627 research outputs found

    Scaling up integrated photonic reservoirs towards low-power high-bandwidth computing

    No full text

    Diagnosis of Malignant Melanoma using a Neural Network

    Get PDF
    Malignant melanoma is the deadliest form of all skin cancers. Approximately 32,000 new cases of malignant melanoma were diagnosed in 1991, with approximately 80 percent of patients expected to survive five years [1], Fortunately, if detected early, even malignant melanoma may be treated successfully. Thus, in recent years, there has been a rising interest in the automated detection and diagnosis of skin cancer, particularly malignant melanoma [2]. In this thesis, a novel neural network approach for the automated distinction of melanoma from three benign categories of tumors which exhibit melanoma-like characteristics is presented. The approach is based on devising new and discriminant features which are used as inputs to an artificial neural network for classification of tumor images as malignant or benign. Promising results have been obtained using this method on real skin cancer images

    Optics for AI and AI for Optics

    Get PDF
    Artificial intelligence is deeply involved in our daily lives via reinforcing the digital transformation of modern economies and infrastructure. It relies on powerful computing clusters, which face bottlenecks of power consumption for both data transmission and intensive computing. Meanwhile, optics (especially optical communications, which underpin today’s telecommunications) is penetrating short-reach connections down to the chip level, thus meeting with AI technology and creating numerous opportunities. This book is about the marriage of optics and AI and how each part can benefit from the other. Optics facilitates on-chip neural networks based on fast optical computing and energy-efficient interconnects and communications. On the other hand, AI enables efficient tools to address the challenges of today’s optical communication networks, which behave in an increasingly complex manner. The book collects contributions from pioneering researchers from both academy and industry to discuss the challenges and solutions in each of the respective fields

    Parameterizing and Aggregating Activation Functions in Deep Neural Networks

    Get PDF
    The nonlinear activation functions applied by each neuron in a neural network are essential for making neural networks powerful representational models. If these are omitted, even deep neural networks reduce to simple linear regression due to the fact that a linear combination of linear combinations is still a linear combination. In much of the existing literature on neural networks, just one or two activation functions are selected for the entire network, even though the use of heterogenous activation functions has been shown to produce superior results in some cases. Even less often employed are activation functions that can adapt their nonlinearities as network parameters along with standard weights and biases. This dissertation presents a collection of papers that advance the state of heterogenous and parameterized activation functions. Contributions of this dissertation include three novel parametric activation functions and applications of each, a study evaluating the utility of the parameters in parametric activation functions, an aggregated activation approach to modeling time-series data as an alternative to recurrent neural networks, and an improvement upon existing work that aggregates neuron inputs using product instead of sum

    Development of neural units with higher-order synaptic operations and their applications to logic circuits and control problems

    Get PDF
    Neural networks play an important role in the execution of goal-oriented paradigms. They offer flexibility, adaptability and versatility, so that a variety of approaches may be used to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. Development of higher-order neural units with higher-order synaptic operations will open a new window for some complex problems such as control of aerospace vehicles, pattern recognition, and image processing. The neural models described in this thesis consider the behavior of a single neuron as the basic computing unit in neural information processing operations. Each computing unit in the network is based on the concept of an idealized neuron in the central nervous system (CNS). Most recent mathematical models and their architectures for neuro-control systems have generated many theoretical and industrial interests. Recent advances in static and dynamic neural networks have created a profound impact in the field of neuro-control. Neural networks consisting of several layers of neurons, with linear synaptic operation, have been extensively used in different applications such as pattern recognition, system identification and control of complex systems such as flexible structures, and intelligent robotic systems. The conventional linear neural models are highly simplified models of the biological neuron. Using this model, many neural morphologies, usually referred to as multilayer feedforward neural networks (MFNNs), have been reported in the literature. The performance of the neurons is greatly affected when a layer of neurons are implemented for system identification, pattern recognition and control problems. Through simulation studies of the XOR logic it was concluded that the neurons with linear synaptic operation are limited to only linearly separable forms of pattern distribution. However, they perform a variety of complex mathematical operations when they are implemented in the form of a network structure. These networks suffer from various limitations such as computational efficiency and learning capabilities and moreover, these models ignore many salient features of the biological neurons such as time delays, cross and self correlations, and feedback paths which are otherwise very important in the neural activity. In this thesis an effort is made to develop new mathematical models of neurons that belong to the class of higher-order neural units (HONUs) with higher-order synaptic operations such as quadratic and cubic synaptic operations. The advantage of using this type of neural unit is associated with performance of the neurons but the performance comes at the cost of exponential increase in parameters that hinders the speed of the training process. In this context, a novel method of representation of weight parameters without sacrificing the neural performance has been introduced. A generalised representation of the higher-order synaptic operation for these neural structures was proposed. It was shown that many existing neural structures can be derived from this generalized representation of the higher-order synaptic operation. In the late 1960’s, McCulloch and Pitts modeled the stimulation-response of the primitive neuron using the threshold logic. Since then, it has become a practice to implement the logic circuits using neural structures. In this research, realization of the logic circuits such as OR, AND, and XOR were implemented using the proposed neural structures. These neural structures were also implemented as neuro-controllers for the control problems such as satellite attitude control and model reference adaptive control. A comparative study of the performance of these neural structures compared to that of the conventional linear controllers has been presented. The simulation results obtained in this research were applicable only for the simplified model presented in the simulation studies

    Counterpropagation neural network detection of visual primitives

    Get PDF
    Psychological testing has shown that there is an early preattentive stage in the human visual system. At this level, simple features and properties of objects known as visual primitives are detected spatially in parallel by groupings of cells in the visual cortex known as feature maps. In order to study this preattentive stage in a machine vision system, the biologically inspired, highly parallel architecture of the artificial neural network shows great promise. This paper describes how the unique architecture of the counterpropagation neural network was used to simulate the feature maps which detect visual primitives in the human visual system. The results of the research showed that artificial neural networks are able to reproduce the function of the feature maps with accuracy. The counterpropagation network was able to reproduce the feature maps as theorized, however, future research might investigate the abilities of other neural network algorithms in this area. Development of a method for combining the results of feature maps in a simulation of full scale early vision is also a topic for future research that would benefit from the results reported here
    • …
    corecore