setzt das Vorhandensein von dreiverschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen vor-aus. Bei der Emulation auf Basis des häufig verwendeten RDMA-Protokolls tre-ten Leistungsprobleme auf. Sehr gut kann RDMA für einmalige Punkt-zu-Punkt-Datenübertragungen verwendet werden, wie sie bei der Ausführung von Task-Graphen verwendet werden. Process-Networks verwenden normalerweise Da-tenströme mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO ba-sierte Kommunikationslösung vorgestellt, die einen zyklischen Puffer sowohl imSender als auch im Empfänger implementiert, um diesen Bedarf zu decken.Die Pufferbehandlung und die Datenübertragung zwischen ihnen erfolgen aus-schließlich inHardware, umden Software-Overhead aus der Anwendung zu ent-fernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nut-zer auf flächen-effiziente Single-Port Speichermodule. Es werden 0,8 der theo-retisch möglichen Bandbreite, die normalerweise nur mit flächenmäßig teure-ren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus defi-niert eine einfache MP-Implementierung, die ohne einen Verbindungszustandauskommt. Dieser Modus wird für eine effiziente prozessübergreifende Kom-munikation des verteilten Scheduling-Systems und der engen Ansteuerung derrestlichen Prozessoren benötigt. Eine Flusskontrolle in Hardware stellt sicher,dass eine große Anzahl von Sendern Nachrichten an denselben Empfänger sen-den kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen wer-den, ohne dass eine Verbindung hergestellt werdenmuss und die Nachrichten-laufzeit gering bleibt.Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hard-ware und Software, um die kompromisslose Ressourceneffizienz der dynami-schen SDF-Graphen-Planung zu erhöhen. Besonderes Augenmerk wird auf dieAbhängigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems ge-legt, das auf der Verfügbarkeit spezifischer hardwarebeschleunigter Kommuni-kationsmethoden beruht.

1 Introduction

1.1 Motivation

With every iteration of mobile communication standards, the complexity of thedigital signal processing increases. In addition, the dynamic range of the pro-cessing complexity increases as well. That means, a base station has to be ableto handle a very inhomogeneous set of connections in terms of required pro-cessing demands. In the fifth-generation (5G) the baseband digital signal pro-cessing covers a dynamic range of six orders of magnitude and —as far as weknow today— this trend will continue in future standards. Because the time-frame for doing the signal processing stays constant a need for much higherprocessing power is needed. With the increase of clock frequencies being bothmore and more difficult to do and power consuming, parallelizing computationseems a promising alternative. Building a specialized application specific inte-grated circuit (ASIC) implementation for a problem like done in [45, 85, 1] toexploit parallelism will always result in a poor efficiency with regard to utilizedhardware, because it has to be dimensioned for the worst (i.e. most demand-ing) case, leaving a significant fraction of hardware unused in the average case.However, the 3rd generation partership project (3GPP) defines a mobile com-munication channel to be chopped into transmission time intervals (TTIs), whichmakes the data a stream of basically independent data packets. The processingof each packet can easily bemodeled as an static data flow (SDF) graph, allowingto process it on a general purpose multi processor system on chip (MPSoC). Bydynamically assigning resources, hardware can be used more efficiently, savingcosts at production as well as operation of base stations and terminals alike.

1

1 Introduction

Running SDF graphs onMPSoCs is usually done using static scheduling, whichis itself not efficient in terms of hardware utilization, at least in some situations.A typical signal processing SDF graph has a sequential start and end with a par-allelizable hotspot somewhere in the middle. To fully parallelize the hotspot theschedule has to allocate many processors, which will be idle most of the time—except of the brief hostspot phase— which makes them poorly utilized, thusthe schedule inefficient. With dynamic scheduling, however, processors can befreed immediately after the hotspot, allowing the next graph to compute it’shotspot fully parallel while still finishing the first graph sequentially.
Dynamic scheduling and hardware allocation has the potential to exploit par-allel processing resources to stitch the needed computation pipeline togetheron the fly. The processing pipeline for each TTI describes exactly the neededresources so that it will only occupy needed resources. The goal of doing thisis to optimize resource utilization. It is expected that the dynamic resource al-location has a negative impact on the processing time on a single graph dueto the dynamic scheduler. The scheduling will introduce an amount of over-head effort1that has to be processed alongside the payload computation. Adynamic system may trade increased parallelism to speed up computation andadditional overhead to decreasing efficiency. The ratio of parallelizing speedupand overhead slowdown effect is situation dependent and has to be consideredin the live system.
The efficient utilization of the available resources allows to save power con-sumption e.g. by switching off unused computation units. Exploiting the paral-lelism of implemented algorithms allows lower clock frequencies compared toa serial implementation. A lowered clock frequency has a direct impact on thepower consumption of a respected system.
In order to apply the dynamic scheduling and parallelization, every layer ofthe computation stack has to be optimized. Usually, the optimization of soft-ware assumes the hardware to be fixed. The algorithm is slimmed, or replaced,to better match the situation. In extreme cases, the programming languagemay be switched to eliminate unwanted factors like an interpreter layer of anindeterministic garbage collector. But, an attribute like real-time capability andalso efficiency depends on the whole stack. When the application has to run onunsuitable hardware or operating system (OS), the upper layer may have diffi-culty creating an efficient execution profile. The problem can be explained withAmdahl’s Law [3]. It describes that the impact, an optimization iteration has on

1“effort” is an abstract measure of the work that has to be done to execute a computer (sub)program.

2

1.1 Motivation

the whole program is dependent on the relative size of the optimized part tothe entire program. Parameters are the fraction of the original program f , thatcan be sped up (i.e. parallelized) and the speed up factor p by which this fractionis sped up. The total speedup then can be calculated by

S(p, f) = 1
(1 – f) + f

p

which has an upper bound depending on the fraction f for p → ∞ of:

Smax(f) = 1
1 – f

This effect does not only apply within an application but also vertically throughthe computation stack. The usage of an operation provided by an underlyinglayer causes an amount of resource consumption. When optimizing the opera-tion’s implementation, the overall effect is dependent on the frequency the op-eration is used. A frequently used operation can represent a significant portionof the total execution time and may be worth optimizing. This kind of operationmay be a system call into the OS or activation of a hardware accelerator.
Another type of resource consumption of underlying layers is not dependenton the hosted application, but instead occupies a static amount of resources.For example, a preemptive scheduler consumes a fixed amount of central pro-cessing unit (CPU) time by timed context switches, independent of the num-ber or type of applications hosted. Also, mixed resource consumption may oc-cur like a garbage collector that is invoked periodically, thus consuming a fixedamount of time. The amount of CPU time a garbage collector invocation con-sumes depends on the applications running and their behavior, e.g. how muchobjects they are allocating/freeing.
Each operation is the combination of operations from lower layers. The re-sources consumed by an operation are the sum of resources of all operationsused by this operation. To optimize an operation identified as a hotspot, it isnecessary to regard the current and decent to lower the layers. Examining alloperations from all layers and their usage frequency can help find the cause ofhigh resource consumption. It may help to find operations in lower layers thatmay be easier to optimize than the initial hotspot operation itself but still helpto make it more efficient.

3

1 Introduction

1.2 The Multiprocessor System on Chip Architecture

The concept of a MPSoC is nowadays a common one. The class of MPSoC ar-chitectures includes significantly different types with specific focuses. One pur-pose of a significant sub-field of MPSoCs is the ease of integration and usageefficiency. A microcontroller is designed to be easily integrated onto customembedded printed circuit boards (PCBs). They usually include many commu-nication capabilities removing the need for additional interfacing hardware. Ithelps keep the PCB design and development simple and cheap and lower powerconsumption by making additional chips unnecessary. Another famous MPSoCfield covers processing platforms for single-board computers like smartphones.These chips resemble more a traditional CPU from desktop personal comput-ers (PCs). Usually equipped with a multicore central processor, the main task isto host a standard OS like Linux. Similar to the microcontroller, additional com-ponents are included in the chip to save PCB complexity, space, and power. Theadditional components may vary from the specific application. For smartphonetargeting chips, mobile communication modems and multimedia acceleratorsare the largest non-general purpose processing kernels.
Usually, an MPSoC is heavily overprovisioned —for one reason or another—in the sense that a significant fraction of the chip area is not or only seldomlyused. A microcontroller, for example, often contains a multitude of peripheralinterfaces. Most products/projects using amicrocontroller only use a small frac-tion of the available interfaces, thus hardware logic. But still using a singlemicro-controller is usually more power-efficient than using multiple chips, each witha specific task. It is cheaper too because a microcontroller can be produced invast quantities due to its fit for different tasks. To fit enough products/projectsto justify the large quantities, it contains asmany peripheral options as possible.Although most projects will only use a fraction of the chip’s vast range of func-tionality, it assures the efficiency of the chip. The multimedia system on chip(SoC) makes use of the same principle by including certain special case logic likea video coding accelerator or a crypto module. It is beneficial to have an ac-celerator for a special task that may only be activated very seldomly but worksefficiently. Again, the cheapness of logic on an ASIC allows for very special andmaybe rarely used units and still generate a benefit for the application.
The MPSoC platform that shall be regarded here is a bit different in its fo-cus, and therefore its architectural concept. While the mentioned MPSoCs gettheir name from the fact that they integrate not only a CPU on a chip but also

4

1.2 The Multiprocessor System on Chip Architecture

a set of peripheral units, the class regarded here focuses on the execution ofmultiple (sub)-programs at the same time. Of course, a multimedia SoC can —and does— have multiple cores and can run numerous parallel programs. Themode of operation, however, is similar to a desktop processors multiprocessingapproach. Multiple processing cores accessing one sharedmemory resemblingsomething like a complex but only single von-Neumann-computer. The dis-tributed SoC in contrast, features a set of multiple von-Neumann-computersthat are, except for a shared communication sub-system isolated from eachother. In a way, this kind of chip could be called “Systems-on-Chip” with empha-sis on the plural of systems cf. to the single system of most controller SoCs.Every Von-Neumann-System in such a system of systemsmust—to adhere tothe definition [79]— feature a processing unit, a memory, and a communicationunit. Concerning the system of systems, all three components are exclusive tothis system and cannot be used by any other system. Calling this internal systema processing element (PE) makes the enclosing system a PE-cluster. The clusternow resembles a network of computers within a chip. A set of PEs representingindividual and independent computers connected with a network of particulartopology and technology. It allows the PEs to communicate by providing —onthe lowest level— a way of sending messages carrying data from any PE to anyother.A PE can be of various types and have variable functionality. The most appar-ent PE would be a general-purpose computing unit. At the very least, it featuresa standard processor and local —on-chip— memory allowing the isolated exe-cution of a program binary. Of course, a PE can have a more complex design,e.g. featuring multiple processors of different types. The memory may as wellbe a caching structure instead of a closely coupled memory that fetches cachelines in case of misses over the network from a remote memory. Instead, oreven in addition to the general-purpose CPU a PE may also include special pur-pose accelerating hardware. But also without a general-purpose CPU, it can beuseful being controlled through the networking unit. A CPU-less PE could be,to name a few examples, a DDR-RAM module, an LED-strip, an ethernet port,or and HDMI-controller. To assure the interoperability of these heterogeneousPEs unified access to the connecting network is necessary. For that matter, acommunication protocol is defined that defines how PEs can send messages toeach other.From the network’s point of view, amessage is a set of data of a certain length.The transport of a single message can be described as a series of data chunkstransported from router to router. The chunk transporting a certain amount in

5

1 Introduction

one cycle is called a flit. Depending on the network protocol, a flit may containsome of the message data and network control information. A series of flitstraversing the network composes a message that transports the data intendedto be sent by the network user. There are different ways of transporting a mes-sage. In a packet-switched network, each flit passes through the network on itsown. The receiver has to receive flits individually and recompile the message. Incontrast, a circuit-switched network allocates a tunnel through the network fromthe sender to the receiver. Once established, themessage can pass through thetunnel as a whole, i.e. all flits directly one after each other. The receiver is surethat the whole message arrives in a continuous stream, and no reassemblinghas to be done. After the head flit, which has to carry the destination address toestablish the tunnel, all other flits may be carrying almost exclusively data anddon’t have to include any header. The main problem of circuit switching is thatdeadlocks may happen in the phase of tunnel establishment. It is possible toavoid deadlocks by construction with a carefully chosen network topology androuting algorithm.
Common choices are ring topologies that may be extended into a forwardand a backward ring. Rings are easy to implement, resource inexpensive, anddeadlock-free. But the average distance between nodes is relatively high, andin some traffic cases, they are not much better than busses. Another commonchoice is an orthogonalmesh network yielding a lower average distance andbet-ter throughput in random traffic scenarios. A routing simple as X-Y is sufficientto assure deadlock freeness even for circuit-switched message transport. Also,other topologies are possible, like hexagonal or octal meshes or multidimen-sional torus networks to further increase network performance. They come,however, with more complex routing and increased chip area costs.
With a network available for sending messages between PEs the MPSoC plat-form must define a communication structure on top to allow the PEs to workwith each other. The communication unit most likely implements a remote di-rect memory access (RDMA) protocol. It allows the PE to copy data from thelocal memory to a remote memory (e.g. the memory of another PE). This verysimple and easy to use protocol stack can be used to model any communica-tion protocol, but only with severe performance degradation. Therefore, amoresophisticated networking unit may be considered to implement other commu-nication protocols like message passing (MP) or data streaming channels.

6

1.3 Concrete MPSoC Architecture

1.3 Concrete MPSoC Architecture

For the course of this thesis, a specific MPSoC architecture will be defined thatserved as the basis for all considerations. Its purpose is to build an overall pic-ture that serves as a vessel for the discussions on the addressed hotspots. Itwill lean on the Tomahawk architecture, which has been developed and imple-mented in a series of chips for more than ten years. [32, 33, 61, 55] The Tom-ahawk architecture is a well-examined architecture from which many assump-tions and results can be reused to create themodels needed for the simulationssetup in this work. The regarded tiled MPSoC architecture consists of a set ofPEs connected by a network on chip (NoC). Each PE features an CPU that usesthreememory ports (one for instruction and two for data) to connect to the localmemory system. The memory system connects the CPUs and the networkingunit to a local set of memory banks with a cross-bar like access controller. Thenetworking unit provides a full-duplex interface to the NoC router. Each routerconnects to exactly one PE and four neighboring routers, resulting in an orthog-onal mesh NoC. Depending on the focused hotspot, the MPSoC componentsare modeled in more or less detail.

1.3.1 NoC

There are numerous examples for NoC implementations [9, 80, 33, 61, 6]. Inthis work, the NoC is supposed to be a performant vessel used to build anothercommunication layer on top. The NoC provides amessage transfer mechanism.The NoC will transport messages of arbitrary length to the given destination PE.The NoC uses a circuit-switched routing algorithm, which divides the transmis-sion into two phases. In the first phase, the wormhole is constructed, whichmayinclude waiting times due to congestions. The PE is then blocked from movingdata into the network. Once the wormhole is completed, the receiving PE canstart to read data from the NoC interface. For the length of this transmission,the NoC will not obstruct the data flow. Only the PEs are accountable for delayswhen they cannot read or write data fast enough. The NoC interface transports
sflit = 128bit of data each cycle. The only exception is the first cycle, where aheader of sheader = 64bit is sent, leaving only sheaddata = sflit – sheader = 64bitbytes of data. As long as no congestions occur, the latency of the data is de-terministic. The data spends dif = 4 cyl (hardware unit clock cycle [cyl]) mov-ing through the interfaces and asynchronous boundaries until it reaches the

7

1 Introduction

R

R

R

R

R

R

R

R

R

PE

PE

PE

PE

PE

PE

PE

PE

PE
Y

X0 1 2
0

1

2

Figure 1.1: NoC topology with a orthogonal connected mesh network of n = 9routers (R). Each router connects a single PE.

8

1.3 Concrete MPSoC Architecture

NoC router. Each hop to a neighboring router takes another dhop = 2 cyl cy-cles. And finally, ascending to the destination PE takes another dif cycles. Thedelay the header flit takes to reach a destination h hops away than becomes
dheader(h) = 2dif + dhoph = 8 + 2h. To get the latency, a message of length s takesto traverse the NoC the number of flits it takes to store the message is added.

dmsg(h, s) = dheader(h) + ⌈ s – sheaddata
sflit ⌉ (1.1)

Arranging a set of n PEs as close as possible to a square (Fig. 1.1) gives an edgelength of√
n. The expected distance of two randomly selected PEs is the sum ofthe distances in X and Y dimension because of the orthogonal NoC connectionpattern. The mean absolute difference of two uniformly distributed variablesis b/3 with b being the upper bound of the distributions. Applied to the n PEsystem the average path length is h = 2 √

n/3. The average message latencyassuming n = 25 PEs and a common signaling message length of s = 64B(Bytes) then becomes:
dmsg(n, s) = dheader

(2
3

√
n

)
+
⌈
s – sheaddata

sflit
⌉ = 15cyl + 4cyl = 19cyl

1.3.2 Processing Core

The PE consists of one or multiple reduced instruction set computer (RISC) pro-cessors. For the considerations made in this thesis, it is not important whatkind of processor is choosen. However, it is assumed that they may be appli-cation specific integrated processors (ASIPs) with an increased data bandwidthto match the bandwidth provided by the NoC. An ASIP processor is a RISC pro-cessor that has its instruction set architecture (ISA) extended by a set of com-mands to help accelerate an application-specific problem. Often the ISA exten-sion comes with the extension of memory ports, essentially transforming theprocessor into specialized digital signal processor (DSP) [33, 61]. In this plat-form, we will assume an ASIP with two 128-bit data memory ports, as it wasproven in [33, 61] to be a resonable configuration for the targeted applicaiton.It allows optimized algorithms to read-modify-write 16 bytes in a single cycle.This value is important to mention because the rest of the system has to be de-fined in a way, so that it can keep up with this data rate, e.g. the NoC that has tobe able to bring in and take away data fast enough to keep the processor busy.Another issue to keep the processor busy is the connection to the local mem-

9

1 Introduction

PE

bank
bank
bank
bank

X
CPU

NI

routerrouter

router

Figure 1.2: Block diagram of the processing element architecture.

ory banks. Both the processor and the networking unit have two memory portsfor simultaneously reading and writing (sending and receiving) data and one forcontrol information. In addition to the two data memory ports, a processingcore features an instruction memory port. All three memory ports should beable to access the same memory locations (Fig. 1.2) making the physical sepa-ration of memory infeasible. Additionally, prior chip production has shown thatdual-port memory consumes almost twice the chip area than single-port mem-ory with the same data capacity. Since an MPSoC platform with local memoryfor the PEs consists mainly of on-chip memory, the storage density of the mem-ory is an important factor. Because of these considerations, a memory systemis used that utilizes a set of single port memory banks and connects them to aset of memory masters, allowing them to share access to a continuous memoryspace transparently.

10

1.3 Concrete MPSoC Architecture

master 0
master 1
master 2
master 3

special reg
bank 0
bank 1
bank 2

0x000000
0x100000
0x200000
0x300000

X-bar
queues

memory arbitration address

Figure 1.3: Memory system overview. Shown is the access path a master hasto a desired location in a memory constructed by linearlly alignedmemory banks.

1.3.3 Memory Management

The PE local memory management implements cross-bar like access function-ality for a set of memory masters to a set of memory providers like shown inFig. 1.2. This system was suggested in [83] to allow a most flexible distributionof memory access to serveral memory master (users), focusing on access colli-sion prevention. Depending on the application it promises access performancesimilar to the usage of dual-port memory bank but with inexpensive single-portmemory banks. A bank mapping table allows for each provider (e.g. memorybank) to appear in each master’s memory space. Apart from a memory bank,a provider can also be the configuration space of a specialized hardware unitthat is controlled with a memory-mapped configuration mechanism. For exam-ple, the networking unit’s configuration register file is connected to the memorysystem as a memory provider. With the help of the mapping table access to thenetworking unit can be granted to or revoked from any master.
In the case that multiple masters request a location from the same provider,an arbitration policy will select one of the requests to be forwarded to the provi-der, signaling all other requesting masters that their request has been delayed.
The arbitration policy has a request queue for each memory provider. Whena master request is routed to a specific provider, it will be appended to therequests queue. The request being in the pole position of the request queuewill be granted access. As long as a master keeps requesting the same provider,it will remain in the queue and remains to have access to the provider if being in

11

1 Introduction

NoC memory
send engine

receive engine
control

Figure 1.4: Block diagram of networking unit showing the two main paralleldataflows of receiving and sending data.

the pole position. The moment it stops requesting, by changing the address toanother provider or clearing the enable bit, it is removed from the queue andhas to enqueue at the back. A timeout also removes masters from the queuepole position to preventmaster starvation by a singlemaster that never changeslocation.

1.3.4 Networking Unit

The networking unit provides an automated way of exchanging data with otherPEs. It is programmed using a memory-mapped special register file accessibleby the masters through a dedicated memory provider. It consists of three basicparts as shown in Fig. 1.4: Two streaming engines (1) moving data from the localmemory to the network, (2) moving data from the network to memory, and (3)a controller directing and controlling the streaming engines. Each part governsone memory master port, and the streaming engines each a network port.
The controller is in charge of programming both the send and the receiveengine. It can program the send engine to stream a data range from memoryto the network. Upon an incoming network message, the controller parses itsheader and programs the receive engine accordingly. The receive engine willthen stream the remainder of the message to the programmed memory range.Both engines are designed to process 128 bit (i.e. one flit) of data each cycle tomatch the speed of the NoC.
Since the two data engines provide only low-level functionality, the controlleris responsible for executing the different communication protocols. The dy-namic nature of the targeted signal processing application demands commu-nication modes with different performance focuses. In this networking unit

12

1.4 Representing LTE/5G baseband processing as Static Data Flow

three communication modes are included, each with a different type of com-munication in mind. The RDMA mode is used for one-time, high-volume, high-throughput, 1-to-1 bulk transfers. It does not need a sophisticated flow controlbut a simple connection establishment, i.e. the sender needs to know where towrite the data in the receivers memory. The RDMA protocol is closely relatedto the direct memory access (DMA) protocol found in off the shelf desktop PCs,but implemented for a distributedmemory architecture. In distributed-memorysystems, it is often the only possibility of PEs to communicate with each other.Being separated by a NoC the PEs are otherwise unable to access each other’slocal memory. To reach a remote memory, the RDMA controller provides twomethods. The “put” is used to copy a local range to a remote PE’s memory,where the “fetch” method copies from a remote memory to the local one.
The first in first out (FIFO) mode enables constant, high throuhput streamsof data without adding a lot of software overhead to the application. Two PEscan communicate through a unidirectional channel reaching from the senderPE to the receiver PE. To use the channel, the sender only writes to a local databuffer. The data will be transported automatically to the receiver into a localbuffer, where the receiver can collect it.
For small messages, where response delay is crucial, like in signaling com-munication (e.g. requesting a service), a MP mode is provied. It provides thecapability to quickly and efficiently send small messages to a PE’s message boxwithout the need of a connection establishment. The message box is a randomaccess buffer for messages that can be received from multiple senders.

1.4 Representing LTE/5G baseband processing as Static
Data Flow

As already mentioned (in Section 1.1) the input of a digital signal processingstage of amobile communication setup is a stream ofmore or less independentpackets. Each represents the data for one TTI and its processing can be viewedas an isolated problem. The complexity may vary dramatically depending of onseveral factors like number of antennas, the set of users, their applications andvarious channel properties. The range of differnt packet configurations alreadyis big for 4G and 5G and is considered to further increase for future mobilecommunication standards.
For example, the 4G uplink receiver baseband processing of a TTI-packet maybe simplified to a simple SDF-graph like shown in Fig. 1.5. Although the basic

13

1 Introduction

pipelineFFT Est Inv Eq IDFT Qam

SDF variants

application

init

SDF
SDF
SDF SDF

SDF
SDF

time
Figure 1.5: LTE uplink pipeline as generic flow chart, two abstract SDF represen-tations resulting from different parameter sets, and as distributedapplication using different graph instances.

graph may not change depending on the configuration, the complexity of theprocessing, may still vary. In the simplest case this may manifest in the numberand size of tokens transfered on the SDF channels and the firings each SDFactor has to conduct.
An efficient execution needs to employ different strategies to distribute com-putation to a set of PEs. Alongside different communication modes are neededto support those strategies. Each single firing of an actor may be placed ona different PE because of computation needs. In this case bulk transfers areneeded to move the needed data to many different PEs. In contrast simple buthigh throughput actors may stay on a sinlge PE and be connected with pipelinesto assure unobstructed data processing. To quickly react to the ever changingcomputation needs an MP mode is needed. It allows the efficient implementa-tion of a dynamically generated execution plan on the available PEs.

14

1.5 Compuation Stack

1.5 Compuation Stack

The computation stack is a set of layers consisting of software and hardwareconstructs forming a system that is able to do a computation. The efficiency ofa system depends on all layers of the computation stack:
• The “algorithm” is a description of a solution to a problem in a computer-executable manner.
• The “language” layer specifies a set of commands and operations to definean executable program.
• A “runtime environment (RTE)” provides a framework with functionality tosupport the execution of a program with recurring tasks like inter-threadcommunication. Also, resource allocation can be a task of the RTE espe-cially in distributed computation.
• The “OS” provides security functionality like the isolation of programs tothe platform. Isolation of resources implies the allocation of those. Incontrast to the RTE, the OS focuses on isolation instead of performanceoptimization.
• The “drivers” can be included into the OS layer. Since the OS layer is con-sidered optional here, but the drivers are not, they are listed in a separatelayer. Drivers provide an abstraction of some functionality from the usedhardware. For example, a driver may provide the functionality to send amessage to another PE without the application knowing what kind of net-working unit is present.
• The “hardware” is the lowest layer, providing the actual manipulation andstorage of data. The definition can often be partitioned into units for var-ious tasks like data storing, mathematical operation, moving data, con-trolling program flow, application-specific accelerated data manipulation,etc..

Generally speaking, each layer provides functionality to the layers above byabstracting and refining functionality provided by the layers below. The costsat which functionality is provided can be measured as the use of two base re-sources. The two resources that are of interest are the occupation of computingtime and memory. While the management of memory is an important topic for

15

1 Introduction

the efficiency of a distributed memory system, this work’s primary focus will bethe computation time. Although the occupation of memory in local memories isomitted, the transfer of data through the network is considered because it canconsume a significant amount of time.
Each layer defines a set of operations an upper layer may issue. The issue ofan operation is defined by an implementation. An implementation is defined asa set issues of operations of lower layers to produce the desired result. The totalresource consumption then is the sum of all issued operations. There are twopossibilities to optimize an operation. One is to optimize the implementationto use fewer or cheaper operations of the lower layer. The other possibilityis to decent one layer and optimize operations frequently used in the currentimplementation.
Another way how each layer can affect the execution time is through staticresource consumption. The static consumption of resources is independent ofthe executed program. It may, for example, be a fixed portion in each time slice.For example, in a preemptive scheduling environment, the OS will interrupt therunning program and do context switches with a fixed frequency, using a por-tion of computational resources. Likewise, a communication library decoupledfrom the CPU delays the progress of the distributed application without directlyinterfering with the CPUs.
Optimizations of operations can be done on any layer, and each will affect theapplication’s execution time. The effective speedup for the application causedby the optimization can be described with Amdahl’s law. With p being the por-tion of resources consumedby the operation in relation to the total resource us-age, and s being the speedup of the optimized operation2, the effective speedupis described as [3]:

S = 1
(1 – p) + p

s

An operation may be a candidate for optimization if the product of its re-source consumption and the number of issues is high. It may bemore beneficialto optimize a low-level operation used in many higher-level operations. There-fore, it accumulates a more significant resource consumption than a complexhigh-level algorithm issued only once at program startup. In the following, all
2Operations are considered sequential. The speedup of an operation is usually achieved by an moreefficient implementation. Speedup of the application by parallelization is not directly connected tooperation optimizations. An efficient computation stack, however, shrinks parallelization overhead,thus helps application speedup.

16

1.5 Compuation Stack

hardware
driver
OS
RTE

language
application

computation functionality, peripheral extensions
abstract hardware, emulation of missing hardware
application isolation
resource management, distributed computation
mapping from source code to machine processing
functional program code, distribution structure

Figure 1.6: Layers of a distributed computing platform.

layers that take part in the execution of a program will be briefly described, andpossible hotspots are being analyzed.

1.5.1 The Algorithm and Application Layer

The way an algorithm is defined often also determines the computational effortposed to the platform. Usually, little can be done to improve algorithms’ effi-ciency without going into domain-specific details of the application. Switchingthe algorithm or parts of it with simplified or heuristic approaches can reducecomplexity in exchange for accuracy. However, it is the task of the applicationdeveloper to decide for an algorithm that consumes as little computational ef-fort as possible while producing results that are sufficiently precise for the in-tended application.
However, an algorithm can be selected or designed to be adapted to the givenplatform constraints with regards to the other layers. The targeted environmenthere is designed for distributed applications. It means that there are multipleindependent and isolated PEs connected with a distinct communication fabric.The PEs are expected to be fairly small, with a simple CPU and a small con-nected memory, so that already a medium-sized application cannot be run ona single PE, but will have to spread over multiple. For example, an applicationdescribes as a DSP pipeline does fit the architecture well and may lead to highperformance. Each stage can be hosted on another PE, and communicationinfrastructure provides cheap and performant data transfer between stages.

17

1 Introduction

1.5.2 The Language Layer

Choosing a programming language is important as it can introduce a signifi-cant amount of overhead. Several attributes may give hints about overhead,resource consumption, and performance. An “interpreted” language (i.e. script)almost always introduces a lot of overhead through the indirection of opera-tion by a virtual machine. Examples are “python”, “java”, “MATLAB”. The “garbagecollector” many languages utilize is activated spontaneously and will consumea significant amount of computing resources. It is not exclusive to interpretedlanguages, for example, used in “C++” or “go”. Other attributes that also mayimpact performance are dynamically evaluated types for implementing “poly-morphism” and the intensive use of various dynamic objects like “associativearrays” or “dynamic lists”.
Most languages, however, are specifically designed for a certain type of ap-plication and environment. Scripting languages like python or javascript mostlyfocus on simplicity and convenience for writing software. Other languages like“C” and “Rust” are designed explicitly for resource-limited systems and perfor-mance craving applications. The for a certain is therefore dependent on theproject and usually easily decidable.

1.5.3 The Runtime Environment Layer

The RTE provides an abstraction for an application from the available process-ing and communication resources. The topology of the distributed application isdefined. It is described as a set of processing and data objects and their relationto each other (e.g. read/write access). The RTE’s purpose is to map these ob-jects to the physically available resources, i.e. processors and memories, whileincorporating communication cost of object transfers between resources.
The performance issue that can arise in this layer is that every structure re-quires a certain amount of (computation) resources to be managed. If the ap-plication is partitioned into too small parts, or the management operations aretoo costly, the relative overhead will be significant, making execution inefficent.
On the flip side, the RTE can dynamically utilize available resources and reactto changes in the available resources or the application. It allows the RTE tooptimize computation efficiency on any given platform size or topology.

18

1.5 Compuation Stack

1.5.4 The Operating System Layer

TheOS layer is, for a platform like the one considered in this work, non-essential.The task is to insert a security layer that isolates the applications and sometimesalso the system services from each other. There are various possible ways ofhow applications could interfere with each other and as many methods to pre-vent each one. The most trivial inter-application interference is access to an-other application’s memory space. Writing to foreign memory is consideredmalicious behavior, but even reading could reveal confidential data like crypto-graphic keys. Apart from security reasons, isolation also has a safety benefit, asthe damage a malfunctioning software can cause can be contained easily. Onoff-the-shelf desktop systems running a variety of very different software simul-taneously, the benefit from increased safety and security prevails. In contrast,on an embedded MPSoC, that probably only runs a single piece of software, theoverhead introduced by the OS quickly becomes significant. The OS layer maybe skipped entirely in this case to keep the performance.

1.5.5 The Driver and Library Layer

The driver and library layer provides an abstraction from the hardware imple-mentation of a set of needed functionality. Depending on the available hard-ware, it may be necessary to emulate some functionality to fulfill all require-ments of an application programming interface (API) exposed to upper layers.For example, a librarymay implement andMP protocol stack based on an RDMAhardware module if no MP hardware module is present. It allows programsfrom the higher layers —may it be the OS the RTE or the application directly—be developed against a consistent API, e.g. a MP API, without caring about theavailable hardware.
Drivers and libraries often contribute a significant amount to the resourceconsumption of an application. Especially frequently used operations like com-munication primitives can represent a lot of overhead. The optimization of theseoperations is often tricky because they mostly consist of the translation of func-tion calls to programming hardware modules through memory-mapped configfiles. But the large number of issues to these small operations make alreadysmall savings in computation worthwhile. However, in some cases it may onlybe possible to slim the configuration process by changing the hardwaremoduleitself, or at least it is the more promising way to go.

19

1 Introduction

1.5.6 The Hardware Layer

The hardware layer is unique as it does not depend on a lower layer’s opera-tions but only provides functionality upwards. The most apparent operationsare an implementation of a general-purpose ISA and the possibility to storedata. Optimization in other layers consists of avoiding issues to lower layersor using cheaper ones, where optimization in the hardware layer works differ-ently. When optimizing at hardware layer, new operations are defined and im-plemented directly in hardware. The additional operation can be used by otherlayers instead of implementing the same functionality with a sequence of basicoperations. For example, a floating-point unit provides operations that can cal-culate floating-point arithmetic in very few cycles where a software implementa-tion based on integer operation may take around a hundred cycles to complete[68]. Similarly, larger algorithms may be implemented in hardware to shortedexecution time. Not only local calculations but also communication operationsmay benefit from specialized hardware implementations. The availability of aFIFO channel unit or and hardware MP protocol stack to omit software librariescan help save resource consumption.

1.6 Performance Hotspots Addressed

The previous section stated that to optimize an application decently, the wholesystem, meaning each layer, must be addressed and optimized towards thegiven requirements given by the application. Some hotspots will be addressedin the following chapters, and optimization strategies used to improve systemperformance. There will be no space to cover hotspots in all layers, yet four willbe visited that were noticed to be significant in earlier times.
(1) Describing a distributed application is a relatively new problem in com-puter science. For the most time, a program has been considered sequentialwith one thread following a track of commands through a program, occasionallyand conditionally jumping to create all kinds of decisionmaking. With the adventof shared-memory multiprocessors, this idea has been enhanced by a singleconsideration: The existence of multiple threads that live in the same memoryspace. Harnessing the potential of a multi-threaded, memory-shared system isa complex task that poses the danger of unwanted side effects. There are manyframeworks, libraries, and OS support to increase safety, security, and ease-of-use of those systems. The functionality that these RTE and OS level solutions

20

1.6 Performance Hotspots Addressed

provide always follows two principles: (a) The threads belonging to an appli-cation are isolated from each other in memory except for a precisely definedlocation used to implement the communication. (b) The communication func-tionality is exposed to the application either as a FIFO-like channel or a messagesending service. Access to the whole memory is restricted to a data pipeline al-lowing serial access to both communication partners or a messaging systemworking on evenly sized data blocks. In addition to that, most desktop-focusedmultiprocessing libraries do not consider to apply the same canalization to thecomputation, chunking the application into inter-dependent processing blocks.With a resource management unit providing isolation and canalization for bothdata and processing time, optimization can already be done on application levelby just choosing the right data and computation types for subprograms.(2) Although in desktop targeting OSs the structure of chunking the process-ing time into tasks is usually not provided, some projects offer a task runningRTE with the tasks usually drawing from a SDF graph. A problem that ariseswhen implementing such a system is that the management overhead becomessignificant relative to the actual computation depending on the task size. Thebasic relation here is that each task introduces at least a fixed amount of over-head work independent of the task’s size. That means having smaller tasksdecreases the task to overhead ratio until the management becomes the bot-tleneck of the system, not allowing the exhaustion of the systems processingpower. The main reason is that most systems centralize the management intoa single-threaded unit, unable to scale. With a more or less fixed overhead forone task, the system’s task throughput is determined by the management unit’sspeed and is independent of the task size, as long as tasks stay small enough.For bigger tasks, the bottleneck becomes the system’s processing power leavingthe management unit on idle for some time. Making the management systema distributed application itself would help to scale with the amount of overheadwork that needs to be done. The management system could adapt to the tasksize to occupy exactly as much processing resources as needed to fill the re-maining resources with tasks.(3) The first two hotspots are dealing with software; the third and fourthhotspots address problems in the hardware layer. The main focus here lies incommunication technics. The classical computation system does not need spe-cialized communication hardware because any communication protocol can bebuilt based on shared memory. When turning away from shared towards dis-tributed memory, dedicated communication functionality becomes essential.The most common technic even found in desktop systems to relieve the CPU

21

1 Introduction

from long data copy operation is the DMA controller. Although not needed inshared memory systems, it is used to parallelize data transfers and main com-putation in shared memory systems. In distributed-memory systems, wherememories are isolated from each other, the DMA is often the only possibility toexchange data between nodes. The shared memory DMA only needs a singleoperation, which is copy data from one location to another. In contrast, thedistributed memory DMA distinguishes between local and remote memoriesand defines two operations, one for sending data to and one for pulling datafrom remote memory, forming the widely used RDMA function set. Althoughthe RDMA allows implementing all communication formats, some may sufferfrom performance issues. In this work, two chapters are devoted to improvingcommunication in distributed memory systems by implementing specific com-munication protocols in hardware.
One of the two protocols implements a FIFO channel, used for example, forpipelined signal processing. The flow of data from one MPSoC node doing oneprocessing stage to the next is entirely offloaded to a dedicated hardware unitallowing the CPU to concentrate on the number crunching. This form of com-munication expects a constant and high amount of data rate.
(4) The second communication protocol provides MP functionality and is vitalfor distributed application design. It suffers from performance loss when imple-mented on top of a RDMA stack. When used for synchronization of nodes andrequests to service nodes, the main issue a RDMA based implementation has isthe message delay. A hardware (HW) implementation can significantly improvethe delay by removing unnecessary protocol layer messages. Another problemaddressed is extensive memory consumption and the overhead of managingconnections states.

1.7 State of the Art

Building a complete dynamic SDF execution system covering every layer fromhardware up to the application is a massive task. It has hardly ever been done(best to our knowledge). Also, this thesis struggles to relate everything to every-thing else. But each of the regarded hotspots does have their field of relatedwork that they can be placed into. At the beginning of each chapter, a moredetailed “state-of-the-art” section will cover work related to the topic at hand.Anyway, a quick overview of the most prominent works will be given here, alsocovering fields not touched in this work but worth mentioning.

22

1.8 Overview of the Work

There have been several attempts to build anMPSoC with a focus like the onedescribed in Section 1.2 like [33, 61, 40, 65, 14, 24, 54, 6]. Each project has itsown set of hardware units featured to support a specific type of use case. Thecommunications features on a MPSoC are often regarded with great detail andversatility reaching from NoCs [9, 80, 5, 6] over DMA controller [63] to FIFO im-plementations [77, 39]. One step higher on the stack, on the RTE layer, severalworks are dealing with SDF-like graph processing onmulti-core systems [15, 58,53, 12, 49, 67, 56, 18] and also works that review the hardware and RTE layertogether [75, 72]. A technique that could not be covered in this work but worthmentioning and interesting for future work is the clustering of tasks to saveoverhead effort [22, 29]. A lot of works combine two layers they regard jointlyskipping several layers on the computation stack, like Long Term Evolution (LTE)implementation on SDR a platform [8], on a general multicore architecture [66],and on field programmable gate array (FPGA)-based solutions [45, 85, 1]. Butmost state-of-the-art work assumes standard components in all layers exceptthe one that is improved. There are a multitude of different dataflow models[51, 42, 4, 10, 31] mostly adding different attributes to SDF, new languages toexpress stream processing [19, 21, 76, 81] and even efforts on compiler tech-niques to optimize stream processing on multi-processor systems [26].

1.8 Overview of the Work

In this work the key challenges will be highlighted that aremost likely to be a dealbreaker when designing an efficient dynamic SDF execution system. As alreadymentioned in Section 1.1 the efficiency of an embedded platform depends onevery layer of the computational stack (Section 1.5). Although each layer is im-portant and can have a game-breaking impact on performance, only a few layerswill be regarded closely in this work. Some layers can be ignored because theyare not mandatory or unlikely to impact performance when used correctly. Us-ing “C” as programming language is unlikely to cause a performance issue on itsown, because of its lightweight nature, but it is cumbersome and error-proneto write and thus may be replaced with some modern language to increase de-velopment efficiency. Similarly, an OS can be inserted for portability or securityreasons. Both cases require extensive investigations to verify the impact on theresource allocation efficiency of the whole system. For that reason, althoughpresenting interesting possibilities to explore, both layers are left out of thiswork.

23

1 Introduction

What will be discussed in this work are four topics that are expected to impactsystem performance significantly. On all four topics, a solution matching theproblem at hand is, to our best knowledge, not present. First, the topic of dis-tributed application representation is visited in Chapter 2. A hybrid descriptionwill be developed that aims to combine the advantages of task graphs and pro-cess networks. Additionally, it introduces the issue of balancing the overheadand the payload calculation of a distributed application. This overhead-payload-ratio is revised in the second topic concerning the platform’s and application’smanagement instance distribution in Chapter 3. Both topics implicitly assumeefficient data transfers within the system. As already mentioned (in Section 1.4)these are bulk transfers, pipelines and efficient message passing.Where bulk transfers can efficiently be done with widely available RDMA [43,41, 44, 2] engines, the other two need a closer review. In Chapter 4 the efficientrealization of inter-PE data pipelines are investigated. The usual high through-put demands of pipeline connections require close analysis and optimization oflocal memory access. In Chapter 5 the missing transfer mode (“message pass-ing”) is examined. The many-to-one relation of client-server relations demandsresource efficiency on the server-side. Additionally, the message delay has anon-neglectable impact on the possible utilization of the server process.

24

2 Hybrid SDF Execution

In this chapter, one performance bottleneck will be addressed. The layer ofthe runtime environment (RTE) is responsible for deploying an application de-scribed in the superjacent layer to the platform defined by the underlying layer.The task is to find the most optimal strategy to interpret the application andassure the correct execution of it. The performance in this regard is consideredthe amount of computational effort a given system can process in a given pe-riod. Two different common approaches are examined in this work and fusedto form a new hybrid strategy that can outperform preexisting work.

2.1 Addressed Performance Hotspot

Whenmapping an application to a hardware platform, an RTE facesmultiple op-timization problems. As stated before, the application here will be described byan static data flow (SDF) graph. For example, each SDF describes the computa-tional effort for one transmission time interval (TTI) packet. A stream of packetsthen results in a stream of independent SDF graphs. A performance indicator isthe time the system takes to execute all computational effort of a single graph.A more sophisticated performance measure is to determine the frequency atwhich the system can process graphs.One usual approach to process an SDF graph is to convert it into a task graph.Each firing of an actor is represented by a task, the channels by data blockspassed between tasks. A bottleneck that such a scheduling system can expe-rience is caused by the scheduling overhead every task scheduling system in-herits. With a sufficiently large platform or small tasks, this overhead cannot be

25

2 Hybrid SDF Execution

neglected. Eventually, the system’s performance is solemnly limited by the num-ber of tasks the scheduler can submit. The workers are left idle for a significanttime, making the system inefficient.
Another way of processing an SDF graph is as a process network. Each SDFactor is represented by a process, that are connected with data pipelines to re-semble the original graph topology. According to the SDF definition, a processconsumes data from the pipelines. When all neccessary data is collected, thefunctional kernel is fired (i.e. executed), produced data is pushed to the outgo-ing pipelines and the process resumes to the data collection stage. This wayscheduling overhead is diminished compared to the task graph where every fir-ing has to be scheduled individualy. On the downside a parallel execution ofmultiple firing of the same actors is not possible.
In the often applied static scheduling, minimal live scheduling cost is com-bined with the ability to run one actors firings in parallel. The assignment offirings to processors is done offline and only relplayed in the live situation. It re-quires however that the processors chosen in the offline scheduling are avail-able or at least a block of an offline defined number of processors are avail-able. That means, that effectively, a block of processors is occupied over thecomplete schedule’s makespan, even is certain processors are only used at afraction of the time. This lead to a lower system efficiency or to put it the otherway around, demands overprovisioning of the hardware, which was one initialreason to choose a dynamic scheduling approach.

2.2 State of the Art

There are many works targeting stream processing. They do, however, illumi-nate different levels of the matter and always have a specific focus. Some worksdefine their own language [76, 26, 81, 71] like for example the CAL language [21]which causes the need for a specialized compiler. Universal multiprocessingtoolsets like MPI [30] define their data abstraction on a very low level, loadingthe burden of task prerequisite allocation and data handling to the application.Other works present RTEs for running process fleets without the notion of inter-task data depenencies [15, 81], with the inclusion of hardware resources [75,72] or with data and stream management [58]. Some works specify an API fordefining process networks [58, 72]. The DANBI RTE [58] defines a program-ming model for irregular programs of kernels communicating through queues.There are some RTEs for stream processing, but all of them focus on a specific

26

2.3 Static Data Flow Graphs

3

4

8
311

3
2 2

consumption rate
marking
production rate
actor
kernel runtime

Figure 2.1: Cyclic SDF example graph comprised of three actors with differentkernel runtimes, connected by channels of varing data rates and ini-tial markings.
model of computation (MoC)1, which is usually the one that is presented in thatwork. It is hard to compare MoCs because each is only supported by a certainRTE. In addition to limiting themselfs to a specific MoC there are projects thateven define an own language for their RTE like StreamIT [76, 26] or the CALlanguage [21]. This further decreases the comparability because the compilercontributes a fair amount to the performance of an application. Universal mul-tiprocessing toolsets like MPI [64] define their data abstraction at a lower level.There, an application defines processes, running in parallel, that can communi-cate directly with messages passed from one (or more) process(es) to one (ormore) process(es). In contrast, within the system regarded here, processes in-terface only with data containers. Cass et al [15] propose an RTE of agents thatare executed distributed over multiple instances. It is, however, only designedfor the kind of stream processing language Little-JIL [81]. There is an operatingsystem called BORPH [75], which is used to build an integrated HW/SW systemwhere hardware units act like normal software processes [75]. DANBI is an RTEfor process networks [58].

2.3 Static Data Flow Graphs

SDF [52, 50] is a well known and well-examined execution model that describesan application as a set of n actors connected by channels. An actor contains afunctional kernel that performs a piece of computation each time activated. InFig. 2.1 the actors are displayed as circles with the computational payload kernel
1A MoC defines the way an application describes the to be done computation. It may be a sequentialdescription as in traditional programming but also any kind of operator networks

27

2 Hybrid SDF Execution

runtime ki, written inside. The activation —or firing— will happen when all inputports of the actor collected a predefined amount of data-tokens. After the ker-nel finished the computation, the actor assures to emit a predefined numberof data-tokens on every output port. Each of the ports is connected to anotherwith a channel that acts as a transmitter and buffer of data tokens betweenactors. The number of tokens consumed and produced by the actors is calledconsumption and production rate, respectively. The number of tokens that arepresent on a channel at the start is called initial marking. In the figure, channelsare drawn as arrows annotated with the production and consumption rate andinitial marking. After a certain number of firings ci of each actor, the SDF arrivesat a state with the same number of tokens on each channel as at SDF startup,called a graph iteration. For the graph in the example, the blue actor will fire sixtimes, while orange and green fire two times. A graph will usually be executeda defined number of full iterations —often only one iteration— before destruc-tion. The total time it takes an execution environment to process all desiredgraph iterations is called the makespan. It is used as a primary performanceindicator for an execution environment running a specific graph.

2.4 Runtime Environment

To be able to address the mentioned hotspot and build a graph interpreter thatcombines the methodology of both, the task graph and the process networkinterpretation, an RTE was developed that uses a hybrid graph interpreter toexceed performance of other RTEs. The basic idea of the RTE in contrast to tra-ditional multithreading is that the threads are isolated from each other in theirmemory view, much like processes in a modern operating system (OS). The RTEthen defines a set of communication technics to allow inter-thread data transfer.Structuring the communication in such a way allows the RTE to place threadsinto physically separated memories without the need to synchronize them con-tinuously. Doing so requires significant expenses in additional hardware andalso disturbs smooth program execution, affecting system performance. Ad-ditionally, it may pose a safety or security risk to do so. By only sending thedata that is meant for the neighboring threads, these risks are avoided, andthe data transferring fabric’s bandwidth is saved. Simultaneously, the executionefficiency is increased on distributed memory systems, which only have to im-plement the RTE communication primitives. No drawback is created for execu-tion on shared memory systems since the communication primitives can easily

28

2.4 Runtime Environment

process
FIFO buffer
task
data block

Figure 2.2: RTE example application utilizing all four bulding blocks. (“task” and“process” are the same to the RTE and only differentiated here toemphasize the flexibility of the RTE.)

be implemented using shared memory locations and still increasing protectionagainst errors based on memory access race conditions.
In contrast to many other RTEs that only define one type for each processingand data to describe a single MoC, an application in the hereby proposed RTEis composed of a network of objects from a set of four types. Fig. 2.2 showsand RTE application utilizing all four objects. The task can best be comparedto a traditional thread. Depending on the SDF representation strategy, this canalso be called a process. It is instantiated to execute a kernel (e.g. a piece ofexecutable binary). In contrast to the traditional thread, a task is also given a setof input/output (IO) objects that define the initial communication links to othertasks or static data storage. The IO objects can be of two kinds. First is a channelthat connects two tasks with a unidirectional FIFO style data pipeline. Accessingthe pipeline may block the execution of the task if space or available data in thechannel does not suffice the intended operation. The channel allows constantdata transfer between simultaneous running tasks. The second option for dataaccess is the data block. A data block is a fixed size RTE managed buffer. It canbe assigned to a task in either write or a read mode. Access to it is similar to achannel but without the possibility of blocking. The RTE assures the availabilityof all data blocks at the task start. A data block is an immutable data structure,meaning that it can be written exactly once (e.g. by one task), after which it canonly be read, but multiple times. With this attribute, a block intrinsically worksas dependency enforcement between two tasks. Although the second task canonly start after the block becomes ready, it already can be scheduled and goesto sleep until the data becomes available. With that, the dependency resolveloop some implementations are suffering from can be shortened.
Any task can create objects of any of the four kinds. That allows hierarchicalapplications that can spawn or change subgraphs upon change of application

29

2 Hybrid SDF Execution

demand. It is especially possible to build the scheduling system as an RTE na-tive application itself. It is also possible to build different SDF interpreters thatfollow different strategies to process an SDF graph. Three interpreters will bediscussed in the following.Summary of RTE features:
• Isolation of tasks with respect to computation and memory
• RTE managed data containers
• Two communication primitives: data container access and pipelines
• Hierarchical creation of sub graphs

2.5 Overhead of Deloying Tasks to a MPSoC

Before presenting the SDF interpreters, the overhead that an RTE brings tothe system for managing the four object types is introduced. The overheadis needed to enable the parallel execution of multiple tasks on an underlyingplatform. The alternative for the application would be a prescheduled SDF —or trivially a sequential execution—, leaving out all overhead. The overheadis classified into six different stages, each dedicated to a specific part of thetasks-deployment sequence. Together with the kernel stage, the lifecycle of atask is composed of seven stages. Each stage defines the amount of computa-tion effort it introduces. Further, it constraints the order of stages and speci-fies needed requisites. Depending on the management design, parts or wholestages may be spent on different processing elements (PEs) and run in parallelwhere possible.
1. Call The initiator task spends an amount of effort to set up data structuresdescribing the task and call the RTE application programming interface(API). It thereby hands over control to the RTE.
2. Control The whole creation phase is supervised in this stage. It includes cre-ating and maintaining RTE internal data structures, collecting additionalinformation through the stages “place” and “IOaquire”, and deploying thetask to the destination PE.
3. Place A PE is selected for the new task to be executed on (e.g. destinationPE), taking into account the current system state.

30

2.5 Overhead of Deloying Tasks to a MPSoC

4. IOaquire The IO objects requested for the new task are located and copiedto the destination PE. Channels are created and initialized.
5. Prepare The destination PE is prepared for the execution of the task’s ker-nel. It may include different things depending on the underlying platform.Usually, it revolves around creating an OS thread and the installation ofthe allocated IO objects.
6. Kernel The kernel function is executed.
7. Post Destruction of OS and RTE dependent structures and update of relatedRTE specific structures like marking blocks as ready and sending “task fin-ish” notification.
Although differentiation of the scheduling overhead is possible in this gran-ularity, in literature, a monolithic centric unit usually controls the scheduling.Such a centralized scheduler is responsible for processing stages 2–4. The otherstages obviously cannot be moved from their natural place, which is the initia-tor PE for stage one and the destination PE for stages 5–7. The centralizationof the expensive stages 2–4 in a single unit quickly becomes a bottleneck in asystem with sufficiently many PEs or when tasks are sufficiently small comparedto the overhead expenses. Because these two factors are crucial for the effi-cient utilization of the system, they are defined in two ratios. The ratio betweenoverhead and payload effort is described as

rover = eoverhead,avg
epayload,avg

with eoverhead,avg and epayload,avg being the expected processing effort in over-head stages and the kernel, respectively. The ratio of managing and workingPEs is defined as
rmanager = nmanager

nworker
with nmanager and nworker being the number of PEs assigned to scheduling andto kernel calculation.
Both ratios can be controlled in different ways. To control rmanager the num-ber of manager PEs that can be utilized by the RTE must be flexible. As justsaid this is not possible with a monolithic manager. In Chapter 3 the distribu-tion of the managing subsystem to multiple PEs will be regarded to achieve this

31

2 Hybrid SDF Execution

flexibility. For the remainder of this chapter, the focus will be to control rover. Ba-sically, the controlling is possible at two levels in the computation stack. Firstly,the application has a great impact on rover by its decision how to partition thecomputational effort epayload to a set of SDF actors. While epayload stays constantno matter how and to how many actors the payload effort is distributed. Theoverhead effort depends on the SDF graph structure (especially the number ofactors and number of their firings) eoverhead = f (SDFstructure). It is, however, theimplementation in the RTE layer that defines f (). In the following three differentSDF interpreters will be discussed that result if different overhead effort anddifferent parallelization potential for the payload effort.

2.6 Interpretation of SDF Graphs as Task Graphs

The interpretation of an SDF graph as a task graph is the most common foundin the literature. It requires an application controller running and emitting aconstant stream of tasks at all times. In general, this may be any program thathas access to the RTE’s API.
The task graph interpretation instantiates a task for each firing of each SDFactor. SDF channels are implemented as a series of RTE data blocks. A produc-tion of tokens to a channel is represented by a data block sized to fit the tokens,connected to the corresponding task. Similarly, for the consumption of tokens,the data blocks containing the needed tokens are connected to a task as inputobject.
The task of the application controller is to create one task for each firing of allactors. It also has to create and assign data buffers for token production andselect data buffers for token consumption. In Fig. 2.3 the execution of the cyclicSDF example from Fig. 2.1 is shown. For each actor and each channel, a line ofobjects is created (e.g. a column). The connections between data and compu-tation indirectly define a dependency network to constrain the tasks’ executionorder.

pro con
exploits potential parallelization high scheduling overhead

32

2.6 Interpretation of SDF Graphs as Task Graphs

SDF
act

or
SDF

cha
nne

l

Figure 2.3: Task graph interpretation for the cyclic SDF example (Fig. 2.1). EachSDF actor is represented by a column and owns a set of RTE tasksrepresenting its firings. Likewise the SDF channels are assigned toa column with RTE blocks representing the data flowing through thechannel.

Figure 2.4: Process network interpretation of the cyclic SDF example (Fig. 2.1).Each SDF actor is represented by a RTE process. The connecting RTEchannels represent the corresponding SDF channels.

33

2 Hybrid SDF Execution

2.7 Interpreting SDF Graphs as Process Networks

Another way of processing an SDF graph —that is also not new to literature—is the process network interpretation. In this interpretation, a single task isspawned for each SDF actor. Like shown in Fig. 2.4 the structure of the appli-cation resembles the SDF graph itself. The tasks are connected with RTE chan-nels matching the SDF channels from the model. Each task performs all firingsof the actors it represents. It reads the needed token according to the modelfrom available channels. The read request will block the task until the data isready and transferred to the local memory. When all data is acquired, the taskwill perform the actor’s kernel function. Finally, the task will push the generateddata to the output channels, which may again block execution if the space avail-able in a channel is not sufficient. Since the assertion of data availability for localcalculation is done through the use of RTE channels, no other management isrequired while the SDF graph is processed. The whole process minimizes thescheduling overhead to the initial setup of tasks and channels.
pro con

low scheduling overhead no intra-actor parallelization

2.8 Hybrid Interpretation

The hybrid graph interpretation allows the coexistence of both SDF actors beinginterpreted in task and in process mode. A few additional considerations haveto bemade to allow this hybrid design. The process network is used as a startingpoint for the hybrid graph. In this graph, the processes belonging to actors thatshould be interpreted in task mode are replaced by task controllers. A taskcontroller acts as an application controller but only for one actor. Instead ofdoing the kernel computation by itself, it spawns a series of tasks, one for eachfiring. It still is connected to neighboring processes over RTE channels.
The task controller collects data blocks from the tasks to produce a sequenceof data blocks for each outgoing channel that has to be converted to a continu-ous data stream for another process. Similarly, an incoming data stream has tobe chopped into blocks before passed to the tasks. Both conversions are doneon the receiving side of each channel. That means that instead of a data stream,a task controller will only send a series of block handles over the channel. This

34

2.9 Graph Topology Considerations

way, a homogeneous connection (e.g. controller to controller or process to pro-cess) does not have to do any conversion. In case a process receives a handleseries, it stitches the data together to a continuous data stream that is thenexposed to the computation kernel. The other way around, a task controllerwill chop a data stream into carefully sized chunks, put them into newly createddata blocks, and feed them to the tasks.
Of course, the data stream conversion does introduce a significant amount ofoverhead that may attenuate the performance speedup achieved by the addi-tional parallelism introduced by the task mode. The selection of actors runningin task mode is non-trivial as the resulting performance depends on multiplepositive and negative factors. Where additional overhead and data conversionincrease the total effort, the parallelization of firings opens the possibility of re-ducing the makespan despite the increased effort. But the exact impact on themakespan also depends on surrounding actors and graph topological details.
In Fig. 2.5 the execution of the simple SDF example is displayed. The blue ac-tor is selected to be executed in task mode. Therefore it’s process from Fig. 2.4is replaced with a task controller. A line of tasks and data blocks for both inputand output to these tasks is created. The controller fills the input blocks withdata from the incoming channel while the block handles of the output blocksare fed to the outgoing channel.

pro con
parallelization is possible partitioning of graph non-trivialscheduling overhead reduction possible

2.9 Graph Topology Considerations

The decision to select an actor for task mode depends on many factors andis not easily decidable until now. In Fig. 2.6 some topological constructs aredisplayed that might hint for or against a task mode selection. The exagger-ated example on the left shows an actor (orange) that may be fired dozens oftimes for every firing of the blue actor. Additionally, firings of the orange actordo consume more processing time than the neighboring actors. Both facts doemphasize a favoring of task mode for this actor. The multiple simultaneouslyavailable firings promise an improvement by parallel execution while the high

35

2 Hybrid SDF Execution

ctrl h

Figure 2.5: Hybrid graph interpretation of the cyclic SDF example (Fig. 2.1). Al-though all SDF actors are represented by RTE processes, one ismaking use of a special process controlling the generation of RTEtasks representing individual firings. The channel connecting thecontroller with the next process only transmits RTE block handles,allowing the following process to stitch data to a continues stream.

36

2.10 Theoretic Impact of Hybrid Interpretation

8
3

5 1

111

80

8
573563

8

11

5
111

1
1 1

Figure 2.6: Example SDF graph parts that have implications about potential par-allelization. The left graph part creates a set of independent red ac-tor firings that favor parallel execution. The middle graph creates aself-dependency of the tasks not allowing any parallelization. Like-wise the right graph interlocks all actors in a way that they have tofire strictly sequential.

kernel length ensures that the introduced overhead will not nullify the improve-ment.
The middle example shows a situation that strongly favors the usage of pro-cess mode. By default, an actor in SDF does not have a state that can be trans-ferred between firings. A stateful actor can still be implemented by emitting thestate into a channel that loops back to the actor itself. It ensures that the stateis present for the next firing. Such a construct implicitly defines that all firingshave to be carried out sequentially, which defeats any improvement that couldhave been achieved in task mode.
The three actors on the right are in a very similar situation. Like the statefulactor, they each depend (indirectly) on the previous firing of themselves. Thecyclic channels ensure that each actor’s firing is dependent on all previous fir-ings of all actors, including its own. As a result, all firings in the graph have tobe executed sequentially. Therefore, all three actors should be run in processmode, if allowed by the RTE multithreaded on the same PE to minimize datatransfer and central processing unit (CPU) idle times.

2.10 Theoretic Impact of Hybrid Interpretation

The impact of the different execution strategies on the makespan can be signif-icant. The impact is strongly dependent on the system’s and the graph’s topol-ogy and the RTE implementation, especially the ratio between overhead and

37

2 Hybrid SDF Execution

payload computation. Because this ratio is so important it is noteworthy thatit can —to a certain extend— be controlled through clustering. As desribedin [27, 28] clustering results in a smaller task set of bigger tasks and naturally inless scheduling overhead. Seeing that scheduling overhead is themain thing weneed to be concered about in dynamic scheduling, it is assumed that the usedgraphs are already clustered. The simple SDF example’s execution is simulatedbased on a simple model to understand the effects of the different executionstrategies. In this model, all communication costs are neglected, and task over-head costs are simplified to a single effort of constant time, which is processedstrictly sequentially. The number of available PE is infinite to remove any hard-ware restriction from the simulation. Under these constraints, the example isprocessed under all three execution strategies.A sequential execution and a “static” schedule are also included to give anupper and lower boundary on the possible makespan. For these two strategies,all overhead is neglected. The sequential strategy represents the execution ona non-parallel system, where “static” defines the theoretical lower bound for themakespan by placing all firings as early as possible with infinite resources andno overhead assumed.Fig. 2.7 shows a comparison of makespans with different execution strate-gies. In the “process network” setup all actors are running in process mode likeexplained in Section 2.7. The makespan is defined by the sequential executionof the orange actor’s firings. In the next strategy (e.g. “task graph”) all actors arerunning in task mode, composing the setting from Section 2.6. As explained,each firing is companioned by an overhead effort. All overhead efforts, beingexecuted strictly sequential, delay some firings significantly, leading to a big-ger makespan than without the overhead (cf. “static”). Still, in this example, themakespan of “task graph” is smaller than of “process network”.It is, however, the combination of both systems that achieves the best result.In the execution labeled “hybrid”, only the orange actor runs in task mode be-cause it is the only one that can save more time by parallelization than loose byadditional overhead. With the firings of the other actors not even (or only barely)overlapping in time in the “static” schedule, it is evident that running these is taskmode will cost more than it will save.This small example is supposed to show that the hybrid interpretation of anSDF graph actually can have an impact on the execution time. Besides, the hy-brid interpretation is a generalization of the execution description, includingthe other two (task graph and process network) interpretations. And althoughit cannot compete with the “static” scheduling in terms of pure makespan, it

38

2.10 Theoretic Impact of Hybrid Interpretation

t

sequential
network

task graph

hybrid

static

Figure 2.7: Comparison of makespan of different execution strategies for thecyclic SDF example. The firings are colored accoring to the actor col-ors in Fig. 2.1. The lavender block represent the overhead effort.

39

2 Hybrid SDF Execution

has the advantage that all resources are allocated in task granularity. Wherethe “static” schedule has to occupy a total of six processing cores for the wholmakespan, the dynamic scheduling only occupies the cores when they reallyneed to do work. This finer resource allocation is paid with the overhead ofmanaging the dynamic objects (i.e. tasks and data objects). The application hasdirect influence over the amount of the overhead through the number of ob-jects it defines. A clustering can reduce the number of dynamic objects to aresonable level. The number of dynamic objects to manage is multiplied withthe amount of overhead the RTE spends for each object.

2.11 Simulating Hybrid Execution

To analyze a small example like the cyclic SDF example, the model used in theprevious Section is sufficient. A more sophisticated model is necessary to get adeeper understanding of the coherences of task and process mode. A resourcemanagement simulator was built, to model an RTE environment as described inSection 2.4. An overview of the simulation layers is given in Fig. 2.8. Withinthe simulator, a model is built of two basic object types: resource providers andresource consumers. Objects of these two types interact with each other basedon the simulation cycles [scl]. It is not to be confused with clock cycles [cyl] of aprocessor but rather be thought of as a scheduling time slice.
A resource provider defines a resource with the attributes “capacity” and “par-allelism”. The “parallelism” describes how many resource consumers can simul-taneously use the resource. It can be thought of as the number of taps on apipe that consumers can use to share water. The “capacity” defines how mucheffort a resource can process per cycle. In the water pipe comparison, it de-scribes the amount of water provided by the pipe per time. Depending on thetwo attributes, a consumer can expect to receive the processing of “capacity”divided by the number of active consumers, where the number of active usersis capped by “parallelism” and the processing speed by 1.0. Again in the waterpipe comparison: The water running through the pipe is divided by the numberof users, which may never exceed the number of taps. Further, each tap canonly transport 1 bucket per minute regardless of pipe size.
The “resource consumer” is an active component in the simulation. It canoccupy a resource for a given amount of effort. The number of cycles it takesto process the given effort may vary depending on the resource’s attributes,and the number of other consumers also trying to occupy the resource. The

40

2.11 Simulating Hybrid Execution

provider consumeroccupy simulatorlevel

comm
CPU object

travel
spend environmentlevel

NoC
tile program

located

pos
itio

n platformlevel

Figure 2.8: Layers of the simulation environement. The upper level is able to de-scribe complex applications to be executed. The middle layer mod-els a hardware platform with the two resources “CPU time” and “datatransfer” that can be consumed by “objects”. The lowest level gener-lizes the system further to only handle abstract resource providersused by abstract consumers.

41

2 Hybrid SDF Execution

Table 2.1: Simulation environment parameters controlling execution timing.
parameter value
number of PEs 12number of management cores 1CPU resouce parallelism 1CPU resource capacity 1NoC resource parallelism 100NoC resource capacity 100program stage size 64B

consumermay even have to enter a queue andwait until someother consumersfinished before occupying (a share of) the resource.
The RTE is modeled with two resource types. One is a platform tile represent-ing a CPU to run (sub-)programs. Apart from the CPU, a tile also has a positionin the network on chip (NoC) of the platform. Typical attributes are a capacityof 1 to 4 to simulate processor with up to four cores and a parallelism, eitherbeing equal to the capacity to simulate a simple runtime or infinity to model asophisticated context switching.
The second resource is the network connecting the tiles. When sending datafrom one PE to another, this resource is used to model the delay until it reachesthe destination. Themost straightforward connecting fabric tomodel is a bus bysetting parallelism and capacity to 1, sequencing all transfers. For the multi pro-cessor system on chip (MPSoC) introduced in Section 1.3.1, a NoC is described,that would be very complex to model accurately. However, a NoC resemblingconnection fabric can bemodeled by increasing capacity to allowmultiple trans-fers. Setting an even higher parallelism will cause graceful performance degra-dation of the NoC when collisions start to happen.
On the consumer side, (sub-)programs are defined to represent every kind ofcomputation effort the RTE is exposed to.They can be thought of as threads thatalso have a location in the system. The two operations a program can performwithin the simulation environment are: (1) Spending CPU time and (2) travel toanother location. The program is used to model the RTE tasks as well as themanagement’s different overhead sub-programs.
For the following experiments, a simulation environment is set up with pa-rameters summarized in Tab. 2.1. The platform consists of 11 PEs and a singlemanagement core. The CPUs are single-threaded; thus, they do not support

42

2.11 Simulating Hybrid Execution

Table 2.2: Consumed processing resource for overhead subprograms in thesimulation environment.
operation simulation cycles [simcycles]
Call 1.50Control 3.00Place 1.50block locate (IOaquire) 1.00send block (IOsquire) 1.00receive block (IOaquire) 1.00Prepare 3.00Post 0

parallelism. The costs for sending data through the network are calculated fromthe network path length h and themessage size s accoring to Equation (1.1) with
sflit = 8B and sheaddata = 4B as:

d(h, s) = 8 + 2h + s – 4
8

The costs of the different overhead operations are summarized in Tab. 2.2.The ratio of values among each other are taken from an own management im-plementation written in C for an X86 Linux environment.
In its life cycle, a program object can switch locations and occupy CPU re-sources multiple times. The management subprograms usually have one par-ticular task to do and will travel the system to fulfill it. For example in Fig. 2.9the journey of subprogram from the “IOaquire” stage is displayed. The sub-program’s purpose is to transport a data block to the PE where a task is to beexecuted soon. Instantiated by the “control” stage, the subprogram will start onan arbitrary PE. Since the current PE is no management PE, the program willfirst travel to a management unit featuring a block location database. Here, itwill occupy the CPU to find the current location of the desired block. It will thentravel to the found location and spend CPU time there to initiate a block transferto the destination PE. After traveling to the destination PE with a transfer of theblock size plus its own size, it locks the CPU on the destination PE to model thereceiving and inclusion of the block into the local data structure.

43

2 Hybrid SDF Execution

blockDB origin destination

find

wait for CPU
send block

receive block

travel

travel

travel/w block

Figure 2.9: Lifecycle of a overhead subprogram running in the simulated RTEfullfilling the purpose of finding and transfering a data block to thedestination PE. In its lifetime the subprogramwill spend CPU time onmultiple PEs. For switching between PEs the NoC has to be traveledby spending time on the NoC resource.

44

2.12 Pipeline SDF Graph Example

2.12 Pipeline SDF Graph Example

In the cyclic SDF example, both the graph topology and the platform modelare synthetic to make explanations easier. With the pipeline SDF example, theplatformmodel is switched to a simulation of a PE network with consideration ofnetwork delay and a sophisticated overhead model. The graph also resemblesmore the typical structure that is known from signal processing applications.It is a pipeline with a topology displayed in Fig. 2.10. Just from examing thegraph, it becomes clear that to complete one full iteration the actors must fire,from left to right, 5, 30, and 90 times. The theoretic bounds for the runtime ofthe sequential and “static schedule” execution can then be derived as 1340 scl(simulation cycles [scl]) and 126 scl, respectively. In Fig. 2.11 the runtimes ofone graph iteration is compared between the different setups. Tested are allcombinations of process and task mode actors possible.
Neither the task graph configuration (“-”) nor the process network configura-tion (“1,2,3”) achieves the best results. Configuration “1” puts actor 1 into taskmode. This configuration has a slowing down effect compared to “-” becauseactor 3 is here the limiting factor. For every firing of actor 1, actor 2 can fire sixtimes. Since actor 3 executes sequentially, actor 1 cannot gain anything frompotential parallelization. Instead, the additional overhead, especially the com-munication bridge, hurts performance.
As a contrast, putting actor 2 into task mode (configuration “2”) holds a speedup because executing six actor 2 firings in parallel turns actor 1 into the bottle-neck. Combining these two configs yields configuration “1,2”, with both actor 1and actor 2 in task mode. It intensifies the effect because all firings of each ac-tor can run in parallel, and no communication bridge is needed. In practice, theoverhead of spawning the tasks dampens this effect a bit. Adding actor 3 to thetask mode set at best does not change the runtime, but mostly prolongs it. Thereason for this is the small kernel runtime, which makes it unlikely that the par-allelization speedup exceeds the overhead introduced slow down. When goingfrom no task mode actors to just actor 3, the runtime does not change, positiveand negative effect canceling each other out. In all other cases, adding actor 3has a negative effect. In the case that actor 2 is not in task mode, the slowdownis only marginal because actor 2’s firings are finishing sequentially. That allowsthe overhead to be carried out parallel the firings i.e. outside the critical path.When actor 2 firings finish more clustered —because they run in parallel— theoverhead processing manager is overwhelmed and delays the creation of actor

45

2 Hybrid SDF Execution

100 25 1
1 2 3

6 1 3 1

Figure 2.10: The pipeline SDF example graph used to measure impact of differ-ent execution strategies in an overseeable scope.
3’s firings, resulting in a longer runtime. As a result, running actor 1 and actor2 in task mode yields the best result. Actor 3 is best kept in process mode formentioned reasons, even if that means to have a communication bridge be-tween actor 2 and actor 3.Similar to cyclic SDF example, the dynamic scheduling strategy is unable tobeat static scheduling in terms of makespan. However, the resource usage ismuch lower in any case, even the rather slow configurations like, “1,3”. The re-source consumption is the integral of the parallel proccessor usage over time.For the the “seqeuntial” execution this is just the sum of all firings. The hybridconfiguration have to add the usage of a dedicated management core. Natu-rally this usage increases with the number of tasks to be managed, so 90 tasksif actor 3 is in task mode and 30 for actor 2. The static schedule occupies 15cores for the whole makespan of 256 scl resulting in a resource consumptionof just over 4000 PE simulation cycles. The 15 cores do not allow a completeparallelization of all firings, thus the longer makespan compared to the theoret-ical minumum, but occupying 90 cores for a slightly shorter makespan wouldskyrocket resource consumption out of control.

2.13 Random SDF Graphs

The hybrid strategy is tested with a range of randomly generated graphs to gen-eralize the previous section’s findings. The generation is done using the turbineSDF graph generator [11]. Produced graphs have an actor count of 2 to 37, amaximum degree (i.e. edge count) of 6, and a kernel runtime between 1 and20 simulation cycles. A little more than seven hundred graphs are simulatedusing the same environment for the pipeline SDF example graph. Apart fromthe baseline configuration with all actors in process mode, all possible config-urations for up to two actors running in task mode are simulated. The mostperformant configuration is set into relation to the baseline configuration, to

46

2.13 Random SDF Graphs

0 500 1,0001,5002,0002,5003,0003,5004,000

static
2,3
1,2
1,3
-

resource usage: [cycles × PEs]

0 200 400 600 800 1,000 1,200 1,400

1,2,3
2,3

1,3
1,2
3
2
1
-

static

seq

makespan [cycles]

SDF
act

ors
int

ask
mo

de

resource usagemakespan

Figure 2.11: Makespan comparison for the pipeline SDF example of Fig. 2.10with all possible hybrid configurations, which include the puretask and pure process strategy. For comparison the theoreticalmakespans of an all sequential and an resource unlimited ASAPstrategy are shown.

47

2 Hybrid SDF Execution

0 0.5 1 1.5 2 2.50

20

40

60

356

speedup
Figure 2.12: Histogram of maximum speedup with two actors in task mode of700 randomly generated graphs. All configurations featuring atmost two task mode actors are simulated to select the best con-figuration for each graph.

determine the maximal achievable speedup for a graph. In Fig. 2.12 the achiev-able setup for the 700 graphs is displayed in a histogram. For most of the usedgraphs, neither a speedup nor a slowdown can be observed. But for a smallgroup of graphs, significant speedups do occur. A speedup of 2x is already con-sidered to be significant because it is directly coupled to the needed (hardware)resources. This means a speedup effectively allows an envisioned chip to behalf the size or run at half of the clock frequency, which in the end cuts costof production and operation in half. The requirement for this to happen is agraph-topological condition that represents a bottleneck in the graphs execu-tion flow, as explained in Section 2.9. The probability of one of these situationsto happen is dependent on the parameters used to generate the graphs and theamount of overhead imposed by the RTE implementation. While using a hybridexecution strategy does not hold any benefit in the vast majority of cases, it canbring a significant performance increase when specific situations are present.Because there is no method of detecting these situations, all possible config-

48

2.13 Random SDF Graphs

0 5 10 15 20 25 30 35
0.5

1

1.5

2

actor number

imp
act

Figure 2.13: Impact an actor has to the speedup when put into taskmode. Aver-age speedup of all configurations extendend by a task is displayed.The actors are —w.l.o.g.— ordered by their impact to show thatusually only one actor is worth running in task mode.

urations have to be tested. Since the total number of different configurationsfor one graph of size n equals nconfig = 2n it is not possible to simulate everypossible configuration.
It seems that performance-limiting bottlenecks are very local and can be mit-igated with only two task mode actors. The 16 graphs with the highest speedupare re-simulated with up to four actors in task mode to support this hypothesis.Of those 16 graphs, only one saw a speedup of more than 2%, compared tothe 2-task-mode-actor version. In Fig. 2.13, the impact to the speedup for eachactor of those 16 graphs are shown. The impact of an actor “a” is the averagespeedup that is observed by configuration “B” over “A” for all configuration pairs“(A,B)” with “B” being constructed by added actor “a” to the task mode set of“A”. Because the actors numbering in a randomly generated graph is arbitrary,w.l.o.g. the actors can be ordered by the impact.
It shows that all graphs have one particular actor that triggers the speedupwhere most of the actors do not impact the performance. A reason may bethat even if an actor is suitable for task mode, it does not create an impact on

49

2 Hybrid SDF Execution

0 2 4 6 8
·104

sta
tics

che
dul

e
bes

thy
brid

pro
ces

sne
two

rk

tas
kgr

aph
makespan [cycle]

tas
kse

t

Figure 2.14: Runtime comparison of all 128 possible hybrid configurations forthe LTE resembling distributed application graph. The configura-tionwith actors “1,4” and “0,2,3,5” have the best andworst runtimes,respectively. Both full process mode (“no tasks”) and full task mode(“all tasks”) stay within the average.

the makespan if it is not in the critical path. Almost every graph features a few“wrong” actors that can drop performance significantly when selected for taskmode. While this shows that these performance increasing situations are hap-pening in randomgraphs, it does leave the open question about the applicabilityto real-world problems.

2.14 LTE-like SDF Graph

To apply the findings on the targeted real life example of a mobile signal pro-cessing pipeline, the SDF graph introduced in Section 1.4 was simulated usingthe hybrid scheduling as well as a static schedule for comparison. With thegraph consisting of six actors there are 26 = 64 different configuration of se-lecting actors for task mode. All 64 configurations have been simulated andthe resulting makespans are show in Fig. 2.14 sorted by makespan. Markedin the figure are the makespans of relevant configurations. The pure process

50

2.14 LTE-like SDF Graph

0 1 2 3 4 5
·10–3

0.4
0.6
0.8
1

1.2 ·105

SDF arrival rate [cycle–1]

ave
rag

eru
ntim

e[c
ycle

] 346810121416

Figure 2.15: Averagemakespan of LTE resembling SDF graph with variable num-ber of PEs (colors) and graph arrival rate. The dramatic increase ofaverage runtime marks the rate at which the system reaches satu-ration.

network configuration is in this setup close to the worst possible configuration.While a lot faster, the task graph configuration takes still around twice as long tocomplete as the best hybrid configuration. The best hybrid configuration is, likesuspected in Section 2.13 one with just two actors in the task set, i.e.1 and 4.With a makespan of mhybrid = 24.5 kscl the hybrid configuration is only around20% slower than the static schedule with mstatic = 20.7 kscl. However, the staticschedule occupies 16 processing cores for the whole make span resulting in aconsumption of 16mstatic = 331 kscl, while the hybrid schedule consumes notmore than an accumulated amount of 133 kscl, a merely 40% of the resources.
While the makespan is an excellent measure to quantify the effectiveness ofan SDF graph execution, it only correlates to a certain degree to a more crucialperformance indicator valuing the whole system. That is the rate at which aplatform can accept newly spawned graphs without saturating its resources.The saturation of resourcesmeans that instances of the graph enter the systemfaster than they leave. From the queueing theory, this is known as a system load

51

2 Hybrid SDF Execution

ρ being greater than 1. With ρ begin calculated from the task arrival rate μ andtask service rate λ as

ρ = μ

λ

the saturation is clearly dependent on the makespan. It is directly related tothe service rate, which would be λ = 1/D for a simple first in first out (FIFO)queue. The parallel structure of the system, however, makes λ much harder todetermine. Assuming a sequential execution of each graph instance, the servicerate is simply the parallelized execution λ = nPE/Dsequential. This is a good solutionwhen regarding only the graph processing rate because it does not contain anyoverhead calculation. However, it is not feasible to do sequential TTI processing,because of deadlines that can only be kept if parts are computed in parallel.

When putting the previously used mobile signal processing graph into a sim-ulation scenario with an increasing graph arrival rate the processing capacitycan be obtained. In Fig. 2.15, the average individual graph makespan in a testseries with increasing arrival rate for different platform sizes are plotted. Thedrastic increase of makespan marks the saturation frequency. With an increas-ing number of PEs available, this point moves to higher frequencies showing ahigher processing capacity. The second feature seen in this graph is a decreaseof the averagemakespanwith an increasing number of PEs. Withmore PEs avail-able in the system, each graph can run more firings in parallel. This makespandecrease stays in constant relation to the saturation point for smaller PE num-bers. The saturation point does not move beyond 5 × 10–3 scl–1 for higher PEnumbers, although the average makespan shrinks further. For a PE numberhigher than 12, the processing power of the PEs is no longer the limiting fac-tor, but the overhead calculating RTE management unit. Unable to create andrelease new tasks fast enough, the management is now the bottleneck, limitingthe platform’s size that efficiently can be serviced with the RTE. The size of thesystem that can be serviced depends on the executed application or, more pre-cisely, the ratio of the sum of all firings —the computation payload— and theoverhead work introduced to the RTE management unit by the graph topology—the computation overhead—.

52

2.15 Key Lernings

2.15 Key Lernings

The commonly used static scheduling of SDF graphs bears the problem of anunflexibility when deploying applications to hardware platforms. The effectiveresource consumption is much higher than the theoretically needed becauseeach used processing core has to be occupied for the whole makespan insteadof only the time they are needed. The two classic dynamic SDF execution strate-gies improve on resource consumption, but have the disadvantage to increasethe makepsan significantly. The task graph strategy dynamically distributes theprocessing demands to available resources. It exploits the potential paralleliza-tion very well at the cost of high and constant overhead effort. In contrast,the process network is limited in its ability to exploit graph given parallelism,and needs as many parallel system threads as there are actors in a graph, butfeatures a small management overhead footprint. For random generated SDFgraphs as well as the mobile signal proccessing distributed application, bothstrategies only achievemediocre performance withmakespan of 2x to 5x higherthan the static schedule. Dispite the makespan increase the effectively used re-sources are roughly cut in half using these dynamic scheduling technics, since itis much easier to run multiple of those applications in parallel even on relativelysmall sytems.Proposed is a hybrid execution strategy, that selectively applies the parallelexecution of task graphs and the low overhead data pipelines to specific actorsto decrease makespan without losing dynamic resource allocation. Simulationsshow that carefully selecting a single actor for the task mode group yields thebest performance in many cases. Similarly, a set of two task mode actors hasbeen identified as the optimal configuration for the mobile signal processingapplication. This configuration only experiences a makespan increase of 20%over the static schedule but reduces resource consumption by 50%.Although using only two actors in task mode significantly decreases overheadcompared to all actors in task mode, an SDF scheduling RTE can only efficientlymanage a small set of PEs without letting the management become the per-formance bottleneck. The RTE’s task management must be parallelized to han-dle more tasks, serve bigger platforms, and overcome this problem. Balancing“makespan decrease” and “overhead increase” optimizes themakespan of a sin-gle graph instance. The next logical step is to balance management and workerresources to optimize system utilization.

53

2 Hybrid SDF Execution

54

3 Distribution of Management

The management of processing resources is a central element in the designof an runtime environment (RTE). Also, the overall system performance oftendepends on the efficiency and performance of the management subsystem.Already small sets of processing elements (PEs) may outperform classic mono-lithic task management. In this case, the working PEs perform the given tasksfaster than the management can create new ones making the managementthe system’s performance bottleneck. The simplest —and most common— im-plementations process the whole management effort sequentially in a single-threaded program. Concentrating all sub-problems of the management into asingle program —hence the name monolithic— is in contradiction to the tar-geted platform’s distributed character, application, and execution strategy. Inthis chapter, the management effort needed in an RTE to run distributed ap-plications will be analyzed with regards to distributing and parallelizing it. Thegoal is to manage bigger systems (i.e. with more PEs) without having the man-agement being the performance bottleneck.

3.1 Addressed Performance Hotspot

The task of an RTE on a distributed memory system is to map the application’stasks to the underlying platform. It assures the execution of all tasks, thus theprogress in the application. The application defines the amount and computa-tional effort of the tasks. This effort is supposed to be distributed to the plat-form by the RTE. Besides, the RTE faces a second set of effort originating fromthe management overhead that accompanies each task. The total effort an RTE

55

3 Distribution of Management

faces when processing an application therefore is the sum of both: overheadeffort and payload effort.
Since the overhead effort is best to be done on a decicated set of PEs, thesystem can be regarded as composed of two sub systems. The worker sub-system handles the payload effort while the manager subsystem handles theoverhead effort. From the set of all PEs in the system each is assigned to ei-ther subsystem creating a partitioning. In order to fully utilize the system theratio between payload and overhead effort rover has to match the ratio of avail-able processing power for each effort type. The latter is equal —for the sakeof simplicity assuming the set of PEs is homogeneous— to the ratio of num-ber of PEs in each subsystem rmanager. If the two ratios are not matched, one ofthe subsystems may be overloaded causing idle times in the respective other,diminishing overall system performance in the end. Assuming a constant andrepetitive —thus homogeneous— stream of tasks, the overall system perfor-mance is measured as the task arrival rate at which the system remains stable.A system is concidered stable when task arrival and task finishing rate match.When the system is unable to finish tasks the same rate as they arrive, taskswill pile up in the system and (slowly) ovewhelm it, making the system unstable.Therefore the maximum arrival rate that keeps the system stable defines the“execution capacity”, the maximum rate at which the system can process tasks.
The commonly used monolithic scheduling system limits the managementsubsystem to a single PE, which fixes rmanager = 1/nPE restraining the flexibilityof the system to equalize the afore mentioned ratios to optimize system per-formance. A fixed rmanager forces a similar value for rover, limiting the partitioningof the application into tasks. Therefore, in this chapter, the distribution of man-agement overhead tomuliple parallel working PEs is examined for practicability.The intended goal is to allow a bigger rover, which means relatively more over-head per payload. An application is then able to be partitioned into smaller taskswhich may expose more potential parallelism. With more potential parallelismthe RTE is able to utilize more parallel worker PEs, which in turn will result inhigher system performance. Secondly, with more management PEs also moreworker PEs can be deployed without lowering rmanager.

3.2 State of the Art

There are a lot of works covering static data flow (SDF) scheduling with all pos-sible attribute variations. The most important attribute is dynamic vs. static

56

3.3 Revising Deployment Overhead

scheduling. Most work on SDF scheduling onmultiprocessor systemsuses staticscheduling. There are, however, exceptions using dynamic SDF scheduling. Pel-cat et. al., for example, implemented an Long Term Evolution (LTE) uplink usinglive scheduling on a 6-coremulti processor system on chip (MPSoC) with sharedmemory [66]. They state that static scheduling is not feasible because of the vastgraph variety an LTE modem computation can have on a transmission time in-terval (TTI) basis. Furthermore, although everything is properly optimized, theyexperience their single scheduling core to be at 95% utilization, which may be-come a problem for scaling. Another work that addresses the need for schedul-ing overhead minimization is [12]. In terms of memory architecture, sharedmemory is commonly used, only excepted by a few works like [20] and [18] us-ing distributed memory to optimize SDF execution. Among different strategiesto optimize SDF performance, clustering is found more often, like in [56].

3.3 Revising Deployment Overhead

The seven stages of an RTE task are explained in Section 2.5. It is stated thatall stages but 2–4 must be done on their natural location (e.g. setting up theenvironment for kernel execution must be done on the destination PE). Stages2–4 however, are the classical decision-making stages, describing where to puta task and where to get the required data blocks. These can be relocated, andmore importantly, parallelized. In Fig. 3.1 the relation of these stages and theirdependencies are summarized.
Stage 2 (“Control”) only requires a small piece of memory for its internal datastructure and some communication with the stages 3 & 4. It only holds dataon the current task and is independent of other tasks. Therefore, it may beexecuted on any available processor and for different tasks in parallel. Stage3 (“Place”) is supposed to decide which PE the current task should be placed.To do so, it relies on a database of all working PEs’ state information (e.g. themapping of current active tasks to PEs). The effort to synchronize this databasegrows quadratically [86] with the number of locations to synchronize. Therefore,it is necessary to keep the database centralized or at least distributed over onlya few locations. Similarly, stage 4 (“IOaquire”), among other things, also queries adatabase to find data block locations. Like stage 3, it is because of the databasesynchronization costs that it should be kept centralized.

57

3 Distribution of Management

distributed
origin destination
serviceserviceserviceservice serviceserviceserviceservice

centralized
origin manager destination
stages
call control

place aquire
prepare kernel post

Figure 3.1: Distribution of processing effort of different task stages.

3.4 Distribution of Overhead

Calculating all overhead in a single centralized manager allows the manager tobecome the system’s performance bottleneck. Luckily the task managementcan cleanly be separated into different stages of which stages 2–4 are to be cal-culated in a management unit. The stage subprograms have little data depen-dencies between each other, and only stages 3 & 4 depend on the subprogramsof the same stage and other tasks. Generally, this means different stages can becalculated in different PEs, which already turns the management into a pipelinestructure. Three dedicated PEs, one for each stage, connected to a pipeline,handle three tasks at once, each in a different stage.
The distribution of management work can be parallelized further by moduliz-ing the management program architecture. In the full modular approach, the“Control” stage will be directly executed on the origin PE. Because it does nothave any dependencies on other tasks or any central database, the subpro-gram’s location for this stage is irrelevant. In contrast, stages 3 & 4 do dependon a central database. Thus, their subprograms have to be instantiated as aservice in a dedicated PE. These services are queried from stage 2 subprogram

58

3.5 Impact of Management Distribution to Resource Utilization

instances in the classic server-client fashion. The client sends a request mes-sage, the server answers with a message containing the result.
This architecture softens the border between the management subsystemand the worker subsystem because stage 2 effort is processed on worker PEs.On the other hand, the direct result is that stage 2 is truly and automaticallyscalable. All stage-2-effort created by task creations is processed directly onthe PEs that is causing the effort in the first place. The only remaining problemsfor a scalable management system are the centralized placing and block-findingservices. They cannot be decentralized the same ways it is done for stage 2because of the data synchronization overhead that does not scale very well.But the synchronization effort can be kept in reasonable boundaries by dupli-cating the services only a couple of times. Together with a load balancer thatdistributes the requests to the different service instances, the scalability of theservices can be obtained at reasonable costs.
The final distributedmanagement system is displayed in Fig. 3.1. Stage 2 sub-programs, which function as the shell for task creation, can pop up at anyworkerPE caused by any task. The task shell will eventually turn to both services with arequest. Based on the results, it will then issue commands to other worker-PEsto transfer needed data and instantiate the task kernel at the chosen destina-tion PE.

3.5 Impact of Management Distribution to Resource
Utilization

The goal of an RTE managing a distributed memory system running a set ofdistributed applications is to maximize time ratio each PE is working on pay-load effort to the time it works on overhead effort or is idle. It assures thatthe throughput of individual SDF instances is maximized. The key performanceindicator for the system therefore is again the execution capacity.
To evaluate the distributed management system’s scalability, the simulationenvironment introduced in Section 2.11 is used. This time the number of PEsis increased to show that the system can deal with much higher arrival rates.The application is the same LTE resembling SDF-graph that was used in Sec-tion 2.14. By carefully selecting the size of chunks processed in each task aoverhead to payload ratio of rover = 1.0 has been configured for the followingtests. In Fig. 3.2, the execution capacity is plotted as a function of the system sizein PEs and the number of service PEs. As a reference, the monolithic scheduling

59

3 Distribution of Management

20 40 60 80 100
0

100
200
300
400

number of PEs

exe
cut

ion
cap

acit
y[t

ask
s/si

mc
ylcl

e] mono2468

Figure 3.2: Computation capacity (i.e. task rate at which saturation is reached) ofdistributed overheadmanagement with varing service host numbersand system sizes. The capacity is linear dependent on the number ofPEs till the point when the service hosts become the bottleneck, flat-tening the capacity plot. The execution capacity describes the num-ber of tasks the system can execute each sim cycle. Tasks are cre-ated at this rate by spawning themobile singal processing SDF graph(introduced in Section 1.4) at a appropriate rate. Each simulation iscontinued long enough to determine if the system can stabilize. Thesimulations are repeated with varying task rates till the maximumis found the system can tolerate. The service host numbers (colorcoded) describes the number of processing cores dedicated to themanagement services of “task placing” and “block localizing”.

60

3.5 Impact of Management Distribution to Resource Utilization

approach, known from Section 2.5, is shown. For every management configu-ration, a constant maximum execution capacity is reached at a particular sys-tem size. Above this size, the execution is limited by the management system’sperformance, thus rendering the system size irrelevant. Below the point, thesystem performance is determined by the worker subsystem. The system’s ca-pacity for processing SDF graphs here is dependent on the number of workingPEs. Two conclusions can be drawn, which are reflected in the graph as well.The slope of each configuration below the critical size is equal. That means thecapacity increases linearly with the number of PEs in the system. Secondly, themanagement system occupies a different number of PE in each configuration,thus leaving a different number of PEs for the worker subsystem. With a dif-ferent number of worker PEs for the same system size, the execution capacitydiffers as well, which is reflected in the graphs’ offset.Smaller management systems are favored in small setups because they pro-duce a higher capacity, resulting in higher efficiency. In Fig. 3.3 the efficiencyof a system is plotted as the execution capacity per PE. The performance losscaused by an oversized management system can be seen here more clearly.With a system size of 10 PEs the efficiency for a 2-PE management is 4x higherthan an 8-PE setup. Since both setups are operating in theworker-limited range,the crucial attribute is the worker subsystem’s size. In this case, the ratio of 8to 2 worker PEs under the 2-PE and 8-PE management systems match the effi-ciency ratio.Although a small management system is desirable because it does not shrinkthe worker subsystem as much as bigger configurations, it features a lower per-formance for larger systems. In Fig. 3.2 is shown, that increasing the manage-ment system, increases the number of worker PEs the system can utilize beforebecoming the bottleneck itself. At the point where both workers and manage-ment are balanced in their capacity, the efficiency (cf. Fig. 3.3) is maximized.Further, two things can be observed in this matter. The performance increasegained by a bigger management system declines with a growing managementsize. Switching from a 4-PE management to a 6-PE management holds an in-crease of 150 task scl–1. In contrast, increasing further to 8 PEs makes merelylittle difference. At this point, the network traffic and the synchronization ofdatabases hinders further performance growth.The results of Fig. 3.3 and Fig. 3.2 are based on the overhead to payload ratio
rover = 1.0. Because rover is application dependent, it is necessary to regard it as avariable. The kernel runtime of all SDF actors were artificially scaled to constructa set of different values rover without distorting effects caused by graph topology

61

3 Distribution of Management

20 40 60 80 1000

2

4

6

number of PEs

cap
acit

yp
erP

E[t
ask

s/
sim

cyc
le/

PE] mono2468

Figure 3.3: The computation efficiency is the computing capacity (as shown inFig. 3.2) per processing core. A higher number of dedicatedmanage-ment service cores decreases the efficiency because fewer cores areavailable actually do application processing. Too few service hostsresult in themanagement being the bottleneck, unable to fully utilizethe worker cores. The efficency peaks at the optimal ratio of workerand service cores.

62

3.5 Impact of Management Distribution to Resource Utilization

20 40 60 80 100

2

4

6

number of PEs

cap
acit

yp
erP

E[t
ask

s/
sim

cyc
le/

PE] nman rover2 0.84 1.06 1.2

Figure 3.4: Computation efficiency depending on overhead to payload ratio(rover) and manager subsystem size (nmanager). Since rover is applica-tion dependent the optimal management to worker ratio has to bedetermined dynamically at runtime.

63

3 Distribution of Management

changes. In Fig. 3.4, the effect of raising or lowering rover is shown. Asmight havebeen expected, increasing the relative overhead (by shrinking kernel runtimes)decreases the system’s efficiency and thus execution capacity. Decreasing rover,however, increases execution capacity as expected, because fewer overheadhas to be processed for the same amount of payload. Also, the peak efficiencyis shifted towards larger systems because the samemanagement configurationis able to serve more worker PEs before becoming the performance bottleneck.

3.6 Reconfigurability

The efficiency of the system depends on the well configured ratio between: (1)The size of the worker subsystem. (2) The size of the management subsystem.(3) The overhead effort rate (closely coupled to the task arrival rate). (4) The pay-load effort rate (closely coupled to the task arrival rate and average task kernelsize). When any of those value changes over time, functionallity must be pro-vided to change the others accordingly. Both effort rates are always subject tochanges when applications enter or leave the system. But even only a changeinside an application, like a change in anmobile channel or user can cause dras-tic changes in both effort rates. Asuming a fixed amount of available PEs, it maybe nesseccary to migrate PEs from one subsystem to another to match rmanagerto a changed rover. The reconfigurability can be taken one step further. In amoreflexible system, the RTE may be able to allocate/deallocate PEs to not only reactto effort ratio changes rover but also changes in effort amount. In any case, toassure a efficiently working system, the ratio matching must be kept.

3.7 Key Lernings

Traditional RTEs for distributed memory systems utilize a centralized managingunit responsible for managing and assigning resources to tasks and processes.Many systems experience a performance limitation by the management unit it-self when the working PEs are working faster than the manager. In this case,the ratio between workers and managers (i.e. exactly one manager for the cen-tralized approach) is bigger than the ratio between average task payload andoverhead effort. Small tasks are desirable because they allow higher paralleliza-tion but decrease the payload-to-overhead ratio. The worker-to-manager ratiomust also be lowered by decreasing the number of workers or increasing thenumber of managers. Because lowering the number of workers does not seem

64

3.7 Key Lernings

to be helping the scalability, increasing the number of managers is the only pos-sible solution. Because the management application is not trivially duplicable, ithas to be converted into a distributed application.A task’s lifecycle is divided into seven stages, with one being the payload phaseand the rest being overhead. Three of those stages are traditionally computedin a centralized manager. Distributing these stages to different PEs alreadyachieves a certain parallelization. Each stage can be duplicated to multiple PEsto increase the parallelization further.When designing the full system, the crucial point is to match the worker-to-management ratio to the application and RTE dependent payload-to-overheadratio to maximize the system’s efficiency. When not properly matched, eitherthe worker or the management subsystem is not fully utilized, which leads towasted processing resources. Besides, with the growing system size, the exe-cution capacity growth declines because of increasing overhead caused by datatransfer and database synchronization.All the relations described here are highly dependent on the systems and alsothe applications parameter. The used simulation environment was configuredto resemble the behavior of a Tomahawk MPSoC architecture running a home-brewed RTE for the overhead estimation. An LTE resembling SDF graph wasused to model the distributed application with an average kernel runtimes toproduce a payload-to-overhead ratio of 1.0. With these settings, a system of 75PEs achieves the highest execution capacity. However, this value changes whenchanging the application —or the RTE— to another payload-to-overhead ratio.A smaller ratio of 0.8 lowers the maximal system size to 55, where, with a ratioof 1.2, systems of around 120 PEs are possible.When dealing with applications that behave dynamic in terms of task fre-quency and computation complexity, a system must employ a distributed anddynamically sized management subsystem to achive maximum utilization andthus efficiency.

65

3 Distribution of Management

66

4 Sliced FIFO Hardware

The two previous chapters’ software considerations build upon some assump-tions about features of the underlying hardware to assure certain performanceon some tasks. An essential function, a distributed memory hardware platformneeds to address is the communicationmechanisms that allow the tiles tomovedata between their localmemories. In the best case, the data transfer is handledentirely by the hardware relieving the software of overhead spend for communi-cations. The performance indicators for performant communication mechanicsare the bandwidth and delay the transmission of data experiences. Although itcan be factored into the two attributes, sometimes it is also interesting to explic-itly regard the overhead the software sees for initiating a transmission. In thischapter, first in first out (FIFO) type connection will be regarded as often foundin process network applications and shown in Fig. 4.1. The connected processesare considered to be on different processing elements (PEs) and connected bythe platforms network on chip (NoC) fabric. A hardware solution is presentedthat exploits the PE’s memory system for bandwidth exhaustion, and which islow overhead, and transparent for the using masters.

4.1 Addressed Performance Hotspot

The implementation of a FIFO channel for two communicating processes can bedone in various ways, that all may achieve the desired functionality, but with dif-ferent and differently severe drawbacks. The four performance metrics that areused to rate a solution are overhead, delay, bandwidth, and chip area. The over-
head determines the effort a process has to spend on its main computation unit

67

4 Sliced FIFO Hardware

CPU mem
FIFO NIf

NoC
NIf FIFO
mem CPU

Figure 4.1: Integration of the proposed FIFO controller into an MPSoC. Thecomplete CPU to CPU pipeline (blue arrow) is constructed using twolocal FIFO instances. The FIFO controller assures efficient parallel ac-cess for CPU and NIf to the local memory.

to initiate some data transfer. Since the overhead restrains the process fromdoing the application functionality, it may lower the application’s performance.Therefore, the overhead will be high on a pure software solution, basically be-cause the FIFO functionality is done sequentially to the application. Similarly,implementing a FIFO protocol on top of a simple remote direct memory access(RDMA) unit may pose a significant amount of overhead. The delay is a perfor-mance indicator measuring how long a transmission takes from the momentthe sending process returns from its overhead effort until the receiving processcan start working with the data. In that sense, the delay is the time that passedduring the transfer but in parallel to the application computation. For exam-ple, a shared memory software solution does not have any delay because allFIFO functionality is done in the overhead (e.g. sequential to the application).In contrast, transmitting data over a NoC with a hardware RDMA unit classifiesas a delay because it is not interfering with the main CPU. The third measurethat defines the performance of a FIFO channel is the bandwidth it provides. Itstates how much data the channel can transport per time unit. For digital sys-tems, it makes sense to fix the time to one clock cycle (cyc) and normalize thedata to one token (tok), which describes the memory access width a master canaccess with a single request. That leaves the maximum bandwidth any mastercan achieve per memory port of one token per cycle (1 tpc). Another consum-

68

4.2 State of the Art

able to be considered is the chip area a solution consumes. While a traditionalhardware FIFO unit can be operated with close to no overhead and delay, thearea consumption of the internal memory is usually massive. Also, its memoryhas to be dimensioned at design time and is exclusive for this FIFO unit. Sincethe on-chip memory often poses the most significant chip area share, this kindof single-use memories need to be avoided.
Based on these four performance indicators (i.e. overhead, delay, bandwidth,and chip area), a hardware unit will be proposed to outperform state-of-the-artcompetitors. A FIFO channel reaching from a PE through the NoC to anotherPE like shown in Fig. 4.1, can be partitioned into three stages. The first and thirdstages handle the data transfer from the master to the FIFO unit, while the sec-ond stage handles data transfer fromone FIFO unit to another through the NoC.This second stage has a relatively simple structure, and its performance mainlydepends on the NoC implementation, and therefore will only be regarded inshort in this work. The other stages, implementing a FIFO channel within anenvironment of memory shared to a set of masters, pose some more difficultquestions that will be the main focus here.

4.2 State of the Art

A standard model of communication used in MPSoCs is the connection of func-tional units with data pipelines. They can naturally be used in data stream pro-cessing [70, 69] often found in runtime environments (RTEs) designed for MP-SoCs [62, 74] or even directly included into the MPSoC itself [6]. A simple setupof a few computation units coupled together to a pipeline and more sophisti-cated kahn process networks (KPNs) [25] facilitate FIFO streams to build con-nections between the PEs running the compute units.
The traditional FIFO hardware unit resembles a dual-port memory bank withone port for writing and one for reading data. Since these ports lack an ad-dress field, a FIFO unit is mapped to a magic address in the master’s memoryspace. This mapping must be done at design time, fixing the sender and re-ceiver masters to specific PEs. In addition, the size of the channel has to bedefined at design time by selecting a unit internal datamemory. Since themem-ory must be sufficient for the worst-case scenario (e.g. the biggest application)and subsequent application changes should be possible, the size is often over-provisioned. As a result, a huge chip area is not or badly utilized as the internalmemory is private to the hardware unit. Furthermore, in traditional FIFO chan-

69

4 Sliced FIFO Hardware

nel units, the data has to be passed twice through the unit ports. Unless theapplication runs a very specialized algorithm that manages to write results di-rectly from the register file into the FIFO this means that each token has to beloaded from memory and then written to the memory-mapped FIFO. Yet an-other issue is the dual-port nature of this system. In the hardware platform thatwas introduced in Section 1.3, single port memories are assumed to save chiparea because dual port memories need almost twice the area for the same ca-pacity than the single ported counterparts [60, 48, 7]. It would be possible todesign a traditional FIFO unit with only single port memory banks, but it wouldreduce the bandwidth to 0.5 tpc because producer and consumer could onlyaccess the unit in turns.
Another possibility is to implement a FIFO unit in software only [77], withoutthe need for additional hardware. In software, the buffer is usually presented asan allocated memory block in a memory shared by producer and consumer. Itis interpreted as a cyclic buffer, and both producer and consumer manage a setof pointers that chase each other around the circle to define in which positiondata can be written or read. In that sense, the FIFO channel is just a pointerjuggling controller. The benefit is that the masters do not have to pass theirdata through a FIFO interface but can produce or consume the data directly inthe FIFO buffer. Another benefit is to have random access to arbitrary sized partof the FIFO buffer. This windowed access was even implemented in a hardwaresolution in [17].
A way to circumvent both the bandwidth limitation of single port access andthe increased size of dual-port is to use double buffering [17]. The FIFO bufferis split onto two separate memory banks. While the producer has access to thefirst memory bank, the consumer accesses the second bank. When both arefinished writing in their respective bank, the access is switched. While this is anexcellent way of overcoming most of the problems mentioned earlier, it intro-duces a new assumption. Both masters must always be half of the buffer lengthapart. Even in low load situations, the consumer must wait for the producer tofinish a half buffer worth of data before gaining access, which increases the datadelay.
While all the mentioned solutions have their drawback, they all contribute apiece to the soultion that will be presented in the following. The four ideas thatare brought together are:
1. Use a hardware unit to parallelize FIFO access and application computa-tion.

70

4.3 System Environment

2. Use shared memory to prevent high hardware costs due to private andover-provisioned memory.
3. Use pointer juggling to use in-memory data manipulation and prevent ex-tra passing of data through interfaces.
4. Use double buffering on single port memories to prevent high hardwarecosts due to dual port memories.
Implementing these four ideas promise to create high performance and low-cost FIFO channel implementation. Only the delay introduced by the doublebuffering is not covered by these ideas and has to be dealt with separately. Thebasic idea of putting the data into a central shared memory greatly benefitsfrom the memory management system proposed by [83] (and introduced tothe assumed system in Section 1.3.3). It allows the efficient access of multipleusers to a multi banked local memory system which is a perfect match for theFIFO implementation to be proposed in the following.

4.3 System Environment

The newly designed FIFO unit is embedded in a system environment with a cer-tain structure and attributes. Although the system is designed to feature thefull FIFO channel with NoC transfer, only the on-PE part will be examined here.Moving data from the CPU to the NoC interface unit already requires the fullFIFO channel functionality. As described in Section 1.3, a PE features a mem-ory system with multiple banks and multiple masters. Most of the masters arememory ports of processors, but two belong to the networking unit. These areused for streaming data from the local memory to the NoC and vice versa. Onthe memory side, all but one bank are standard data storing units. The last oneis a config space that allows special units to appear as memory-mapped func-tions to the masters. On PE level, a FIFO channel breaks down to a data transferfrom one master to another, may it be two processors ports for a local FIFOchannel or one of the masters be a network unit port for a channel reaching toanother PE. In any case, the masters can use thememory-mapped config spaceof the FIFO unit to control the channel.

71

4 Sliced FIFO Hardware

rd’

rd

wr’

wr

space

data
Figure 4.2: Concept of cyclic windowed FIFO with read pointers rd, rd’ and writepointers wr, wr’ . The pointers rd and wr partition the buffer into validdata and free space. The space between rd and rd’ as well as wr and

wr’ describe actively used windows. (From [38])

4.4 Sliced Windowed FIFO buffer

The concept of a windowed FIFO has its origins in the software developmentcommunity [77]. In contrast to a standard FIFO, no data is exchanged betweenthe FIFO unit and its using masters. Instead, the FIFO unit merely acts as a con-troller. One FIFO channel connects exactly two masters with a data pipeline,namely the producing and the consuming master. Upon a request, it will re-turn an access window, defined by a start pointer and a length. The windowitself does not originate in the FIFO itself but within a shared memory area de-termined at runtime by the FIFO controller. The controller ensures exclusiveaccess to the window for one master to produce or consume data. After themaster has finished its transactions, it releases the window to the FIFO con-troller, handing over the regained memory space to the other master.
The organization of the FIFO buffer is depicted in Fig. 4.2 and explained in [38]in detail. There are four pointers rd,wr, rd′,wr ′ that chase each other in the cyclicbuffer, dividing the buffer into regions of data, space, and current windows forreading and writing data. This organization allows the implementation of a FIFO

72

4.4 Sliced Windowed FIFO buffer

rd’
rd

wr’

wr

space

data

bank1
bank0

Figure 4.3: Mapping of a sliced cyclic FIFO to a memory system with two banks.(From [38])

without any locks. Virtually expanding the buffer by a full length also preventsthe ambiguity of rd = wr. Without the extension, the situationmust bemappedto the meaning “empty buffer”, thus making a full buffer impossible. With theextension the “full buffer” state is represented with rd = wr + len. Pointers arepassed to the masters as the modulo of the length (wr mod len) to preventaccess outside the real buffer size. Amaster can get access to the FIFO buffer byrequesting a window for reading or writing. Opening and closing these windowsby using one of the four atomic operations: peek, pop, poke, push will move thefour pointers accordingly to a set of rules to protect data integrity.
Double buffering can be implemented within windowed FIFO buffers to avoidthe 0.5 tpc bandwidth boundary caused by single port memories. It is extendedby an interleaving techniquec to improve on the data delay caused by dou-ble buffering. The cyclic buffer is sliced, and its parts are distributed in thememory to randomize access patterns of the masters and giving the unit itsname “Sliced Windowed FIFO buffer”. It uses multiple physical memory loca-tions, called bases, to describe the FIFOs data store. The number is configurableat runtime but is bounded by a design-time parameter of the unit. Preferablythe memory locations are in different physical memory blocks to achieve thedesired performance improvement. The slicing of a FIFO buffer of two basesinto two memory banks is shown in Fig. 4.3. Traversal of the access windows

73

4 Sliced FIFO Hardware

aligned access

misaligned access

producer
consumer

producer
consumer

slice cyle

slice cyle

roll in roll out

time
access different memory access same memory memory selection

Figure 4.4: Memory access behavior with and without access pattern alignment.(From [38])

around the buffer will cause the pointers to jump between the physical mem-ories every time reaching the end of a slice. The FIFO controller ensures thata window is contained only within a single slice to avoid fragmentation of theaccessed memory.

4.5 Single FIFO Evaluation

For detailed single FIFO performance we refer to our work in [38]. It serves asan example to understand the effect of the presented FIFO buffer for through-put and delay. The performance was measured concerning the problems de-scribed in Section 4.2. For the single FIFO buffer, a 2-master, 2-memory-banksystem was proposed. The two masters —in this setup called “producer” and“consumer”—use simple data source and sinkmodels with a constant data rate.The sole parameter “data rate” describes the number of data tokens handledby the master per cycle. The results of interest are the runtime of a test, thethroughput and the delay, which is the time a single data token will remain in

74

4.5 Single FIFO Evaluation

Table 4.1: Standard parameters for FIFO unit simulation setup.
parameter value
buffer length 4096 tokslice length 128 tokproducer rate 1.0 tpcconsumer rate 1.0 tpctransfer length 8192 tokarbitration policy consumer

memory after production before being consumed. For the standard param-eters, which are listed in Tab. 4.1, the setup achieves a runtime of 9021 cyl(throughput of 0.908 tpc) with a speedup of 1.91 compared to the non-slicedFIFO buffer example with a runtime of 17 249 cyl (throughput of 0.475 tpc). Thetheoretical speedup that can be achieved when switching from a single port to adual port memory is 2.0. A double buffering setup can be created by setting theslice length to buffer length e.g. 4096. A data delay of 4118 cyl was measured inthis setup. That is 14 times longer than the 283 cyl measured in the sliced setupwith a slice length of 128.
Thismaximum speedup, however, is bounded by the system architecture andthe masters’ parameters. The theoretical throughput boundaries derived fromthe memory interface speed and the data rate are marked in Fig. 4.5. Eachmemory bank can process one request in each cycle. Each token needs twoaccesses to be processed, one for entering the memory and one for being readback, resulting in memory throughput boundaries of 0.5 tpc and 1.0 tpc for oneand two used banks, respectively. Similarly, the data rate bounds the systemperformance because the throughput cannot be higher than the minimum ofthe produce and consume rate. For data rates below 0.5 tpc, this boundarylimits the throughput, rendering the exploitation of the presented features im-possible. In other words, if the data rate cannot even utilize a single memorybank, it does not help to add another. The speedup curve in Fig. 4.5 summarizesthematter. Until a data rate of 0.5 tpc, there is no benefit from using slicing. Thespeedup takes off from there in a quasi-linear fashion until it reaches its maxi-mum of 0.9 tpc at a data rate of 1.0 tpc.
The experiments show that these results also depend on the alignment ofmemory access patterns explained in Fig. 4.4. When aligned, the producer andthe consumer always access different banks resulting in a perfect memory in-

75

4 Sliced FIFO Hardware

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

single memory bound

double memory bound

rate b
ound

data rate [tpc]

thr
oug

hpu
t[tp

c]

1
1.2
1.4
1.6
1.8
2

spe
edu

p

slow consumerslow producerboth slownot slicedWFIFOspeedup

Figure 4.5: Sliced FIFO system throughput for different data rates and speed upover the not sliced variant. As a comparison estimated throughputof the WFIFO [39] is included. (From [38])

76

4.6 Multiple FIFO Evalutaion

0 0.5 1 1.5 2 2.5 3
0.5
0.6
0.7
0.8
0.9

consumer delay / buffer length

thr
oug

hpu
t[tp

c]

toggleproducerconsumer

Figure 4.6: Performance of slicing FIFO for different arbitration policies depend-ing on the delayed start of one actor. (From [38])

terface utilization, which leads to high throughput. Without proper alignment,both masters access the same bank in some time intervals, and memory con-gestions lead to lower throughput. This problem can be overcomeby prioritizingone of the masters, forcing an access pattern alignment. In Fig. 4.6 the effect ofnot forcing alignmnet is shown. Depending on the consumer’s start delay, thethroughput can vary significantly.

4.6 Multiple FIFO Evalutaion

To further explore the capabilities of the FIFO controller unit, the system is ex-tended to host multiple FIFO buffers at once. The system parameters used inthe multi buffer tests are summarized and used as defined in Tab. 4.2, if notother stated. The results will be compared to a trivial reference system thatdoes not use slicing while still using the same amount of FIFO buffers and thesame traffic model parameters. The buffer instances are spread evenly acrossa number of memory banks equal to the sliced FIFO buffers bank number. Tofully exploit the multi FIFO buffer system, a different traffic model and prioriti-zation policy must be used. In the new traffic model, the throughput measure

77

4 Sliced FIFO Hardware

master3
master2
master1
master0

bank3
bank2
bank1
bank0

master3
master2
master1
master0

bank3
bank2
bank1
bank0

=̂

Figure 4.7: Equal performant setups. Top figure shows two FIFOs using twobases each on two physically separated memories. Bottom setupshow two FIFOs using four bases on four shared memory banks.With constant data producer/consumer in all cases all memories arefully utilized.

is not expressive anymore and is replaced by the message delay.

4.6.1 Traffic Model

In Section 4.5, it was stated that to increase performance using a sliced FIFOsystem, a constantly producing master has to have a data rate greater than0.5 tpc. Otherwise the FIFO channel can just be allocated in a single memorybank and the two masters (i.e. producer and consumer) would share the mem-ory bandwidth without even exhausting it, because the bandwidth requirementof the two masters bmaster < 0.5 tpc is less than the bandwidth provided by thememoy bank bbank = 1.0 tpc:
bbank > bproducer + bconsumer

78

4.6 Multiple FIFO Evalutaion

With the sliced FIFO system, the two masters of each channel can draw therequired bandwidth from multiple memory banks. In general the bandwidth isshared equally by all masters so that the bandwidth each master can expect is:
bmaster,max = nbanksbbank

nmaster
To maintain a master bandwidth of close to 1.0 tpc

nbanks ≥ nmasters

must hold. Any system that adheres to this rule is decomposable into thebasic structure shown in Fig. 4.7 of two masters working on two memory banks.
To model a producer with a fixed constant data rate is sufficient to under-stand the basic coherences, but does not allow the study of more complex sys-tems. A typical producer is event-driven and will produce messages dependingon the arrival of events. For purpose of performance analysis we assume astatistical model with message arrival time described by a Poisson process de-pending on a parameter λ, the message arrival rate. Similarly, the message con-sumption is described by another Poisson process with the parameter μ beingthe message consumption rate. Both processes are implemented in the pro-ducer as a stream of randomly emitted messages. The arrival rate and lengthof the messages, normalized to tokens, are λ and 1/μ token, respectively. Theconsumers read data from the channel with a constant 1.0 tpc if possible, imple-menting an average message consumption of μ with the given message lengthdistribution. From arrival and consumption rate a theoretical channel utilizationcan be derived as

ρ = λ

μ

describing the fraction of time the channel is actively using the memory. Withthis model, the average memory bandwidth each master requires is
bmaster,req = ρ × 1.0 tpc

to allowmultiplemasters permemory bank while still exploiting the increasedmomentaneous bandwidth in the active intervals.

79

4 Sliced FIFO Hardware

producer 8
producer 7
producer 6
producer 5
producer 4
producer 3
producer 2
producer 1

bank 4
bank 3

bank 1
bank 2

consumer 8
consumer 7
consumer 6
consumer 5
consumer 4
consumer 3
consumer 2
consumer 1

Figure 4.8: Simulation setup to evaluate the performance of multi FIFO envi-ronemts. Each sliced FIFO channel (in blue) use every memory bankwhilst the non-sliced variant (in orange) only uses one

4.6.2 Evaluation Setup

A simulation environment was used that features eight producers and eightconsumers connected to a memory system of four banks, to evaluate the multiFIFO channel setup. The maximum average bandwidth each master than mayuse is
bmaster,max = nbankbbank

nmaster = 4 × 1.0 tpc
16 = 0.25 tpc.

and subsequentially the channel utilization must hold ρ < 0.25.
The presented sliced FIFO architecture is compared to a not-sliced variantthat constructs a channel with producer and consumer working on a singlememory bank. The non-sliced setup also features eight channels with pairs oftwo sharing one memory bank, to match the sliced FIFO setup. With four inde-pendent systems of one bank and four masters the maximum average band-width for each master also resolves to bmaster,max = 0.25 tpc, like in the slicedsetup.
The standard parameter to set up the simulations are summarized in Tab. 4.2.The consumption rate of μ = 2.0 × 10–4 cyl–1 results in an average messagelength of smessage = 5000 tok > 2048 tok = sslice, which is bigger than the slice

80

4.6 Multiple FIFO Evalutaion

Table 4.2: Parameters for multi FIFO unit simulation setup
parameter symbol value
slice length 2048 tokmessage arrival rate λ up to 0.5 × 10–4 cyl–1message consumption rate μ 2.0 × 10–4 cyl–1number FIFOs nFIFO 8number masters nmaster 16number bases nbase 4number memory banks nbanks 4memory bank bandwith bbank 1.0 tpc

length, assuring a message transfer actually incoporates memory bank hoping.The channel utilization constraint is assured by choosing the message arrivalrate of λ < 0.5.
4.6.3 Effective Channel Bandwidth

Multiple factors prevent a channel from actually reaching the theoretical band-width of 1.0 tpc. Firstly, the opening and closing of channel access windows costa few cycles, effectively lowering the overall throughput. With a sufficiently largeslice length, this effect is negligible.Secondly, the bandwidth of a message is defined as the ratio between mes-sage length smessage and its transfer delay dmessage:
bmessage = smessage

dmessage
The transfer delay is the time from the first write access of the producer untilthe consumer has read the last token. Although producer and consumer areacting most of the time simultaneously, the consumer’s start is delayed creatingtwo phases (e.g. roll-in and roll-out) at the beginning and the end, where onlyone master is active. The consumer’s delayed start is necessary to achieve thedesired aligned memory access, as shown previously in Fig. 4.4. So, even if bothproducer and consumer experience a full 1.0 tpc for reading and writing, themessage bandwidth is decreased by this effect. It can be calculated as

dmessage = smessage + sroll
bmaster

81

4 Sliced FIFO Hardware

with sroll being the lenth of roll-in and roll-out phase in token and the bmasterthe actual experienced bandwidth of both masters. The length of the rollingphases is at most the slice length, but may be less if a message is shorter thana slice sroll = min (smessage, sslice). Putting all together the message bandwidthdepends on the actuall —or effective— master bandwidth as:
bmessage = smessagebmaster

smessage + min (smessage, sslice)
For long messages, the rolling phases do not have a significant impact on thebandwidth. The smaller the messages, the bigger the impact.
The third factor affecting the effective message bandwidth is the effectivemaster bandwidth, which is the memory bandwidth each master receives. Itis decreased from its optimum of 1.0 tpc by interference with masters of otherchannels. Even with low channel utilization, there is a probability that messagestransfers of different channels may overlap and cause memory access collision.Assuming a balanced distribution of all active masters over all available memorybanks each master receives a bandwidth of

bmaster,active(n) = min (nbankbbank
n

,bbank)
depending on the currently active masters n capped by the bank bandwidth

bbank = 1.0 tpc. The number of active masters can be regared as a binonialrandom variable with a parameters p = ρeffective and n = 2nFIFO. Because ρ = λ/μstill assumes a master bandwidth of bmaster = 1.0 tpc it has to be replaced by:
ρeffective = λ

μeffective = λ

μbmaster = ρ

bmaster
Without the assertion that bmaster = 1.0 tpc the consumption of a message oflength 1/μ is prolonged by a factor of 1/bmaster, meaning the effective consum-tion rate is μeffective = μbmaster. The effective channel utilization then becomes afunction of the number of active channels ρeffective(n).
A Markov chain is constructed with one state for each active channel number,to obtain the probability that a certain number of channels is active. The statetransition probabilities are the probability that a certain number of channels areactive under the assumption of the number of currently active channels. Theycan be described with a binomial distribution

82

4.6 Multiple FIFO Evalutaion

tf ,t = (nFIFO
t

)
(1 – ρeffective(f))nFIFO–t(ρeffective(f))t

for a transition from state with f to t active channels. With more current ac-tive channels, the effective bandwidth decreases, increasing the probability ofhaving a high number of active channels. The results of the Markov chain solu-tion are the probabilities P(n) that the system has n active channels. With theseprobabilities and the effective bandwiths, the expected effective bandwidth canbe derived as:
E(bmaster) = ∑

n

P(n)bmaster,active(n)
In Fig. 4.9, the master bandwidth estimation is plotted for sliced and non-sliced variants. As a comparison, the measured bandwidth for both messagesand masters is included. The constant offset between memory access andtransfer bandwidth due to the roll-in and roll-out phases discussed earlier. Thesliced provides significantly higher bandwidth and can sustain a constant bene-fit above the non-sliced variant up to a system load of ρ = 0.7. Above this value,the bandwidth drops to join the non-sliced bandwidth, reaching the physicalmemory boundary at a fully loaded system.

4.6.4 Memory Access Model

Compared to the single FIFO setup, the priority ordering for a multi-channelsetup is much more complex. Because the number of configurations grows ex-ponentially with the number of masters, there are only two in the simple setup(favoring “consumer” or “producer”) but a large number in a complex system.In Section 4.5 a significant performance impact could be observed dependingon the chosen configuration. Because the masters’ access patterns are not de-terministically aligned, it is even more critical to have a mechanism that dis-tributes multiple masters over the available memory banks. A hard priority sys-tem worked well with two masters, but with multiple masters, severe problemsare to be expected. With 16 masters ordered in a fixed priority, some of thelower priority masters likely starve when masters with higher priority experi-ence an increased utilization. In Fig. 4.10 a situation is displayed that wouldresult in the starvation of one master under a fixed priority system. As soon asthe number of masters exceeds the number of banks, it is mandatory to replacethe priority system with a more sophisticated solution.

83

4 Sliced FIFO Hardware

0 0.2 0.4 0.6 0.8 1
0.2
0.4
0.6
0.8
1

system load

ban
dw

idth
[tpc

]

trivial accesstrivial transfersliced accesssliced transfertrivial access (est.)sliced access (est.)

Figure 4.9: Per channel available bandwidth depending on the system load. Val-ues are shown for both trivial and the proposed (sliced) setup. “Ac-cess” measures the memory bandwidth a master receives from thememory system. “Transfer” measures bandwidth a message (blockof data) takes to travers the FIFO. From first write to last read.

84

4.6 Multiple FIFO Evalutaion

bank 4

bank 3

bank 2

bank 1 4 1 54
4

1
1

5
5

2
2

3
3

4
4

1
1

5
5

2
2

3
32 32

2
3

3
4

4
1

1
5

5
2

2
3

3
4

4
1

1
5

52
2

3
3

4
4

1
1

5
5

2
2

3
3

4
4

1
12

2

3

3

4

4

1

1

5

5

2

2

3

3

time
Figure 4.10: Memory access queue on a 4-bank, 5-master configuration. Foreach bank the access intervals are shown, labeld with the access-ing master’s id. Above, the access request to a bank are indicated,also with ids. Whenever a master finishes an access interval, it im-mediately requests the next bank, as indicated by the down arrows.A waiting queue forms in bank 2 where every master has to wait be-tween access request and granting.

85

4 Sliced FIFO Hardware

The solution proposed here are memory access queues. A requirement forthis approach is that the masters are trying to access the same memory bankfor a sufficiently long time without skipping a cycle. In case of a collision, thearbitration system grants access to the master that started its access earliest. Amaster having access will keep it till it intermits its requesting streak. The arbitra-tion is done per memory bank so that the jumping between banks assures thatno master is starved, and every master has the same chance of getting access,thus receiving the same memory bandwidth. Masters trying to access the samebank simultaneously are moved apart from each other till they are accessingdifferent banks, a state that they most likely will keep automatically.
To implement this behavior, the memory arbiter features an access queuefor each bank that can hold all master ids. Whenever a master starts requestingaccess to a bank, it will be appended to the access queue. Stopping to requestaccess will cause a master to drop out of the queue. The access to the memorywill be given to the master in front of the queue.
In Fig. 4.10 this behaviour is pictured. On memory bank 2 masters 4, 1 and 5are queued for access while 2 and 3 are queing for bank 1. In a priority basedsystemwith themasters having a priority equal to their number, master 1 wouldnever gain memory access. The four high masters would spread through thesystem each occupying one bank at any time. With the queue based systemeach master has to wait occationally before gaining access to a bank. In theexample in Fig. 4.10 the queue forms in bank 2 where every master has to waitfor another master before gaining access. This way the bandwidth is equallyshared and memory access starvation is assured to not happen. The transitionfrom priority based to a queue based access control is a neccessary step for theextension from single to multi FIFO systems.

4.7 Hardware Implementation

A hardware implementation of the FIFO controller was included in the Kachel 1chip [36]. It is produced in a 22nm FDSOI technology to run at 500MHz. Thehardware implementation matches the simulations done for the single-channelsetup. It does not support the multi-channel setup because only two basesare supported. The inclusion of those two additional bases will not increasethe area consumption significantly. From place and route of the chip the areaconsumption of the unit was extracted to be:

86

4.8 Key Lernings

Table 4.3: On-chip area consumption of 4 kB memory macros
unit area [µm2] density [kBµm–2]
single port 22nm 13705 2.91 × 10–4dual port 22nm (est.) 25 863 1.54 × 10–4single port 28nm 8873 4.50 × 10–4dual port 28nm 16745 2.38 × 10–4

AFIFO = 15826µm2

One main advantage of the proposed FIFO controller is to allow the use ofsingle-port memory macros in the memory system in contrast to the dual-portmacros that need to be used usually to prevent congestions in FIFO channelapplications. The area reduction by using single port macros is significant. In[38] a comparison of dual-port and single-port static random access memory(SRAM)memorymacros is done. This table is replicated in Tab. 4.3 and extendedby the storage density. The storage density is clearly doubled when switchingfrom dual-port to single-ported SRAM macros as also observed by [60, 48, 7].The total chip area of memory banks —together with the FIFO implementa-tion in the single port case— depending on total memory capacity is shown inFig. 4.11. The discrete values are based on the described 4 kB memory macros.Interpolating between the discrete points reveals the break-even point of equalchip area for traditional and proposed hardware:
x = AFIFO

Adp,22 – Asp,22 4 kB = 5.2 kB
At this point the savings from replacing dual-port with single-port memoriesis equal to the area of the added FIFO controller implementation. Already theminimal setup for employing a sliced FIFO channel of two single portedmemorybanks (i.e.8 kB) and the FIFO controller is smaller than a traditional setup withtwo dual port banks and (close to) no additional logic.

4.8 Key Lernings

The optimization of FIFO channels for embedded computation system has mul-tiple facets. In the current state of the art, there are excellent solutions for

87

4 Sliced FIFO Hardware

0 2 4 6 8 10 12 14 16
0

0.2
0.4
0.6
0.8
1

·105

memory capacity [kB]

chip
are

a[µ
m2

]

single portdual port

Figure 4.11: Chip area consumption of FIFO system composed of controller unitand memroy banks based on 4 kB memory marcos. When usingdual port memories the proposed FIFO controller is left out. Thebreak-even point can be interpolated to 5.2 kB.

88

4.8 Key Lernings

any attribute that might be optimized. Every solution has severe drawbacks inother attributes. The challenging problem is to find a solution that finds a sweetspot that exploits the advantages of each solution without incorporating the fullamount of drawbacks. When optimizing only for bandwidth/delay, a dedicatedhardware (HW) unit can provide a perfect throughput of 1.0 tpc and a minimaldelay. The drawbacks are the exclusiveness of the used memory to the HW unitand the need for area expensive dual-port memory macros. Since the on-chipmemory is one of the most precious resources in an embedded device, this isunacceptable. The apparent area optimal solution is a software FIFO channelimplementation with a single port memory. It suffers from delay and bandwidthdegradation, where even a single channel cannot exceed 0.5 tpc. When mas-ters need to prosume1 token at a higher rate, the multiple parallel accesseshave to be conducted. The memory system must be able to expose multiple ofthe memory banks simultaneously to multiple masters to increase the usablememory bandwidth. The data buffer has to be sliced and distributed to differ-ent memory banks to exploit the higher bandwidth. When multiple channelsare active at once, the memory access patterns must be aligned to exploit theparallel memory access.In the here proposed hardware FIFO unit data and access patterns are dis-tributed over sharedmemory banks to find a sweet spot between optimal band-width and optimal chip area consumption. In the completed simulations it wasshown, that the proposed design yields 80% of the theoretical possible band-width of 1.0 tpc. From the implementation of the unit into an manufacturedMPSoC it was derived that the unit fills an area equal to 1.15 memory macros of4 kB with a single port or 0.53 of the dual ported variant. That allows building a8 kB memory system with single port memories and a FIFO unit that is smallerthan an equivalent sized system with dual-port memories without such a unit.

1portmanteau of produce and consume

89

4 Sliced FIFO Hardware

90

5 Message Passing Hardware

Apart from the first in first out (FIFO) channel communication discussed in thelast chapter, a second type of communication, namely message passing (MP)plays an essential role in the efficient execution of parallel applications. Sim-ilar to the data streaming communication, MP suffers a severe performanceloss when implemented on top of standard on-chip communication like remotedirect memory access (RDMA). The transfer of small messages with randomsource and destination within a cluster of many processing elements (PEs) hassome bottlenecks that can be addressed with dedicated hardware implemen-tation. The two key performance indicators that are of interest for an MP imple-mentation within an embedded environment like the one discussed throughoutthis work are message delay and resource efficiency while bandwidth is a sec-ondary goal.
The abstract use case for MP in this type of environment is a client-server re-lation between several nodes. A potentially great number of clients are sendingrequests to a server and are expecting a fast response. These requests may forexample be a command to a file system service in a distributed operating sys-tem (OS), but also the search for a blockid in an dynamic static data flow (SDF)scheduling system like seen in Section 3. In neither case it is needed to trans-fer a lot of data but rather get a small message to another node as fast andas efficient as possible. This chapter will introduce an extension to an existingRDMA unit that handles an MP protocol featuring connectionless transfers andmemory-efficient buffer management.

91

5 Message Passing Hardware

5.1 Addressed Performance Hotspot

The usual way to implement MP is by utilizing an existing RDMA implementationsince it is widely available on many platforms [43, 44, 2, 73]. Using an RDMAunit as the hardware foundation to implement the transfer of data across thechip leaves the processor to run the MP protocol in software, which not onlyintroduces an additional delay into the message delivery pipeline but also in-terrupts the processor from running the application code. Also, RDMA lackssome features that would allow connectionless transfers, which results in somesignificant network traffic overhead and memory consumption to save the con-nection state. A dedicated connection setup for every peer to peer connectionhas, in the best case, a fixed resource consumption on both sender and re-ceiver. When a service has to receive messages from many clients, this mayaccumulate to significant memory consumption. Additionally, each connectionmust be checked for liveness once in a while, meaning some network trafficand processing overhead for each link, which would also accumulate on serviceunits to a significant amount of the processing time. And lastly, for connection-based communication, a connection establishment functionality must be pro-vided. Without anymessage passingmechanics, this is non-trivial and requires aseparate service, connected to every process, and manages the establishmentof a new connection from a centralized position. That is contradictory to theidea of a decentralized, distributed execution environment.
Since the use cases state that MP is mainly for signaling and not for bulk datatransfer, the bandwidth that can be utilized for a message is a secondary goal.More critical are the delays caused by the message stages before the messageenters and leaves the network on chip (NoC).
The mentioned drawbacks like connection establishment and resource con-sumption is not significant in the biggest RDMA application field, namely highperformance computation in datacenters. However, for the use in embeddedsystems as signaling service for dynamic scheduling these attributes are crucialfor the overall performance.

5.2 State of the Art

There are not many systems that try to implement a message-passing proto-col stack directly in hardware. The reason is that in most cases, a software-based implementation is sufficient. Message delay and data bandwidth are

92

5.3 Message Passing Regarded as Queueing

good enough for the application, or the system is based on a shared mem-ory system. In that case, a hardware MP implementation may, in the best case,optimize a part of the system that is not considered a hotspot, thus have verylittle impact. In a worse case, it may be simply not applicable and a waste ofresources (e.g. chip area). A software implementation and the importance ofMP for multi processor system on chips (MPSoCs) is acknowledged in [57] butwithout the need for hardware acceleration.
Since including new hardware to a processing system is a tremendous effort,reusing already available functionality is often a much cheaper, and often analmost as efficient solution. In [73] a MP stack is built upon an existing RDMAunit. And still, there are attempts to do a direct hardware implementation [87],although not very frequent. As mentioned before, the necessity to implementsuch a highly optimized piece of hardware is not given in most projects. In Sec-tion 3.5, however, it was mentioned that the delay of network messages caninfluence the system performance significantly with sufficiently large systems.

5.3 Message Passing Regarded as Queueing

Generally, MP can be partitioned into four modes of communication: (1) 1-to-1(2) N-to-1, (3) 1-to-N and (4) N-to-N. Each communication mode requires differ-ent hardware functionallity to be implemented efficiently. This work will focus tothe N-to-1 mode (Fig. 5.1) since it is the one used to build client-server system.To implement N-to-1MP amessage queue is placed at a node. Amessages sentto the queue will be enqueued andmade available to the destination node. Thisway, messages frommultiple nodes are sequalized and can easily be processedby the destiantion node. Additionally, this work will restrict themessages sent toa queue to be of constant size. As long as MP is only used to tranfser request/-command messages a fixed message size does not pose serious restrictions.
On theMPSoC system described in Section 1.3 themanagement system fromSection 3.4 can be implemented using such queues. Each management PE in-stanciates a queue to implement the interface to a service. The worker PEs cannow query those services by enqueing requests. It is possible for one worker toquery multiple services at once and, more importantly one service can answerto request from multiple clients on the same queue. The implemented servicesmay be a task placing service, a quality of service (QoS) network connection al-locator, or a worker PE command queue, to name a few examples. But alsoexamples from other applications are possible like a file system service or a pe-

93

5 Message Passing Hardware

0
1
2
. . .

0
1
2
. . .

NoC

producer MP MP consumer
λp

µ

Figure 5.1: Overview of Simulation setup. Multiple producer each using an MPunit to transfer messages over the NoC to a single consumer. A pro-ducer p generates messages at a rate of λp. The consumer takesmessages from the local HW unit with a rate of μ.

ripheral interface in a distributed OS. All services have in common that theyare usually designed to have a lot of possible client nodes. Most PEs will onlyoffer a single service, thus only have a single receiver. But a PE may potentiallywant to request a lot of services, so it will have to implement many messagesending endpoints. Having many senders for a single receiver implies that thesenders’ message rate must be relatively low to prevent overloading the serviceprovider. Assuming that a typical service can process a message in a constanttime D gives a message consumption rate of:
μ = 1

D

A widespread way of describing message production in a sender is as a Pois-son Process. It defines exponentially distributed inter-message timings with amean message rate of λ. The ratio of arrival and consumption rate
ρ = λ

μ

describes the queues utilization, which obviouslymay not exceed 1.0 becauseservice times would approach infinity. For a queue with multiple independentPoisson Process driven senders the total arrival rate μt can be obtained as thesum of the individual rates or, with a constant arrival rate across the system, asproduct of the number of senders nsender and the basis rate μb [47]:

94

5.4 A Remote Direct Memory Access Based Implementation

μ = ∑
i

μi = nsendersμb

Therefore, the queues regarded in the following are expected to be close toanM/D/11queue in their behavior. Only a single queuewill be examined at once,assuming that the PE connecting NoC does not get congested.
The whole message queue from one subprogram to another spans over sev-eral units within the platform described in Section 1.3. Included are the sourceand the destination network interface units and the NoC. The life cycle of eachmessage can be divided into five stages that describe the complete transfer.Depending on the used implementation and length of the message the stagesmay overlap. First, the message is “pushed” from the source processor into thenetwork interface. Secondly, it must be prepared and “send” into the NoC. The“transfer” through the NoC is the third stage, after which the message will be“received” at the receivers networking unit. Finally, the message data is “pulled”from the MP stack to the receiving processor.

5.4 A Remote Direct Memory Access Based Implementation

In Section 1.3.4 the functionallity of RDMA is explained. While the “put” and “get”primitives are sufficient for one-to-one communication, they introduce prob-lems when working on a multi-point communication. In a one-to-one commu-nication, specific local addresses are reserved for access by the communicationpeer. The peer knows about the location of these reserved buffers and cansafely write or read data from or to it. The problem that causes the protocoloverhead is that a peer does not know who, when, or how often the reservedarea was written to or read from by a remote peer. Still, a safe and functionalMP protocol is possible. The basis is a connection state that each peer holds foreach connection. It features an off-band buffer that is used to signal the pro-tocol state to the peer, containing a least three esential attributes. In conjunc-tion with the off-band buffer, the connection state contains the address of theremote off-band buffer. This remote off-band address must be set in the con-nection establishment phase, possibly by a communication manager instance.Thirdly, the connection stage contains the local address of a message buffer.
1A/S/c is the Kendall notation to classify queues. The parameters describe “A”: arrival time distribution;“S”: service time distribution ; “c”: number of service channels. Often used codes for “A” and “S” are“M”: markovian (poisson process), “D”: degenerate (fixed time) [46]

95

5 Message Passing Hardware

memory optimized
sender recevier

call

allocate

send

recive & deliver

request buffer (put)

return buffer pointer (pu
t)

send message (put)

delay optimized
sender recevier

allocate

call
send

receive & deliver

request buffer (fetch)

response

send message (put)

Figure 5.2: Flow of memory and delay optimized RDMA based message passingimplementation. The effective delay from the sending to the receiv-ing subprogram is marked which prefers the “delay optimized” vari-ant.

96

5.5 Hardware Implementation Concept

There are two protocol versions, one that favors message delay, the other fa-voring memory consumption. For both, the transfer of a message is displayedin Fig. 5.2. This message flow assumes that there has been a connection es-tablishment phase that exchanged off-band buffer locations between the twopeers. Each peer now holds a connection state structure with a cleared “off-band buffer” field and a “remote off-band address” set to the location of thepeer’s off-band buffer. When using the memory-optimized protocol, the sendermust, before sending the message, query the receiver for an empty messagebuffer. It is done by writing a command to the receiver’s off-band buffer andwait for a reply in the own off-band buffer. After that, the sender can transferthe message to the assigned message buffer. On the other side, the receivermust find the buffer allocation request in the off-band buffer corresponding tothe sender. It must then allocate a message buffer and send its address backto the senders off-band buffer and then wait for the message to arrive. For thedelay-optimized version, the buffer allocation is moved out of the critical path.Immediately after connection establishment, the receiver will notify the senderabout an allocated buffer location. Because the allocation has already beendone, the sender can start immediately when the application wants to send amessage. It sends a message and immediately requests a new message buffer.
Under the preallocated buffer strategy, the receiver must hold at least oneallocated buffer for every sender, although it might be idle most of the time.The memory-optimized version allocates memory on demand to prevent thismemory wasting, with the drawback that this request and allocation processprolongs the message delay.

5.5 Hardware Implementation Concept

Goal of the development of an MP hardware unit should be to improve the per-formance issues a reference MP-over-RDMA implementation has. The issues athand are:
1. The actual MP protocol is implemented in software, which is slow andsteals processing time from the application.
2. Connection establishment and a connection state are necessary in orderforMP towork properly. Connections consume resources, may it bemem-ory for the state, or time for the establishment and keep-alive handling.

97

5 Message Passing Hardware

3. In an RDMA based implementation a receive buffer must be kept for eachconnection, which results in memory consumption proportional to thenumber of clients.
4. To save resources buffer allocation can be done on demand, which hasthe downside of delaying the message significantly.

The hereby proposed implementation is based upon the existing networkingunit briefly described in Section 1.3.4. Before development on the MP stackbegan, the unit already implemented a simple RDMA protocol. It also featureda FIFO channel bridge that can be used to connect FIFO channels describedin Chapter 4 across the network to build an inter PE channel. Internally thenetwork unit uses a multipurpose configuration file holding the configurationof a set of communication entities. Each entity can be individually chosen todescribe an RDMA operation or a FIFO channel. For the MP protocol imple-mentation, a third mode will be added to allow a configuration slot to hold a MPqueue description. This recycling of the config registers attempts to reduce thearea increase caused by the MP protocol implementation.The MP configiguration slot leans on the RDMA and FIFO channel versions. Itonly describes the metadata and holds pointers to the local shared memory fordata storage. The application is responsible for local memory allocation sinceit is assumed to have a dynamic memory allocation. When initializing the MPqueue, the application will grant the hardware unit a piece of dynamically allo-cated memory that it can manage until the MP queue is being destroyed.The queue divides the assigned memory space into a list of message posi-tions. Within the configuration file, parameters about the message and list sizeare stored. Further, a bitfield holds the status of each message position. Itstores if a position is occupied and, in the sender’s case, whether the messagewas sent. The message will remain in the buffer until a reception receipt is re-ceived from the receiver.The sequence to transfer a message from one application processor to an-other is shown in Fig. 5.3. Both sides must set up a queue configuration andprepare amessage buffer. On the sender side, the destination PEmust be spec-ified as well. The message transfer is handled by three control flows running indifferent finite state machines (FSMs), thus being independent of each other. Itallows a decoupling of the application processors from the actual transfer.The sending processor controls the first flow, and the HWunit is merely react-ing. To initiate a message transfer, the processor requests a message positionfrom the HW unit. After filling in the message data, the processor releases the

98

5.6 Evalutation of Performance

message to allow the second FSM to take over control and relieve the processorof any further actions.
A second flow handles the transfer between two HW units. The HW unit’sstatemachine will continuously observe the queue configurations to find ames-sage that is not yet sent. It then sends the message to the configured peer andchange the message state to “sent”. On the receiving side, the message willarrive at the HW unit. It selects a not occupied message position and storesthe message there. Once the whole message is received, the message is madeaccessible by the application processor, and an acknowledgment signal is is-sued to the sender PE. This signal tells the sending HW unit that the message isstored to the remote memory and can now safely removed from the local mes-sage buffer. Back on the receiving end, a third flow controlled by the receivingprocessor can now commence. The processor polls the HW unit for new mes-sages. If a newmessage is present, the HW unit will return one to the processorfor reading. After being finished with the message, the processor releases themessage, allowing the HW unit to free the message position.
There are several situations where the flow may differ from the optimal, al-ready described, course. Both requesting a message for reading and writingmay fail when no position in the local buffer is free. The application must thenwait some time and retry its request. A message arriving at the HW unit fromthe NoC may also be unable to find a free position and then might be dropped.In that case, the receiver will send a negative acknowledgment to the sender,which will then retry the transmission later.

5.6 Evalutation of Performance

In Section 5.5, four performance issues were indicated that the new HW is sup-posed to improve. The value that describes the system’s performance is thedelay a message must expect to traverse the system. This delay is dependenton a range of parameters. One parameter the performance depends on is thesystem utilization, described as the ratio of message arrival and message pro-cessing rate ρ = λ/μ. Other parameters that may affect the delay are the mes-sage buffer size or the number of senders.
To evaluate these values, an register transfer level (RTL) based simulation wasset up like displayed in Fig. 5.1. The system consists of a set of nodes connectedwith a NoC allowing them to communicate. Each node contains a network inter-face unit featuring the RDMA and the MP implementation and a processor that

99

5 Message Passing Hardware

sender HW NoC HW receiver
openMessage

return pointer

closeMessage

sendMessage
deliverMessage

issue ACK

deliver ACK

pollMessage

return pointer

releaseMessage

Figure 5.3: Flow of message passing protocol implementation. The transfer isdone by three decoupled processes. Both sender and receiver querythe HW unit for access to a (new) message. In a decoupled pro-cess the twoHWunits transfer the data independent of producer/re-ceiver. All three flows can run simultaniously. The NoC transfer canstart “sendMessage” at any time after “closeMessage” and “pollMes-sage” can already be issued after “deliverMessage” has fininshed.

Table 5.1: Standard parameters for measurements
parameter symbol value
conumer rate μ 1 / 50 cylsystem load ρ 0.0 to 1.0message length 8 toknumber of producers np 5buffer size 4NoC delay 10 cylproducers message rate λn

100

5.6 Evalutation of Performance

0 0.2 0.4 0.6 0.8 1

100
200
300
400
500

system load

del
ay[

cyl]
1591317M/D/1

Figure 5.4: Performance of Hardware MP unit with different number of produc-ers.

allows modeling either a producer or a consumer of messages. When config-ured as a producer, a processor will randomly generate messages and pushesthem to the network unit. The message generation follows a Poisson Distribu-tion parametrized with a producer message rate λp. A consumer node worksalmost the same but polls messages from the HW unit and consumes them inconstant time dc = 1/μ. The simulations always feature exactly one consumerand a set of np producers. The system load is calculated combining the producerrates to a total message arrival rate and the consuimption rate as:
ρ = λpnp

μ

Other parameters of the simulation are given by Tab. 5.1. In Fig. 5.4, setupswith a different number of active producers are compared. The individual mes-sage rates λp are scaled to keep the system load constant. In theory, a queuingsystem queried by multiple producers should behave the same as with a singleproducer with amessage rate equal to the sumof themany producers assumedthat the produced messages are Poisson distributed. However, with the differ-ent stages in the queuing system, it is not trivial to see if this relation holds. The

101

5 Message Passing Hardware

0 0.2 0.4 0.6 0.8 1

100
200
300
400
500

system load

del
ay[

cyc
le]

HWRDMAM/D/1 D=50M/D/1 D=63M/D/1 D=116

Figure 5.5: Comparison of message delay of HW implementation and RDMAbased version.

Fig. 5.4 shows that, for the HW implementation, this relation does indeed hold,since the message delay is independent of the number of active producer withconstant system load ρ. Although the implementation does not quite reach thetheoretical performance of an ideal M/D/1 queue, it keeps good performanceeven in high load situations. Compared to that, the RDMA based version drivesthe queue into saturation at a much lower system load (Fig. 5.5).
The queue must be regarded as the concatenation of the three parts: thesender, the NoC, and the receiver. Replacing the message processing time dpwith the total message delay

dtotal = dsend + dNoC + dreceive + dp
as the sum of all message stage delays, the theoretical model matches thesimulated delay times. The same method can be applied for the RDMA imple-mentation. The only difference is that the message buffer’s acquiring is addedas additional stage:

daquire = dallocate + 2dNoC

102

5.6 Evalutation of Performance

Table 5.2: Time consumption for MP operations.
parameter description HW RDMA
NoC NoC traversion 10 10send local memory to NoC 10 10receive NoC to local memory 10 10p message processing (CPU) 50 50aquire aquiring a remote buffer location — 100allocate allocating buffer (CPU) — 34retransmit retransmission in case of buffer overflow 100 —pause pause before new retransmision attempt 100 —

The additional delay further reduces the performance, whichmanifests in thesystem being saturated already at a system load of 0.4. It is possible to veryaccurately model this delayed queuing system by replacing μ in the standardM/D/1 delay model [13]
d = 1

μ
+ ρ

2μ(1 – ρ)
with the real message delay μtotal = 1/dtotal but keep the normalization tosystem load ρ = λ/μwith a μ from the processing time only. The stage delays aresystem implementation-specific values and are obtained from RTL simulationsof the presented hardware. Values are summarized in Tab. 5.2. With thesetimings available the total message delay for the HW implementation and forthe RDMA implementation can be calculated as:

dtotal,ASIC = 60 cyl
dtotal,RDMA = 110 cyl

M/D/1 delay functions with these modifed values for μ are plotted into Fig. 5.5along with simulation results. For the sake of comparability, both applicationspecific integrated circuit (ASIC) and RDMA version feature a single producer.The theoretical modelmatches the simulated results and shows the importanceof processor to processor delay
One attempt to compensate the dependence on the transmission time is toexploit the use of a pipelining system. The availability of message buffers onboth the sender and the receiver side is supposed to allowmultiplemessages to

103

5 Message Passing Hardware

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

system load

pro
bab

ility
<1
<2
<3
<4
<5
<6
<7
<8
<9

Figure 5.6: Probability that a certain number of messages are in the queueingsystem

be handled by the system simultaneously. Additional delays may be eliminatedby storing a message in case the next stage is not available. For example, amessage may be parked in the receiver buffer when the central processing unit(CPU) is busy avoiding a signaling path and retransmission all the ways back toand from the sender CPU.
Since the maximum number of message positions is fixed in the ASIC designitself, it is crucial to understand the benefit of a bigger buffer to decide at designtime the parameters limiting this. In other words, the question that should beanswered is how the buffer size affects the functionality and performance of aqueue. Since the ASIC unit implements message rejection and retransfer mech-anism, a single message position is enough to assure a functioning messagingsystem. A retransfer does, however, increase the message delay by:

dretransmit = 2dNoC + dpause
It describes the transmission of a not-acknoledge message, the original mes-sage and a retransmission pause to prevent overloading the NoC. At last theretransmission is not protected against a repeted rejection which alters the to-tal message delay to incorporate the number of rejections:

104

5.6 Evalutation of Performance

0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8
1

system load

fac
tion

ofr
etra

nsm
itte

dm
ess

age
s 12510

Figure 5.7: Ratio of messages that have to be retransmitted because of a bufferoverflow depending on buffer size.

dtotal = dsend + dNoC + nretransmitdretransmit + dreceive + dp
Luckily, these retransmissions are a relatively seldom event and depend onthe size of the receiving buffer. To estimate the probability of a rejection, theprobability that a number of messages are in an M/D/1 queue can be used.Normalized to a processing time of D = 1 it is given as [59]:

πn = (1 – λ)
(
e
nλ + n–1∑

k=1 e
kλ(–1)n–k +

[(kλ)n–k
(n – k)! +

(kλ)n–k–1
(n – k – 1)!

])
With μ = 1/D = 1.0 the queue untilization becomes ρ = λ/μ = λ. The prob-ability of less than a certain number of messages being in the queue can becalculated as

P(X ≤ n) = n∑
k=0 πk

and plotted as shown in Fig. 5.6. In the range of small queue utilization, a

105

5 Message Passing Hardware

0 0.2 0.4 0.6 0.8 1

100
200
300
400
500

system load

del
ay[

cyc
le]

D=100 B=1D=100 B=2D=100 B=5D=100 B=10D=10 B=1D=10 B=2D=10 B=5D=10 B=10M/D/1

Figure 5.8: Message delay dependent on system load, network delay (D) andreceiving buffer size (B). Only with a very small buffer coupled with avery high NoC delay has an effect on message delay.

106

5.7 Key Lernings

single message position is sufficient to catch most messages directly, causingminimal rejections. But even at saturation utilization ρ = 0.7, a set of four posi-tions assures a message acceptance of more than 90%. It is important to notethat the remaining 10% are not lost but are only delayed by dretransmit cycles. An-other experiment was set up to run the queuing system with different buffersizes. Although a certain number of retransmissions can be seen in Fig. 5.7,no significant impact on average message delay can be observed. In Fig. 5.8,not even with a single message sized buffer, a dramatic performance reductioncould be observed compared to the bigger buffers. Only an increase of the NoCdelay from 10 cyl to 100 cyl could show the effects of choosing the buffer sizetoo small. The increased probability of retransmissions and the high penaltyof retransmission of over 200 cyl a performance degradation for a very smallmessage buffer can be observed.

5.7 Key Lernings

In this chapter, a hardware solution is proposed that significantly improves onperformance of signaling flow of distributed applications. With the immediatememory being so close to the processor, the querying of microservices or syn-chronizing with coworkers in the distributed application becomes the new bot-tleneck. It is essential to keep the overhead for the application processor forcommunication as low as possible. The two key factors are the software effortto access the communication stack and the delay the application potentially hasto wait for an answer to its request. An ASIC MP unit can help with both issues.Implementing most of the MP stack in hardwaremoves effort away from the ap-plication and at the same time accelerates the processing. Firstly, that reducesthe overhead for the application, allowing other processing while waiting for aresponse. And secondly, the improvements on the MP protocol itself decreasethe message delay significantly, effectively lowering the waiting time the appli-cation experiences waiting for the response to a request. The smaller transmis-sion delay also allows increasing the relative system load without saturating thequeue. The proposed hardware implementation can reduce the memory con-sumption on the receiver (or service) side of a MP communication by leavingout connection state information. The connectionless protocol also simplifiescommunication management as connections do not have to be setup up by acentral entity, but a client can simply send a message to a known receiver with-out the receiver being aware of the sender beforehand. Neither receivers nor

107

5 Message Passing Hardware

senders have to worry about connection aliveness and implement additionalconnection keep-alive protocols.

108

6 Summary

In this work, the attempt wasmade to grasp the scope that has to be consideredwhen designing efficient resource management for embedded systems. Opti-mizing one part of the system to address one hotspot may result in increasedefficiency. However, a big improvement in efficiency can only be achieved whenregardingmultiple hotspots at once. It is then possible to apply one optimizationthat only shifts the bottleneck and creates another hotspot. Applying a secondoptimization on the new hotspot could potentially result in greater efficiencyimprovement that a direct solution for the original hotspot might have brought.
In this work, for example, in Chapter 2 a solution was found to the problemof processing networks that don’t allow certain types of parallelism. The intro-duction of task emitters for few static data flow (SDF) actors allows for morepotential parallelism to be exploited. The increased amount of managementoverhead shifts the hotspot from the denied potential parallelism to the man-agement processing. Without any further investigations, the done measureswould be unsuitable for a real application because it would limit the number ofusable worker processing elements (PEs) to very few. However, Chapter 3 picksup this increased and variable overhead ratio and presents a solution which en-sures efficient utilization of all PEs. This way, the relevance of the results fromChapter 2 are reinforced for a broader range of applications. The key to thissuccess is the layer crossing handling of performance hotspots. In this case,from the application layer specific parallelism to the runtime environment (RTE)layer-specific overhead handling.
The distribution of the overhead processing described in Chapter 3 relieson an efficient and fast message passing (MP) functionality. Without that, the

109

6 Summary

quick signaling between client and server and synchronization between serverswould make the efficiency of such a distributed management limited. Becauseof that, Chapter 5 examined the possibility of implementing a MP solution ofmulti processor system on chips (MPSoCs) with a focus on resource efficiency,fast message delivery, and low overhead, meaning that the initiation of a mes-sage sending is cheap for the local central processing unit (CPU). In this chapter,a MP hardware implementation is presented to be faster and more resource-efficient than a remote direct memory access (RDMA) based software solution.It is an excellent example of a hotspot optimization through improved imple-mentation in lower levels. The symptom (the observable hotspot) is the slowexecution of MP operations provided by the driver layer. Instead of limitingthe number of MP usages or implementation tweaks in the driver layer itself—which would probably be not very beneficial— the solution is implementedin the layer below, the hardware layer. Here the needed increases in efficiencycan be achieved without constraining the usage of MP but rather embrace theincreased needs.Finally, in Chapter 4 another hardware improvement is introduced, targetingconstant high throughput data streams. Data streams are necessary to imple-ment the performant execution of process networks. The benefits of a customfirst in first out (FIFO) hardware as presented in that chapter are reduced over-head for the CPU and efficient usage of single ported memory banks for thePE local memory. Implementing the whole FIFO buffer handling in hardwaremoves the protocol processing away from the CPU freeing resources for thepayload effort. The proposed FIFO controller can distribute memory accessesfrom multiple FIFO users evenly across several memory banks. This results invery high utilization of the banks’ interfaces allowing single ported memory withonly marginal bandwidth losses. Since the single ported memory banks con-sume roughly half the chip area, the amount of available on-chip memory canbe increased tremendously.Considering the targeted application —mobile signal processing— the effi-cient usage of the available hardware is paramount. With the abstraction ofthe application to a stream of SDF graphs, the need for efficiency becomes ascheduling problem. Applying static scheduling, while being almost optimal interms of makespan, has an inefficient resource consumption. The necessarystep towards dynamic scheduling is followed by a set of problems that can onlybe dealt with by adopting the system at every possible layer. However, whenaddressing these problems one by one, this work shows that dynamic schedul-ing can be done without increasing makespan too much. On the contrary, the

110

increased resource efficiency of dynamic scheduling results in higher perfor-mance in terms of total work done per time. It is, in the end, the better choicefor base-station signal processing, reducing the need for overprovisioning ofhardware resources.

111

6 Summary

112

Abbreviations

3GPP 3rd generation partership project
API application programming interfaceASIC application specific integrated circuitASIP application specific integrated processor
CPU central processing unit
DMA direct memory accessDSP digital signal processor
FIFO first in first outFPGA field programmable gate arrayFSM finite state machine
HW hardware
IO input/outputISA instruction set architecture
KPN kahn process network
LTE Long Term Evolution

113

Abbreviations

MoC model of computationMP message passingMPSoC multi processor system on chip
NIf network interfaceNoC network on chip
OS operating system
PC personal computerPCB printed circuit boardPE processing element
QoS quality of service
RDMA remote direct memory accessRISC reduced instruction set computerRTE runtime environmentRTL register transfer level
SDF static data flowSoC system on chipSRAM static random access memory
TTI transmission time interval

114

Symbols
Unit Name Type Description
scl simcycle time simulation time slicecyl cycle time register transfer level (RTL) cycleB byte databit bit datatok token data native word lengthtpc token per cycle data rate

Variables
Name Symbol Unit Description
effort e — computational work for a CPUspeedup S —size s B or bitdelay d cyl or sclratio r —

rover — overhead/payload effort
rmanager — manager/worker processing powerload ρ —

service rate λ cyl–1, scl–1 e.g. requests handled by service
arrival rate μ cyl–1, scl–1 e.g. requests issued to servicedistance h — number of hops in NoCbandwidth b tpc data rate e.g. of a memory bankarea A µm2 chip area

115

Abbreviations

116

Publications

1. S. Haas et al. “An MPSoC for Energy-Efficient Database Query Processing”.In: Design Automation Conference (DAC). Austin/Texas, USA, June 2016. DOI:
10.1145/2897937.2897986

2. M. Völp et al. “The Orchestration Stack: The Impossible Task of Design-ing Software for Unknown Future Post-CMOS Hardware”. In: International
Workshop on Post-Moores Era Supercomputing (PMES). Salt Lake City, Utah,USA, Nov. 2016

3. Sebastian Haas et al. “A Heterogeneous SDR MPSoC in 28 nm CMOS forlow-latency wireless applications”. In: Proceedings of the 54th Annual Design
Automation Conference 2017. ACM. 2017, p. 47

4. J. Castrillon et al. “AHardware/Software Stack forHeterogeneous Systems”.In: IEEE Transactions on Multi-Scale Computing Systems (TMSCS) (Nov. 2017).DOI: 10.1109/TMSCS.2017.2771750

5. Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-tion”. In: 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE. 2018, pp. 513–516

6. R. Wittig et al. “Queue Based Memory Management Unit for Heteroge-neous MPSoCs”. In: Design Automation and Test in Europe (DATE). Florence,Italy, Mar. 2019. DOI: 10.1007/978-3-030-27562-4_16

7. R. Wittig et al. “Statistical Access Interval Prediction for Tightly CoupledMemory Systems”. In: IEEE Symposium on Low-Power and High-Speed Chips

117

https://doi.org/10.1145/2897937.2897986
https://doi.org/10.1109/TMSCS.2017.2771750
https://doi.org/10.1007/978-3-030-27562-4_16

Abbreviations

(COOLCHIPS). Yokohama, Japan, Apr. 2019. DOI: 10.1007/978- 3- 030-
27562-4_16

8. R. Wittig et al. “Probabilistic Models for Off-Line Arbiters in Embedded Sys-tems”. In: IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). Cuzco, Peru, Oct. 2019. DOI: 10.1007/978-3-030-27562-4_16

9. M. Hasler et al. “A Hybrid Execution Approach to Improve the Performanceof Dataflow Applications”. In: International System-on-Chip Design Confer-
ence (ISOCC). JeJu, South Korea, Oct. 2019

10. G. Fettweis et al. “5G-and-Beyond Scalable Machines”. In: IFIP/IEEE Inter-
national Conference on Very Large Scale Integration (VLSI-SoC). Cuzco, Peru,Oct. 2019

11. Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-tion”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.2(2019), pp. 441–450
12. M. Hasler et al. “Balancing Dynamic Scheduling Overhead toMaximize SDFPerformance”. In: 2020 2nd 6G Summit (6G SUMMIT). Levi, Finland, Finland,Mar. 2020, pp. 1–5. DOI: 10.1109/6GSUMMIT49458.2020.9083734

118

https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1109/6GSUMMIT49458.2020.9083734

Bibliography

[1] S. S. A. Abbas, P. A. J. Sheeba, and S. J. Thiruvengadam. “Design of downlinkPDSCH architecture for LTE using FPGA”. In: 2011 International Conference
on Recent Trends in Information Technology (ICRTIT). June 2011, pp. 947–952. DOI: 10.1109/ICRTIT.2011.5972424.

[2] Jude Ambrose et al. “Composable Local Memory Organisation for Stream-ing Applications on Embedded MPSoCs”. In: Proceedings of the 8th ACM

International Conference on Computing Frontiers. CF ’11. Ischia, Italy: Asso-ciation for Computing Machinery, 2011. ISBN: 9781450306980. DOI: 10.
1145/2016604.2016631. URL: https://doi.org/10.1145/2016604.
2016631.

[3] Gene M Amdahl. “Validity of the single processor approach to achievinglarge scale computing capabilities”. In: Proceedings of the April 18-20, 1967,
spring joint computer conference. 1967, pp. 483–485.

[4] Paul-Antoine Arras et al. “DKPN: A Composite Dataflow/Kahn Process Net-works Execution Model”. In: Parallel, Distributed, and Network-Based Pro-

cessing (PDP), 2016 24th Euromicro International Conference on. IEEE. 2016,pp. 27–34.
[5] Md Rabiul Awal and MM Hafizur Rahman. “Network-on-chip implementa-tion of midimew-connected mesh network”. In: 2013 International Confer-

ence on Parallel and Distributed Computing, Applications and Technologies.IEEE. 2013, pp. 265–271.

119

https://doi.org/10.1109/ICRTIT.2011.5972424
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631

Bibliography

[6] Johannes Ax et al. “CoreVA-MPSoC: A Many-Core Architecture with TightlyCoupled Shared and Local DataMemories”. In: IEEE Transactions on Parallel
and Distributed Systems 29.5 (2018), pp. 1030–1043. DOI: 10.1109/TPDS.
2017.2785799.

[7] Fujun Bai et al. “A two-port SRAM using a single-port cell array with a self-timed write-after-read control scheme to save 47% area & 63% standbypower”. In: ASIC (ASICON), 2017 IEEE 12th International Conference on. IEEE.2017, pp. 426–428.
[8] Saehee Bang et al. “Implementation of LTE system on an SDR platformusing CUDA and UHD”. In: Analog Integrated Circuits and Signal Processing78.3 (Mar. 2014), pp. 599–610. ISSN: 1573-1979. DOI: 10.1007/s10470-

013-0229-1. URL: https://doi.org/10.1007/s10470-013-0229-1.
[9] Luca Benini and G De Micheli. “Networks on chips: A new SoC paradigm”.In: Computer-IEEE Computer Society- 35 (2002), pp. 70–78.
[10] Shuvra S Bhattacharyya, Ed F Deprettere, and Bart D Theelen. “Dynamicdataflowgraphs”. In:Handbook of Signal Processing Systems. Springer, 2013,pp. 905–944.
[11] Bruno Bodin et al. “Fast and efficient dataflow graph generation”. In: Pro-

ceedings of the 17th International Workshop on Software and Compilers for

Embedded Systems, SCOPES 2014 (June 2014). DOI: 10 . 1145 / 2609248 .
2609258.

[12] Jani Boutellier, Shuvra S Bhattacharyya, and Olli Silvén. “A low-overheadschedulingmethodology for fine-grained acceleration of signal processingsystems”. In: Journal of Signal Processing Systems 60.3 (2010), pp. 333–343.
[13] Robert Cahn.Wide area network design: concepts and tools for optimization.Morgan Kaufmann, 1998.
[14] Nicholas P Carter et al. “Runnemede: An architecture for ubiquitous high-performance computing”. In:High Performance Computer Architecture, 2013

IEEE 19th International Symposium on. IEEE. 2013, pp. 198–209.
[15] Aaron G Cass et al. “Logically central, physically distributed control in aprocess runtime environment”. In: University of Massachusetts, Computer

Science Department, Amherst, MA, Technical Report UM-CS-1999-065 (1999).
[16] J. Castrillon et al. “A Hardware/Software Stack for Heterogeneous Sys-tems”. In: IEEE Transactions on Multi-Scale Computing Systems (TMSCS) (Nov.2017). DOI: 10.1109/TMSCS.2017.2771750.

120

https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1109/TMSCS.2017.2771750

Bibliography

[17] Y. N. Chang. “An efficient VLSI architecture for normal I/O order pipelineFFT design”. In: IEEE Transactions on Circuits and Systems II: Express Briefs55.12 (2008), pp. 1234–1238.
[18] Weijia Che and Karam S. Chatha. “Scheduling of Synchronous Data FlowModels on Scratchpad Memory Based Embedded Processors”. In: Pro-

ceedings of the International Conference on Computer-Aided Design. ICCAD’10. San Jose, California: IEEE Press, 2010, pp. 205–212. ISBN: 978-1-4244-8192-7. URL: http://dl.acm.org/citation.cfm?id=2133429.2133471.
[19] Jack B Dennis. “First version of a data flow procedure language”. In: Pro-

gramming Symposium. Springer. 1974, pp. 362–376.
[20] K. Desnos et al. “Distributed Memory Allocation Technique for Synchro-nous Dataflow Graphs”. In: 2016 IEEE International Workshop on Signal Pro-

cessing Systems (SiPS). Oct. 2016, pp. 45–50. DOI: 10.1109/SiPS.2016.16.
[21] J Eker and JW Janneck. “CAL language report language version 1.0 docu-ment edition 1”. In: Electronics Research Laboratory, University of California

at Berkeley, Tech. Rep. UCB/ERL M03/48 (2003).
[22] Joachim Falk et al. “A generalized static data flow clustering algorithm forMPSoC scheduling of multimedia applications”. In: Proceedings of the 8th

ACM international conference on Embedded software. ACM. 2008, pp. 189–198.
[23] G. Fettweis et al. “5G-and-Beyond Scalable Machines”. In: IFIP/IEEE Inter-

national Conference on Very Large Scale Integration (VLSI-SoC). Cuzco, Peru,Oct. 2019.
[24] G. P. Fettweis and E. Matus. “Scalable 5G MPSoC architecture”. In: 2017

51st Asilomar Conference on Signals, Systems, and Computers. Oct. 2017,pp. 613–618. DOI: 10.1109/ACSSC.2017.8335414.
[25] KAHN Gilles. “The semantics of a simple language for parallel program-ming”. In: Information processing 74 (1974), pp. 471–475.
[26] Michael I Gordon and SamanAmarasinghe. “Compiler techniques for scal-able performance of stream programs on multicore architectures”. PhDthesis. Massachusetts Institute of Technology, Department of ElectricalEngineering, 2010.
[27] N. Grigoryan, E. Matúš, and G. Fettweis. “DF4CRAN: Dataflow Frameworkfor Cloud-RAN Signal Processing”. In: IEEE 5G World Forum (WF-5G). Dres-den, Germany, Sept. 2019.

121

http://dl.acm.org/citation.cfm?id=2133429.2133471
https://doi.org/10.1109/SiPS.2016.16
https://doi.org/10.1109/ACSSC.2017.8335414

Bibliography

[28] N. Grigoryan, E. Matúš, and G. Fettweis. “Scalable 5G Signal Processing onMultiprocessor System: A Clustering Approach”. In: IEEE 5G World Forum

(WF-5G). Bangalore ,India, Sept. 2020, pp. 389–394.
[29] Nairuhi Grigoryan, Emil Matus, and Gerhard P Fettweis. “Scalable 5G Sig-nal Processing onMultiprocessor System: A Clustering Approach”. In: 2020

IEEE 3rd 5G World Forum (5GWF). IEEE. 2020, pp. 389–394.
[30] William D Gropp et al. Using MPI: portable parallel programming with the

message-passing interface. Vol. 1. MIT press, 1999.
[31] Soonhoi Ha and Hyunok Oh. “Decidable dataflow models for signal pro-cessing: Synchronous dataflow and its extensions”. In: Handbook of Signal

Processing Systems. Springer, 2013, pp. 1083–1109.
[32] S. Haas et al. “An MPSoC for Energy-Efficient Database Query Processing”.In: Design Automation Conference (DAC). Austin/Texas, USA, June 2016. DOI:

10.1145/2897937.2897986.
[33] Sebastian Haas et al. “A Heterogeneous SDR MPSoC in 28 nm CMOS forlow-latency wireless applications”. In: Proceedings of the 54th Annual Design

Automation Conference 2017. ACM. 2017, p. 47.
[34] M. Hasler et al. “A Hybrid Execution Approach to Improve the Perfor-mance of Dataflow Applications”. In: International System-on-Chip Design

Conference (ISOCC). JeJu, South Korea, Oct. 2019.
[35] M. Hasler et al. “Balancing Dynamic Scheduling Overhead to MaximizeSDF Performance”. In: 2020 2nd 6G Summit (6G SUMMIT). Levi, Finland, Fin-land, Mar. 2020, pp. 1–5. DOI: 10.1109/6GSUMMIT49458.2020.9083734.
[36] Mattis Hasler et al. “A Random Linear Network Coding Platform MPSoCDesigned in 22nm FDSOI”. In: 2022 IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI). IEEE. 2022, pp. 217–222.
[37] Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-tion”. In: 2018 25th IEEE International Conference on Electronics, Circuits and

Systems (ICECS). IEEE. 2018, pp. 513–516.
[38] Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-tion”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.2(2019), pp. 441–450.

122

https://doi.org/10.1145/2897937.2897986
https://doi.org/10.1109/6GSUMMIT49458.2020.9083734

Bibliography

[39] Kai Huang, David Grunert, and Lothar Thiele. “Windowed FIFOs for FPGA-based multiprocessor systems”. In: Application-specific Systems, Architec-
tures and Processors, 2007. ASAP. IEEE International Conf. on. IEEE. 2007,pp. 36–41.

[40] Charles R Johns and Daniel A Brokenshire. “Introduction to the cell broad-band engine architecture”. In: IBM Journal of Research and Development51.5 (2007), pp. 503–519.
[41] James A Kahle et al. “Introduction to the cell multiprocessor”. In: IBM jour-

nal of Research and Development 49.4.5 (2005), pp. 589–604.
[42] Gilles Kahn and David MacQueen. “Coroutines and networks of parallelprocesses”. In: (1976).
[43] George Kalokerinos et al. “FPGA implementation of a configurable cache /scratchpad memory with virtualized user-level RDMA capability”. In: 2009

International Symposium on Systems, Architectures, Modeling, and Simula-

tion. IEEE. 2009, pp. 149–156.
[44] George Kalokerinos et al. “Prototyping a Configurable Cache/ScratchpadMemory with Virtualized User-Level RDMA Capability”. In: Transactions on

High-Performance Embedded Architectures and Compilers V. Ed. by CristinaSilvano, Koen Bertels, and Michael Schulte. Berlin, Heidelberg: SpringerBerlin Heidelberg, 2019, pp. 100–120. ISBN: 978-3-662-58834-5. DOI: 10.
1007/978-3-662-58834-5_6. URL: https://doi.org/10.1007/978-3-
662-58834-5_6.

[45] H. Kee et al. “FPGA-based design and implementation of the 3GPP-LTEphysical layer using parameterized synchronous dataflow techniques”. In:
2010 IEEE International Conference on Acoustics, Speech and Signal Process-

ing. Mar. 2010, pp. 1510–1513. DOI: 10.1109/ICASSP.2010.5495504.
[46] David G Kendall. “Stochastic processes occurring in the theory of queuesand their analysis by the method of the imbedded Markov chain”. In: The

Annals of Mathematical Statistics (1953), pp. 338–354.
[47] J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability. Claren-don Press.
[48] Jaydeep P Kulkarni et al. “5.6 Mb/mm 1R1W 8T SRAM Arrays OperatingDown to 560mV Utilizing Small-Signal Sensing With Charge Shared Bitlineand Asymmetric Sense Amplifier in 14 nm FinFET CMOS Technology”. In:

IEEE Journal of Solid-State Circuits 52.1 (2017), pp. 229–239.

123

https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1109/ICASSP.2010.5495504

Bibliography

[49] E. A. Lee and S. Ha. “Scheduling strategies for multiprocessor real-timeDSP”. In: 1989 IEEE Global Telecommunications Conference and Exhibition

’Communications Technology for the 1990s and Beyond’. Nov. 1989, 1279–1283 vol.2. DOI: 10.1109/GLOCOM.1989.64160.
[50] Edward A Lee and David G Messerschmitt. “Synchronous data flow”. In:

Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.
[51] Edward A Lee and Thomas M Parks. “Dataflow process networks”. In: Pro-

ceedings of the IEEE 83.5 (1995), pp. 773–801.
[52] Edward Ashford Lee and David G Messerschmitt. “Static scheduling ofsynchronous data flow programs for digital signal processing”. In: IEEE

Transactions on computers 100.1 (1987), pp. 24–35.
[53] Tang Lei and Shashi Kumar. “A two-step genetic algorithm for mappingtask graphs to a network on chip architecture”. In: Digital System Design,

2003. Proceedings. Euromicro Symposium on. IEEE. 2003, pp. 180–187.
[54] T. Limberg et al. “A fully programmable 40 GOPS SDR single chip base-band for LTE/WiMAX terminals”. In: ESSCIRC 2008 - 34th European Solid-

State Circuits Conference. Sept. 2008, pp. 466–469. DOI: 10.1109/ESSCIRC.
2008.4681893.

[55] Torsten Limberg et al. “A fully programmable 40 GOPS SDR single chipbaseband for LTE/WiMAX terminals”. In: ESSCIRC 2008-34th European Solid-
State Circuits Conference. IEEE. 2008, pp. 466–469.

[56] Yue Liu, MengMeng Cao, and Kong Jie. “A New Static Data Flow Cluster-ing Algorithm for Task Scheduling of Irregular Mesh in NoCs Based onComplex Networks”. In: International Journal of Future Generation Commu-
nication and Networking 9.9 (2016), pp. 181–190.

[57] Philipp Mahr et al. “Soc-mpi: A flexible message passing library for multi-processor systems-on-chips”. In: 2008 International Conference on Recon-
figurable Computing and FPGAs. IEEE. 2008, pp. 187–192.

[58] Changwoo Min and Young Ik Eom. “DANBI: Dynamic scheduling of irreg-ular stream programs for many-core systems”. In: Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques.IEEE Press. 2013, pp. 189–200.

[59] Kenji Nakagawa. “On the series expansion for the stationary probabilitiesof an M/D/1 queue”. In: Journal of the operations research society of Japan48.2 (2005), pp. 111–122.

124

https://doi.org/10.1109/GLOCOM.1989.64160
https://doi.org/10.1109/ESSCIRC.2008.4681893
https://doi.org/10.1109/ESSCIRC.2008.4681893

Bibliography

[60] Koji Nii et al. “A 45-nm single-port and dual-port SRAM family with robustread/write stabilizing circuitry under DVFS environment”. In: VLSI Circuits,
2008 IEEE Symposium on. IEEE. 2008, pp. 212–213.

[61] Benedikt Noethen et al. “10.7 A 105GOPS 36mm 2 heterogeneous SDRMPSoC with energy-aware dynamic scheduling and iterative detection-decoding for 4G in 65nm CMOS”. In: Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International. IEEE. 2014, pp. 188–189.

[62] Vincent Nollet, Diederik Verkest, and Henk Corporaal. “A safari throughthe mpsoc run-time management jungle”. In: Journal of Signal Processing
Systems 60.2 (2010), pp. 251–268.

[63] B. Nöthen. Untersuchungen von Kommunikationsmechanismen in heteroge-
nen Mehrprozessorsystemen. Jörg Vogt Verlag, 2015.

[64] OpenMPI website (https://www.open-mpi.org/). Accessed: 2020-11-11.
[65] Pier S Paolucci et al. “SHAPES:: a tiled scalable software hardware archi-tecture platform for embedded systems”. In: Proceedings of the 4th interna-

tional conference on Hardware/software codesign and system synthesis. ACM.2006, pp. 167–172.
[66] M. Pelcat, J. Nezan, and S. Aridhi. “Adaptive multicore scheduling for theLTE uplink”. In: 2010 NASA/ESA Conference on Adaptive Hardware and Sys-

tems. June 2010, pp. 36–43. DOI: 10.1109/AHS.2010.5546233.
[67] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. “A hierarchical multiproces-sor scheduling system for DSP applications”. In: Conference Record of The

Twenty-Ninth Asilomar Conference on Signals, Systems and Computers. Vol. 1.Oct. 1995, 122–126 vol.1. DOI: 10.1109/ACSSC.1995.540525.
[68] Saurabh-Kumar Raina. “FLIP: a floating-point library for integer proces-sors”. PhD thesis. École Normale Supérieure de Lyon, 2006.
[69] Martino Ruggiero et al. “A fast and accurate technique for mapping paral-lel applications on stream-orientedMPSoCplatformswith communicationawareness”. In: International Journal of Parallel Programming 36.1 (2008),pp. 3–36.
[70] Martino Ruggiero et al. “Communication-aware allocation and schedulingframework for stream-oriented multi-processor systems-on-chip”. In: De-

sign, Automation and Test in Europe, 2006. DATE’06. Proceedings. Vol. 1. IEEE.2006, 6–pp.

125

https://doi.org/10.1109/AHS.2010.5546233
https://doi.org/10.1109/ACSSC.1995.540525

Bibliography

[71] Scott Schneider et al. “Elastic scaling of data parallel operators in streamprocessing”. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE In-

ternational Symposium on. IEEE. 2009, pp. 1–12.
[72] Jason Scott et al. “Hardware/software runtime environment for dynami-cally reconfigurable systems”. In: ISIS 6 (2000).
[73] Alessandro Secco et al. “Message passing on InfiniBand RDMA for par-allel run-time supports”. In: 2014 22nd Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing. IEEE. 2014, pp. 130–137.
[74] Weihua Sheng et al. “FIFO exploration in mapping streaming applicationsonto the TI OMAP3530 platform: Case study and optimizations”. In: Em-

bedded Multicore Socs (MCSoC), 2012 IEEE 6th International Symposium on.IEEE. 2012, pp. 51–58.
[75] Hayden Kwok-Hay So and Robert Brodersen. “A unified hardware/soft-ware runtime environment for FPGA-based reconfigurable computers us-ing BORPH”. In: ACM Transactions on Embedded Computing Systems (TECS)7.2 (2008), p. 14.
[76] William Thies, Michal Karczmarek, and Saman Amarasinghe. “StreamIt: Alanguage for streaming applications”. In: International Conference on Com-

piler Construction. Springer. 2002, pp. 179–196.
[77] Philippas Tsigas and Yi Zhang. “A simple, fast and scalable non-blockingconcurrent FIFO queue for shared memory multiprocessor systems”. In:

Proceedings of the thirteenth annual ACM symposium on Parallel algorithms

and architectures. ACM. 2001, pp. 134–143.
[78] M. Völp et al. “The Orchestration Stack: The Impossible Task of Design-ing Software for Unknown Future Post-CMOS Hardware”. In: International

Workshop on Post-Moores Era Supercomputing (PMES). Salt Lake City, Utah,USA, Nov. 2016.
[79] John Von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE Annals

of the History of Computing 15.4 (1993), pp. 27–75.
[80] Drew Wingard. “MicroNetwork-based integration for SOCs”. In: Design Au-

tomation Conference, 2001. Proceedings. IEEE. 2001, pp. 673–677.
[81] Alexander Wise. Little-JIL 1.0 language report. Tech. rep. Technical Report98-24, University of Massachusetts at Amherst, 1998.

126

Bibliography

[82] R.Wittig et al. “Probabilistic Models for Off-Line Arbiters in Embedded Sys-tems”. In: IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). Cuzco, Peru, Oct. 2019. DOI: 10.1007/978-3-030-27562-4_16.

[83] R. Wittig et al. “Queue Based Memory Management Unit for Heteroge-neous MPSoCs”. In: Design Automation and Test in Europe (DATE). Florence,Italy, Mar. 2019. DOI: 10.1007/978-3-030-27562-4_16.
[84] R. Wittig et al. “Statistical Access Interval Prediction for Tightly CoupledMemory Systems”. In: IEEE Symposium on Low-Power and High-Speed Chips

(COOLCHIPS). Yokohama, Japan, Apr. 2019. DOI: 10.1007/978- 3- 030-
27562-4_16.

[85] M. Wu et al. “Large-Scale MIMO Detection for 3GPP LTE: Algorithms andFPGA Implementations”. In: IEEE Journal of Selected Topics in Signal Process-
ing 8.5 (Oct. 2014), pp. 916–929. ISSN: 1941-0484. DOI: 10.1109/JSTSP.
2014.2313021.

[86] Wai Gen Yee and Ophir Frieder. “Scalable synchronization of intermit-tently connected database clients”. In: Proceedings of the 6th international
conference on Mobile data management. 2005, pp. 299–303.

[87] C. Zimmer and F. Mueller. “Nocmsg: Scalable NoC-based message pass-ing”. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing. IEEE. 2014, pp. 186–195.

127

https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1109/JSTSP.2014.2313021
https://doi.org/10.1109/JSTSP.2014.2313021

	Titelblatt
	Inhaltsverzeichnis
	Abstract
	Kurzfassung
	Introduction
	Motivation
	The Multiprocessor System on Chip Architecture
	Concrete MPSoC Architecture
	NoC
	Processing Core
	Memory Management
	Networking Unit

	Representing LTE/5G baseband processing as Static Data Flow
	Compuation Stack
	The Algorithm and Application Layer
	The Language Layer
	The Runtime Environment Layer
	The Operating System Layer
	The Driver and Library Layer
	The Hardware Layer

	Performance Hotspots Addressed
	State of the Art
	Overview of the Work

	Hybrid SDF Execution
	Addressed Performance Hotspot
	State of the Art
	Static Data Flow Graphs
	Runtime Environment
	Overhead of Deloying Tasks to a MPSoC
	Interpretation of SDF Graphs as Task Graphs
	Interpreting SDF Graphs as Process Networks
	Hybrid Interpretation
	Graph Topology Considerations
	Theoretic Impact of Hybrid Interpretation
	Simulating Hybrid Execution
	Pipeline SDF Graph Example
	Random SDF Graphs
	LTE-like SDF Graph
	Key Lernings

	Distribution of Management
	Addressed Performance Hotspot
	State of the Art
	Revising Deployment Overhead
	Distribution of Overhead
	Impact of Management Distribution to Resource Utilization
	Reconfigurability
	Key Lernings

	Sliced FIFO Hardware
	Addressed Performance Hotspot
	State of the Art
	System Environment
	Sliced Windowed FIFO buffer
	Single FIFO Evaluation
	Multiple FIFO Evalutaion
	Traffic Model
	Evaluation Setup
	Effective Channel Bandwidth
	Memory Access Model

	Hardware Implementation
	Key Lernings

	Message Passing Hardware
	Addressed Performance Hotspot
	State of the Art
	Message Passing Regarded as Queueing
	A Remote Direct Memory Access Based Implementation
	Hardware Implementation Concept
	Evalutation of Performance
	Key Lernings

	Summary
	Abbreviations
	Symbols
	Publications
	Bibliography

