TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Elektrotechnik und Informationstechnik

Towards Efficient Resource
Allocation for Embedded Systems

Mattis Hasler

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

Vorsitzender
Prof. Dr. Mikolajick

Gutachter
Prof. Dr. Gerhard Fettweis
Prof. Dr. Ulrich Ruckert

Eingereicht am: 1.2.2022
Verteidigt am: 9.6.2022

Mattis Hasler
Towards Efficient Resource Allocation for Embedded Systems
Dissertation

Technische Universitat Dresden

Vodafone Chair Mobile Communications Systems
Institute of Communication Technology
Faculty of Electrical and Computer Engineering
01062 Dresden, Germany

| would like to thank Gerhard and Emil for the guidance
and supervision. I'd also thank everybody that considers
himself my family for believing in me to finish this.
Further, Robert shall be thanked for one or two good
ideas “over a cup of coffee”.

Inhaltsverzeichnis

Zusammenfassung

Kurzfassung

1

Introduction

1.1
1.2
1.3

1.4
1.5

1.6
1.7
1.8

Motivation

The Multiprocessor System on Chip Architecture

Concrete MPSoC Archit
131 NoC
1.3.2 Processing Core

ecture

1.3.3 Memory Management.

1.3.4 Networking Unit

Representing LTE/5G baseband processing as Static Data Flow . .

Compuation Stack . .

1.5.1 The Algorithm and Application Layer
152 Thelanguagelayer
1.5.3 The Runtime Environment Layer
1.54 The Operating System Layer
1.5.5 The Driverand LibraryLayer
1.5.6 TheHardwarelayer
Performance Hotspots Addressed

State of the Art
Overview of the Work

Xi

Xiii

13
15
17
18
18
19
19
20
20
22
23

vii

Inhaltsverzeichnis

2

Vii

Hybrid SDF Execution

2.1 Addressed Performance Hotspot
22 StateoftheArt
2.3 Static Data Flow Graphs
2.4 Runtime Environment oL L
2.5 Overhead of Deloying Taskstoa MPSoC
2.6 Interpretation of SDF Graphs as Task Graphs
2.7 Interpreting SDF Graphs as Process Networks
2.8 Hybrid Interpretation
2.9 Graph Topology Considerations
2.10 Theoretic Impact of Hybrid Interpretation
2.11 Simulating Hybrid Execution
2.12 Pipeline SDF Graph Example
2.13 Random SDF Graphs
2.14 LTE-like SDF Graph
2.15 Key Lernings

Distribution of Management

3.1 Addressed Performance Hotspot
3.2 StateoftheArt
3.3 Revising Deployment Overhead
3.4 Distributionof Overhead
3.5 Impact of Management Distribution to Resource Utilization
3.6 Reconfigurability
3.7 Key Lernings

4 Sliced FIFO Hardware
Addressed Performance Hotspot

4.1
4.2
43
4.4
4.5
4.6

4.7
4.8

5 Message Passing Hardware
5.1 Addressed Performance Hotspot

52
53

55
5.6
5.7

State of the Art

State of the Art

Key Lernings

6 Summary

Abbreviations

Symbols

Publicati

ons

Bibliography

System Environment
Sliced Windowed FIFO buffer
Single FIFO Evaluation
Multiple FIFO Evalutaion
4.6.1 Traffic Model
4.6.2 Evaluation Setup
4.6.3 Effective Channel Bandwidth
4.6.4 Memory Access Model
Hardware Implementation
KeylLernings.

Message Passing Regarded as Queueing
5.4 A Remote Direct Memory Access Based Implementation
Hardware Implementation Concept
Evalutation of Performance

Inhaltsverzeichnis

109
113
115
117

127

Abstract

The main topic is the dynamic resource allocation in embedded systems, espe-
cially the allocation of computing time and network traffic on an multi processor
system on chip (MPSoQ). The idea is to dynamically schedule a mobile commu-
nication signal processing pipeline on the chip to improve hardware resource
efficiency while not dramatically improve resource consumption because of dy-
namic scheduling overhead. Both software and hardware modules are exam-
ined for resource consumption hotspots and optimized to remove them. Since
signal processing can usually be described with the help of static data flow (SDF)
graphs, the dynamic handling of those is optimized to improve resource con-
sumption over the commonly used static scheduling approach. A hybrid dy-
namic scheduler is presented that combines benefits from both processing net-
works and task graph scheduling. It allows the scheduler to optimally balance
parallelization of computation and addition of dynamic scheduling overhead.
The resulting dynamically created schedule reduces resource consumption by
about 50%, with a runtime increase of only 20% compared to a static sched-
ule. Additionally, a distributed dynamic SDF scheduler is proposed that splits
the scheduling into different parts, which are then connected to a scheduling
pipeline to incorporate multiple parallel working processors. Each scheduling
stageis reworked into a load-balanced cluster to increase the number of parallel
scheduling jobs further. This way, the still existing dynamic scheduling bottle-
neck of a centralized scheduler is widened, allowing handling 7x more proces-
sors with the pipelined, clustered dynamic scheduler for a typical signal pro-
cessing application.

The presented dynamic scheduling system assumes the presence of three
different communication modes between the processing cores. When emu-
lated on top of the commonly used remote direct memory access (RDMA) pro-
tocol, performance issues are encountered. Firstly, RDMA can neatly be used
for single-shot point-to-point data transfers, like used in task graph scheduling.
Process networks usually make use of high-volume and high-bandwidth data
streams. A first in first out (FIFO) communication solution is presented that im-
plements a cyclic buffer on both sender and receiver to serve this need. The
buffer handling and data transfer between them are done purely in hardware to
remove software overhead from the application. The implementation improves
the multi-user access to area-efficient single port on-chip memory modules. It
achieves 0.8 of the theoretically possible bandwidth, usually only achieved with
area expensive dual-port memories. The third communication mode defines a
lightweight message passing (MP) implementation that is truly connectionless.
It is needed for efficient inter-process communication of the distributed and
clustered scheduling system and the worker processing units’ tight coupling. A
hardware flow control assures that an arbitrary number of senders can spon-
taneously start sending messages to the same receiver. Yet, all messages are
guaranteed to be correctly received while eliminating the need for connection
establishment and keeping a low message delay.

The work focuses on the hardware-software codesign optimization to increase
the uncompromised resource efficiency of dynamic SDF graph scheduling. Spe-
cial attention is paid to the inter-level dependencies in developing a distributed
scheduling system, which relies on the availability of specific hardware-accelerated
communication methods.

Kurzfassung

Das Hauptthema ist die dynamische Ressourcenverwaltung in eingebetteten
Systemen, insbesondere die Verwaltung von Rechenzeit und Netzwerkverkehr
auf einem MPSoC. Die Idee besteht darin, eine Pipeline fur die Verarbeitung von
Mobiler Kommunikation auf dem Chip dynamisch zu schedulen, um die Effizienz
der Hardwareressourcen zu verbessern, ohne den Ressourcenverbrauch des
dynamischen Schedulings dramatisch zu erhéhen. Sowohl Software- als auch
Hardwaremodule werden auf Hotspots im Ressourcenverbrauch untersucht
und optimiert, um diese zu entfernen. Da Applikationen im Bereich der Signal-
verarbeitung normalerweise mit Hilfe von SDF-Diagrammen beschrieben wer-
den konnen, wird deren dynamisches Scheduling optimiert, um den Ressour-
cenverbrauch gegenuber dem Ublicherweise verwendeten statischen Schedu-
ling zu verbessern. Es wird ein hybrider dynamischer Scheduler vorgestellt, der
die Vorteile von Processing-Networks und der Planung von Task-Graphen kom-
biniert. Es ermoglicht dem Scheduler, ein Gleichgewicht zwischen der Paral-
lelisierung der Berechnung und der Zunahme des dynamischen Scheduling-
Aufands optimal abzuwagen. Der resultierende dynamisch erstellte Schedule
reduziert den Ressourcenverbrauch um etwa 50%, wobei die Laufzeit im Ver-
gleich zu einem statischen Schedule nur um 20% erhoht wird. Zusatzlich wird
ein verteilter dynamischer SDFScheduler vorgeschlagen, der das Scheduling in
verschiedene Teile zerlegt, die dann zu einer Pipeline verbunden werden, um
mehrere parallele Prozessoren einzubeziehen. Jeder Scheduling-Teil wird zu ei-
nem Cluster mit Load-Balancing erweitert, um die Anzahl der parallel laufen-
den Scheduling-Jobs weiter zu erhohen. Auf diese Weise wird dem vorhande-
ne Engpass bei dem dynamischen Scheduling eines zentralisierten Schedulers

entgegengewirkt, sodass 7x mehr Prozessoren mit dem Pipelined-Clustered-
Dynamic-Scheduler flr eine typische Signalverarbeitungsanwendung verwen-
det werden konnen.

Das neue dynamische Scheduling-System setzt das Vorhandensein von drei
verschiedenen Kommunikationsmodi zwischen den Verarbeitungskernen vor-
aus. Bei der Emulation auf Basis des haufig verwendeten RDMA-Protokolls tre-
ten Leistungsprobleme auf. Sehr gut kann RDMA fUr einmalige Punkt-zu-Punkt-
DatenUbertragungen verwendet werden, wie sie bei der Ausfihrung von Task-
Graphen verwendet werden. Process-Networks verwenden normalerweise Da-
tenstrome mit hohem Volumen und hoher Bandbreite. Es wird eine FIFO ba-
sierte Kommunikationslésung vorgestellt, die einen zyklischen Puffer sowohlim
Sender als auch im Empfanger implementiert, um diesen Bedarf zu decken.
Die Pufferbehandlung und die Datenubertragung zwischen ihnen erfolgen aus-
schlieBlich in Hardware, um den Software-Overhead aus der Anwendung zu ent-
fernen. Die Implementierung verbessert die Zugriffsverwaltung mehrerer Nut-
zer auf flachen-effiziente Single-Port Speichermodule. Es werden 0,8 der theo-
retisch moglichen Bandbreite, die normalerweise nur mit flaichenmaliig teure-
ren Dual-Port-Speichern erreicht wird. Der dritte Kommunikationsmodus defi-
niert eine einfache MP-Implementierung, die ohne einen Verbindungszustand
auskommt. Dieser Modus wird fUr eine effiziente prozessubergreifende Kom-
munikation des verteilten Scheduling-Systems und der engen Ansteuerung der
restlichen Prozessoren bengtigt. Eine Flusskontrolle in Hardware stellt sicher,
dass eine grol3e Anzahlvon Sendern Nachrichten an denselben Empfanger sen-
den kann. Dabei wird garantiert, dass alle Nachrichten korrekt empfangen wer-
den, ohne dass eine Verbindung hergestellt werden muss und die Nachrichten-
laufzeit gering bleibt.

Die Arbeit konzentriert sich auf die Optimierung des Codesigns von Hard-
ware und Software, um die kompromisslose Ressourceneffizienz der dynami-
schen SDF-Graphen-Planung zu erhéhen. Besonderes Augenmerk wird auf die
Abhangigkeiten zwischen den Ebenen eines verteilten Scheduling-Systems ge-
legt, das auf der Verflgbarkeit spezifischer hardwarebeschleunigter Kommuni-
kationsmethoden beruht.

1 Introduction

1.1 Motivation

With every iteration of mobile communication standards, the complexity of the
digital signal processing increases. In addition, the dynamic range of the pro-
cessing complexity increases as well. That means, a base station has to be able
to handle a very inhomogeneous set of connections in terms of required pro-
cessing demands. In the fifth-generation (5G) the baseband digital signal pro-
cessing covers a dynamic range of six orders of magnitude and —as far as we
know today— this trend will continue in future standards. Because the time-
frame for doing the signal processing stays constant a need for much higher
processing power is needed. With the increase of clock frequencies being both
more and more difficult to do and power consuming, parallelizing computation
seems a promising alternative. Building a specialized application specific inte-
grated circuit (ASIC) implementation for a problem like done in [45, 85, 1] to
exploit parallelism will always result in a poor efficiency with regard to utilized
hardware, because it has to be dimensioned for the worst (i.e. most demand-
ing) case, leaving a significant fraction of hardware unused in the average case.
However, the 3rd generation partership project (3GPP) defines a mobile com-
munication channel to be chopped into transmission time intervals (TTls), which
makes the data a stream of basically independent data packets. The processing
of each packet can easily be modeled as an static data flow (SDF) graph, allowing
to process it on a general purpose multi processor system on chip (MPSoC). By
dynamically assigning resources, hardware can be used more efficiently, saving
costs at production as well as operation of base stations and terminals alike.

1 Introduction

Running SDF graphs on MPSoCs is usually done using static scheduling, which
is itself not efficient in terms of hardware utilization, at least in some situations.
Atypical signal processing SDF graph has a sequential start and end with a par-
allelizable hotspot somewhere in the middle. To fully parallelize the hotspot the
schedule has to allocate many processors, which will be idle most of the time
—except of the brief hostspot phase— which makes them poorly utilized, thus
the schedule inefficient. With dynamic scheduling, however, processors can be
freed immediately after the hotspot, allowing the next graph to compute it's
hotspot fully parallel while still finishing the first graph sequentially.

Dynamic scheduling and hardware allocation has the potential to exploit par-
allel processing resources to stitch the needed computation pipeline together
on the fly. The processing pipeline for each TTI describes exactly the needed
resources so that it will only occupy needed resources. The goal of doing this
is to optimize resource utilization. It is expected that the dynamic resource al-
location has a negative impact on the processing time on a single graph due
to the dynamic scheduler. The scheduling will introduce an amount of over-
head effort'that has to be processed alongside the payload computation. A
dynamic system may trade increased parallelism to speed up computation and
additional overhead to decreasing efficiency. The ratio of parallelizing speedup
and overhead slowdown effect is situation dependent and has to be considered
in the live system.

The efficient utilization of the available resources allows to save power con-
sumption e.g. by switching off unused computation units. Exploiting the paral-
lelism of implemented algorithms allows lower clock frequencies compared to
a serial implementation. A lowered clock frequency has a direct impact on the
power consumption of a respected system.

In order to apply the dynamic scheduling and parallelization, every layer of
the computation stack has to be optimized. Usually, the optimization of soft-
ware assumes the hardware to be fixed. The algorithm is slimmed, or replaced,
to better match the situation. In extreme cases, the programming language
may be switched to eliminate unwanted factors like an interpreter layer of an
indeterministic garbage collector. But, an attribute like real-time capability and
also efficiency depends on the whole stack. When the application has to run on
unsuitable hardware or operating system (OS), the upper layer may have diffi-
culty creating an efficient execution profile. The problem can be explained with
Amdahl's Law [3]. It describes that the impact, an optimization iteration has on

Teffort” is an abstract measure of the work that has to be done to execute a computer (sub)program.

1.1 Motivation

the whole program is dependent on the relative size of the optimized part to
the entire program. Parameters are the fraction of the original program f, that
can be sped up (i.e. parallelized) and the speed up factor p by which this fraction
is sped up. The total speedup then can be calculated by

1
So.f) = ——
o1 (1-H+f

which has an upper bound depending on the fraction f for p — oo of:

Smax(f) = %

This effect does not only apply within an application but also vertically through
the computation stack. The usage of an operation provided by an underlying
layer causes an amount of resource consumption. When optimizing the opera-
tion's implementation, the overall effect is dependent on the frequency the op-
eration is used. A frequently used operation can represent a significant portion
of the total execution time and may be worth optimizing. This kind of operation
may be a system call into the OS or activation of a hardware accelerator.

Another type of resource consumption of underlying layers is not dependent
on the hosted application, but instead occupies a static amount of resources.
For example, a preemptive scheduler consumes a fixed amount of central pro-
cessing unit (CPU) time by timed context switches, independent of the num-
ber or type of applications hosted. Also, mixed resource consumption may oc-
cur like a garbage collector that is invoked periodically, thus consuming a fixed
amount of time. The amount of CPU time a garbage collector invocation con-
sumes depends on the applications running and their behavior, e.g. how much
objects they are allocating/freeing.

Each operation is the combination of operations from lower layers. The re-
sources consumed by an operation are the sum of resources of all operations
used by this operation. To optimize an operation identified as a hotspot, it is
necessary to regard the current and decent to lower the layers. Examining all
operations from all layers and their usage frequency can help find the cause of
high resource consumption. It may help to find operations in lower layers that
may be easier to optimize than the initial hotspot operation itself but still help
to make it more efficient.

1 Introduction

1.2 The Multiprocessor System on Chip Architecture

The concept of a MPSoC is nowadays a common one. The class of MPSoC ar-
chitectures includes significantly different types with specific focuses. One pur-
pose of a significant sub-field of MPSoCs is the ease of integration and usage
efficiency. A microcontroller is designed to be easily integrated onto custom
embedded printed circuit boards (PCBs). They usually include many commu-
nication capabilities removing the need for additional interfacing hardware. It
helps keep the PCB design and development simple and cheap and lower power
consumption by making additional chips unnecessary. Another famous MPSoC
field covers processing platforms for single-board computers like smartphones.
These chips resemble more a traditional CPU from desktop personal comput-
ers (PCs). Usually equipped with a multicore central processor, the main task is
to host a standard OS like Linux. Similar to the microcontroller, additional com-
ponents are included in the chip to save PCB complexity, space, and power. The
additional components may vary from the specific application. For smartphone
targeting chips, mobile communication modems and multimedia accelerators
are the largest non-general purpose processing kernels.

Usually, an MPSoC is heavily overprovisioned —for one reason or another—
in the sense that a significant fraction of the chip area is not or only seldomly
used. A microcontroller, for example, often contains a multitude of peripheral
interfaces. Most products/projects using a microcontroller only use a small frac-
tion of the available interfaces, thus hardware logic. But still using a single micro-
controller is usually more power-efficient than using multiple chips, each with
a specific task. It is cheaper too because a microcontroller can be produced in
vast quantities due to its fit for different tasks. To fit enough products/projects
tojustify the large quantities, it contains as many peripheral options as possible.
Although most projects will only use a fraction of the chip’s vast range of func-
tionality, it assures the efficiency of the chip. The multimedia system on chip
(SoC) makes use of the same principle by including certain special case logic like
a video coding accelerator or a crypto module. It is beneficial to have an ac-
celerator for a special task that may only be activated very seldomly but works
efficiently. Again, the cheapness of logic on an ASIC allows for very special and
maybe rarely used units and still generate a benefit for the application.

The MPSoC platform that shall be regarded here is a bit different in its fo-
cus, and therefore its architectural concept. While the mentioned MPSoCs get
their name from the fact that they integrate not only a CPU on a chip but also

1.2 The Multiprocessor System on Chip Architecture

a set of peripheral units, the class regarded here focuses on the execution of
multiple (sub)-programs at the same time. Of course, a multimedia SoC can —
and does— have multiple cores and can run numerous parallel programs. The
mode of operation, however, is similar to a desktop processors multiprocessing
approach. Multiple processing cores accessing one shared memory resembling
something like a complex but only single von-Neumann-computer. The dis-
tributed SoC in contrast, features a set of multiple von-Neumann-computers
that are, except for a shared communication sub-system isolated from each
other. In a way, this kind of chip could be called “Systems-on-Chip” with empha-
sis on the plural of systems cf. to the single system of most controller SoCs.

Every Von-Neumann-System in such a system of systems must —to adhere to
the definition [79]— feature a processing unit, a memory, and a communication
unit. Concerning the system of systems, all three components are exclusive to
this system and cannot be used by any other system. Calling this internal system
a processing element (PE) makes the enclosing system a PE-cluster. The cluster
now resembles a network of computers within a chip. A set of PEs representing
individual and independent computers connected with a network of particular
topology and technology. It allows the PEs to communicate by providing —on
the lowest level— a way of sending messages carrying data from any PE to any
other.

A PE can be of various types and have variable functionality. The most appar-
ent PE would be a general-purpose computing unit. At the very least, it features
a standard processor and local —on-chip— memory allowing the isolated exe-
cution of a program binary. Of course, a PE can have a more complex design,
e.g. featuring multiple processors of different types. The memory may as well
be a caching structure instead of a closely coupled memory that fetches cache
lines in case of misses over the network from a remote memory. Instead, or
even in addition to the general-purpose CPU a PE may also include special pur-
pose accelerating hardware. But also without a general-purpose CPU, it can be
useful being controlled through the networking unit. A CPU-less PE could be,
to name a few examples, a DDR-RAM module, an LED-strip, an ethernet port,
or and HDMI-controller. To assure the interoperability of these heterogeneous
PEs unified access to the connecting network is necessary. For that matter, a
communication protocol is defined that defines how PEs can send messages to
each other.

From the network’s point of view, a message is a set of data of a certain length.
The transport of a single message can be described as a series of data chunks
transported from router to router. The chunk transporting a certain amount in

1 Introduction

one cycle is called a flit. Depending on the network protocol, a flit may contain
some of the message data and network control information. A series of flits
traversing the network composes a message that transports the data intended
to be sent by the network user. There are different ways of transporting a mes-
sage. In a packet-switched network, each flit passes through the network on its
own. The receiver has to receive flits individually and recompile the message. In
contrast, a circuit-switched network allocates a tunnel through the network from
the sender to the receiver. Once established, the message can pass through the
tunnel as a whole, i.e. all flits directly one after each other. The receiver is sure
that the whole message arrives in a continuous stream, and no reassembling
has to be done. After the head flit, which has to carry the destination address to
establish the tunnel, all other flits may be carrying almost exclusively data and
don't have to include any header. The main problem of circuit switching is that
deadlocks may happen in the phase of tunnel establishment. It is possible to
avoid deadlocks by construction with a carefully chosen network topology and
routing algorithm.

Common choices are ring topologies that may be extended into a forward
and a backward ring. Rings are easy to implement, resource inexpensive, and
deadlock-free. But the average distance between nodes is relatively high, and
in some traffic cases, they are not much better than busses. Another common
choiceis an orthogonal mesh network yielding a lower average distance and bet-
ter throughput in random traffic scenarios. A routing simple as X-Y is sufficient
to assure deadlock freeness even for circuit-switched message transport. Also,
other topologies are possible, like hexagonal or octal meshes or multidimen-
sional torus networks to further increase network performance. They come,
however, with more complex routing and increased chip area costs.

With a network available for sending messages between PEs the MPSoC plat-
form must define a communication structure on top to allow the PEs to work
with each other. The communication unit most likely implements a remote di-
rect memory access (RDMA) protocol. It allows the PE to copy data from the
local memory to a remote memory (e.g. the memory of another PE). This very
simple and easy to use protocol stack can be used to model any communica-
tion protocol, but only with severe performance degradation. Therefore, a more
sophisticated networking unit may be considered to implement other commu-
nication protocols like message passing (MP) or data streaming channels.

1.3 Concrete MPSoC Architecture

1.3 Concrete MPSoC Architecture

For the course of this thesis, a specific MPSoC architecture will be defined that
served as the basis for all considerations. Its purpose is to build an overall pic-
ture that serves as a vessel for the discussions on the addressed hotspots. It
will lean on the Tomahawk architecture, which has been developed and imple-
mented in a series of chips for more than ten years. [32, 33, 61, 55] The Tom-
ahawk architecture is a well-examined architecture from which many assump-
tions and results can be reused to create the models needed for the simulations
setup in this work. The regarded tiled MPSoC architecture consists of a set of
PEs connected by a network on chip (NoC). Each PE features an CPU that uses
three memory ports (one for instruction and two for data) to connect to the local
memory system. The memory system connects the CPUs and the networking
unit to a local set of memory banks with a cross-bar like access controller. The
networking unit provides a full-duplex interface to the NoC router. Each router
connects to exactly one PE and four neighboring routers, resulting in an orthog-
onal mesh NoC. Depending on the focused hotspot, the MPSoC components
are modeled in more or less detail.

1.3.1 NoC

There are numerous examples for NoC implementations [9, 80, 33, 61, 6]. In
this work, the NoC is supposed to be a performant vessel used to build another
communication layer on top. The NoC provides a message transfer mechanism.
The NoC will transport messages of arbitrary length to the given destination PE.
The NoC uses a circuit-switched routing algorithm, which divides the transmis-
sion into two phases. In the first phase, the wormhole is constructed, which may
include waiting times due to congestions. The PE is then blocked from moving
data into the network. Once the wormhole is completed, the receiving PE can
start to read data from the NoC interface. For the length of this transmission,
the NoC will not obstruct the data flow. Only the PEs are accountable for delays
when they cannot read or write data fast enough. The NoC interface transports
spie = 128 bit of data each cycle. The only exception is the first cycle, where a
header of Sheager = 64 bit is sent, leaving oNnly Sheaddata = St — Sheader = 64 bit
bytes of data. As long as no congestions occur, the latency of the data is de-
terministic. The data spends di = 4 cyl (hardware unit clock cycle [cyl]) mov-
ing through the interfaces and asynchronous boundaries until it reaches the

1 Introduction

Y
el [pel— [pe]
2T R R R
PEp [pel [Pe]
1+ R R R
PEpL [pef . [pe]
0 R R R
5 : X

Figure 1.1: NoC topology with a orthogonal connected mesh network of n = 9
routers (R). Each router connects a single PE.

1.3 Concrete MPSoC Architecture

NoC router. Each hop to a neighboring router takes another dno, = 2 cyl cy-
cles. And finally, ascending to the destination PE takes another dj cycles. The
delay the header flit takes to reach a destination h hops away than becomes
Oheader(h) = 2dis + dhoph = 8 + 2h. To get the latency, a message of length s takes
to traverse the NoC the number of flits it takes to store the message is added.

S=5 eaddata
dmsg(hr 5) = dheader(h) + [%] (/| .'|)

Arranging a set of n PEs as close as possible to a square (Fig. 1.1) gives an edge
length of v/n. The expected distance of two randomly selected PEs is the sum of
the distances in X and Y dimension because of the orthogonal NoC connection
pattern. The mean absolute difference of two uniformly distributed variables
is b/3 with b being the upper bound of the distributions. Applied to the n PE
system the average path lengthis h = 2 \/n/3. The average message latency
assuming n = 25 PEs and a common signaling message length of s = 64B
(Bytes) then becomes:

%ﬁ) + [Mw = 15cyl + 4cyl = 19¢yl

dmsg(nr 5) = dheader (3 St

1.3.2 Processing Core

The PE consists of one or multiple reduced instruction set computer (RISC) pro-
cessors. For the considerations made in this thesis, it is not important what
kind of processor is choosen. However, it is assumed that they may be appli-
cation specific integrated processors (ASIPs) with an increased data bandwidth
to match the bandwidth provided by the NoC. An ASIP processor is a RISC pro-
cessor that has its instruction set architecture (ISA) extended by a set of com-
mands to help accelerate an application-specific problem. Often the ISA exten-
sion comes with the extension of memory ports, essentially transforming the
processor into specialized digital signal processor (DSP) [33, 61]. In this plat-
form, we will assume an ASIP with two 128-bit data memory ports, as it was
proven in [33, 61]to be a resonable configuration for the targeted applicaiton.
It allows optimized algorithms to read-modify-write 16 bytes in a single cycle.
This value is important to mention because the rest of the system has to be de-
fined in a way, so that it can keep up with this data rate, e.g. the NoC that has to
be able to bring in and take away data fast enough to keep the processor busy.
Another issue to keep the processor busy is the connection to the local mem-

1 Introduction

PE router

bank [

—— CPU
bank [—

X
bank [i~
NI
bank [\
N\

router router

[l

Figure 1.2: Block diagram of the processing element architecture.

ory banks. Both the processor and the networking unit have two memory ports
for simultaneously reading and writing (sending and receiving) data and one for
control information. In addition to the two data memory ports, a processing
core features an instruction memory port. All three memory ports should be
able to access the same memory locations (Fig. 1.2) making the physical sepa-
ration of memory infeasible. Additionally, prior chip production has shown that
dual-port memory consumes almost twice the chip area than single-port mem-
ory with the same data capacity. Since an MPSoC platform with local memory
for the PEs consists mainly of on-chip memory, the storage density of the mem-
ory is an important factor. Because of these considerations, a memory system
is used that utilizes a set of single port memory banks and connects them to a
set of memory masters, allowing them to share access to a continuous memory
space transparently.

10

1.3 Concrete MPSoC Architecture

memory arbitration address
master 3 queues | 4 pank2
N [T+ 0x300000
master 2~ —1 bank 1
“lxbar[| 0x200000
1 (LI ——y bank 0
master 1 [~} 7 | 0x100000
™ special reg
master O 0x000000

Figure 1.3: Memory system overview. Shown is the access path a master has
to a desired location in a memory constructed by linearlly aligned
memory banks.

1.3.3 Memory Management

The PE local memory management implements cross-bar like access function-
ality for a set of memory masters to a set of memory providers like shown in
Fig. 1.2. This system was suggested in [83] to allow a most flexible distribution
of memory access to serveral memory master (users), focusing on access colli-
sion prevention. Depending on the application it promises access performance
similar to the usage of dual-port memory bank but with inexpensive single-port
memory banks. A bank mapping table allows for each provider (e.g. memory
bank) to appear in each master's memory space. Apart from a memory bank,
a provider can also be the configuration space of a specialized hardware unit
that is controlled with a memory-mapped configuration mechanism. For exam-
ple, the networking unit's configuration register file is connected to the memory
system as a memory provider. With the help of the mapping table access to the
networking unit can be granted to or revoked from any master.

In the case that multiple masters request a location from the same provider,
an arbitration policy will select one of the requests to be forwarded to the provi-
der, signaling all other requesting masters that their request has been delayed.

The arbitration policy has a request queue for each memory provider. When
a master request is routed to a specific provider, it will be appended to the
requests queue. The request being in the pole position of the request queue
will be granted access. As long as a master keeps requesting the same provider,
it will remain in the queue and remains to have access to the provider if being in

11

1 Introduction

send engine

T
NoC control memory

1

receive engine

Figure 1.4: Block diagram of networking unit showing the two main parallel
dataflows of receiving and sending data.

the pole position. The moment it stops requesting, by changing the address to
another provider or clearing the enable bit, it is removed from the queue and
has to enqueue at the back. A timeout also removes masters from the queue
pole position to prevent master starvation by a single master that never changes
location.

1.3.4 Networking Unit

The networking unit provides an automated way of exchanging data with other
PEs. It is programmed using a memory-mapped special register file accessible
by the masters through a dedicated memory provider. It consists of three basic
parts as shown in Fig. 1.4: Two streaming engines (1) moving data from the local
memory to the network, (2) moving data from the network to memory, and (3)
a controller directing and controlling the streaming engines. Each part governs
one memory master port, and the streaming engines each a network port.

The controller is in charge of programming both the send and the receive
engine. It can program the send engine to stream a data range from memory
to the network. Upon an incoming network message, the controller parses its
header and programs the receive engine accordingly. The receive engine will
then stream the remainder of the message to the programmed memory range.
Both engines are designed to process 128 bit (i.e. one flit) of data each cycle to
match the speed of the NoC.

Since the two data engines provide only low-level functionality, the controller
is responsible for executing the different communication protocols. The dy-
namic nature of the targeted signal processing application demands commu-
nication modes with different performance focuses. In this networking unit

12

1.4 Representing LTE/5G baseband processing as Static Data Flow

three communication modes are included, each with a different type of com-
munication in mind. The RDMA mode is used for one-time, high-volume, high-
throughput, 1-to-1 bulk transfers. It does not need a sophisticated flow control
but a simple connection establishment, i.e. the sender needs to know where to
write the data in the receivers memory. The RDMA protocol is closely related
to the direct memory access (DMA) protocol found in off the shelf desktop PCs,
butimplemented for a distributed memory architecture. In distributed-memory
systems, it is often the only possibility of PEs to communicate with each other.
Being separated by a NoC the PEs are otherwise unable to access each other's
local memory. To reach a remote memory, the RDMA controller provides two
methods. The “put” is used to copy a local range to a remote PE's memory,
where the “fetch” method copies from a remote memory to the local one.

The first in first out (FIFO) mode enables constant, high throuhput streams
of data without adding a lot of software overhead to the application. Two PEs
can communicate through a unidirectional channel reaching from the sender
PE to the receiver PE. To use the channel, the sender only writes to a local data
buffer. The data will be transported automatically to the receiver into a local
buffer, where the receiver can collect it.

For small messages, where response delay is crucial, like in signaling com-
munication (e.g. requesting a service), a MP mode is provied. It provides the
capability to quickly and efficiently send small messages to a PE's message box
without the need of a connection establishment. The message box is a random
access buffer for messages that can be received from multiple senders.

1.4 Representing LTE/5G baseband processing as Static
Data Flow

As already mentioned (in Section 1.1) the input of a digital signal processing
stage of a mobile communication setup is a stream of more or less independent
packets. Each represents the data for one TTI and its processing can be viewed
as an isolated problem. The complexity may vary dramatically depending of on
several factors like number of antennas, the set of users, their applications and
various channel properties. The range of differnt packet configurations already
is big for 4G and 5G and is considered to further increase for future mobile
communication standards.

For example, the 4G uplink receiver baseband processing of a TTl-packet may
be simplified to a simple SDF-graph like shown in Fig. 1.5. Although the basic

13

1 Introduction

FFT {— Est — Inv = Eq (— IDFT |- Qam/| pipeline

SDF variants

init
SDF SDF, SDF N SDF application
SDF SDF

time

Figure 1.5: LTE uplink pipeline as generic flow chart, two abstract SDF represen-
tations resulting from different parameter sets, and as distributed
application using different graph instances.

graph may not change depending on the configuration, the complexity of the
processing, may still vary. In the simplest case this may manifest in the number
and size of tokens transfered on the SDF channels and the firings each SDF
actor has to conduct.

An efficient execution needs to employ different strategies to distribute com-
putation to a set of PEs. Alongside different communication modes are needed
to support those strategies. Each single firing of an actor may be placed on
a different PE because of computation needs. In this case bulk transfers are
needed to move the needed data to many different PEs. In contrast simple but
high throughput actors may stay on a sinlge PE and be connected with pipelines
to assure unobstructed data processing. To quickly react to the ever changing
computation needs an MP mode is needed. It allows the efficient implementa-
tion of a dynamically generated execution plan on the available PEs.

14

1.5 Compuation Stack

1.5 Compuation Stack

The computation stack is a set of layers consisting of software and hardware
constructs forming a system that is able to do a computation. The efficiency of
a system depends on all layers of the computation stack:

+ The “algorithm” is a description of a solution to a problem in a computer-
executable manner.

- The“language” layer specifies a set of commands and operations to define
an executable program.

+ A'runtime environment (RTE)" provides a framework with functionality to
support the execution of a program with recurring tasks like inter-thread
communication. Also, resource allocation can be a task of the RTE espe-
cially in distributed computation.

+ The "OS" provides security functionality like the isolation of programs to
the platform. Isolation of resources implies the allocation of those. In
contrast to the RTE, the OS focuses on isolation instead of performance
optimization.

+ The “drivers” can be included into the OS layer. Since the OS layer is con-
sidered optional here, but the drivers are not, they are listed in a separate
layer. Drivers provide an abstraction of some functionality from the used
hardware. For example, a driver may provide the functionality to send a
message to another PE without the application knowing what kind of net-
working unit is present.

+ The "hardware” is the lowest layer, providing the actual manipulation and
storage of data. The definition can often be partitioned into units for var-
ious tasks like data storing, mathematical operation, moving data, con-
trolling program flow, application-specific accelerated data manipulation,
etc..

Generally speaking, each layer provides functionality to the layers above by
abstracting and refining functionality provided by the layers below. The costs
at which functionality is provided can be measured as the use of two base re-
sources. The two resources that are of interest are the occupation of computing
time and memory. While the management of memory is an important topic for

15

1 Introduction

the efficiency of a distributed memory system, this work's primary focus will be
the computation time. Although the occupation of memory in local memories is
omitted, the transfer of data through the network is considered because it can
consume a significant amount of time.

Each layer defines a set of operations an upper layer may issue. The issue of
an operation is defined by an implementation. An implementation is defined as
a setissues of operations of lower layers to produce the desired result. The total
resource consumption then is the sum of all issued operations. There are two
possibilities to optimize an operation. One is to optimize the implementation
to use fewer or cheaper operations of the lower layer. The other possibility
is to decent one layer and optimize operations frequently used in the current
implementation.

Another way how each layer can affect the execution time is through static
resource consumption. The static consumption of resources is independent of
the executed program. It may, for example, be a fixed portion in each time slice.
For example, in a preemptive scheduling environment, the OS will interrupt the
running program and do context switches with a fixed frequency, using a por-
tion of computational resources. Likewise, a communication library decoupled
from the CPU delays the progress of the distributed application without directly
interfering with the CPUs.

Optimizations of operations can be done on any layer, and each will affect the
application’s execution time. The effective speedup for the application caused
by the optimization can be described with Amdahl's law. With p being the por-
tion of resources consumed by the operation in relation to the total resource us-
age, and s being the speedup of the optimized operation?, the effective speedup
is described as [3]:

1
(1-p+&

An operation may be a candidate for optimization if the product of its re-
source consumption and the number of issues is high. It may be more beneficial
to optimize a low-level operation used in many higher-level operations. There-
fore, it accumulates a more significant resource consumption than a complex
high-level algorithm issued only once at program startup. In the following, all

S =

2QOperations are considered sequential. The speedup of an operation is usually achieved by an more
efficient implementation. Speedup of the application by parallelization is not directly connected to
operation optimizations. An efficient computation stack, however, shrinks parallelization overhead,
thus helps application speedup.

16

1.5 Compuation Stack

application | functional program code, distribution structure

language | mapping from source code to machine processing

RTE resource management, distributed computation
0S application isolation
driver abstract hardware, emulation of missing hardware

hardware | computation functionality, peripheral extensions

Figure 1.6: Layers of a distributed computing platform.

layers that take part in the execution of a program will be briefly described, and
possible hotspots are being analyzed.

1.5.1 The Algorithm and Application Layer

The way an algorithm is defined often also determines the computational effort
posed to the platform. Usually, little can be done to improve algorithms’ effi-
ciency without going into domain-specific details of the application. Switching
the algorithm or parts of it with simplified or heuristic approaches can reduce
complexity in exchange for accuracy. However, it is the task of the application
developer to decide for an algorithm that consumes as little computational ef-
fort as possible while producing results that are sufficiently precise for the in-
tended application.

However, an algorithm can be selected or designed to be adapted to the given
platform constraints with regards to the other layers. The targeted environment
here is designed for distributed applications. It means that there are multiple
independent and isolated PEs connected with a distinct communication fabric.
The PEs are expected to be fairly small, with a simple CPU and a small con-
nected memory, so that already a medium-sized application cannot be run on
a single PE, but will have to spread over multiple. For example, an application
describes as a DSP pipeline does fit the architecture well and may lead to high
performance. Each stage can be hosted on another PE, and communication
infrastructure provides cheap and performant data transfer between stages.

17

1 Introduction

1.5.2 The Language Layer

Choosing a programming language is important as it can introduce a signifi-
cant amount of overhead. Several attributes may give hints about overhead,
resource consumption, and performance. An “interpreted” language (i.e. script)
almost always introduces a lot of overhead through the indirection of opera-
tion by a virtual machine. Examples are “python”, “java”, “MATLAB". The “garbage
collector” many languages utilize is activated spontaneously and will consume
a significant amount of computing resources. It is not exclusive to interpreted
languages, for example, used in “C++" or “go”. Other attributes that also may
impact performance are dynamically evaluated types for implementing “poly-
morphism” and the intensive use of various dynamic objects like “associative
arrays” or “dynamic lists".

Most languages, however, are specifically designed for a certain type of ap-
plication and environment. Scripting languages like python or javascript mostly
focus on simplicity and convenience for writing software. Other languages like
“C" and "Rust” are designed explicitly for resource-limited systems and perfor-
mance craving applications. The for a certain is therefore dependent on the
project and usually easily decidable.

1.5.3 The Runtime Environment Layer

The RTE provides an abstraction for an application from the available process-
ing and communication resources. The topology of the distributed application is
defined. Itis described as a set of processing and data objects and their relation
to each other (e.g. read/write access). The RTE's purpose is to map these ob-
jects to the physically available resources, i.e. processors and memories, while
incorporating communication cost of object transfers between resources.

The performance issue that can arise in this layer is that every structure re-
quires a certain amount of (computation) resources to be managed. If the ap-
plication is partitioned into too small parts, or the management operations are
too costly, the relative overhead will be significant, making execution inefficent.

On the flip side, the RTE can dynamically utilize available resources and react
to changes in the available resources or the application. It allows the RTE to
optimize computation efficiency on any given platform size or topology.

18

1.5 Compuation Stack

1.5.4 The Operating System Layer

The OS layer s, for a platform like the one considered in this work, non-essential.
The taskis to insert a security layer that isolates the applications and sometimes
also the system services from each other. There are various possible ways of
how applications could interfere with each other and as many methods to pre-
vent each one. The most trivial inter-application interference is access to an-
other application's memory space. Writing to foreign memory is considered
malicious behavior, but even reading could reveal confidential data like crypto-
graphic keys. Apart from security reasons, isolation also has a safety benefit, as
the damage a malfunctioning software can cause can be contained easily. On
off-the-shelf desktop systems running a variety of very different software simul-
taneously, the benefit from increased safety and security prevails. In contrast,
on an embedded MPSoC, that probably only runs a single piece of software, the
overhead introduced by the OS quickly becomes significant. The OS layer may
be skipped entirely in this case to keep the performance.

1.5.5 The Driver and Library Layer

The driver and library layer provides an abstraction from the hardware imple-
mentation of a set of needed functionality. Depending on the available hard-
ware, it may be necessary to emulate some functionality to fulfill all require-
ments of an application programming interface (API) exposed to upper layers.
For example, a library may implement and MP protocol stack based on an RDMA
hardware module if no MP hardware module is present. It allows programs
from the higher layers —may it be the OS the RTE or the application directly—
be developed against a consistent API, e.g. a MP API, without caring about the
available hardware.

Drivers and libraries often contribute a significant amount to the resource
consumption of an application. Especially frequently used operations like com-
munication primitives can represent a lot of overhead. The optimization of these
operations is often tricky because they mostly consist of the translation of func-
tion calls to programming hardware modules through memory-mapped config
files. But the large number of issues to these small operations make already
small savings in computation worthwhile. However, in some cases it may only
be possible to slim the configuration process by changing the hardware module
itself, or at least it is the more promising way to go.

19

1 Introduction

1.5.6 The Hardware Layer

The hardware layer is unique as it does not depend on a lower layer’s opera-
tions but only provides functionality upwards. The most apparent operations
are an implementation of a general-purpose ISA and the possibility to store
data. Optimization in other layers consists of avoiding issues to lower layers
or using cheaper ones, where optimization in the hardware layer works differ-
ently. When optimizing at hardware layer, new operations are defined and im-
plemented directly in hardware. The additional operation can be used by other
layers instead of implementing the same functionality with a sequence of basic
operations. For example, a floating-point unit provides operations that can cal-
culate floating-point arithmetic in very few cycles where a software implementa-
tion based on integer operation may take around a hundred cycles to complete
[68]. Similarly, larger algorithms may be implemented in hardware to shorted
execution time. Not only local calculations but also communication operations
may benefit from specialized hardware implementations. The availability of a
FIFO channel unit or and hardware MP protocol stack to omit software libraries
can help save resource consumption.

1.6 Performance Hotspots Addressed

The previous section stated that to optimize an application decently, the whole
system, meaning each layer, must be addressed and optimized towards the
given requirements given by the application. Some hotspots will be addressed
in the following chapters, and optimization strategies used to improve system
performance. There will be no space to cover hotspots in all layers, yet four will
be visited that were noticed to be significant in earlier times.

(1) Describing a distributed application is a relatively new problem in com-
puter science. For the most time, a program has been considered sequential
with one thread following a track of commands through a program, occasionally
and conditionally jumping to create all kinds of decision making. With the advent
of shared-memory multiprocessors, this idea has been enhanced by a single
consideration: The existence of multiple threads that live in the same memory
space. Harnessing the potential of a multi-threaded, memory-shared system is
a complex task that poses the danger of unwanted side effects. There are many
frameworks, libraries, and OS support to increase safety, security, and ease-of-
use of those systems. The functionality that these RTE and OS level solutions

20

1.6 Performance Hotspots Addressed

provide always follows two principles: (a) The threads belonging to an appli-
cation are isolated from each other in memory except for a precisely defined
location used to implement the communication. (b) The communication func-
tionality is exposed to the application either as a FIFO-like channel or a message
sending service. Access to the whole memory is restricted to a data pipeline al-
lowing serial access to both communication partners or a messaging system
working on evenly sized data blocks. In addition to that, most desktop-focused
multiprocessing libraries do not consider to apply the same canalization to the
computation, chunking the application into inter-dependent processing blocks.
With a resource management unit providing isolation and canalization for both
data and processing time, optimization can already be done on application level
by just choosing the right data and computation types for subprograms.

(2) Although in desktop targeting OSs the structure of chunking the process-
ing time into tasks is usually not provided, some projects offer a task running
RTE with the tasks usually drawing from a SDF graph. A problem that arises
when implementing such a system is that the management overhead becomes
significant relative to the actual computation depending on the task size. The
basic relation here is that each task introduces at least a fixed amount of over-
head work independent of the task's size. That means having smaller tasks
decreases the task to overhead ratio until the management becomes the bot-
tleneck of the system, not allowing the exhaustion of the systems processing
power. The main reason is that most systems centralize the management into
a single-threaded unit, unable to scale. With a more or less fixed overhead for
one task, the system'’s task throughput is determined by the management unit's
speed and is independent of the task size, as long as tasks stay small enough.
For bigger tasks, the bottleneck becomes the system'’s processing power leaving
the management unit on idle for some time. Making the management system
a distributed application itself would help to scale with the amount of overhead
work that needs to be done. The management system could adapt to the task
size to occupy exactly as much processing resources as needed to fill the re-
maining resources with tasks.

(3) The first two hotspots are dealing with software; the third and fourth
hotspots address problems in the hardware layer. The main focus here lies in
communication technics. The classical computation system does not need spe-
cialized communication hardware because any communication protocol can be
built based on shared memory. When turning away from shared towards dis-
tributed memory, dedicated communication functionality becomes essential.
The most common technic even found in desktop systems to relieve the CPU

21

1 Introduction

from long data copy operation is the DMA controller. Although not needed in
shared memory systems, it is used to parallelize data transfers and main com-
putation in shared memory systems. In distributed-memory systems, where
memories are isolated from each other, the DMA is often the only possibility to
exchange data between nodes. The shared memory DMA only needs a single
operation, which is copy data from one location to another. In contrast, the
distributed memory DMA distinguishes between local and remote memories
and defines two operations, one for sending data to and one for pulling data
from remote memory, forming the widely used RDMA function set. Although
the RDMA allows implementing all communication formats, some may suffer
from performance issues. In this work, two chapters are devoted to improving
communication in distributed memory systems by implementing specific com-
munication protocols in hardware.

One of the two protocols implements a FIFO channel, used for example, for
pipelined signal processing. The flow of data from one MPSoC node doing one
processing stage to the next is entirely offloaded to a dedicated hardware unit
allowing the CPU to concentrate on the number crunching. This form of com-
munication expects a constant and high amount of data rate.

(4) The second communication protocol provides MP functionality and is vital
for distributed application design. It suffers from performance loss when imple-
mented on top of a RDMA stack. When used for synchronization of nodes and
requests to service nodes, the main issue a RDMA based implementation has is
the message delay. A hardware (HW) implementation can significantly improve
the delay by removing unnecessary protocol layer messages. Another problem
addressed is extensive memory consumption and the overhead of managing
connections states.

1.7 State of the Art

Building a complete dynamic SDF execution system covering every layer from
hardware up to the application is a massive task. It has hardly ever been done
(best to our knowledge). Also, this thesis struggles to relate everything to every-
thing else. But each of the regarded hotspots does have their field of related
work that they can be placed into. At the beginning of each chapter, a more
detailed “state-of-the-art” section will cover work related to the topic at hand.
Anyway, a quick overview of the most prominent works will be given here, also
covering fields not touched in this work but worth mentioning.

22

1.8 Overview of the Work

There have been several attempts to build an MPSoC with a focus like the one
described in Section 1.2 like [33, 61, 40, 65, 14, 24, 54, 6]. Each project has its
own set of hardware units featured to support a specific type of use case. The
communications features on a MPSoC are often regarded with great detail and
versatility reaching from NoCs [9, 80, 5, 6] over DMA controller [63]to FIFO im-
plementations [77, 39]. One step higher on the stack, on the RTE layer, several
works are dealing with SDF-like graph processing on multi-core systems [15, 58,
53,12, 49, 67, 56, 18] and also works that review the hardware and RTE layer
together [75, 72]. A technique that could not be covered in this work but worth
mentioning and interesting for future work is the clustering of tasks to save
overhead effort [22, 29]. A lot of works combine two layers they regard jointly
skipping several layers on the computation stack, like Long Term Evolution (LTE)
implementation on SDR a platform [8], on a general multicore architecture [66],
and on field programmable gate array (FPGA)-based solutions [45, 85, 1]. But
most state-of-the-art work assumes standard components in all layers except
the one that is improved. There are a multitude of different dataflow models
[51, 42, 4, 10, 31] mostly adding different attributes to SDF, new languages to
express stream processing [19, 21, 76, 81] and even efforts on compiler tech-
nigues to optimize stream processing on multi-processor systems [26].

1.8 Overview of the Work

In this work the key challenges will be highlighted that are most likely to be a deal
breaker when designing an efficient dynamic SDF execution system. As already
mentioned in Section 1.1 the efficiency of an embedded platform depends on
every layer of the computational stack (Section 1.5). Although each layer is im-
portant and can have a game-breaking impact on performance, only a few layers
will be regarded closely in this work. Some layers can be ignored because they
are not mandatory or unlikely to impact performance when used correctly. Us-
ing “C" as programming language is unlikely to cause a performance issue on its
own, because of its lightweight nature, but it is cumbersome and error-prone
to write and thus may be replaced with some modern language to increase de-
velopment efficiency. Similarly, an OS can be inserted for portability or security
reasons. Both cases require extensive investigations to verify the impact on the
resource allocation efficiency of the whole system. For that reason, although
presenting interesting possibilities to explore, both layers are left out of this
work.

23

1 Introduction

What will be discussed in this work are four topics that are expected to impact
system performance significantly. On all four topics, a solution matching the
problem at hand is, to our best knowledge, not present. First, the topic of dis-
tributed application representation is visited in Chapter 2. A hybrid description
will be developed that aims to combine the advantages of task graphs and pro-
cess networks. Additionally, it introduces the issue of balancing the overhead
and the payload calculation of a distributed application. This overhead-payload-
ratio is revised in the second topic concerning the platform’s and application’s
management instance distribution in Chapter 3. Both topics implicitly assume
efficient data transfers within the system. As already mentioned (in Section 1.4)
these are bulk transfers, pipelines and efficient message passing.

Where bulk transfers can efficiently be done with widely available RDMA [43,
41,44, 2] engines, the other two need a closer review. In Chapter 4 the efficient
realization of inter-PE data pipelines are investigated. The usual high through-
put demands of pipeline connections require close analysis and optimization of
local memory access. In Chapter 5 the missing transfer mode (“message pass-
ing") is examined. The many-to-one relation of client-server relations demands
resource efficiency on the server-side. Additionally, the message delay has a
non-neglectable impact on the possible utilization of the server process.

24

2 Hybrid SDF Execution

In this chapter, one performance bottleneck will be addressed. The layer of
the runtime environment (RTE) is responsible for deploying an application de-
scribed in the superjacent layer to the platform defined by the underlying layer.
The task is to find the most optimal strategy to interpret the application and
assure the correct execution of it. The performance in this regard is considered
the amount of computational effort a given system can process in a given pe-
riod. Two different common approaches are examined in this work and fused
to form a new hybrid strategy that can outperform preexisting work.

2.1 Addressed Performance Hotspot

When mapping an application to a hardware platform, an RTE faces multiple op-
timization problems. As stated before, the application here will be described by
an static data flow (SDF) graph. For example, each SDF describes the computa-
tional effort for one transmission time interval (TTl) packet. A stream of packets
then results in a stream of independent SDF graphs. A performance indicator is
the time the system takes to execute all computational effort of a single graph.
A more sophisticated performance measure is to determine the frequency at
which the system can process graphs.

One usual approach to process an SDF graph is to convert it into a task graph.
Each firing of an actor is represented by a task, the channels by data blocks
passed between tasks. A bottleneck that such a scheduling system can expe-
rience is caused by the scheduling overhead every task scheduling system in-
herits. With a sufficiently large platform or small tasks, this overhead cannot be

25

2 Hybrid SDF Execution

neglected. Eventually, the system's performance is solemnly limited by the num-
ber of tasks the scheduler can submit. The workers are left idle for a significant
time, making the system inefficient.

Another way of processing an SDF graph is as a process network. Each SDF
actor is represented by a process, that are connected with data pipelines to re-
semble the original graph topology. According to the SDF definition, a process
consumes data from the pipelines. When all neccessary data is collected, the
functional kernel is fired (i.e. executed), produced data is pushed to the outgo-
ing pipelines and the process resumes to the data collection stage. This way
scheduling overhead is diminished compared to the task graph where every fir-
ing has to be scheduled individualy. On the downside a parallel execution of
multiple firing of the same actors is not possible.

In the often applied static scheduling, minimal live scheduling cost is com-
bined with the ability to run one actors firings in parallel. The assignment of
firings to processors is done offline and only relplayed in the live situation. It re-
quires however that the processors chosen in the offline scheduling are avail-
able or at least a block of an offline defined number of processors are avail-
able. That means, that effectively, a block of processors is occupied over the
complete schedule’s makespan, even is certain processors are only used at a
fraction of the time. This lead to a lower system efficiency or to put it the other
way around, demands overprovisioning of the hardware, which was one initial
reason to choose a dynamic scheduling approach.

2.2 State of the Art

There are many works targeting stream processing. They do, however, illumi-
nate different levels of the matter and always have a specific focus. Some works
define their own language [76, 26, 81, 71] like for example the CAL language [21]
which causes the need for a specialized compiler. Universal multiprocessing
toolsets like MPI [30] define their data abstraction on a very low level, loading
the burden of task prerequisite allocation and data handling to the application.
Other works present RTEs for running process fleets without the notion of inter-
task data depenencies [15, 81], with the inclusion of hardware resources [75,
72] or with data and stream management [58]. Some works specify an API for
defining process networks [58, 72]. The DANBI RTE [58] defines a program-
ming model for irregular programs of kernels communicating through queues.
There are some RTEs for stream processing, but all of them focus on a specific

26

2.3 Static Data Flow Graphs

‘ 4 ‘ T consumption rate
\ //’1 PSR marking

3" production rate

« - - actor

- - kernel runtime

Figure 2.1: Cyclic SDF example graph comprised of three actors with different
kernel runtimes, connected by channels of varing data rates and ini-
tial markings.

model of computation (MoC)', which is usually the one that is presented in that
work. It is hard to compare MoCs because each is only supported by a certain
RTE. In addition to limiting themselfs to a specific MoC there are projects that
even define an own language for their RTE like StreamlIT [76, 26] or the CAL
language [21]. This further decreases the comparability because the compiler
contributes a fair amount to the performance of an application. Universal mul-
tiprocessing toolsets like MPI [64] define their data abstraction at a lower level.
There, an application defines processes, running in parallel, that can communi-
cate directly with messages passed from one (or more) process(es) to one (or
more) process(es). In contrast, within the system regarded here, processes in-
terface only with data containers. Cass et al [15] propose an RTE of agents that
are executed distributed over multiple instances. It is, however, only designed
for the kind of stream processing language Little-JIL [81]. There is an operating
system called BORPH [75], which is used to build an integrated HW/SW system
where hardware units act like normal software processes [75]. DANBI is an RTE
for process networks [58].

2.3 Static Data Flow Graphs

SDF [52, 507 is a well known and well-examined execution model that describes
an application as a set of n actors connected by channels. An actor contains a
functional kernel that performs a piece of computation each time activated. In
Fig. 2.1 the actors are displayed as circles with the computational payload kernel

A MoC defines the way an application describes the to be done computation. It may be a sequential
description as in traditional programming but also any kind of operator networks

27

2 Hybrid SDF Execution

runtime k;, written inside. The activation —or firing— will happen when all input
ports of the actor collected a predefined amount of data-tokens. After the ker-
nel finished the computation, the actor assures to emit a predefined number
of data-tokens on every output port. Each of the ports is connected to another
with a channel that acts as a transmitter and buffer of data tokens between
actors. The number of tokens consumed and produced by the actors is called
consumption and production rate, respectively. The number of tokens that are
present on a channel at the start is called initial marking. In the figure, channels
are drawn as arrows annotated with the production and consumption rate and
initial marking. After a certain number of firings ¢; of each actor, the SDF arrives
at a state with the same number of tokens on each channel as at SDF startup,
called a graph iteration. For the graph in the example, the blue actor will fire six
times, while orange and green fire two times. A graph will usually be executed
a defined number of full iterations —often only one iteration— before destruc-
tion. The total time it takes an execution environment to process all desired
graph iterations is called the makespan. It is used as a primary performance
indicator for an execution environment running a specific graph.

2.4 Runtime Environment

To be able to address the mentioned hotspot and build a graph interpreter that
combines the methodology of both, the task graph and the process network
interpretation, an RTE was developed that uses a hybrid graph interpreter to
exceed performance of other RTEs. The basic idea of the RTE in contrast to tra-
ditional multithreading is that the threads are isolated from each other in their
memory view, much like processes in a modern operating system (OS). The RTE
then defines a set of communication technics to allow inter-thread data transfer.
Structuring the communication in such a way allows the RTE to place threads
into physically separated memories without the need to synchronize them con-
tinuously. Doing so requires significant expenses in additional hardware and
also disturbs smooth program execution, affecting system performance. Ad-
ditionally, it may pose a safety or security risk to do so. By only sending the
data that is meant for the neighboring threads, these risks are avoided, and
the data transferring fabric's bandwidth is saved. Simultaneously, the execution
efficiency is increased on distributed memory systems, which only have to im-
plement the RTE communication primitives. No drawback is created for execu-
tion on shared memory systems since the communication primitives can easily

28

2.4 Runtime Environment

«- - process
~_-- FIFO buffer

--- data block

Figure 2.2: RTE example application utilizing all four bulding blocks. (“task” and
“process” are the same to the RTE and only differentiated here to
emphasize the flexibility of the RTE.)

be implemented using shared memory locations and still increasing protection
against errors based on memory access race conditions.

In contrast to many other RTEs that only define one type for each processing
and data to describe a single MoC, an application in the hereby proposed RTE
is composed of a network of objects from a set of four types. Fig. 2.2 shows
and RTE application utilizing all four objects. The task can best be compared
to a traditional thread. Depending on the SDF representation strategy, this can
also be called a process. It is instantiated to execute a kernel (e.g. a piece of
executable binary). In contrast to the traditional thread, a task is also given a set
of input/output (I0) objects that define the initial communication links to other
tasks or static data storage. The IO objects can be of two kinds. Firstis a channel
that connects two tasks with a unidirectional FIFO style data pipeline. Accessing
the pipeline may block the execution of the task if space or available data in the
channel does not suffice the intended operation. The channel allows constant
data transfer between simultaneous running tasks. The second option for data
access is the data block. A data block is a fixed size RTE managed buffer. It can
be assigned to a task in either write or a read mode. Access to it is similar to a
channel but without the possibility of blocking. The RTE assures the availability
of all data blocks at the task start. A data block is an immutable data structure,
meaning that it can be written exactly once (e.g. by one task), after which it can
only be read, but multiple times. With this attribute, a block intrinsically works
as dependency enforcement between two tasks. Although the second task can
only start after the block becomes ready, it already can be scheduled and goes
to sleep until the data becomes available. With that, the dependency resolve
loop some implementations are suffering from can be shortened.

Any task can create objects of any of the four kinds. That allows hierarchical
applications that can spawn or change subgraphs upon change of application

29

2 Hybrid SDF Execution

demand. It is especially possible to build the scheduling system as an RTE na-
tive application itself. It is also possible to build different SDF interpreters that
follow different strategies to process an SDF graph. Three interpreters will be
discussed in the following.

Summary of RTE features:

- Isolation of tasks with respect to computation and memory
+ RTE managed data containers
+ Two communication primitives: data container access and pipelines

- Hierarchical creation of sub graphs

2.5 Overhead of Deloying Tasks to a MPSoC

Before presenting the SDF interpreters, the overhead that an RTE brings to
the system for managing the four object types is introduced. The overhead
is needed to enable the parallel execution of multiple tasks on an underlying
platform. The alternative for the application would be a prescheduled SDF —
or trivially a sequential execution—, leaving out all overhead. The overhead
is classified into six different stages, each dedicated to a specific part of the
tasks-deployment sequence. Together with the kernel stage, the lifecycle of a
task is composed of seven stages. Each stage defines the amount of computa-
tion effort it introduces. Further, it constraints the order of stages and speci-
fies needed requisites. Depending on the management design, parts or whole
stages may be spent on different processing elements (PEs) and run in parallel
where possible.

1. Call The initiator task spends an amount of effort to set up data structures
describing the task and call the RTE application programming interface
(API). It thereby hands over control to the RTE.

2. Control The whole creation phase is supervised in this stage. It includes cre-
ating and maintaining RTE internal data structures, collecting additional
information through the stages “place” and “IOaquire”, and deploying the
task to the destination PE.

3. Place A PE is selected for the new task to be executed on (e.g. destination
PE), taking into account the current system state.

30

2.5 Overhead of Deloying Tasks to a MPSoC

4. 10aquire The IO objects requested for the new task are located and copied
to the destination PE. Channels are created and initialized.

5. Prepare The destination PE is prepared for the execution of the task's ker-
nel. It may include different things depending on the underlying platform.
Usually, it revolves around creating an OS thread and the installation of
the allocated |0 objects.

6. Kernel The kernel function is executed.

7. Post Destruction of OS and RTE dependent structures and update of related
RTE specific structures like marking blocks as ready and sending “task fin-
ish” notification.

Although differentiation of the scheduling overhead is possible in this gran-
ularity, in literature, a monolithic centric unit usually controls the scheduling.
Such a centralized scheduler is responsible for processing stages 2-4. The other
stages obviously cannot be moved from their natural place, which is the initia-
tor PE for stage one and the destination PE for stages 5-7. The centralization
of the expensive stages 2-4 in a single unit quickly becomes a bottleneck in a
system with sufficiently many PEs or when tasks are sufficiently small compared
to the overhead expenses. Because these two factors are crucial for the effi-
cient utilization of the system, they are defined in two ratios. The ratio between
overhead and payload effort is described as
eoverhead,avg

Fover =
epayload,avg

WItN €overheadavg aNd €payiadavg DEING the expected processing effort in over-
head stages and the kernel, respectively. The ratio of managing and working
PEs is defined as

nmanager

rmanager =
Mworker

WIth Nmanager aNd Nuorker DeiNg the number of PEs assigned to scheduling and
to kernel calculation.

Both ratios can be controlled in different ways. To control rfmanager the num-
ber of manager PEs that can be utilized by the RTE must be flexible. As just
said this is not possible with a monolithic manager. In Chapter 3 the distribu-
tion of the managing subsystem to multiple PEs will be regarded to achieve this

31

2 Hybrid SDF Execution

flexibility. For the remainder of this chapter, the focus will be to control ryr. Ba-
sically, the controlling is possible at two levels in the computation stack. Firstly,
the application has a great impact on roer Dy its decision how to partition the
computational effort epayioad to a set of SDF actors. While epayi054 Stays constant
no matter how and to how many actors the payload effort is distributed. The
overhead effort depends on the SDF graph structure (especially the number of
actors and number of their firings) eovernead = f(SDFstructure). It is, however, the
implementation in the RTE layer that defines f(). In the following three different
SDF interpreters will be discussed that result if different overhead effort and
different parallelization potential for the payload effort.

2.6 Interpretation of SDF Graphs as Task Graphs

The interpretation of an SDF graph as a task graph is the most common found
in the literature. It requires an application controller running and emitting a
constant stream of tasks at all times. In general, this may be any program that
has access to the RTE's API.

The task graph interpretation instantiates a task for each firing of each SDF
actor. SDF channels are implemented as a series of RTE data blocks. A produc-
tion of tokens to a channel is represented by a data block sized to fit the tokens,
connected to the corresponding task. Similarly, for the consumption of tokens,
the data blocks containing the needed tokens are connected to a task as input
object.

The task of the application controller is to create one task for each firing of all
actors. It also has to create and assign data buffers for token production and
select data buffers for token consumption. In Fig. 2.3 the execution of the cyclic
SDF example from Fig. 2.1 is shown. For each actor and each channel, a line of
objects is created (e.g. a column). The connections between data and compu-
tation indirectly define a dependency network to constrain the tasks’ execution
order.

pro con

exploits potential parallelization high scheduling overhead

32

2.6 Interpretation of SDF Graphs as Task Graphs

SDF actor
SDF channel

@
<>

wgg

Figure 2.3: Task graph interpretation for the cyclic SDF example (Fig. 2.1). Each
SDF actor is represented by a column and owns a set of RTE tasks
representing its firings. Likewise the SDF channels are assigned to
a column with RTE blocks representing the data flowing through the

channel.

Figure 2.4: Process network interpretation of the cyclic SDF example (Fig. 2.1).
Each SDF actor is represented by a RTE process. The connecting RTE
channels represent the corresponding SDF channels.

33

2 Hybrid SDF Execution

2.7 Interpreting SDF Graphs as Process Networks

Another way of processing an SDF graph —that is also not new to literature—
is the process network interpretation. In this interpretation, a single task is
spawned for each SDF actor. Like shown in Fig. 2.4 the structure of the appli-
cation resembles the SDF graph itself. The tasks are connected with RTE chan-
nels matching the SDF channels from the model. Each task performs all firings
of the actors it represents. It reads the needed token according to the model
from available channels. The read request will block the task until the data is
ready and transferred to the local memory. When all data is acquired, the task
will perform the actor’s kernel function. Finally, the task will push the generated
data to the output channels, which may again block execution if the space avail-
able in a channel is not sufficient. Since the assertion of data availability for local
calculation is done through the use of RTE channels, no other management is
required while the SDF graph is processed. The whole process minimizes the
scheduling overhead to the initial setup of tasks and channels.

pro con

low scheduling overhead no intra-actor parallelization

2.8 Hybrid Interpretation

The hybrid graph interpretation allows the coexistence of both SDF actors being
interpreted in task and in process mode. A few additional considerations have
to be made to allow this hybrid design. The process network is used as a starting
point for the hybrid graph. In this graph, the processes belonging to actors that
should be interpreted in task mode are replaced by task controllers. A task
controller acts as an application controller but only for one actor. Instead of
doing the kernel computation by itself, it spawns a series of tasks, one for each
firing. It still is connected to neighboring processes over RTE channels.

The task controller collects data blocks from the tasks to produce a sequence
of data blocks for each outgoing channel that has to be converted to a continu-
ous data stream for another process. Similarly, an incoming data stream has to
be chopped into blocks before passed to the tasks. Both conversions are done
on the receiving side of each channel. That means that instead of a data stream,
a task controller will only send a series of block handles over the channel. This

34

2.9 Graph Topology Considerations

way, a homogeneous connection (e.g. controller to controller or process to pro-
cess) does not have to do any conversion. In case a process receives a handle
series, it stitches the data together to a continuous data stream that is then
exposed to the computation kernel. The other way around, a task controller
will chop a data stream into carefully sized chunks, put them into newly created
data blocks, and feed them to the tasks.

Of course, the data stream conversion does introduce a significant amount of
overhead that may attenuate the performance speedup achieved by the addi-
tional parallelism introduced by the task mode. The selection of actors running
in task mode is non-trivial as the resulting performance depends on multiple
positive and negative factors. Where additional overhead and data conversion
increase the total effort, the parallelization of firings opens the possibility of re-
ducing the makespan despite the increased effort. But the exact impact on the
makespan also depends on surrounding actors and graph topological details.

In Fig. 2.5 the execution of the simple SDF example is displayed. The blue ac-
tor is selected to be executed in task mode. Therefore it's process from Fig. 2.4
is replaced with a task controller. A line of tasks and data blocks for both input
and output to these tasks is created. The controller fills the input blocks with
data from the incoming channel while the block handles of the output blocks
are fed to the outgoing channel.

pro con

parallelization is possible partitioning of graph non-trivial
scheduling overhead reduction possible

2.9 Graph Topology Considerations

The decision to select an actor for task mode depends on many factors and
is not easily decidable until now. In Fig. 2.6 some topological constructs are
displayed that might hint for or against a task mode selection. The exagger-
ated example on the left shows an actor (orange) that may be fired dozens of
times for every firing of the blue actor. Additionally, firings of the orange actor
do consume more processing time than the neighboring actors. Both facts do
emphasize a favoring of task mode for this actor. The multiple simultaneously
available firings promise an improvement by parallel execution while the high

35

2 Hybrid SDF Execution

<8
—O— B

i

Di
<f

Figure 2.5: Hybrid graph interpretation of the cyclic SDF example (Fig. 2.1). Al-

36

though all SDF actors are represented by RTE processes, one is
making use of a special process controlling the generation of RTE
tasks representing individual firings. The channel connecting the
controller with the next process only transmits RTE block handles,
allowing the following process to stitch data to a continues stream.

2.10 Theoretic Impact of Hybrid Interpretation

8 3.
63 57 8
5\/3
80 !
\\77 ///

Figure 2.6: Example SDF graph parts that have implications about potential par-
allelization. The left graph part creates a set of independent red ac-
tor firings that favor parallel execution. The middle graph creates a
self-dependency of the tasks not allowing any parallelization. Like-
wise the right graph interlocks all actors in a way that they have to
fire strictly sequential.

kernel length ensures that the introduced overhead will not nullify the improve-
ment.

The middle example shows a situation that strongly favors the usage of pro-
cess mode. By default, an actor in SDF does not have a state that can be trans-
ferred between firings. A stateful actor can still be implemented by emitting the
state into a channel that loops back to the actor itself. It ensures that the state
is present for the next firing. Such a construct implicitly defines that all firings
have to be carried out sequentially, which defeats any improvement that could
have been achieved in task mode.

The three actors on the right are in a very similar situation. Like the stateful
actor, they each depend (indirectly) on the previous firing of themselves. The
cyclic channels ensure that each actor’s firing is dependent on all previous fir-
ings of all actors, including its own. As a result, all firings in the graph have to
be executed sequentially. Therefore, all three actors should be run in process
mode, if allowed by the RTE multithreaded on the same PE to minimize data
transfer and central processing unit (CPU) idle times.

2.10 Theoretic Impact of Hybrid Interpretation
The impact of the different execution strategies on the makespan can be signif-

icant. The impact is strongly dependent on the system’s and the graph's topol-
ogy and the RTE implementation, especially the ratio between overhead and

37

2 Hybrid SDF Execution

payload computation. Because this ratio is so important it is noteworthy that
it can —to a certain extend— be controlled through clustering. As desribed
in [27, 28] clustering results in a smaller task set of bigger tasks and naturally in
less scheduling overhead. Seeing that scheduling overhead is the main thing we
need to be concered about in dynamic scheduling, it is assumed that the used
graphs are already clustered. The simple SDF example's execution is simulated
based on a simple model to understand the effects of the different execution
strategies. In this model, all communication costs are neglected, and task over-
head costs are simplified to a single effort of constant time, which is processed
strictly sequentially. The number of available PE is infinite to remove any hard-
ware restriction from the simulation. Under these constraints, the example is
processed under all three execution strategies.

A sequential execution and a “static” schedule are also included to give an
upper and lower boundary on the possible makespan. For these two strategies,
all overhead is neglected. The sequential strategy represents the execution on
a non-parallel system, where “static” defines the theoretical lower bound for the
makespan by placing all firings as early as possible with infinite resources and
no overhead assumed.

Fig. 2.7 shows a comparison of makespans with different execution strate-
gies. In the “process network” setup all actors are running in process mode like
explained in Section 2.7. The makespan is defined by the sequential execution
of the orange actor’s firings. In the next strategy (e.g. “task graph”) all actors are
running in task mode, composing the setting from Section 2.6. As explained,
each firing is companioned by an overhead effort. All overhead efforts, being
executed strictly sequential, delay some firings significantly, leading to a big-
ger makespan than without the overhead (cf. “static”). Still, in this example, the
makespan of “task graph” is smaller than of “process network”.

Itis, however, the combination of both systems that achieves the best result.
In the execution labeled “hybrid”, only the orange actor runs in task mode be-
cause it is the only one that can save more time by parallelization than loose by
additional overhead. With the firings of the other actors not even (or only barely)
overlappingintimein the “static” schedule, itis evident that running these is task
mode will cost more than it will save.

This small example is supposed to show that the hybrid interpretation of an
SDF graph actually can have an impact on the execution time. Besides, the hy-
brid interpretation is a generalization of the execution description, including
the other two (task graph and process network) interpretations. And although
it cannot compete with the “static” scheduling in terms of pure makespan, it

38

2.10 Theoretic Impact of Hybrid Interpretation

sequential

- task graph

- static

Figure 2.7: Comparison of makespan of different execution strategies for the
cyclic SDF example. The firings are colored accoring to the actor col-
orsin Fig. 2.1. The lavender block represent the overhead effort.

39

2 Hybrid SDF Execution

has the advantage that all resources are allocated in task granularity. Where
the “static” schedule has to occupy a total of six processing cores for the whol
makespan, the dynamic scheduling only occupies the cores when they really
need to do work. This finer resource allocation is paid with the overhead of
managing the dynamic objects (i.e. tasks and data objects). The application has
direct influence over the amount of the overhead through the number of ob-
jects it defines. A clustering can reduce the number of dynamic objects to a
resonable level. The number of dynamic objects to manage is multiplied with
the amount of overhead the RTE spends for each object.

2.11 Simulating Hybrid Execution

To analyze a small example like the cyclic SDF example, the model used in the
previous Section is sufficient. A more sophisticated model is necessary to get a
deeper understanding of the coherences of task and process mode. Aresource
management simulator was built, to model an RTE environment as described in
Section 2.4. An overview of the simulation layers is given in Fig. 2.8. Within
the simulator, a model is built of two basic object types: resource providers and
resource consumers. Objects of these two types interact with each other based
on the simulation cycles [scl]. It is not to be confused with clock cycles [cyl] of a
processor but rather be thought of as a scheduling time slice.

Aresource provider defines a resource with the attributes “capacity” and “par-
allelism”. The “parallelism” describes how many resource consumers can simul-
taneously use the resource. It can be thought of as the number of taps on a
pipe that consumers can use to share water. The “capacity” defines how much
effort a resource can process per cycle. In the water pipe comparison, it de-
scribes the amount of water provided by the pipe per time. Depending on the
two attributes, a consumer can expect to receive the processing of “capacity”
divided by the number of active consumers, where the number of active users
is capped by “parallelism” and the processing speed by 1.0. Again in the water
pipe comparison: The water running through the pipe is divided by the number
of users, which may never exceed the number of taps. Further, each tap can
only transport 1 bucket per minute regardless of pipe size.

The “resource consumer” is an active component in the simulation. It can
occupy a resource for a given amount of effort. The number of cycles it takes
to process the given effort may vary depending on the resource’s attributes,
and the number of other consumers also trying to occupy the resource. The

40

2.11 Simulating Hybrid Execution

5 tle j—Dcteg
Ig program
g NoC
CPU fspe\nd
object
]
comm travel
- occupy
provider consumer

platform
level

environment
level

simulator
level

Figure 2.8: Layers of the simulation environement. The upper level is able to de-
scribe complex applications to be executed. The middle layer mod-
els a hardware platform with the two resources “CPU time” and “data
transfer” that can be consumed by “objects”. The lowest level gener-
lizes the system further to only handle abstract resource providers
used by abstract consumers.

41

2 Hybrid SDF Execution

Table 2.1: Simulation environment parameters controlling execution timing.

parameter value
number of PEs 12
number of management cores 1
CPU resouce parallelism 1
CPU resource capacity 1
NoC resource parallelism 100
NoC resource capacity 100
program stage size 64B

consumer may even have to enter a queue and wait until some other consumers
finished before occupying (a share of) the resource.

The RTE is modeled with two resource types. One is a platform tile represent-
ing a CPU to run (sub-)programs. Apart from the CPU, a tile also has a position
in the network on chip (NoC) of the platform. Typical attributes are a capacity
of 1 to 4 to simulate processor with up to four cores and a parallelism, either
being equal to the capacity to simulate a simple runtime or infinity to model a
sophisticated context switching.

The second resource is the network connecting the tiles. When sending data
from one PE to another, this resource is used to model the delay until it reaches
the destination. The most straightforward connecting fabric to model is a bus by
setting parallelism and capacity to 1, sequencing all transfers. For the multi pro-
cessor system on chip (MPSoC) introduced in Section 1.3.1, a NoC is described,
that would be very complex to model accurately. However, a NoC resembling
connection fabric can be modeled by increasing capacity to allow multiple trans-
fers. Setting an even higher parallelism will cause graceful performance degra-
dation of the NoC when collisions start to happen.

On the consumer side, (sub-)programs are defined to represent every kind of
computation effort the RTE is exposed to.They can be thought of as threads that
also have a location in the system. The two operations a program can perform
within the simulation environment are: (1) Spending CPU time and (2) travel to
another location. The program is used to model the RTE tasks as well as the
management's different overhead sub-programs.

For the following experiments, a simulation environment is set up with pa-
rameters summarized in Tab. 2.1. The platform consists of 11 PEs and a single
management core. The CPUs are single-threaded; thus, they do not support

42

2.11 Simulating Hybrid Execution

Table 2.2: Consumed processing resource for overhead subprograms in the
simulation environment.

operation simulation cycles [simcycles]
Call 1.50

Control 3.00

Place 1.50

block locate (I0aquire) 1.00

send block (I0squire) 1.00

receive block (I0aquire) 1.00

Prepare 3.00

Post 0

parallelism. The costs for sending data through the network are calculated from
the network path length h and the message size s accoring to Equation (1.1) with
Siic = 8 B and Sheaddata = 4 B as:

s-4

dh,s)=8+2h+

The costs of the different overhead operations are summarized in Tab. 2.2.
The ratio of values among each other are taken from an own management im-
plementation written in C for an X86 Linux environment.

In its life cycle, a program object can switch locations and occupy CPU re-
sources multiple times. The management subprograms usually have one par-
ticular task to do and will travel the system to fulfill it. For example in Fig. 2.9
the journey of subprogram from the “IOaquire” stage is displayed. The sub-
program'’s purpose is to transport a data block to the PE where a task is to be
executed soon. Instantiated by the “control” stage, the subprogram will start on
an arbitrary PE. Since the current PE is no management PE, the program will
first travel to a management unit featuring a block location database. Here, it
will occupy the CPU to find the current location of the desired block. It will then
travel to the found location and spend CPU time there to initiate a block transfer
to the destination PE. After traveling to the destination PE with a transfer of the
block size plus its own size, it locks the CPU on the destination PE to model the
receiving and inclusion of the block into the local data structure.

43

2 Hybrid SDF Execution

blockDB origin destination
trave)

find

wait for CPU | |

send block

receive block

Figure 2.9: Lifecycle of a overhead subprogram running in the simulated RTE
fullfilling the purpose of finding and transfering a data block to the
destination PE. Inits lifetime the subprogram will spend CPU time on
multiple PEs. For switching between PEs the NoC has to be traveled
by spending time on the NoC resource.

44

2.12 Pipeline SDF Graph Example

2.12 Pipeline SDF Graph Example

In the cyclic SDF example, both the graph topology and the platform model
are synthetic to make explanations easier. With the pipeline SDF example, the
platform model is switched to a simulation of a PE network with consideration of
network delay and a sophisticated overhead model. The graph also resembles
more the typical structure that is known from signal processing applications.
It is a pipeline with a topology displayed in Fig. 2.10. Just from examing the
graph, it becomes clear that to complete one full iteration the actors must fire,
from left to right, 5, 30, and 90 times. The theoretic bounds for the runtime of
the sequential and “static schedule” execution can then be derived as 1340 scl
(simulation cycles [scl]) and 126 scl, respectively. In Fig. 2.11 the runtimes of
one graph iteration is compared between the different setups. Tested are all
combinations of process and task mode actors possible.

Neither the task graph configuration (“-") nor the process network configura-
tion ("1,2,3") achieves the best results. Configuration “1” puts actor 1 into task
mode. This configuration has a slowing down effect compared to “" because
actor 3 is here the limiting factor. For every firing of actor 1, actor 2 can fire six
times. Since actor 3 executes sequentially, actor 1 cannot gain anything from
potential parallelization. Instead, the additional overhead, especially the com-
munication bridge, hurts performance.

As a contrast, putting actor 2 into task mode (configuration “2") holds a speed
up because executing six actor 2 firings in parallel turns actor 1 into the bottle-
neck. Combining these two configs yields configuration “1,2", with both actor 1
and actor 2 in task mode. It intensifies the effect because all firings of each ac-
tor can run in parallel, and no communication bridge is needed. In practice, the
overhead of spawning the tasks dampens this effect a bit. Adding actor 3 to the
task mode set at best does not change the runtime, but mostly prolongs it. The
reason for this is the small kernel runtime, which makes it unlikely that the par-
allelization speedup exceeds the overhead introduced slow down. When going
from no task mode actors to just actor 3, the runtime does not change, positive
and negative effect canceling each other out. In all other cases, adding actor 3
has a negative effect. In the case that actor 2 is not in task mode, the slowdown
is only marginal because actor 2's firings are finishing sequentially. That allows
the overhead to be carried out parallel the firings i.e. outside the critical path.
When actor 2 firings finish more clustered —because they run in parallel— the
overhead processing manager is overwhelmed and delays the creation of actor

45

2 Hybrid SDF Execution

1 2 3
6 1/ 3 1
@@
\\77///

Figure 2.10: The pipeline SDF example graph used to measure impact of differ-
ent execution strategies in an overseeable scope.

3's firings, resulting in a longer runtime. As a result, running actor 1 and actor
2 in task mode yields the best result. Actor 3 is best kept in process mode for
mentioned reasons, even if that means to have a communication bridge be-
tween actor 2 and actor 3.

Similar to cyclic SDF example, the dynamic scheduling strategy is unable to
beat static scheduling in terms of makespan. However, the resource usage is
much lower in any case, even the rather slow configurations like, “1,3". The re-
source consumption is the integral of the parallel proccessor usage over time.
For the the “segeuntial” execution this is just the sum of all firings. The hybrid
configuration have to add the usage of a dedicated management core. Natu-
rally this usage increases with the number of tasks to be managed, so 90 tasks
if actor 3 is in task mode and 30 for actor 2. The static schedule occupies 15
cores for the whole makespan of 256 scl resulting in a resource consumption
of just over 4000 PE simulation cycles. The 15 cores do not allow a complete
parallelization of all firings, thus the longer makespan compared to the theoret-
ical minumum, but occupying 90 cores for a slightly shorter makespan would
skyrocket resource consumption out of control.

2.13 Random SDF Graphs

The hybrid strategy is tested with a range of randomly generated graphs to gen-
eralize the previous section’s findings. The generation is done using the turbine
SDF graph generator [11]. Produced graphs have an actor count of 2 to 37, a
maximum degree (i.e. edge count) of 6, and a kernel runtime between 1 and
20 simulation cycles. A little more than seven hundred graphs are simulated
using the same environment for the pipeline SDF example graph. Apart from
the baseline configuration with all actors in process mode, all possible config-
urations for up to two actors running in task mode are simulated. The most
performant configuration is set into relation to the baseline configuration, to

46

2.13 Random SDF Graphs

resource usage: [cycles x PEs]
0 500 1,0001,5002,0002,5003,0003,5004,000

T T T T T T T T
seq | | u
o | |
1] | -
1,3 | | .
2 | — resource usage ||

1,2] = makespan ||
|

2,3 B
]

1,2,3
static | b
| | | | | | |
0 200 400 600 800 1,000 1,200 1,400
makespan [cycles]

SDF actors in task mode

Figure 2.11: Makespan comparison for the pipeline SDF example of Fig. 2.10
with all possible hybrid configurations, which include the pure
task and pure process strategy. For comparison the theoretical
makespans of an all sequential and an resource unlimited ASAP
strategy are shown.

47

2 Hybrid SDF Execution

60 - 9

L

™
40 |- :
20 | 2
05 1 T T (R
0 0.5 1 1.5 2 2.5

speedup

Figure 2.12: Histogram of maximum speedup with two actors in task mode of
700 randomly generated graphs. All configurations featuring at
most two task mode actors are simulated to select the best con-
figuration for each graph.

determine the maximal achievable speedup for a graph. In Fig. 2.12 the achiev-
able setup for the 700 graphs is displayed in a histogram. For most of the used
graphs, neither a speedup nor a slowdown can be observed. But for a small
group of graphs, significant speedups do occur. A speedup of 2x is already con-
sidered to be significant because it is directly coupled to the needed (hardware)
resources. This means a speedup effectively allows an envisioned chip to be
half the size or run at half of the clock frequency, which in the end cuts cost
of production and operation in half. The requirement for this to happen is a
graph-topological condition that represents a bottleneck in the graphs execu-
tion flow, as explained in Section 2.9. The probability of one of these situations
to happenis dependent on the parameters used to generate the graphs and the
amount of overhead imposed by the RTE implementation. While using a hybrid
execution strategy does not hold any benefit in the vast majority of cases, it can
bring a significant performance increase when specific situations are present.
Because there is no method of detecting these situations, all possible config-

48

2.13 Random SDF Graphs

impact

T DUDBBDBE“'ED’ED!EEEEEE

[
| —
O
CTIm
[
I —
I
IS —
|

05 - :

T
0 5 10 15 20 25 30 35
actor number

Figure 2.13: Impact an actor has to the speedup when put into task mode. Aver-
age speedup of all configurations extendend by a task is displayed.
The actors are —w.l.0.g.— ordered by their impact to show that
usually only one actor is worth running in task mode.

urations have to be tested. Since the total number of different configurations
for one graph of size n equals nenfig = 27 it is not possible to simulate every
possible configuration.

It seems that performance-limiting bottlenecks are very local and can be mit-
igated with only two task mode actors. The 16 graphs with the highest speedup
are re-simulated with up to four actors in task mode to support this hypothesis.
Of those 16 graphs, only one saw a speedup of more than 2%, compared to
the 2-task-mode-actor version. In Fig. 2.13, the impact to the speedup for each
actor of those 16 graphs are shown. The impact of an actor “a” is the average
speedup that is observed by configuration “B” over “A” for all configuration pairs
“(A,B)" with “B" being constructed by added actor “a" to the task mode set of
“A”. Because the actors numbering in a randomly generated graph is arbitrary,
w.l.0.g. the actors can be ordered by the impact.

It shows that all graphs have one particular actor that triggers the speedup
where most of the actors do not impact the performance. A reason may be
that even if an actor is suitable for task mode, it does not create an impact on

49

2 Hybrid SDF Execution

task set
static schedule
best hybrid
task graph
process network

|
0 2 4 6 8
makespan [cycle] 104

Figure 2.14: Runtime comparison of all 128 possible hybrid configurations for
the LTE resembling distributed application graph. The configura-
tion with actors“1,4” and “0,2,3,5" have the best and worst runtimes,
respectively. Both full process mode (“no tasks”) and full task mode
(“all tasks”) stay within the average.

the makespan if it is not in the critical path. Almost every graph features a few
“wrong" actors that can drop performance significantly when selected for task
mode. While this shows that these performance increasing situations are hap-
peninginrandom graphs, it does leave the open question about the applicability
to real-world problems.

2.14 LTE-like SDF Graph

To apply the findings on the targeted real life example of a mobile signal pro-
cessing pipeline, the SDF graph introduced in Section 1.4 was simulated using
the hybrid scheduling as well as a static schedule for comparison. With the
graph consisting of six actors there are 26 = 64 different configuration of se-
lecting actors for task mode. All 64 configurations have been simulated and
the resulting makespans are show in Fig. 2.14 sorted by makespan. Marked
in the figure are the makespans of relevant configurations. The pure process

50

2.14 LTE-like SDF Graph

10°
1.2
— 3
- — 4
s 1||—6&6 |
o) 8
£ 08f—10 |
= 12
> 14
g 06 16 |
[
> 04) |
| | | | | |
0 1 2 3 4 5

SDF arrival rate [cycle™] 1073

Figure 2.15: Average makespan of LTE resembling SDF graph with variable num-
ber of PEs (colors) and graph arrival rate. The dramatic increase of
average runtime marks the rate at which the system reaches satu-
ration.

network configuration is in this setup close to the worst possible configuration.
While a lot faster, the task graph configuration takes still around twice as long to
complete as the best hybrid configuration. The best hybrid configuration is, like
suspected in Section 2.13 one with just two actors in the task set, i.e.1 and 4.
With a makespan of mpypig = 24.5 kscl the hybrid configuration is only around
20% slower than the static schedule with msaic = 20.7 kscl. However, the static
schedule occupies 16 processing cores for the whole make span resulting in a
consumption of 16Msiaic = 331 kscl, while the hybrid schedule consumes not
more than an accumulated amount of 133 kscl, a merely 40% of the resources.

While the makespan is an excellent measure to quantify the effectiveness of
an SDF graph execution, it only correlates to a certain degree to a more crucial
performance indicator valuing the whole system. That is the rate at which a
platform can accept newly spawned graphs without saturating its resources.
The saturation of resources means that instances of the graph enter the system
faster than they leave. From the queueing theory, this is known as a system load

51

2 Hybrid SDF Execution

p being greater than 1. With p begin calculated from the task arrival rate p and
task service rate A as

>

the saturation is clearly dependent on the makespan. It is directly related to
the service rate, which would be A = 1/D for a simple first in first out (FIFO)
queue. The parallel structure of the system, however, makes A much harder to
determine. Assuming a sequential execution of each graph instance, the service
rateis simply the parallelized execution A = npg/Dsequential- ThiS is a good solution
when regarding only the graph processing rate because it does not contain any
overhead calculation. However, it is not feasible to do sequential TTI processing,
because of deadlines that can only be kept if parts are computed in parallel.

When putting the previously used mobile signal processing graph into a sim-
ulation scenario with an increasing graph arrival rate the processing capacity
can be obtained. In Fig. 2.15, the average individual graph makespan in a test
series with increasing arrival rate for different platform sizes are plotted. The
drastic increase of makespan marks the saturation frequency. With an increas-
ing number of PEs available, this point moves to higher frequencies showing a
higher processing capacity. The second feature seen in this graph is a decrease
ofthe average makespan with an increasing number of PEs. With more PEs avail-
able in the system, each graph can run more firings in parallel. This makespan
decrease stays in constant relation to the saturation point for smaller PE num-
bers. The saturation point does not move beyond 5 x 103 scl” for higher PE
numbers, although the average makespan shrinks further. For a PE number
higher than 12, the processing power of the PEs is no longer the limiting fac-
tor, but the overhead calculating RTE management unit. Unable to create and
release new tasks fast enough, the management is now the bottleneck, limiting
the platform'’s size that efficiently can be serviced with the RTE. The size of the
system that can be serviced depends on the executed application or, more pre-
cisely, the ratio of the sum of all firings —the computation payload— and the
overhead work introduced to the RTE management unit by the graph topology
—the computation overhead—.

52

2.15 Key Lernings

2.15 Key Lernings

The commonly used static scheduling of SDF graphs bears the problem of an
unflexibility when deploying applications to hardware platforms. The effective
resource consumption is much higher than the theoretically needed because
each used processing core has to be occupied for the whole makespan instead
of only the time they are needed. The two classic dynamic SDF execution strate-
gies improve on resource consumption, but have the disadvantage to increase
the makepsan significantly. The task graph strategy dynamically distributes the
processing demands to available resources. It exploits the potential paralleliza-
tion very well at the cost of high and constant overhead effort. In contrast,
the process network is limited in its ability to exploit graph given parallelism,
and needs as many parallel system threads as there are actors in a graph, but
features a small management overhead footprint. For random generated SDF
graphs as well as the mobile signal proccessing distributed application, both
strategies only achieve mediocre performance with makespan of 2x to 5x higher
than the static schedule. Dispite the makespan increase the effectively used re-
sources are roughly cut in half using these dynamic scheduling technics, since it
is much easier to run multiple of those applications in parallel even on relatively
small sytems.

Proposed is a hybrid execution strategy, that selectively applies the parallel
execution of task graphs and the low overhead data pipelines to specific actors
to decrease makespan without losing dynamic resource allocation. Simulations
show that carefully selecting a single actor for the task mode group yields the
best performance in many cases. Similarly, a set of two task mode actors has
been identified as the optimal configuration for the mobile signal processing
application. This configuration only experiences a makespan increase of 20%
over the static schedule but reduces resource consumption by 50%.

Although using only two actors in task mode significantly decreases overhead
compared to all actors in task mode, an SDF scheduling RTE can only efficiently
manage a small set of PEs without letting the management become the per-
formance bottleneck. The RTE's task management must be parallelized to han-
dle more tasks, serve bigger platforms, and overcome this problem. Balancing
“makespan decrease” and “overhead increase” optimizes the makespan of a sin-
gle graph instance. The next logical step is to balance management and worker
resources to optimize system utilization.

53

2 Hybrid SDF Execution

54

3 Distribution of Management

The management of processing resources is a central element in the design
of an runtime environment (RTE). Also, the overall system performance often
depends on the efficiency and performance of the management subsystem.
Already small sets of processing elements (PEs) may outperform classic mono-
lithic task management. In this case, the working PEs perform the given tasks
faster than the management can create new ones making the management
the system’s performance bottleneck. The simplest —and most common— im-
plementations process the whole management effort sequentially in a single-
threaded program. Concentrating all sub-problems of the management into a
single program —hence the name monolithic— is in contradiction to the tar-
geted platform’s distributed character, application, and execution strategy. In
this chapter, the management effort needed in an RTE to run distributed ap-
plications will be analyzed with regards to distributing and parallelizing it. The
goal is to manage bigger systems (i.e. with more PEs) without having the man-
agement being the performance bottleneck.

3.1 Addressed Performance Hotspot

The task of an RTE on a distributed memory system is to map the application’s
tasks to the underlying platform. It assures the execution of all tasks, thus the
progress in the application. The application defines the amount and computa-
tional effort of the tasks. This effort is supposed to be distributed to the plat-
form by the RTE. Besides, the RTE faces a second set of effort originating from
the management overhead that accompanies each task. The total effort an RTE

55

3 Distribution of Management

faces when processing an application therefore is the sum of both: overhead
effort and payload effort.

Since the overhead effort is best to be done on a decicated set of PEs, the
system can be regarded as composed of two sub systems. The worker sub-
system handles the payload effort while the manager subsystem handles the
overhead effort. From the set of all PEs in the system each is assigned to ei-
ther subsystem creating a partitioning. In order to fully utilize the system the
ratio between payload and overhead effort rover has to match the ratio of avail-
able processing power for each effort type. The latter is equal —for the sake
of simplicity assuming the set of PEs is homogeneous— to the ratio of num-
ber of PEs in each subsystem rmanager. If the two ratios are not matched, one of
the subsystems may be overloaded causing idle times in the respective other,
diminishing overall system performance in the end. Assuming a constant and
repetitive —thus homogeneous— stream of tasks, the overall system perfor-
mance is measured as the task arrival rate at which the system remains stable.
A system is concidered stable when task arrival and task finishing rate match.
When the system is unable to finish tasks the same rate as they arrive, tasks
will pile up in the system and (slowly) ovewhelm it, making the system unstable.
Therefore the maximum arrival rate that keeps the system stable defines the
“execution capacity”, the maximum rate at which the system can process tasks.

The commonly used monolithic scheduling system limits the management
subsystem to a single PE, which fixes rmanager = 1/npe restraining the flexibility
of the system to equalize the afore mentioned ratios to optimize system per-
formance. A fixed rmanager forces a similar value for rover, limiting the partitioning
of the application into tasks. Therefore, in this chapter, the distribution of man-
agement overhead to muliple parallel working PEs is examined for practicability.
The intended goal is to allow a bigger rovwer, Which means relatively more over-
head per payload. An application is then able to be partitioned into smaller tasks
which may expose more potential parallelism. With more potential parallelism
the RTE is able to utilize more parallel worker PEs, which in turn will result in
higher system performance. Secondly, with more management PEs also more
worker PEs can be deployed without lowering rmanager-

3.2 State of the Art

There are a lot of works covering static data flow (SDF) scheduling with all pos-
sible attribute variations. The most important attribute is dynamic vs. static

56

3.3 Revising Deployment Overhead

scheduling. Most work on SDF scheduling on multiprocessor systems uses static
scheduling. There are, however, exceptions using dynamic SDF scheduling. Pel-
cat et. al,, for example, implemented an Long Term Evolution (LTE) uplink using
live scheduling on a 6-core multi processor system on chip (MPSoC) with shared
memory [66]. They state that static scheduling is not feasible because of the vast
graph variety an LTE modem computation can have on a transmission time in-
terval (TTI) basis. Furthermore, although everything is properly optimized, they
experience their single scheduling core to be at 95% utilization, which may be-
come a problem for scaling. Another work that addresses the need for schedul-
ing overhead minimization is [12]. In terms of memory architecture, shared
memory is commonly used, only excepted by a few works like [20] and [18] us-
ing distributed memory to optimize SDF execution. Among different strategies
to optimize SDF performance, clustering is found more often, like in [56].

3.3 Revising Deployment Overhead

The seven stages of an RTE task are explained in Section 2.5. It is stated that
all stages but 2-4 must be done on their natural location (e.g. setting up the
environment for kernel execution must be done on the destination PE). Stages
2-4 however, are the classical decision-making stages, describing where to put
a task and where to get the required data blocks. These can be relocated, and
more importantly, parallelized. In Fig. 3.1 the relation of these stages and their
dependencies are summarized.

Stage 2 (“Control") only requires a small piece of memory for its internal data
structure and some communication with the stages 3 & 4. It only holds data
on the current task and is independent of other tasks. Therefore, it may be
executed on any available processor and for different tasks in parallel. Stage
3 ("Place”) is supposed to decide which PE the current task should be placed.
To do so, it relies on a database of all working PEs' state information (e.g. the
mapping of current active tasks to PEs). The effort to synchronize this database
grows quadratically [86] with the number of locations to synchronize. Therefore,
it is necessary to keep the database centralized or at least distributed over only
afewlocations. Similarly, stage 4 ("lOaquire”), among other things, also queries a
database to find data block locations. Like stage 3, it is because of the database
synchronization costs that it should be kept centralized.

57

3 Distribution of Management

distributed

origin destination
service | service ﬂ

centralized
origin manager destination
stages
call control prepare| kernel | post

place |aquire

Figure 3.1: Distribution of processing effort of different task stages.

3.4 Distribution of Overhead

Calculating all overhead in a single centralized manager allows the manager to
become the system’s performance bottleneck. Luckily the task management
can cleanly be separated into different stages of which stages 2-4 are to be cal-
culated in a management unit. The stage subprograms have little data depen-
dencies between each other, and only stages 3 & 4 depend on the subprograms
of the same stage and other tasks. Generally, this means different stages can be
calculated in different PEs, which already turns the management into a pipeline
structure. Three dedicated PEs, one for each stage, connected to a pipeline,
handle three tasks at once, each in a different stage.

The distribution of management work can be parallelized further by moduliz-
ing the management program architecture. In the full modular approach, the
“Control” stage will be directly executed on the origin PE. Because it does not
have any dependencies on other tasks or any central database, the subpro-
gram'’s location for this stage is irrelevant. In contrast, stages 3 & 4 do depend
on a central database. Thus, their subprograms have to be instantiated as a
service in a dedicated PE. These services are queried from stage 2 subprogram

58

3.5 Impact of Management Distribution to Resource Utilization

instances in the classic server-client fashion. The client sends a request mes-
sage, the server answers with a message containing the result.

This architecture softens the border between the management subsystem
and the worker subsystem because stage 2 effort is processed on worker PEs.
On the other hand, the direct result is that stage 2 is truly and automatically
scalable. All stage-2-effort created by task creations is processed directly on
the PEs that is causing the effort in the first place. The only remaining problems
for a scalable management system are the centralized placing and block-finding
services. They cannot be decentralized the same ways it is done for stage 2
because of the data synchronization overhead that does not scale very well.
But the synchronization effort can be kept in reasonable boundaries by dupli-
cating the services only a couple of times. Together with a load balancer that
distributes the requests to the different service instances, the scalability of the
services can be obtained at reasonable costs.

The final distributed management system is displayed in Fig. 3.1. Stage 2 sub-
programs, which function as the shell for task creation, can pop up at any worker
PE caused by any task. The task shell will eventually turn to both services with a
request. Based on the results, it will then issue commands to other worker-PEs
to transfer needed data and instantiate the task kernel at the chosen destina-
tion PE.

3.5 Impact of Management Distribution to Resource
Utilization

The goal of an RTE managing a distributed memory system running a set of
distributed applications is to maximize time ratio each PE is working on pay-
load effort to the time it works on overhead effort or is idle. It assures that
the throughput of individual SDF instances is maximized. The key performance
indicator for the system therefore is again the execution capacity.

To evaluate the distributed management system'’s scalability, the simulation
environment introduced in Section 2.11 is used. This time the number of PEs
is increased to show that the system can deal with much higher arrival rates.
The application is the same LTE resembling SDF-graph that was used in Sec-
tion 2.14. By carefully selecting the size of chunks processed in each task a
overhead to payload ratio of roer = 1.0 has been configured for the following
tests. In Fig. 3.2, the execution capacity is plotted as a function of the system size
in PEs and the number of service PEs. As a reference, the monolithic scheduling

59

3 Distribution of Management

execution capacity [tasks/sim cylcle]

[—— mono)
a00|| ™9
4

300)— 6 |
8

200 :

100 | / :

O i | | | | | |

20 20 60 80 100

number of PEs

Figure 3.2: Computation capacity (i.e. task rate at which saturation is reached) of

60

distributed overhead management with varing service host numbers
and system sizes. The capacity is linear dependent on the number of
PEs till the point when the service hosts become the bottleneck, flat-
tening the capacity plot. The execution capacity describes the num-
ber of tasks the system can execute each sim cycle. Tasks are cre-
ated at this rate by spawning the mobile singal processing SDF graph
(introduced in Section 1.4) at a appropriate rate. Each simulation is
continued long enough to determine if the system can stabilize. The
simulations are repeated with varying task rates till the maximum
is found the system can tolerate. The service host numbers (color
coded) describes the number of processing cores dedicated to the
management services of “task placing” and “block localizing”.

3.5 Impact of Management Distribution to Resource Utilization

approach, known from Section 2.5, is shown. For every management configu-
ration, a constant maximum execution capacity is reached at a particular sys-
tem size. Above this size, the execution is limited by the management system'’s
performance, thus rendering the system size irrelevant. Below the point, the
system performance is determined by the worker subsystem. The system's ca-
pacity for processing SDF graphs here is dependent on the number of working
PEs. Two conclusions can be drawn, which are reflected in the graph as well.
The slope of each configuration below the critical size is equal. That means the
capacity increases linearly with the number of PEs in the system. Secondly, the
management system occupies a different number of PE in each configuration,
thus leaving a different number of PEs for the worker subsystem. With a dif-
ferent number of worker PEs for the same system size, the execution capacity
differs as well, which is reflected in the graphs’ offset.

Smaller management systems are favored in small setups because they pro-
duce a higher capacity, resulting in higher efficiency. In Fig. 3.3 the efficiency
of a system is plotted as the execution capacity per PE. The performance loss
caused by an oversized management system can be seen here more clearly.
With a system size of 10 PEs the efficiency for a 2-PE management is 4x higher
than an 8-PE setup. Since both setups are operating in the worker-limited range,
the crucial attribute is the worker subsystem's size. In this case, the ratio of 8
to 2 worker PEs under the 2-PE and 8-PE management systems match the effi-
ciency ratio.

Although a small management system is desirable because it does not shrink
the worker subsystem as much as bigger configurations, it features a lower per-
formance for larger systems. In Fig. 3.2 is shown, that increasing the manage-
ment system, increases the number of worker PEs the system can utilize before
becoming the bottleneck itself. At the point where both workers and manage-
ment are balanced in their capacity, the efficiency (cf. Fig. 3.3) is maximized.
Further, two things can be observed in this matter. The performance increase
gained by a bigger management system declines with a growing management
size. Switching from a 4-PE management to a 6-PE management holds an in-
crease of 150taskscl™. In contrast, increasing further to 8 PEs makes merely
little difference. At this point, the network traffic and the synchronization of
databases hinders further performance growth.

The results of Fig. 3.3 and Fig. 3.2 are based on the overhead to payload ratio
rover = 1.0. Because roer is application dependent, itis necessarytoregarditasa
variable. The kernel runtime of all SDF actors were artificially scaled to construct
a set of different values rq,er Without distorting effects caused by graph topology

61

3 Distribution of Management

capacity per PE [tasks / sim cycle / PE]

Figure 3.3:

62

—— mMono

0L ! ! ! !

|
20 40 60 80 100
number of PEs

The computation efficiency is the computing capacity (as shown in
Fig. 3.2) per processing core. A higher number of dedicated manage-
ment service cores decreases the efficiency because fewer cores are
available actually do application processing. Too few service hosts
result in the management being the bottleneck, unable to fully utilize
the worker cores. The efficency peaks at the optimal ratio of worker
and service cores.

3.5 Impact of Management Distribution to Resource Utilization

Nman lover

|
20 40 60 80 100
number of PEs

capacity per PE [tasks / sim cycle / PE]
N
T

Figure 3.4: Computation efficiency depending on overhead to payload ratio
(rover) @and manager subsystem size (Mmanager). SINCE rover is applica-
tion dependent the optimal management to worker ratio has to be
determined dynamically at runtime.

63

3 Distribution of Management

changes. In Fig. 3.4, the effect of raising or lowering rover is shown. As might have
been expected, increasing the relative overhead (by shrinking kernel runtimes)
decreases the system’s efficiency and thus execution capacity. Decreasing rover,
however, increases execution capacity as expected, because fewer overhead
has to be processed for the same amount of payload. Also, the peak efficiency
is shifted towards larger systems because the same management configuration
is able to serve more worker PEs before becoming the performance bottleneck.

3.6 Reconfigurability

The efficiency of the system depends on the well configured ratio between: (1)
The size of the worker subsystem. (2) The size of the management subsystem.
(3) The overhead effort rate (closely coupled to the task arrival rate). (4) The pay-
load effort rate (closely coupled to the task arrival rate and average task kernel
size). When any of those value changes over time, functionallity must be pro-
vided to change the others accordingly. Both effort rates are always subject to
changes when applications enter or leave the system. But even only a change
inside an application, like a change in an mobile channel or user can cause dras-
tic changes in both effort rates. Asuming a fixed amount of available PEs, it may
be nesseccary to migrate PEs from one subsystem to another to match rmanager
to a changed rover. The reconfigurability can be taken one step further. Inamore
flexible system, the RTE may be able to allocate/deallocate PEs to not only react
to effort ratio changes rqver but also changes in effort amount. In any case, to
assure a efficiently working system, the ratio matching must be kept.

3.7 Key Lernings

Traditional RTEs for distributed memory systems utilize a centralized managing
unit responsible for managing and assigning resources to tasks and processes.
Many systems experience a performance limitation by the management unit it-
self when the working PEs are working faster than the manager. In this case,
the ratio between workers and managers (i.e. exactly one manager for the cen-
tralized approach) is bigger than the ratio between average task payload and
overhead effort. Small tasks are desirable because they allow higher paralleliza-
tion but decrease the payload-to-overhead ratio. The worker-to-manager ratio
must also be lowered by decreasing the number of workers or increasing the
number of managers. Because lowering the number of workers does not seem

64

3.7 Key Lernings

to be helping the scalability, increasing the number of managers is the only pos-
sible solution. Because the management application is not trivially duplicable, it
has to be converted into a distributed application.

Atask’s lifecycle is divided into seven stages, with one being the payload phase
and the rest being overhead. Three of those stages are traditionally computed
in a centralized manager. Distributing these stages to different PEs already
achieves a certain parallelization. Each stage can be duplicated to multiple PEs
to increase the parallelization further.

When designing the full system, the crucial point is to match the worker-to-
management ratio to the application and RTE dependent payload-to-overhead
ratio to maximize the system’s efficiency. When not properly matched, either
the worker or the management subsystem is not fully utilized, which leads to
wasted processing resources. Besides, with the growing system size, the exe-
cution capacity growth declines because of increasing overhead caused by data
transfer and database synchronization.

Allthe relations described here are highly dependent on the systems and also
the applications parameter. The used simulation environment was configured
to resemble the behavior of a Tomahawk MPSoC architecture running a home-
brewed RTE for the overhead estimation. An LTE resembling SDF graph was
used to model the distributed application with an average kernel runtimes to
produce a payload-to-overhead ratio of 1.0. With these settings, a system of 75
PEs achieves the highest execution capacity. However, this value changes when
changing the application —or the RTE— to another payload-to-overhead ratio.
A smaller ratio of 0.8 lowers the maximal system size to 55, where, with a ratio
of 1.2, systems of around 120 PEs are possible.

When dealing with applications that behave dynamic in terms of task fre-
quency and computation complexity, a system must employ a distributed and
dynamically sized management subsystem to achive maximum utilization and
thus efficiency.

65

3 Distribution of Management

66

4 Sliced FIFO Hardware

The two previous chapters’ software considerations build upon some assump-
tions about features of the underlying hardware to assure certain performance
on some tasks. An essential function, a distributed memory hardware platform
needs to address is the communication mechanisms that allow the tiles to move
data between their local memories. In the best case, the data transfer is handled
entirely by the hardware relieving the software of overhead spend for communi-
cations. The performance indicators for performant communication mechanics
are the bandwidth and delay the transmission of data experiences. Although it
can be factored into the two attributes, sometimes it is also interesting to explic-
itly regard the overhead the software sees for initiating a transmission. In this
chapter, first in first out (FIFO) type connection will be regarded as often found
in process network applications and shown in Fig. 4.1. The connected processes
are considered to be on different processing elements (PEs) and connected by
the platforms network on chip (NoC) fabric. A hardware solution is presented
that exploits the PE's memory system for bandwidth exhaustion, and which is
low overhead, and transparent for the using masters.

4.1 Addressed Performance Hotspot

The implementation of a FIFO channel for two communicating processes can be
done in various ways, that all may achieve the desired functionality, but with dif-
ferent and differently severe drawbacks. The four performance metrics that are
used to rate a solution are overhead, delay, bandwidth, and chip area. The over-
head determines the effort a process has to spend on its main computation unit

67

4 Sliced FIFO Hardware

mem CPU
[[
NIf — FIFO
woc
FIFO — NIf
[[]
CPU mem

Figure 4.1: Integration of the proposed FIFO controller into an MPSoC. The
complete CPU to CPU pipeline (blue arrow) is constructed using two
local FIFO instances. The FIFO controller assures efficient parallel ac-
cess for CPU and NIf to the local memory.

to initiate some data transfer. Since the overhead restrains the process from
doing the application functionality, it may lower the application’s performance.
Therefore, the overhead will be high on a pure software solution, basically be-
cause the FIFO functionality is done sequentially to the application. Similarly,
implementing a FIFO protocol on top of a simple remote direct memory access
(RDMA) unit may pose a significant amount of overhead. The delay is a perfor-
mance indicator measuring how long a transmission takes from the moment
the sending process returns from its overhead effort until the receiving process
can start working with the data. In that sense, the delay is the time that passed
during the transfer but in parallel to the application computation. For exam-
ple, a shared memory software solution does not have any delay because all
FIFO functionality is done in the overhead (e.g. sequential to the application).
In contrast, transmitting data over a NoC with a hardware RDMA unit classifies
as a delay because it is not interfering with the main CPU. The third measure
that defines the performance of a FIFO channel is the bandwidth it provides. It
states how much data the channel can transport per time unit. For digital sys-
tems, it makes sense to fix the time to one clock cycle (cyc) and normalize the
data to one token (tok), which describes the memory access width a master can
access with a single request. That leaves the maximum bandwidth any master
can achieve per memory port of one token per cycle (1tpc). Another consum-

68

4.2 State of the Art

able to be considered is the chip area a solution consumes. While a traditional
hardware FIFO unit can be operated with close to no overhead and delay, the
area consumption of the internal memory is usually massive. Also, its memory
has to be dimensioned at design time and is exclusive for this FIFO unit. Since
the on-chip memory often poses the most significant chip area share, this kind
of single-use memories need to be avoided.

Based on these four performance indicators (i.e. overhead, delay, bandwidth,
and chip area), a hardware unit will be proposed to outperform state-of-the-art
competitors. A FIFO channel reaching from a PE through the NoC to another
PE like shownin Fig. 4.1, can be partitioned into three stages. The first and third
stages handle the data transfer from the master to the FIFO unit, while the sec-
ond stage handles data transfer from one FIFO unit to another through the NoC.
This second stage has a relatively simple structure, and its performance mainly
depends on the NoC implementation, and therefore will only be regarded in
short in this work. The other stages, implementing a FIFO channel within an
environment of memory shared to a set of masters, pose some more difficult
questions that will be the main focus here.

4.2 State of the Art

A standard model of communication used in MPSoCs is the connection of func-
tional units with data pipelines. They can naturally be used in data stream pro-
cessing [70, 69] often found in runtime environments (RTEs) designed for MP-
SoCs [62, 74] or even directly included into the MPSoC itself [6]. A simple setup
of a few computation units coupled together to a pipeline and more sophisti-
cated kahn process networks (KPNs) [25] facilitate FIFO streams to build con-
nections between the PEs running the compute units.

The traditional FIFO hardware unit resembles a dual-port memory bank with
one port for writing and one for reading data. Since these ports lack an ad-
dress field, a FIFO unit is mapped to a magic address in the master's memory
space. This mapping must be done at design time, fixing the sender and re-
ceiver masters to specific PEs. In addition, the size of the channel has to be
defined at design time by selecting a unit internal data memory. Since the mem-
ory must be sufficient for the worst-case scenario (e.g. the biggest application)
and subsequent application changes should be possible, the size is often over-
provisioned. As a result, a huge chip area is not or badly utilized as the internal
memory is private to the hardware unit. Furthermore, in traditional FIFO chan-

69

4 Sliced FIFO Hardware

nel units, the data has to be passed twice through the unit ports. Unless the
application runs a very specialized algorithm that manages to write results di-
rectly from the register file into the FIFO this means that each token has to be
loaded from memory and then written to the memory-mapped FIFO. Yet an-
other issue is the dual-port nature of this system. In the hardware platform that
was introduced in Section 1.3, single port memories are assumed to save chip
area because dual port memories need almost twice the area for the same ca-
pacity than the single ported counterparts [60, 48, 7]. It would be possible to
design a traditional FIFO unit with only single port memory banks, but it would
reduce the bandwidth to 0.5tpc because producer and consumer could only
access the unitin turns.

Another possibility is to implement a FIFO unit in software only [77], without
the need for additional hardware. In software, the buffer is usually presented as
an allocated memory block in a memory shared by producer and consumer. It
is interpreted as a cyclic buffer, and both producer and consumer manage a set
of pointers that chase each other around the circle to define in which position
data can be written or read. In that sense, the FIFO channel is just a pointer
juggling controller. The benefit is that the masters do not have to pass their
data through a FIFO interface but can produce or consume the data directly in
the FIFO buffer. Another benefit is to have random access to arbitrary sized part
of the FIFO buffer. This windowed access was even implemented in a hardware
solutionin [17].

A way to circumvent both the bandwidth limitation of single port access and
the increased size of dual-port is to use double buffering [17]. The FIFO buffer
is split onto two separate memory banks. While the producer has access to the
first memory bank, the consumer accesses the second bank. When both are
finished writing in their respective bank, the access is switched. While this is an
excellent way of overcoming most of the problems mentioned earlier, it intro-
duces a new assumption. Both masters must always be half of the buffer length
apart. Even in low load situations, the consumer must wait for the producer to
finish a half buffer worth of data before gaining access, which increases the data
delay.

While all the mentioned solutions have their drawback, they all contribute a
piece to the soultion that will be presented in the following. The four ideas that
are brought together are:

1. Use a hardware unit to parallelize FIFO access and application computa-
tion.

70

4.3 System Environment

2. Use shared memory to prevent high hardware costs due to private and
over-provisioned memory.

3. Use pointer juggling to use in-memory data manipulation and prevent ex-
tra passing of data through interfaces.

4. Use double buffering on single port memories to prevent high hardware
costs due to dual port memories.

Implementing these four ideas promise to create high performance and low-
cost FIFO channel implementation. Only the delay introduced by the double
buffering is not covered by these ideas and has to be dealt with separately. The
basic idea of putting the data into a central shared memory greatly benefits
from the memory management system proposed by [83] (and introduced to
the assumed system in Section 1.3.3). It allows the efficient access of multiple
users to a multi banked local memory system which is a perfect match for the
FIFO implementation to be proposed in the following.

4.3 System Environment

The newly designed FIFO unit is embedded in a system environment with a cer-
tain structure and attributes. Although the system is designed to feature the
full FIFO channel with NoC transfer, only the on-PE part will be examined here.
Moving data from the CPU to the NoC interface unit already requires the full
FIFO channel functionality. As described in Section 1.3, a PE features a mem-
ory system with multiple banks and multiple masters. Most of the masters are
memory ports of processors, but two belong to the networking unit. These are
used for streaming data from the local memory to the NoC and vice versa. On
the memory side, all but one bank are standard data storing units. The last one
is a config space that allows special units to appear as memory-mapped func-
tions to the masters. On PE level, a FIFO channel breaks down to a data transfer
from one master to another, may it be two processors ports for a local FIFO
channel or one of the masters be a network unit port for a channel reaching to
another PE. In any case, the masters can use the memory-mapped config space
of the FIFO unit to control the channel.

71

4 Sliced FIFO Hardware

space

rd

data

Figure 4.2: Concept of cyclic windowed FIFO with read pointers rd, rd” and write
pointers wr, wr'. The pointers rd and wr partition the buffer into valid
data and free space. The space between rd and rd” as well as wr and
wr’ describe actively used windows. (From [38])

4.4 Sliced Windowed FIFO buffer

The concept of a windowed FIFO has its origins in the software development
community [77]. In contrast to a standard FIFO, no data is exchanged between
the FIFO unit and its using masters. Instead, the FIFO unit merely acts as a con-
troller. One FIFO channel connects exactly two masters with a data pipeline,
namely the producing and the consuming master. Upon a request, it will re-
turn an access window, defined by a start pointer and a length. The window
itself does not originate in the FIFO itself but within a shared memory area de-
termined at runtime by the FIFO controller. The controller ensures exclusive
access to the window for one master to produce or consume data. After the
master has finished its transactions, it releases the window to the FIFO con-
troller, handing over the regained memory space to the other master.

The organization of the FIFO buffer is depicted in Fig. 4.2 and explained in [38]
in detail. There are four pointers rd, wr, rd’, wr’ that chase each other in the cyclic
buffer, dividing the buffer into regions of data, space, and current windows for
reading and writing data. This organization allows the implementation of a FIFO

72

4.4 Sliced Windowed FIFO buffer

rd
space

Lxueq

ojueq

data

Figure 4.3: Mapping of a sliced cyclic FIFO to a memory system with two banks.
(From [38])

without any locks. Virtually expanding the buffer by a full length also prevents
the ambiguity of rd = wr. Without the extension, the situation must be mapped
to the meaning “empty buffer”, thus making a full buffer impossible. With the
extension the “full buffer” state is represented with rd = wr + len. Pointers are
passed to the masters as the modulo of the length (wr mod len) to prevent
access outside the real buffer size. A master can get access to the FIFO buffer by
requesting a window for reading or writing. Opening and closing these windows
by using one of the four atomic operations: peek, pop, poke, push will move the
four pointers accordingly to a set of rules to protect data integrity.

Double buffering can be implemented within windowed FIFO buffers to avoid
the 0.5 tpc bandwidth boundary caused by single port memories. It is extended
by an interleaving techniquec to improve on the data delay caused by dou-
ble buffering. The cyclic buffer is sliced, and its parts are distributed in the
memory to randomize access patterns of the masters and giving the unit its
name “Sliced Windowed FIFO buffer”. It uses multiple physical memory loca-
tions, called bases, to describe the FIFOs data store. The number is configurable
at runtime but is bounded by a design-time parameter of the unit. Preferably
the memory locations are in different physical memory blocks to achieve the
desired performance improvement. The slicing of a FIFO buffer of two bases
into two memory banks is shown in Fig. 4.3. Traversal of the access windows

73

4 Sliced FIFO Hardware

aligned access
slice cyle

—

producer | |

roll in ‘ﬁ ’—‘ ’—‘ roll out
A
)
I

misaligned access
slice cyle

producer
consumer

time

access different memory access same memory memory selection

Figure 4.4: Memory access behavior with and without access pattern alignment.
(From [38])

around the buffer will cause the pointers to jump between the physical mem-
ories every time reaching the end of a slice. The FIFO controller ensures that
a window is contained only within a single slice to avoid fragmentation of the
accessed memory.

4.5 Single FIFO Evaluation

For detailed single FIFO performance we refer to our work in [38]. It serves as
an example to understand the effect of the presented FIFO buffer for through-
put and delay. The performance was measured concerning the problems de-
scribed in Section 4.2. For the single FIFO buffer, a 2-master, 2-memory-bank
system was proposed. The two masters —in this setup called “producer” and
“consumer’—use simple data source and sink models with a constant data rate.
The sole parameter “data rate” describes the number of data tokens handled
by the master per cycle. The results of interest are the runtime of a test, the
throughput and the delay, which is the time a single data token will remain in

74

4.5 Single FIFO Evaluation

Table 4.1: Standard parameters for FIFO unit simulation setup.

parameter value
buffer length 4096 tok
slice length 128 tok
producer rate 1.0tpc
consumer rate 1.0tpc

transfer length 8192 tok
arbitration policy — consumer

memory after production before being consumed. For the standard param-
eters, which are listed in Tab. 4.1, the setup achieves a runtime of 9021 cyl
(throughput of 0.908 tpc) with a speedup of 1.91 compared to the non-sliced
FIFO buffer example with a runtime of 17 249 cyl (throughput of 0.475tpc). The
theoretical speedup that can be achieved when switching from a single port to a
dual port memory is 2.0. A double buffering setup can be created by setting the
slice length to buffer length e.g. 4096. A data delay of 4118 cyl was measured in
this setup. Thatis 14 times longer than the 283 cyl measured in the sliced setup
with a slice length of 128.

This maximum speedup, however, is bounded by the system architecture and
the masters' parameters. The theoretical throughput boundaries derived from
the memory interface speed and the data rate are marked in Fig. 4.5. Each
memory bank can process one request in each cycle. Each token needs two
accesses to be processed, one for entering the memory and one for being read
back, resulting in memory throughput boundaries of 0.5tpc and 1.0 tpc for one
and two used banks, respectively. Similarly, the data rate bounds the system
performance because the throughput cannot be higher than the minimum of
the produce and consume rate. For data rates below 0.5tpc, this boundary
limits the throughput, rendering the exploitation of the presented features im-
possible. In other words, if the data rate cannot even utilize a single memory
bank, it does not help to add another. The speedup curve in Fig. 4.5 summarizes
the matter. Until a data rate of 0.5 tpc, there is no benefit from using slicing. The
speedup takes off from there in a quasi-linear fashion until it reaches its maxi-
mum of 0.9 tpc at a data rate of 1.0tpc.

The experiments show that these results also depend on the alignment of
memory access patterns explained in Fig. 4.4. When aligned, the producer and
the consumer always access different banks resulting in a perfect memory in-

75

4 Sliced FIFO Hardware

throughput [tpc]

0.8 ||

0.6

0.4

0.2

|| — slow consumer |_____ qt‘lupl,eﬁjeﬂj‘qw PQL{n,d‘ 2
—— slow producer 118
both slow '
—— notsliced 116
|— WFIFO , © a2
—— speedup Y SN 9
114 ¢
(V5]
“11.2
11
| | | |

| |
0 0.2 0.4 0.6 0.8 1
data rate [tpc]

Figure 4.5: Sliced FIFO system throughput for different data rates and speed up

76

over the not sliced variant. As a comparison estimated throughput
of the WFIFO [39] is included. (From [38])

4.6 Multiple FIFO Evalutaion

T T T T T
ooOp v+ — o—— o
g 08|)
2
2 07 s
(oY)
>
o
E 0.6 | N
— toggle
05| —— producer ||
' consumer
| | | | |
0 0.5 1 1.5 2 2.5 3

consumer delay / buffer length

Figure 4.6: Performance of slicing FIFO for different arbitration policies depend-
ing on the delayed start of one actor. (From [38])

terface utilization, which leads to high throughput. Without proper alignment,
both masters access the same bank in some time intervals, and memory con-
gestions lead to lower throughput. This problem can be overcome by prioritizing
one of the masters, forcing an access pattern alignment. In Fig. 4.6 the effect of
not forcing alignmnet is shown. Depending on the consumer’s start delay, the
throughput can vary significantly.

4.6 Multiple FIFO Evalutaion

To further explore the capabilities of the FIFO controller unit, the system is ex-
tended to host multiple FIFO buffers at once. The system parameters used in
the multi buffer tests are summarized and used as defined in Tab. 4.2, if not
other stated. The results will be compared to a trivial reference system that
does not use slicing while still using the same amount of FIFO buffers and the
same traffic model parameters. The buffer instances are spread evenly across
a number of memory banks equal to the sliced FIFO buffers bank number. To
fully exploit the multi FIFO buffer system, a different traffic model and prioriti-
zation policy must be used. In the new traffic model, the throughput measure

77

4 Sliced FIFO Hardware

master3 bank3
master2 X bank2
master1 X bank1
master0 banko
master3 bank3
master1 bank1
master0 banko

Figure 4.7: Equal performant setups. Top figure shows two FIFOs using two
bases each on two physically separated memories. Bottom setup
show two FIFOs using four bases on four shared memory banks.
With constant data producer/consumer in all cases all memories are

fully utilized.

is not expressive anymore and is replaced by the message delay.

4.6.1 Traffic Model

In Section 4.5, it was stated that to increase performance using a sliced FIFO
system, a constantly producing master has to have a data rate greater than
0.5tpc. Otherwise the FIFO channel can just be allocated in a single memory
bank and the two masters (i.e. producer and consumer) would share the mem-
ory bandwidth without even exhausting it, because the bandwidth requirement
of the two masters bmaster < 0.5tpc is less than the bandwidth provided by the

memoy bank by, = 1.0tpc:

bbank > bproducer + bconsumer

78

4.6 Multiple FIFO Evalutaion

With the sliced FIFO system, the two masters of each channel can draw the
required bandwidth from multiple memory banks. In general the bandwidth is
shared equally by all masters so that the bandwidth each master can expect is:

b nbanksbbank
mastermax — T
nmaster

To maintain a master bandwidth of close to 1.0tpc

Nbanks 2 Nmasters

must hold. Any system that adheres to this rule is decomposable into the
basic structure shown in Fig. 4.7 of two masters working on two memory banks.

To model a producer with a fixed constant data rate is sufficient to under-
stand the basic coherences, but does not allow the study of more complex sys-
tems. A typical producer is event-driven and will produce messages depending
on the arrival of events. For purpose of performance analysis we assume a
statistical model with message arrival time described by a Poisson process de-
pending on a parameter A, the message arrival rate. Similarly, the message con-
sumption is described by another Poisson process with the parameter u being
the message consumption rate. Both processes are implemented in the pro-
ducer as a stream of randomly emitted messages. The arrival rate and length
of the messages, normalized to tokens, are A and 1/u token, respectively. The
consumers read data from the channel with a constant 1.0 tpc if possible, imple-
menting an average message consumption of p with the given message length
distribution. From arrival and consumption rate a theoretical channel utilization
can be derived as

describing the fraction of time the channel is actively using the memory. With
this model, the average memory bandwidth each master requires is

bmaster,req =p x 1.0tpc

to allow multiple masters per memory bank while still exploiting the increased
momentaneous bandwidth in the active intervals.

79

4 Sliced FIFO Hardware

producer 8 consumer 8
producer 7 consumer 7
producer 6 bank 4 consumer 6
producer 5 bank 3 consumer 5
producer 4 bank 2 consumer 4
producer 3 bank 1 consumer 3
producer 2 consumer 2
producer 1 consumer 1

Figure 4.8: Simulation setup to evaluate the performance of multi FIFO envi-
ronemts. Each sliced FIFO channel (in blue) use every memory bank
whilst the non-sliced variant (in orange) only uses one

4.6.2 Evaluation Setup

A simulation environment was used that features eight producers and eight
consumers connected to a memory system of four banks, to evaluate the multi
FIFO channel setup. The maximum average bandwidth each master than may
useis

NpankBoank _ 4 x 1.0tpc

= 0.25tpc.
Nevaster 16 P

bmaster,max =

and subsequentially the channel utilization must hold p < 0.25.

The presented sliced FIFO architecture is compared to a not-sliced variant
that constructs a channel with producer and consumer working on a single
memory bank. The non-sliced setup also features eight channels with pairs of
two sharing one memory bank, to match the sliced FIFO setup. With four inde-
pendent systems of one bank and four masters the maximum average band-
width for each master also resolves t0 bmastermax = 0.25tpc, like in the sliced
setup.

The standard parameter to set up the simulations are summarized in Tab. 4.2.
The consumption rate of y = 2.0 x 10 cyl4 results in an average message
length of Smessage = 5000tok > 2048 tok = Sgice, Which is bigger than the slice

80

4.6 Multiple FIFO Evalutaion

Table 4.2: Parameters for multi FIFO unit simulation setup

parameter symbol value

slice length 2048 tok

message arrival rate A upto 0.5 x 10 cyl™'
message consumption rate u 20 x 10 cyl’1
number FIFOs NAEo 8

number masters Nmaster 16

number bases Npase 4

number memory banks Npanks 4

memory bank bandwith bpank 1.0tpc

length, assuring a message transfer actually incoporates memory bank hoping.
The channel utilization constraint is assured by choosing the message arrival
rate of A < 0.5.

4.6.3 Effective Channel Bandwidth

Multiple factors prevent a channel from actually reaching the theoretical band-
width of 1.0 tpc. Firstly, the opening and closing of channel access windows cost
a few cycles, effectively lowering the overall throughput. With a sufficiently large
slice length, this effect is negligible.

Secondly, the bandwidth of a message is defined as the ratio between mes-
sage length Smessage and its transfer delay diessage:
Smessage

bmessage = dmessage

The transfer delay is the time from the first write access of the producer until
the consumer has read the last token. Although producer and consumer are
acting most of the time simultaneously, the consumer’s start is delayed creating
two phases (e.g. roll-in and roll-out) at the beginning and the end, where only
one master is active. The consumer’s delayed start is necessary to achieve the
desired aligned memory access, as shown previously in Fig. 4.4. So, even if both
producer and consumer experience a full 1.0tpc for reading and writing, the
message bandwidth is decreased by this effect. It can be calculated as
Smessage * Sroll

dmessage - Brmaster

81

4 Sliced FIFO Hardware

with s.y being the lenth of roll-in and roll-out phase in token and the bmaster
the actual experienced bandwidth of both masters. The length of the rolling
phases is at most the slice length, but may be less if a message is shorter than
a slice Syoi = MiN (Smessage: Sslice)- Putting all together the message bandwidth
depends on the actuall —or effective— master bandwidth as:

Smessagebmaster

b = -
essaes Smessage +min (Smessager Ss\ice)

For long messages, the rolling phases do not have a significant impact on the
bandwidth. The smaller the messages, the bigger the impact.

The third factor affecting the effective message bandwidth is the effective
master bandwidth, which is the memory bandwidth each master receives. It
is decreased from its optimum of 1.0 tpc by interference with masters of other
channels. Even with low channel utilization, there is a probability that messages
transfers of different channels may overlap and cause memory access collision.
Assuming a balanced distribution of all active masters over all available memory
banks each master receives a bandwidth of

: nbankbbank
bmaster,active(n) = min (f! bbank)

depending on the currently active masters n capped by the bank bandwidth
beank = 1.0tpc. The number of active masters can be regared as a binonial
random variable with a parameters p = Pefrective aNd N = 2npro. Because p = A/y
still assumes a master bandwidth of bmaster = 1.0 tpc it has to be replaced by:

A A D

peffecmve - /Jeffectlve B /measter bmaster

Without the assertion that bmaster = 1.0 tpc the consumption of a message of
length 1/u is prolonged by a factor of 1/bmaster, Meaning the effective consum-
tion rate is Uefrective = Ubmaster- 1he effective channel utilization then becomes a
function of the number of active channels Pefrective(N).

A Markov chain is constructed with one state for each active channel number,
to obtain the probability that a certain number of channels is active. The state
transition probabilities are the probability that a certain number of channels are
active under the assumption of the number of currently active channels. They
can be described with a binomial distribution

82

4.6 Multiple FIFO Evalutaion

[f,t = (nFl[FO) (,| - peﬁective(f))mwoi[(peffecﬁve(f))[

for a transition from state with f to t active channels. With more current ac-
tive channels, the effective bandwidth decreases, increasing the probability of
having a high number of active channels. The results of the Markov chain solu-
tion are the probabilities P(n) that the system has n active channels. With these
probabilities and the effective bandwiths, the expected effective bandwidth can
be derived as:

E(bmaster) = Z P(n)bmaster,act\ve(n)

In Fig. 4.9, the master bandwidth estimation is plotted for sliced and non-
sliced variants. As a comparison, the measured bandwidth for both messages
and masters is included. The constant offset between memory access and
transfer bandwidth due to the roll-in and roll-out phases discussed earlier. The
sliced provides significantly higher bandwidth and can sustain a constant bene-
fit above the non-sliced variant up to a system load of p = 0.7. Above this value,
the bandwidth drops to join the non-sliced bandwidth, reaching the physical
memory boundary at a fully loaded system.

4.6.4 Memory Access Model

Compared to the single FIFO setup, the priority ordering for a multi-channel
setup is much more complex. Because the number of configurations grows ex-
ponentially with the number of masters, there are only two in the simple setup
(favoring “consumer” or “producer”) but a large number in a complex system.
In Section 4.5 a significant performance impact could be observed depending
on the chosen configuration. Because the masters’ access patterns are not de-
terministically aligned, it is even more critical to have a mechanism that dis-
tributes multiple masters over the available memory banks. A hard priority sys-
tem worked well with two masters, but with multiple masters, severe problems
are to be expected. With 16 masters ordered in a fixed priority, some of the
lower priority masters likely starve when masters with higher priority experi-
ence an increased utilization. In Fig. 4.10 a situation is displayed that would
result in the starvation of one master under a fixed priority system. As soon as
the number of masters exceeds the number of banks, it is mandatory to replace
the priority system with a more sophisticated solution.

83

4 Sliced FIFO Hardware

bandwidth [tpc]

11 —— trivial access
—— trivial transfer

—— sliced access

—— sliced transfer

- - - trivial access (est.)
sliced access (est.) ||

0.8 |-

| |
0 0.2 0.4 0.6 0.8 1
system load

Figure 4.9: Per channel available bandwidth depending on the system load. Val-

84

ues are shown for both trivial and the proposed (sliced) setup. “Ac-
cess” measures the memory bandwidth a master receives from the
memory system. “Transfer” measures bandwidth a message (block
of data) takes to travers the FIFO. From first write to last read.

4.6 Multiple FIFO Evalutaion

bank 1] 415 2 3 4 1 5 2 3
Lalr]sfla]3fafr]s]2]3]
Lol L 2 T
bank2 234 15 2 3 4 1 5 2 3
2 [3[a]1[sf2]3]af1]5]|
L T e
bank 3 2 3 4 1 5 2 3 4 1 5
L2 [3]al1[s5]2[3]4]1]
R T A
bank 4 2 3 4 1 5 2 3 4 1
[2[3]af1]s5]2]3]
Lol Ll e

Figure 4.10: Memory access queue on a 4-bank, 5-master configuration. For
each bank the access intervals are shown, labeld with the access-
ing master’'s id. Above, the access request to a bank are indicated,
also with ids. Whenever a master finishes an access interval, it im-
mediately requests the next bank, as indicated by the down arrows.
Awaiting queue forms in bank 2 where every master has to wait be-
tween access request and granting.

85

4 Sliced FIFO Hardware

The solution proposed here are memory access queues. A requirement for
this approach is that the masters are trying to access the same memory bank
for a sufficiently long time without skipping a cycle. In case of a collision, the
arbitration system grants access to the master that started its access earliest. A
master having access will keep it till itintermits its requesting streak. The arbitra-
tion is done per memory bank so that the jumping between banks assures that
no master is starved, and every master has the same chance of getting access,
thus receiving the same memory bandwidth. Masters trying to access the same
bank simultaneously are moved apart from each other till they are accessing
different banks, a state that they most likely will keep automatically.

To implement this behavior, the memory arbiter features an access queue
for each bank that can hold all master ids. Whenever a master starts requesting
access to a bank, it will be appended to the access queue. Stopping to request
access will cause a master to drop out of the queue. The access to the memory
will be given to the master in front of the queue.

In Fig. 4.10 this behaviour is pictured. On memory bank 2 masters 4, 1 and 5
are queued for access while 2 and 3 are queing for bank 1. In a priority based
system with the masters having a priority equal to their number, master 1 would
never gain memory access. The four high masters would spread through the
system each occupying one bank at any time. With the queue based system
each master has to wait occationally before gaining access to a bank. In the
example in Fig. 4.10 the queue forms in bank 2 where every master has to wait
for another master before gaining access. This way the bandwidth is equally
shared and memory access starvation is assured to not happen. The transition
from priority based to a queue based access control is a neccessary step for the
extension from single to multi FIFO systems.

4.7 Hardware Implementation

A hardware implementation of the FIFO controller was included in the Kachel 1
chip [36]. Itis produced in a 22 nm FDSOI technology to run at 500 MHz. The
hardware implementation matches the simulations done for the single-channel
setup. It does not support the multi-channel setup because only two bases
are supported. The inclusion of those two additional bases will not increase
the area consumption significantly. From place and route of the chip the area
consumption of the unit was extracted to be:

86

4.8 Key Lernings

Table 4.3: On-chip area consumption of 4 kB memaory macros

unit area [um?] density [kBum™]
single port 22nm 13705 2.91 x 10
dual port 22nm (est.) 25863 1.54 x 10
single port 28nm 8873 4.50 x 10
dual port 28nm 16745 2.38 x 107

Asro = 15826 um?

One main advantage of the proposed FIFO controller is to allow the use of
single-port memory macros in the memory system in contrast to the dual-port
macros that need to be used usually to prevent congestions in FIFO channel
applications. The area reduction by using single port macros is significant. In
[38] a comparison of dual-port and single-port static random access memory
(SRAM) memory macrosis done. This tableis replicated in Tab. 4.3 and extended
by the storage density. The storage density is clearly doubled when switching
from dual-port to single-ported SRAM macros as also observed by [60, 48, 71.

The total chip area of memory banks —together with the FIFO implementa-
tion in the single port case— depending on total memory capacity is shown in
Fig. 4.11. The discrete values are based on the described 4 kB memory macros.
Interpolating between the discrete points reveals the break-even point of equal
chip area for traditional and proposed hardware:

x— PO 4B 52kB
Adp,22 = Asp22

At this point the savings from replacing dual-port with single-port memories
is equal to the area of the added FIFO controller implementation. Already the
minimal setup for employing a sliced FIFO channel of two single ported memory
banks (i.e.8 kB) and the FIFO controller is smaller than a traditional setup with
two dual port banks and (close to) no additional logic.

4.8 Key Lernings

The optimization of FIFO channels for embedded computation system has mul-
tiple facets. In the current state of the art, there are excellent solutions for

87

4 Sliced FIFO Hardware

chip area [um?]

.105\ | |
/| osingle port —
10 dual port
0.8 *
0.6 |- *
0.4] .
02} DD |
o 0 BO
T T T T

T T T
0 2 4 6 8 10 12 14 16
memory capacity [kB]

Figure 4.11: Chip area consumption of FIFO system composed of controller unit

88

and memroy banks based on 4kB memory marcos. When using
dual port memories the proposed FIFO controller is left out. The
break-even point can be interpolated to 5.2 kB.

4.8 Key Lernings

any attribute that might be optimized. Every solution has severe drawbacks in
other attributes. The challenging problem is to find a solution that finds a sweet
spot that exploits the advantages of each solution without incorporating the full
amount of drawbacks. When optimizing only for bandwidth/delay, a dedicated
hardware (HW) unit can provide a perfect throughput of 1.0tpc and a minimal
delay. The drawbacks are the exclusiveness of the used memory to the HW unit
and the need for area expensive dual-port memory macros. Since the on-chip
memory is one of the most precious resources in an embedded device, this is
unacceptable. The apparent area optimal solution is a software FIFO channel
implementation with a single port memory. It suffers from delay and bandwidth
degradation, where even a single channel cannot exceed 0.5tpc. When mas-
ters need to prosume’ token at a higher rate, the multiple parallel accesses
have to be conducted. The memory system must be able to expose multiple of
the memory banks simultaneously to multiple masters to increase the usable
memory bandwidth. The data buffer has to be sliced and distributed to differ-
ent memory banks to exploit the higher bandwidth. When multiple channels
are active at once, the memory access patterns must be aligned to exploit the
parallel memory access.

In the here proposed hardware FIFO unit data and access patterns are dis-
tributed over shared memory banks to find a sweet spot between optimal band-
width and optimal chip area consumption. In the completed simulations it was
shown, that the proposed design yields 80% of the theoretical possible band-
width of 1.0tpc. From the implementation of the unit into an manufactured
MPSoC it was derived that the unit fills an area equal to 1.15 memory macros of
4 kB with a single port or 0.53 of the dual ported variant. That allows building a
8 kB memory system with single port memories and a FIFO unit that is smaller
than an equivalent sized system with dual-port memories without such a unit.

"portmanteau of produce and consume

89

4 Sliced FIFO Hardware

90

5 Message Passing Hardware

Apart from the first in first out (FIFO) channel communication discussed in the
last chapter, a second type of communication, namely message passing (MP)
plays an essential role in the efficient execution of parallel applications. Sim-
ilar to the data streaming communication, MP suffers a severe performance
loss when implemented on top of standard on-chip communication like remote
direct memory access (RDMA). The transfer of small messages with random
source and destination within a cluster of many processing elements (PEs) has
some bottlenecks that can be addressed with dedicated hardware implemen-
tation. The two key performance indicators that are of interest for an MP imple-
mentation within an embedded environment like the one discussed throughout
this work are message delay and resource efficiency while bandwidth is a sec-
ondary goal.

The abstract use case for MP in this type of environment is a client-server re-
lation between several nodes. A potentially great number of clients are sending
requests to a server and are expecting a fast response. These requests may for
example be a command to a file system service in a distributed operating sys-
tem (OS), but also the search for a blockid in an dynamic static data flow (SDF)
scheduling system like seen in Section 3. In neither case it is needed to trans-
fer a lot of data but rather get a small message to another node as fast and
as efficient as possible. This chapter will introduce an extension to an existing
RDMA unit that handles an MP protocol featuring connectionless transfers and
memory-efficient buffer management.

91

5 Message Passing Hardware

5.1 Addressed Performance Hotspot

The usual way to implement MP is by utilizing an existing RDMA implementation
since it is widely available on many platforms [43, 44, 2, 73]. Using an RDMA
unit as the hardware foundation to implement the transfer of data across the
chip leaves the processor to run the MP protocol in software, which not only
introduces an additional delay into the message delivery pipeline but also in-
terrupts the processor from running the application code. Also, RDMA lacks
some features that would allow connectionless transfers, which results in some
significant network traffic overhead and memory consumption to save the con-
nection state. A dedicated connection setup for every peer to peer connection
has, in the best case, a fixed resource consumption on both sender and re-
ceiver. When a service has to receive messages from many clients, this may
accumulate to significant memory consumption. Additionally, each connection
must be checked for liveness once in a while, meaning some network traffic
and processing overhead for each link, which would also accumulate on service
units to a significant amount of the processing time. And lastly, for connection-
based communication, a connection establishment functionality must be pro-
vided. Without any message passing mechanics, this is non-trivial and requires a
separate service, connected to every process, and manages the establishment
of a new connection from a centralized position. That is contradictory to the
idea of a decentralized, distributed execution environment.

Since the use cases state that MP is mainly for signaling and not for bulk data
transfer, the bandwidth that can be utilized for a message is a secondary goal.
More critical are the delays caused by the message stages before the message
enters and leaves the network on chip (NoC).

The mentioned drawbacks like connection establishment and resource con-
sumption is not significant in the biggest RDMA application field, namely high
performance computation in datacenters. However, for the use in embedded
systems as signaling service for dynamic scheduling these attributes are crucial
for the overall performance.

5.2 State of the Art
There are not many systems that try to implement a message-passing proto-

col stack directly in hardware. The reason is that in most cases, a software-
based implementation is sufficient. Message delay and data bandwidth are

92

5.3 Message Passing Regarded as Queueing

good enough for the application, or the system is based on a shared mem-
ory system. In that case, a hardware MP implementation may, in the best case,
optimize a part of the system that is not considered a hotspot, thus have very
little impact. In a worse case, it may be simply not applicable and a waste of
resources (e.g. chip area). A software implementation and the importance of
MP for multi processor system on chips (MPSoCs) is acknowledged in [57] but
without the need for hardware acceleration.

Since including new hardware to a processing system is a tremendous effort,
reusing already available functionality is often a much cheaper, and often an
almost as efficient solution. In [73] a MP stack is built upon an existing RDMA
unit. And still, there are attempts to do a direct hardware implementation [87],
although not very frequent. As mentioned before, the necessity to implement
such a highly optimized piece of hardware is not given in most projects. In Sec-
tion 3.5, however, it was mentioned that the delay of network messages can
influence the system performance significantly with sufficiently large systems.

5.3 Message Passing Regarded as Queueing

Generally, MP can be partitioned into four modes of communication: (1) 1-to-1
(2) N-to-1, (3) 1-to-N and (4) N-to-N. Each communication mode requires differ-
ent hardware functionallity to be implemented efficiently. This work will focus to
the N-to-1 mode (Fig. 5.1) since it is the one used to build client-server system.
To implement N-to-1 MP a message queue is placed at a node. A messages sent
to the queue will be enqueued and made available to the destination node. This
way, messages from multiple nodes are sequalized and can easily be processed
by the destiantion node. Additionally, this work will restrict the messages sent to
a queue to be of constant size. As long as MP is only used to tranfser request/-
command messages a fixed message size does not pose serious restrictions.
On the MPSoC system described in Section 1.3 the management system from
Section 3.4 can be implemented using such queues. Each management PE in-
stanciates a queue to implement the interface to a service. The worker PEs can
now query those services by enqueing requests. It is possible for one worker to
query multiple services at once and, more importantly one service can answer
to request from multiple clients on the same queue. The implemented services
may be a task placing service, a quality of service (QoS) network connection al-
locator, or a worker PE command queue, to name a few examples. But also
examples from other applications are possible like a file system service or a pe-

93

5 Message Passing Hardware

producer MP MP consumer
Ap
2 2 I
NoC
1 1
0 0

Figure 5.1: Overview of Simulation setup. Multiple producer each using an MP
unit to transfer messages over the NoC to a single consumer. A pro-
ducer p generates messages at a rate of A,. The consumer takes
messages from the local HW unit with a rate of .

ripheral interface in a distributed OS. All services have in common that they
are usually designed to have a lot of possible client nodes. Most PEs will only
offer a single service, thus only have a single receiver. But a PE may potentially
want to request a lot of services, so it will have to implement many message
sending endpoints. Having many senders for a single receiver implies that the
senders’ message rate must be relatively low to prevent overloading the service
provider. Assuming that a typical service can process a message in a constant
time D gives a message consumption rate of:

1
=b
A widespread way of describing message production in a sender is as a Pois-

son Process. It defines exponentially distributed inter-message timings with a
mean message rate of A. The ratio of arrival and consumption rate

describes the queues utilization, which obviously may not exceed 1.0 because
service times would approach infinity. For a queue with multiple independent
Poisson Process driven senders the total arrival rate y; can be obtained as the
sum of the individual rates or, with a constant arrival rate across the system, as
product of the number of senders nsenger and the basis rate py, [47]:

94

5.4 A Remote Direct Memory Access Based Implementation

U= Z,U/ = Nsenderstb

Therefore, the queues regarded in the following are expected to be close to
an M/D/1"queue in their behavior. Only a single queue will be examined at once,
assuming that the PE connecting NoC does not get congested.

The whole message queue from one subprogram to another spans over sev-
eral units within the platform described in Section 1.3. Included are the source
and the destination network interface units and the NoC. The life cycle of each
message can be divided into five stages that describe the complete transfer.
Depending on the used implementation and length of the message the stages
may overlap. First, the message is “pushed” from the source processor into the
network interface. Secondly, it must be prepared and “send” into the NoC. The
“transfer” through the NoC is the third stage, after which the message will be
“received” at the receivers networking unit. Finally, the message data is “pulled”
from the MP stack to the receiving processor.

5.4 A Remote Direct Memory Access Based Implementation

In Section 1.3.4 the functionallity of RDMA is explained. While the “put” and “get”
primitives are sufficient for one-to-one communication, they introduce prob-
lems when working on a multi-point communication. In a one-to-one commu-
nication, specific local addresses are reserved for access by the communication
peer. The peer knows about the location of these reserved buffers and can
safely write or read data from or to it. The problem that causes the protocol
overhead is that a peer does not know who, when, or how often the reserved
area was written to or read from by a remote peer. Still, a safe and functional
MP protocol is possible. The basis is a connection state that each peer holds for
each connection. It features an off-band buffer that is used to signal the pro-
tocol state to the peer, containing a least three esential attributes. In conjunc-
tion with the off-band buffer, the connection state contains the address of the
remote off-band buffer. This remote off-band address must be set in the con-
nection establishment phase, possibly by a communication manager instance.
Thirdly, the connection stage contains the local address of a message buffer.

TA/S/cis the Kendall notation to classify queues. The parameters describe “A”: arrival time distribution;
"S" service time distribution ; “c”: number of service channels. Often used codes for "A” and “S" are
“M": markovian (poisson process), “D": degenerate (fixed time) [46]

95

5 Message Passing Hardware

memory optimized

delay optimized

‘ recevier ‘

‘ sender ‘

sender
request buffer (fetch)

call ;

€quest buffer (put)

llocate
e
return buffer pointer (P
call
send

send Message (put)

send

} recive & deliver
receive & deliver

recevier

allocate

Figure 5.2: Flow of memory and delay optimized RDMA based message passing
implementation. The effective delay from the sending to the receiv-
ing subprogram is marked which prefers the “delay optimized” vari-

ant.

96

5.5 Hardware Implementation Concept

There are two protocol versions, one that favors message delay, the other fa-
voring memory consumption. For both, the transfer of a message is displayed
in Fig. 5.2. This message flow assumes that there has been a connection es-
tablishment phase that exchanged off-band buffer locations between the two
peers. Each peer now holds a connection state structure with a cleared “off-
band buffer” field and a “remote off-band address” set to the location of the
peer's off-band buffer. When using the memory-optimized protocol, the sender
must, before sending the message, query the receiver for an empty message
buffer. It is done by writing a command to the receiver’s off-band buffer and
wait for a reply in the own off-band buffer. After that, the sender can transfer
the message to the assigned message buffer. On the other side, the receiver
must find the buffer allocation request in the off-band buffer corresponding to
the sender. It must then allocate a message buffer and send its address back
to the senders off-band buffer and then wait for the message to arrive. For the
delay-optimized version, the buffer allocation is moved out of the critical path.
Immediately after connection establishment, the receiver will notify the sender
about an allocated buffer location. Because the allocation has already been
done, the sender can start immediately when the application wants to send a
message. It sends a message and immediately requests a new message buffer.

Under the preallocated buffer strategy, the receiver must hold at least one
allocated buffer for every sender, although it might be idle most of the time.
The memory-optimized version allocates memory on demand to prevent this
memory wasting, with the drawback that this request and allocation process
prolongs the message delay.

5.5 Hardware Implementation Concept

Goal of the development of an MP hardware unit should be to improve the per-
formance issues a reference MP-over-RDMA implementation has. The issues at
hand are:

1. The actual MP protocol is implemented in software, which is slow and
steals processing time from the application.

2. Connection establishment and a connection state are necessary in order

for MP to work properly. Connections consume resources, may it be mem-
ory for the state, or time for the establishment and keep-alive handling.

97

5 Message Passing Hardware

3. Inan RDMA based implementation a receive buffer must be kept for each
connection, which results in memory consumption proportional to the
number of clients.

4. To save resources buffer allocation can be done on demand, which has
the downside of delaying the message significantly.

The hereby proposed implementation is based upon the existing networking
unit briefly described in Section 1.3.4. Before development on the MP stack
began, the unit already implemented a simple RDMA protocol. It also featured
a FIFO channel bridge that can be used to connect FIFO channels described
in Chapter 4 across the network to build an inter PE channel. Internally the
network unit uses a multipurpose configuration file holding the configuration
of a set of communication entities. Each entity can be individually chosen to
describe an RDMA operation or a FIFO channel. For the MP protocol imple-
mentation, a third mode will be added to allow a configuration slot to hold a MP
queue description. This recycling of the config registers attempts to reduce the
area increase caused by the MP protocol implementation.

The MP configiguration slot leans on the RDMA and FIFO channel versions. It
only describes the metadata and holds pointers to the local shared memory for
data storage. The application is responsible for local memory allocation since
it is assumed to have a dynamic memory allocation. When initializing the MP
queue, the application will grant the hardware unit a piece of dynamically allo-
cated memory that it can manage until the MP queue is being destroyed.

The queue divides the assigned memory space into a list of message posi-
tions. Within the configuration file, parameters about the message and list size
are stored. Further, a bitfield holds the status of each message position. It
stores if a position is occupied and, in the sender’s case, whether the message
was sent. The message will remain in the buffer until a reception receipt is re-
ceived from the receiver.

The sequence to transfer a message from one application processor to an-
other is shown in Fig. 5.3. Both sides must set up a queue configuration and
prepare a message buffer. Onthe sender side, the destination PE must be spec-
ified as well. The message transfer is handled by three control flows running in
different finite state machines (FSMs), thus being independent of each other. It
allows a decoupling of the application processors from the actual transfer.

The sending processor controls the first flow, and the HW unit is merely react-
ing. To initiate a message transfer, the processor requests a message position
from the HW unit. After filling in the message data, the processor releases the

98

5.6 Evalutation of Performance

message to allow the second FSM to take over control and relieve the processor
of any further actions.

A second flow handles the transfer between two HW units. The HW unit's
state machine will continuously observe the queue configurations to find a mes-
sage that is not yet sent. It then sends the message to the configured peer and
change the message state to “sent”. On the receiving side, the message will
arrive at the HW unit. It selects a not occupied message position and stores
the message there. Once the whole message is received, the message is made
accessible by the application processor, and an acknowledgment signal is is-
sued to the sender PE. This signal tells the sending HW unit that the message is
stored to the remote memory and can now safely removed from the local mes-
sage buffer. Back on the receiving end, a third flow controlled by the receiving
processor can now commence. The processor polls the HW unit for new mes-
sages. If a new message is present, the HW unit will return one to the processor
for reading. After being finished with the message, the processor releases the
message, allowing the HW unit to free the message position.

There are several situations where the flow may differ from the optimal, al-
ready described, course. Both requesting a message for reading and writing
may fail when no position in the local buffer is free. The application must then
wait some time and retry its request. A message arriving at the HW unit from
the NoC may also be unable to find a free position and then might be dropped.
In that case, the receiver will send a negative acknowledgment to the sender,
which will then retry the transmission later.

5.6 Evalutation of Performance

In Section 5.5, four performance issues were indicated that the new HW is sup-
posed to improve. The value that describes the system'’s performance is the
delay a message must expect to traverse the system. This delay is dependent
on a range of parameters. One parameter the performance depends on is the
system utilization, described as the ratio of message arrival and message pro-
cessing rate p = Au. Other parameters that may affect the delay are the mes-
sage buffer size or the number of senders.

To evaluate these values, an register transfer level (RTL) based simulation was
set up like displayed in Fig. 5.1. The system consists of a set of nodes connected
with a NoC allowing them to communicate. Each node contains a network inter-
face unit featuring the RDMA and the MP implementation and a processor that

99

5 Message Passing Hardware

‘sender‘ ‘ HW ‘ ‘ NoC ‘ ‘ HW ‘ receiver

OPE”MESsage

po\\MeSSage

deliver ACK

Figure 5.3: Flow of message passing protocol implementation. The transfer is
done by three decoupled processes. Both sender and receiver query
the HW unit for access to a (new) message. In a decoupled pro-
cess the two HW units transfer the data independent of producer/re-
ceiver. All three flows can run simultaniously. The NoC transfer can
start “sendMessage” at any time after “closeMessage” and “pollMes-
sage” can already be issued after “deliverMessage” has fininshed.

Table 5.1: Standard parameters for measurements

parameter symbol value
conumer rate u 1/50¢yl
system load p 0.0to 1.0
message length 8tok
number of producers Ny 5

buffer size 4

NoC delay 10 ¢yl
producers message rate An

100

5.6 Evalutation of Performance

500 ,
- ’I “
- 5 !
4001 g b
13 /
> 300(— 1/ D
~ -~ M/D/1 !
© /
I 200 y |
100| / —
| | | | | |
0 0.2 0.4 0.6 0.8 1
system load

Figure 5.4: Performance of Hardware MP unit with different number of produc-
ers.

allows modeling either a producer or a consumer of messages. When config-
ured as a producer, a processor will randomly generate messages and pushes
them to the network unit. The message generation follows a Poisson Distribu-
tion parametrized with a producer message rate A,. A consumer node works
almost the same but polls messages from the HW unit and consumes them in
constant time d. = 1/y. The simulations always feature exactly one consumer
and a set of np producers. The system load is calculated combining the producer
rates to a total message arrival rate and the consuimption rate as:

_ Ao
U

Other parameters of the simulation are given by Tab. 5.1. In Fig. 5.4, setups
with a different number of active producers are compared. The individual mes-
sage rates A, are scaled to keep the system load constant. In theory, a queuing
system queried by multiple producers should behave the same as with a single
producer with a message rate equal to the sum of the many producers assumed
that the produced messages are Poisson distributed. However, with the differ-
ent stages in the queuing system, it is not trivial to see if this relation holds. The

101

5 Message Passing Hardware

500 ™
I HW Il l,
—— RDMA ! !
400 | M/D/1 D=50 |/ *
- --- M/D/1 D=63 |
S 300H--- M/D/1 D=116 ! N
o)
=
< 200 i
©
100 .
| | | | | |
0 0.2 0.4 0.6 0.8 1
system load

Figure 5.5: Comparison of message delay of HW implementation and RDMA
based version.

Fig. 5.4 shows that, for the HW implementation, this relation does indeed hold,
since the message delay is independent of the number of active producer with
constant system load p. Although the implementation does not quite reach the
theoretical performance of an ideal M/D/1 queue, it keeps good performance
even in high load situations. Compared to that, the RDMA based version drives
the queue into saturation at a much lower system load (Fig. 5.5).

The queue must be regarded as the concatenation of the three parts: the
sender, the NoC, and the receiver. Replacing the message processing time d,,
with the total message delay

C/tota\ = dsend + C/NOC + drece\'ve + C/p

as the sum of all message stage delays, the theoretical model matches the
simulated delay times. The same method can be applied for the RDMA imple-
mentation. The only difference is that the message buffer's acquiring is added
as additional stage:

daquwre = Oaliocate + 2dNoC

102

5.6 Evalutation of Performance

Table 5.2: Time consumption for MP operations.

parameter description HW RDMA
NoC NoC traversion 10 10
send local memory to NoC 10 10
receive NoC to local memory 10 10
p message processing (CPU) 50 50
aquire aquiring a remote buffer location — 100
allocate allocating buffer (CPU) — 34
retransmit retransmission in case of buffer overflow 100 —
pause pause before new retransmision attempt 100 —

The additional delay further reduces the performance, which manifests in the
system being saturated already at a system load of 0.4. It is possible to very
accurately model this delayed queuing system by replacing y in the standard
M/D/1 delay model [13]

1P
po 2p(1 - p)

with the real message delay pioal = 1/dioa DUt keep the normalization to
system load p = A/p with a p from the processing time only. The stage delays are
system implementation-specific values and are obtained from RTL simulations
of the presented hardware. Values are summarized in Tab. 5.2. With these
timings available the total message delay for the HW implementation and for
the RDMA implementation can be calculated as:

Grotalasic = 60 ¢yl
Crotal,roma = 110 ¢yl

M/D/1 delay functions with these modifed values for y are plotted into Fig. 5.5
along with simulation results. For the sake of comparability, both application
specific integrated circuit (ASIC) and RDMA version feature a single producer.
The theoretical model matches the simulated results and shows the importance
of processor to processor delay

One attempt to compensate the dependence on the transmission time is to
exploit the use of a pipelining system. The availability of message buffers on
both the sender and the receiver side is supposed to allow multiple messages to

103

5 Message Passing Hardware

e o 9
N [e)) (o]

probability

©
N

o

| |
0 0.2 0.4 0.6 0.8 1

system load

Figure 5.6: Probability that a certain number of messages are in the queueing
system

be handled by the system simultaneously. Additional delays may be eliminated
by storing a message in case the next stage is not available. For example, a
message may be parked in the receiver buffer when the central processing unit
(CPU) is busy avoiding a signaling path and retransmission all the ways back to
and from the sender CPU.

Since the maximum number of message positions is fixed in the ASIC design
itself, it is crucial to understand the benefit of a bigger buffer to decide at design
time the parameters limiting this. In other words, the question that should be
answered is how the buffer size affects the functionality and performance of a
queue. Since the ASIC unitimplements message rejection and retransfer mech-
anism, a single message position is enough to assure a functioning messaging
system. A retransfer does, however, increase the message delay by:

dretransmit = 2dNOC + dpause

It describes the transmission of a not-acknoledge message, the original mes-
sage and a retransmission pause to prevent overloading the NoC. At last the
retransmission is not protected against a repeted rejection which alters the to-
tal message delay to incorporate the number of rejections:

104

5.6 Evalutation of Performance

—_

0.8 ||

0.6

0.4

0.2

o

faction of retransmitted messages

| |
0.2 0.4 0.6 0.8 1

system load

Figure 5.7: Ratio of messages that have to be retransmitted because of a buffer
overflow depending on buffer size.

dtotal = dsend + dNoC + nretransm\tdretransmit + drece\ve + dp

Luckily, these retransmissions are a relatively seldom event and depend on
the size of the receiving buffer. To estimate the probability of a rejection, the
probability that a number of messages are in an M/D/1 queue can be used.
Normalized to a processing time of D = 1 it is given as [59]:

n-1 k)(n-k k/\ n-k-1
= (1-4) € +) ey [((n—)k)v * (r(z o Ml
k=1 ' '

With y = 1/D = 1.0 the queue untilization becomes p = A/y = A. The prob-
ability of less than a certain number of messages being in the queue can be
calculated as

n

PX<n) =) m

k=0

and plotted as shown in Fig. 5.6. In the range of small queue utilization, a

105

5 Message Passing Hardware

500
—— D=100 B=1
—— D=100 B=2
4001 p=100B=5)
5 ——D=100 B=10
'S 300 D=10 B=1 .
& D=10 B=2
& D=10 B=5
© 2000 p=1gB=10 i
— M/D1
100 |- .
| | | | | |
0 0.2 0.4 0.6 0.8 1
system load

Figure 5.8: Message delay dependent on system load, network delay (D) and
receiving buffer size (B). Only with a very small buffer coupled with a
very high NoC delay has an effect on message delay.

106

5.7 Key Lernings

single message position is sufficient to catch most messages directly, causing
minimal rejections. But even at saturation utilization p = 0.7, a set of four posi-
tions assures a message acceptance of more than 90%. It is important to note
that the remaining 10% are not lost but are only delayed by dretransmit Cycles. An-
other experiment was set up to run the queuing system with different buffer
sizes. Although a certain number of retransmissions can be seen in Fig. 5.7,
no significant impact on average message delay can be observed. In Fig. 5.8,
not even with a single message sized buffer, a dramatic performance reduction
could be observed compared to the bigger buffers. Only an increase of the NoC
delay from 10 cyl to 100 cyl could show the effects of choosing the buffer size
too small. The increased probability of retransmissions and the high penalty
of retransmission of over 200 cyl a performance degradation for a very small
message buffer can be observed.

5.7 Key Lernings

In this chapter, a hardware solution is proposed that significantly improves on
performance of signaling flow of distributed applications. With the immediate
memory being so close to the processor, the querying of microservices or syn-
chronizing with coworkers in the distributed application becomes the new bot-
tleneck. It is essential to keep the overhead for the application processor for
communication as low as possible. The two key factors are the software effort
to access the communication stack and the delay the application potentially has
to wait for an answer to its request. An ASIC MP unit can help with both issues.
Implementing most of the MP stack in hardware moves effort away from the ap-
plication and at the same time accelerates the processing. Firstly, that reduces
the overhead for the application, allowing other processing while waiting for a
response. And secondly, the improvements on the MP protocol itself decrease
the message delay significantly, effectively lowering the waiting time the appli-
cation experiences waiting for the response to a request. The smaller transmis-
sion delay also allows increasing the relative system load without saturating the
queue. The proposed hardware implementation can reduce the memory con-
sumption on the receiver (or service) side of a MP communication by leaving
out connection state information. The connectionless protocol also simplifies
communication management as connections do not have to be setup up by a
central entity, but a client can simply send a message to a known receiver with-
out the receiver being aware of the sender beforehand. Neither receivers nor

107

5 Message Passing Hardware

senders have to worry about connection aliveness and implement additional
connection keep-alive protocols.

108

6 Summary

In this work, the attempt was made to grasp the scope that has to be considered
when designing efficient resource management for embedded systems. Opti-
mizing one part of the system to address one hotspot may result in increased
efficiency. However, a big improvement in efficiency can only be achieved when
regarding multiple hotspots at once. Itis then possible to apply one optimization
that only shifts the bottleneck and creates another hotspot. Applying a second
optimization on the new hotspot could potentially result in greater efficiency
improvement that a direct solution for the original hotspot might have brought.

In this work, for example, in Chapter 2 a solution was found to the problem
of processing networks that don't allow certain types of parallelism. The intro-
duction of task emitters for few static data flow (SDF) actors allows for more
potential parallelism to be exploited. The increased amount of management
overhead shifts the hotspot from the denied potential parallelism to the man-
agement processing. Without any further investigations, the done measures
would be unsuitable for a real application because it would limit the number of
usable worker processing elements (PEs) to very few. However, Chapter 3 picks
up this increased and variable overhead ratio and presents a solution which en-
sures efficient utilization of all PEs. This way, the relevance of the results from
Chapter 2 are reinforced for a broader range of applications. The key to this
success is the layer crossing handling of performance hotspots. In this case,
from the application layer specific parallelism to the runtime environment (RTE)
layer-specific overhead handling.

The distribution of the overhead processing described in Chapter 3 relies
on an efficient and fast message passing (MP) functionality. Without that, the

109

6 Summary

quick signaling between client and server and synchronization between servers
would make the efficiency of such a distributed management limited. Because
of that, Chapter 5 examined the possibility of implementing a MP solution of
multi processor system on chips (MPSoCs) with a focus on resource efficiency,
fast message delivery, and low overhead, meaning that the initiation of a mes-
sage sending is cheap for the local central processing unit (CPU). In this chapter,
a MP hardware implementation is presented to be faster and more resource-
efficient than a remote direct memory access (RDMA) based software solution.
It is an excellent example of a hotspot optimization through improved imple-
mentation in lower levels. The symptom (the observable hotspot) is the slow
execution of MP operations provided by the driver layer. Instead of limiting
the number of MP usages or implementation tweaks in the driver layer itself
—which would probably be not very beneficial— the solution is implemented
in the layer below, the hardware layer. Here the needed increases in efficiency
can be achieved without constraining the usage of MP but rather embrace the
increased needs.

Finally, in Chapter 4 another hardware improvement is introduced, targeting
constant high throughput data streams. Data streams are necessary to imple-
ment the performant execution of process networks. The benefits of a custom
first in first out (FIFO) hardware as presented in that chapter are reduced over-
head for the CPU and efficient usage of single ported memory banks for the
PE local memory. Implementing the whole FIFO buffer handling in hardware
moves the protocol processing away from the CPU freeing resources for the
payload effort. The proposed FIFO controller can distribute memory accesses
from multiple FIFO users evenly across several memory banks. This results in
very high utilization of the banks' interfaces allowing single ported memory with
only marginal bandwidth losses. Since the single ported memory banks con-
sume roughly half the chip area, the amount of available on-chip memory can
be increased tremendously.

Considering the targeted application —mobile signal processing— the effi-
cient usage of the available hardware is paramount. With the abstraction of
the application to a stream of SDF graphs, the need for efficiency becomes a
scheduling problem. Applying static scheduling, while being almost optimal in
terms of makespan, has an inefficient resource consumption. The necessary
step towards dynamic scheduling is followed by a set of problems that can only
be dealt with by adopting the system at every possible layer. However, when
addressing these problems one by one, this work shows that dynamic schedul-
ing can be done without increasing makespan too much. On the contrary, the

110

increased resource efficiency of dynamic scheduling results in higher perfor-
mance in terms of total work done per time. It is, in the end, the better choice
for base-station signal processing, reducing the need for overprovisioning of
hardware resources.d

111

6 Summary

112

Abbreviations

3GPP
API
ASIC
ASIP
CPU

DMA
DsP

FIFO
FPGA
FSM
HW

10
ISA

KPN

LTE

3rd generation partership project
application programming interface
application specific integrated circuit
application specific integrated processor

central processing unit

direct memory access
digital signal processor

firstin first out
field programmable gate array
finite state machine

hardware

input/output
instruction set architecture

kahn process network

Long Term Evolution

113

Abbreviations

MoC model of computation
MP message passing
MPSoC multi processor system on chip

NIf network interface
NoC network on chip

oS operating system
PC personal computer
PCB printed circuit board
PE processing element
QoS quality of service

RDMA remote direct memory access

RISC reduced instruction set computer
RTE runtime environment

RTL register transfer level

SDF static data flow

SoC system on chip

SRAM static random access memory

TTI transmission time interval

114

Symbols

Unit Name Type Description

scl - simcycle time simulation time slice

cyl cycle time register transfer level (RTL) cycle

B Dbyte data

bit bit data

tok token data native word length

tpc token per cycle data rate

Variables
Name Symbol Unit Description
effort e — computational work for a CPU
speedup S —
size S B or bit
delay d ¢yl or scl
ratio r —
Fover — overhead/payload effort
I'manager — manager/worker processing power

load) —
service rate A oyl s’ e.g. requests handled by service
arrival rate U oyl s e.g. requests issued to service
distance h — number of hops in NoC
bandwidth b tpc data rate e.g. of a memory bank
area A pum? chip area

115

Abbreviations

116

Publications

1. S.Haas et al. "An MPSoC for Energy-Efficient Database Query Processing”.
In: Design Automation Conference (DAC). Austin/Texas, USA, June 2016. DO
10.1145/2897937.2897986

2. M. VdlIp et al. “The Orchestration Stack: The Impossible Task of Design-
ing Software for Unknown Future Post-CMOS Hardware”. In: International
Workshop on Post-Moores Era Supercomputing (PMES). Salt Lake City, Utah,
USA, Nov. 2016

3. Sebastian Haas et al. "A Heterogeneous SDR MPSoC in 28 nm CMOS for
low-latency wireless applications”. In: Proceedings of the 54th Annual Design
Automation Conference 2017. ACM. 2017, p. 47

4.). Castrillon et al. "A Hardware/Software Stack for Heterogeneous Systems”.
In: IEEE Transactions on Multi-Scale Computing Systems (TMSCS) (Nov. 2017).
DOI: 10.1109/TMSCS.2017.2771750

5. Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-
tion". In: 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE. 2018, pp. 513-516

6. R. Wittig et al. "Queue Based Memory Management Unit for Heteroge-
neous MPSoCs". In: Design Automation and Test in Europe (DATE). Florence,
Italy, Mar. 2019. DOI: 10.1007/978-3-030-27562-4_16

7. R. Wittig et al. “Statistical Access Interval Prediction for Tightly Coupled
Memory Systems”. In: IEEE Symposium on Low-Power and High-Speed Chips

117

https://doi.org/10.1145/2897937.2897986
https://doi.org/10.1109/TMSCS.2017.2771750
https://doi.org/10.1007/978-3-030-27562-4_16

Abbreviations

10.

11.

118

(COOLCHIPS). Yokohama, Japan, Apr. 2019. DOI: 10.1007/978-3-030~
27562-4_16

R. Wittig et al. “Probabilistic Models for Off-Line Arbiters in Embedded Sys-
tems”. In: IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). Cuzco, Peru, Oct. 2019. DOI: 10.1007/978-3-030-27562-4_16

M. Hasler et al. “A Hybrid Execution Approach to Improve the Performance
of Dataflow Applications”. In: International System-on-Chip Design Confer-
ence (ISOCC). JeJu, South Korea, Oct. 2019

G. Fettweis et al. “5G-and-Beyond Scalable Machines”. In: IFIP/IEEE Inter-
national Conference on Very Large Scale Integration (VLSI-SoC). Cuzco, Peru,
Oct. 2019

Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-
tion". In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.2
(2019), pp. 441-450

M. Hasler et al. “Balancing Dynamic Scheduling Overhead to Maximize SDF
Performance”. In: 2020 2nd 6G Summit (6G SUMMIT). Levi, Finland, Finland,
Mar. 2020, pp. 1-5. DOI: 10.1109/6GSUMMIT49458.2020.9083734

https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1109/6GSUMMIT49458.2020.9083734

Bibliography

(1]

(3]

S.S. A Abbas, P. A . Sheeba, and S. J. Thiruvengadam. “Design of downlink
PDSCH architecture for LTE using FPGA". In: 2011 International Conference
on Recent Trends in Information Technology (ICRTIT). June 2011, pp. 947-
952. DOI: 10.1109/ICRTIT.2011.5972424.

Jude Ambrose et al. “Composable Local Memory Organisation for Stream-
ing Applications on Embedded MPSoCs". In: Proceedings of the 8th ACM
International Conference on Computing Frontiers. CF'"11. Ischia, Italy: Asso-
ciation for Computing Machinery, 2011. ISBN: 9781450306980. DOI: 10.
1145/2016604 . 2016631. URL: https://doi.org/10.1145/2016604 .
2016631.

Gene M Amdahl. “Validity of the single processor approach to achieving
large scale computing capabilities”. In: Proceedings of the April 18-20, 1967,
spring joint computer conference. 1967, pp. 483-485.

Paul-Antoine Arras et al. "DKPN: A Composite Dataflow/Kahn Process Net-
works Execution Model”. In: Parallel, Distributed, and Network-Based Pro-
cessing (PDP), 2016 24th Euromicro International Conference on. IEEE. 2016,
pp. 27-34.

Md Rabiul Awal and MM Hafizur Rahman. “Network-on-chip implementa-
tion of midimew-connected mesh network”. In: 2013 International Confer-
ence on Parallel and Distributed Computing, Applications and Technologies.
IEEE. 2013, pp. 265-271.

119

https://doi.org/10.1109/ICRTIT.2011.5972424
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631
https://doi.org/10.1145/2016604.2016631

Bibliography

(6]

120

Johannes Ax et al. “CoreVA-MPSoC: A Many-Core Architecture with Tightly
Coupled Shared and Local Data Memories”. In: [EEE Transactions on Parallel
and Distributed Systems 29.5 (2018), pp. 1030-1043. DOI: 10.1109/TPDS.
2017.2785799.

Fujun Bai et al. "A two-port SRAM using a single-port cell array with a self-
timed write-after-read control scheme to save 47% area & 63% standby
power”. In: ASIC (ASICON), 2017 IEEE 12th International Conference on. |EEE.
2017, pp. 426-428.

Saehee Bang et al. “Implementation of LTE system on an SDR platform
using CUDA and UHD". In: Analog Integrated Circuits and Signal Processing
78.3 (Mar. 2014), pp. 599-610. ISSN: 1573-1979. DOI: 10.1007/s10470-
013-0229-1. URL: https://doi.org/10.1007/s10470-013-0229~-1.

Luca Benini and G De Micheli. “Networks on chips: A new SoC paradigm”.
In: Computer-lEEE Computer Society- 35 (2002), pp. 70-78.

Shuvra S Bhattacharyya, Ed F Deprettere, and Bart D Theelen. “Dynamic
dataflow graphs”. In: Handbook of Signal Processing Systems. Springer, 2013,
pp. 905-944.

Bruno Bodin et al. “Fast and efficient dataflow graph generation”. In: Pro-
ceedings of the 17th International Workshop on Software and Compilers for
Embedded Systems, SCOPES 2014 (June 2014). DOI: 10 . 1145 /2609248 .
2609258.

Jani Boutellier, Shuvra S Bhattacharyya, and Olli Silvén. “A low-overhead
scheduling methodology for fine-grained acceleration of signal processing
systems”. In: Journal of Signal Processing Systems 60.3 (2010), pp. 333-343.

Robert Cahn. Wide area network design: concepts and tools for optimization.
Morgan Kaufmann, 1998.

Nicholas P Carter et al. “Runnemede: An architecture for ubiquitous high-
performance computing”. In: High Performance Computer Architecture, 2013
IEEE 19th International Symposium on. IEEE. 2013, pp. 198-209.

Aaron G Cass et al. “Logically central, physically distributed control in a
process runtime environment”. In: University of Massachusetts, Computer
Science Department, Amherst, MA, Technical Report UM-CS-1999-065 (1999).

J. Castrillon et al. “"A Hardware/Software Stack for Heterogeneous Sys-
tems”. In: IEEE Transactions on Multi-Scale Computing Systems (TMSCS) (Nov.
2017). DOI: 10.1109/TMSCS.2017.2771750.

https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1109/TPDS.2017.2785799
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1007/s10470-013-0229-1
https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1109/TMSCS.2017.2771750

Bibliography

Y. N. Chang. “An efficient VLSI architecture for normal I/O order pipeline
FFT design”. In: IEEE Transactions on Circuits and Systems Il: Express Briefs
55.12 (2008), pp. 1234-1238.

Weijia Che and Karam S. Chatha. “Scheduling of Synchronous Data Flow
Models on Scratchpad Memory Based Embedded Processors”. In: Pro-
ceedings of the International Conference on Computer-Aided Design. ICCAD
"10. San Jose, California: IEEE Press, 2010, pp. 205-212. ISBN: 978-1-4244-
8192-7. URL: http://dl.acm.org/citation. cfm?id=2133429.2133471.

Jack B Dennis. “First version of a data flow procedure language”. In: Pro-
gramming Symposium. Springer. 1974, pp. 362-376.

K. Desnos et al. “Distributed Memory Allocation Technique for Synchro-
nous Dataflow Graphs”. In: 2076 IEEE International Workshop on Signal Pro-
cessing Systems (SiPS). Oct. 2016, pp. 45-50. DOI: 10.1109/SiPS.2016. 16.

J Eker and JW Janneck. “CAL language report language version 1.0 docu-
ment edition 1”. In: Electronics Research Laboratory, University of California
at Berkeley, Tech. Rep. UCB/ERL M03/48 (2003).

Joachim Falk et al. “A generalized static data flow clustering algorithm for
MPSoC scheduling of multimedia applications”. In: Proceedings of the 8th
ACM international conference on Embedded software. ACM. 2008, pp. 189-
198.

G. Fettweis et al. “5G-and-Beyond Scalable Machines”. In: IFIP/IEEE Inter-
national Conference on Very Large Scale Integration (VLSI-SoC). Cuzco, Peru,
Oct. 2019.

G. P. Fettweis and E. Matus. “Scalable 5G MPSoC architecture”. In: 2017
51st Asilomar Conference on Signals, Systems, and Computers. Oct. 2017,
pp. 613-618. DOI: 10.1109/ACSSC.2017.8335414.

KAHN Gilles. “The semantics of a simple language for parallel program-
ming". In: Information processing 74 (1974), pp. 471-475.

Michael | Gordon and Saman Amarasinghe. “Compiler techniques for scal-
able performance of stream programs on multicore architectures”. PhD
thesis. Massachusetts Institute of Technology, Department of Electrical
Engineering, 2010.

N. Grigoryan, E. Mat(s$, and G. Fettweis. “DFACRAN: Dataflow Framework
for Cloud-RAN Signal Processing”. In: IEEE 5G World Forum (WF-5G). Dres-
den, Germany, Sept. 2019.

121

http://dl.acm.org/citation.cfm?id=2133429.2133471
https://doi.org/10.1109/SiPS.2016.16
https://doi.org/10.1109/ACSSC.2017.8335414

Bibliography

(28]

(32]

(35]

[36]

(37]

122

N. Grigoryan, E. Matu$, and G. Fettweis. “Scalable 5G Signal Processing on
Multiprocessor System: A Clustering Approach”. In: IEEE 5G World Forum
(WF-5G). Bangalore ,India, Sept. 2020, pp. 389-394.

Nairuhi Grigoryan, Emil Matus, and Gerhard P Fettweis. “Scalable 5G Sig-
nal Processing on Multiprocessor System: A Clustering Approach”. In: 2020
IEEE 3rd 5G World Forum (5GWF). IEEE. 2020, pp. 389-394.

William D Gropp et al. Using MPI: portable parallel programming with the
message-passing interface. Vol. 1. MIT press, 1999.

Soonhoi Ha and Hyunok Oh. “Decidable dataflow models for signal pro-
cessing: Synchronous dataflow and its extensions”. In: Handbook of Signal
Processing Systems. Springer, 2013, pp. 1083-1109.

S. Haas et al. “An MPSoC for Energy-Efficient Database Query Processing”.
In: Design Automation Conference (DAC). Austin/Texas, USA, June 2016. DOI:
10.1145/2897937.2897986.

Sebastian Haas et al. “A Heterogeneous SDR MPSoC in 28 nm CMOS for
low-latency wireless applications”. In: Proceedings of the 54th Annual Design
Automation Conference 2017. ACM. 2017, p. 47.

M. Hasler et al. “A Hybrid Execution Approach to Improve the Perfor-
mance of Dataflow Applications”. In: International System-on-Chip Design
Conference (ISOCC). JeJu, South Korea, Oct. 2019.

M. Hasler et al. “Balancing Dynamic Scheduling Overhead to Maximize
SDF Performance”. In: 2020 2nd 6G Summit (6G SUMMIT). Levi, Finland, Fin-
land, Mar. 2020, pp. 1-5. DOI: 10.1109/6GSUMMIT49458.2020.9083734.

Mattis Hasler et al. "A Random Linear Network Coding Platform MPSoC
Designed in 22nm FDSOI". In: 2022 |EEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI). [EEE. 2022, pp. 217-222.

Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-
tion”. In: 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE. 2018, pp. 513-516.

Mattis Hasler et al. “Slicing FIFOs for on-chip memory bandwidth exhaus-
tion”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.2
(2019), pp. 441-450.

https://doi.org/10.1145/2897937.2897986
https://doi.org/10.1109/6GSUMMIT49458.2020.9083734

(39]

[41]

[42]

[43]

[46]

Bibliography

Kai Huang, David Grunert, and Lothar Thiele. “Windowed FIFOs for FPGA-
based multiprocessor systems”. In: Application-specific Systems, Architec-
tures and Processors, 2007. ASAP. IEEE International Conf. on. IEEE. 2007,
pp. 36-41.

Charles R Johns and Daniel A Brokenshire. “Introduction to the cell broad-
band engine architecture”. In: IBM Journal of Research and Development
51.5(2007), pp. 503-519.

James A Kahle et al. “Introduction to the cell multiprocessor”. In: IBM jour-
nal of Research and Development 49.4.5 (2005), pp. 589-604.

Gilles Kahn and David MacQueen. “Coroutines and networks of parallel
processes”. In: (1976).

George Kalokerinos et al. “FPGA implementation of a configurable cache /
scratchpad memory with virtualized user-level RDMA capability”. In: 2009
International Symposium on Systems, Architectures, Modeling, and Simula-
tion. IEEE. 2009, pp. 149-156.

George Kalokerinos et al. “Prototyping a Configurable Cache/Scratchpad
Memory with Virtualized User-Level RDMA Capability”. In: Transactions on
High-Performance Embedded Architectures and Compilers V. Ed. by Cristina
Silvano, Koen Bertels, and Michael Schulte. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2019, pp. 100-120. ISBN: 978-3-662-58834-5. DOI: 10.
1007/978-3-662-58834-5_6. URL: https://doi.org/10.1007/978-3~
662-58834-5_6.

H. Kee et al. "FPGA-based design and implementation of the 3GPP-LTE
physical layer using parameterized synchronous dataflow techniques”. In:
2010 IEEE International Conference on Acoustics, Speech and Signal Process-
ing. Mar. 2010, pp. 1510-1513. DOI: 10.1109/ICASSP.2010.5495504.

David G Kendall. “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded Markov chain”. In: The
Annals of Mathematical Statistics (1953), pp. 338-354.

J. F. C. Kingman. Poisson Processes. Oxford Studies in Probability. Claren-
don Press.

Jaydeep P Kulkarni et al. “5.6 Mb/mm 1RTW 8T SRAM Arrays Operating
Down to 560 mV Utilizing Small-Signal Sensing With Charge Shared Bitline
and Asymmetric Sense Amplifier in 14 nm FinFET CMOS Technology”. In:
IEEE journal of Solid-State Circuits 52.1 (2017), pp. 229-239.

123

https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1007/978-3-662-58834-5_6
https://doi.org/10.1109/ICASSP.2010.5495504

Bibliography

[49]

124

E. A Lee and S. Ha. “Scheduling strategies for multiprocessor real-time
DSP". In: 1989 IEEE Global Telecommunications Conference and Exhibition
‘Communications Technology for the 1990s and Beyond'. Nov. 1989, 1279-
1283 vol.2. DOI: 10.1109/GLOCOM. 1989.64160.

Edward A Lee and David G Messerschmitt. “Synchronous data flow”. In:
Proceedings of the IEEE 75.9 (1987), pp. 1235-1245.

Edward A Lee and Thomas M Parks. “Dataflow process networks”. In: Pro-
ceedings of the I[EEE 83.5 (1995), pp. 773-801.

Edward Ashford Lee and David G Messerschmitt. “Static scheduling of
synchronous data flow programs for digital signal processing”. In: IEEE
Transactions on computers 100.1 (1987), pp. 24-35.

Tang Lei and Shashi Kumar. “A two-step genetic algorithm for mapping
task graphs to a network on chip architecture”. In: Digital System Design,
2003. Proceedings. Euromicro Symposium on. |[EEE. 2003, pp. 180-187.

T. Limberg et al. "A fully programmable 40 GOPS SDR single chip base-
band for LTE/WIMAX terminals”. In: ESSCIRC 2008 - 34th European Solid-
State Circuits Conference. Sept. 2008, pp. 466-469. DOI: 10.1109/ESSCIRC.
2008.4681893.

Torsten Limberg et al. “A fully programmable 40 GOPS SDR single chip
baseband for LTE/WiMAX terminals”. In: ESSCIRC 2008-34th European Solid-
State Circuits Conference. |IEEE. 2008, pp. 466-469.

Yue Liu, MengMeng Cao, and Kong Jie. “A New Static Data Flow Cluster-
ing Algorithm for Task Scheduling of Irregular Mesh in NoCs Based on
Complex Networks". In: International Journal of Future Generation Commu-
nication and Networking 9.9 (2016), pp. 181-190.

Philipp Mahr et al. "Soc-mpi: A flexible message passing library for multi-
processor systems-on-chips”. In: 2008 International Conference on Recon-
figurable Computing and FPGAs. IEEE. 2008, pp. 187-192.

Changwoo Min and Young Ik Eom. "“DANBI: Dynamic scheduling of irreg-
ular stream programs for many-core systems”. In: Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques.
IEEE Press. 2013, pp. 189-200.

Kenji Nakagawa. “On the series expansion for the stationary probabilities
of an M/D/1 queue”. In: Journal of the operations research society of Japan
48.2 (2005), pp. 111-122.

https://doi.org/10.1109/GLOCOM.1989.64160
https://doi.org/10.1109/ESSCIRC.2008.4681893
https://doi.org/10.1109/ESSCIRC.2008.4681893

(60]

[62]

[67]

Bibliography

Koji Nii et al. “A 45-nm single-port and dual-port SRAM family with robust
read/write stabilizing circuitry under DVFS environment”. In: VLS/ Circuits,
2008 IEEE Symposium on. |IEEE. 2008, pp. 212-213.

Benedikt Noethen et al. “10.7 A T05GOPS 36mm 2 heterogeneous SDR
MPSoC with energy-aware dynamic scheduling and iterative detection-
decoding for 4G in 65nm CMOS". In: Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International. IEEE. 2014, pp. 188-189.

Vincent Nollet, Diederik Verkest, and Henk Corporaal. “A safari through
the mpsoc run-time management jungle”. In: Journal of Signal Processing
Systems 60.2 (2010), pp. 251-268.

B. Nothen. Untersuchungen von Kommunikationsmechanismen in heteroge-
nen Mehrprozessorsystemen. Jorg Vogt Verlag, 2015.

OpenMPI website (https.//www.open-mpi.org/). Accessed: 2020-11-11.

Pier S Paolucci et al. “SHAPES:: a tiled scalable software hardware archi-
tecture platform for embedded systems”. In: Proceedings of the 4th interna-
tional conference on Hardware/software codesign and system synthesis. ACM.
2006, pp. 167-172.

M. Pelcat, J. Nezan, and S. Aridhi. “Adaptive multicore scheduling for the
LTE uplink”. In: 2070 NASA/ESA Conference on Adaptive Hardware and Sys-
tems. June 2010, pp. 36-43. DOI: 10.1109/AHS.2010.5546233.

J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. “A hierarchical multiproces-
sor scheduling system for DSP applications”. In: Conference Record of The
Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.Vol. 1.
Oct. 1995, 122-126 vol.1. DOI: 10.1109/ACSSC. 1995 . 540525.

Saurabh-Kumar Raina. “FLIP: a floating-point library for integer proces-
sors”. PhD thesis. Ecole Normale Supérieure de Lyon, 2006.

Martino Ruggiero et al. “A fast and accurate technique for mapping paral-
lel applications on stream-oriented MPSoC platforms with communication
awareness”. In: International journal of Parallel Programming 36.1 (2008),
pp. 3-36.

Martino Ruggiero et al. “Communication-aware allocation and scheduling
framework for stream-oriented multi-processor systems-on-chip”. In: De-
sign, Automation and Test in Europe, 2006. DATE'06. Proceedings. Vol. 1. IEEE.
2006, 6-pp.

125

https://doi.org/10.1109/AHS.2010.5546233
https://doi.org/10.1109/ACSSC.1995.540525

Bibliography

(/1]

[74]

(/5]

(78]

126

Scott Schneider et al. “Elastic scaling of data parallel operators in stream
processing”. In: Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE In-
ternational Symposium on. IEEE. 2009, pp. 1-12.

Jason Scott et al. “Hardware/software runtime environment for dynami-
cally reconfigurable systems”. In: /SIS 6 (2000).

Alessandro Secco et al. “Message passing on InfiniBand RDMA for par-
allel run-time supports”. In: 2074 22nd Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing. IEEE. 2014, pp. 130-
137.

Weihua Sheng et al. “FIFO exploration in mapping streaming applications
onto the TI OMAP3530 platform: Case study and optimizations”. In: Em-
bedded Multicore Socs (MCSoC), 2012 IEEE 6th International Symposium on.
IEEE. 2012, pp. 51-58.

Hayden Kwok-Hay So and Robert Brodersen. “A unified hardware/soft-
ware runtime environment for FPGA-based reconfigurable computers us-
ing BORPH". In: ACM Transactions on Embedded Computing Systems (TECS)
7.2(2008), p. 14.

William Thies, Michal Karczmarek, and Saman Amarasinghe. “Streamlt: A
language for streaming applications”. In: International Conference on Com-
piler Construction. Springer. 2002, pp. 179-196.

Philippas Tsigas and Yi Zhang. “A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems”. In:
Proceedings of the thirteenth annual ACM symposium on Parallel algorithms
and architectures. ACM. 2001, pp. 134-143.

M. Valp et al. “The Orchestration Stack: The Impossible Task of Design-
ing Software for Unknown Future Post-CMOS Hardware”. In: International
Workshop on Post-Moores Era Supercomputing (PMES). Salt Lake City, Utah,
USA, Nov. 2016.

John Von Neumann. “First Draft of a Report on the EDVAC". In: [EEE Annals
of the History of Computing 15.4 (1993), pp. 27-75.

Drew Wingard. “MicroNetwork-based integration for SOCs". In: Design Au-
tomation Conference, 2001. Proceedings. IEEE. 2001, pp. 673-677.

Alexander Wise. Little-IL 1.0 language report. Tech. rep. Technical Report
98-24, University of Massachusetts at Amherst, 1998.

(82]

(84]

(86]

Bibliography

R. Wittig et al. “Probabilistic Models for Off-Line Arbiters in Embedded Sys-
tems”. In: IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC). Cuzco, Peru, Oct. 2019. DOI: 10.1007/978-3-030-27562-4_16.

R. Wittig et al. “Queue Based Memory Management Unit for Heteroge-
neous MPSoCs". In: Design Automation and Test in Europe (DATE). Florence,
Italy, Mar. 2019. DOI: 10.1007/978-3-030-27562-4_16.

R. Wittig et al. “Statistical Access Interval Prediction for Tightly Coupled
Memory Systems”. In: IEEE Symposium on Low-Power and High-Speed Chips
(COOLCHIPS). Yokohama, Japan, Apr. 2019. DOI: 10. 1007 /978-3-030-
27562-4_16.

M. Wu et al. “Large-Scale MIMO Detection for 3GPP LTE: Algorithms and
FPGA Implementations”. In: IEEE Journal of Selected Topics in Signal Process-
ing 8.5 (Oct. 2014), pp. 916-929. ISSN: 1941-0484. DOI: 10.1109/JSTSP.
2014.2313021.

Wai Gen Yee and Ophir Frieder. “Scalable synchronization of intermit-
tently connected database clients”. In: Proceedings of the 6th international
conference on Mobile data management. 2005, pp. 299-303.

C. Zimmer and F. Mueller. “Nocmsg: Scalable NoC-based message pass-
ing". In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. IEEE. 2014, pp. 186-195.

127

https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1007/978-3-030-27562-4_16
https://doi.org/10.1109/JSTSP.2014.2313021
https://doi.org/10.1109/JSTSP.2014.2313021

	Titelblatt
	Inhaltsverzeichnis
	Abstract
	Kurzfassung
	Introduction
	Motivation
	The Multiprocessor System on Chip Architecture
	Concrete MPSoC Architecture
	NoC
	Processing Core
	Memory Management
	Networking Unit

	Representing LTE/5G baseband processing as Static Data Flow
	Compuation Stack
	The Algorithm and Application Layer
	The Language Layer
	The Runtime Environment Layer
	The Operating System Layer
	The Driver and Library Layer
	The Hardware Layer

	Performance Hotspots Addressed
	State of the Art
	Overview of the Work

	Hybrid SDF Execution
	Addressed Performance Hotspot
	State of the Art
	Static Data Flow Graphs
	Runtime Environment
	Overhead of Deloying Tasks to a MPSoC
	Interpretation of SDF Graphs as Task Graphs
	Interpreting SDF Graphs as Process Networks
	Hybrid Interpretation
	Graph Topology Considerations
	Theoretic Impact of Hybrid Interpretation
	Simulating Hybrid Execution
	Pipeline SDF Graph Example
	Random SDF Graphs
	LTE-like SDF Graph
	Key Lernings

	Distribution of Management
	Addressed Performance Hotspot
	State of the Art
	Revising Deployment Overhead
	Distribution of Overhead
	Impact of Management Distribution to Resource Utilization
	Reconfigurability
	Key Lernings

	Sliced FIFO Hardware
	Addressed Performance Hotspot
	State of the Art
	System Environment
	Sliced Windowed FIFO buffer
	Single FIFO Evaluation
	Multiple FIFO Evalutaion
	Traffic Model
	Evaluation Setup
	Effective Channel Bandwidth
	Memory Access Model

	Hardware Implementation
	Key Lernings

	Message Passing Hardware
	Addressed Performance Hotspot
	State of the Art
	Message Passing Regarded as Queueing
	A Remote Direct Memory Access Based Implementation
	Hardware Implementation Concept
	Evalutation of Performance
	Key Lernings

	Summary
	Abbreviations
	Symbols
	Publications
	Bibliography

