S —'-— RS University of Central Florida
/ k STARS

Retrospective Theses and Dissertations

1990

Counterpropagation neural network detection of visual primitives

Cynthia Lynn Johnson
cynthiajohnson@knights.ucf.edu

b Part of the Computer Engineering Commons
Find similar works at: https://stars.library.ucf.edu/rtd
University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for
inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation

Johnson, Cynthia Lynn, "Counterpropagation neural network detection of visual primitives" (1990).
Retrospective Theses and Dissertations. 4011.

https://stars.library.ucf.edu/rtd/4011

- + . +

s “”:§ + ¢. * v * + *

gj KO . * + + . . +
. + +

Central e, .+ + | STARS

Florida . + . + Showcase of Text, Archives, Research & Scholarship *

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Frtd%2F4011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4011?utm_source=stars.library.ucf.edu%2Frtd%2F4011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

COUNTERPROPAGATION NEURAL NETWORK
DETECTION OF VISUAL PRIMITIVES

BY

CYNTHIA LYNN JOHNSON
B.S.E.E., University of Miami, 1986

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering
in the Graduate Studies Program
of the College of Engineering
University of Central Florida
Orlando, Florida

Summer Term
1990

ABSTRACT

Psychological testing has shown that there is an early
preattentive stage in the human visual system. At this
level, simple features and properties of objects known as
visual primitives are detected spatially in parallel by
groupings of cells in the visual cortex Xknown as feature
maps. In order to study this preattentive stage in a
machine vision system, the biologically inspired, highly
parallel architecture of the artificial neural network shows
great promise. This paper describes how the unique
architecture of the counterpropagation neural network was
used to simulate the feature maps which detect visual
primitives in the human visual system. The results of the
research showed that artificial neural networks are able to
reproduce the function of the feature maps with accuracy.
The counterpropagation network was able to reproduce the
feature maps as theorized, however, future research might
investigate the abilities of other neural network algorithms
in this area. Development of a method for combining the
results of feature maps in a simulation of full scale early
vision is also a topic for future research that would bene-

fit from the results reported here.

TABLE OF CONTENTS

LIST OF FIGURES .« « o ¢ o ¢ ¢ o o o o &
CHAPTER 1 PREATTENTIVE VISION
CHAPTER 2 ARTIFICIAL NEURAL NETWORKS .

CHAPTER 3 COUNTERPROPAGATION NETWORK .

CHAPTER 4 DETECTION OF VISUAL PRIMITIVES.

CHAPTER 5 RESULTS AND CONCLUSIONS . . .

APPENDIX A COUNTERPROPAGATION NETWORK SIMULATION

APPENDIX B TRAINING DATA . . . « « « &

BIBLIOGRAPHY & ¢« » o » 5 & s % o o & @

151

-

iv

24
30
36
.46
56

61

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

LIST OF FIGURES

An Example of Texture Segmentation

An Example of the Pop-out Phenomenon.

The Biological HeUTON « « o o + o » = o & 4 »

Common Types of
Networks . . .

Non-linearities Used in Neural

Perceptron NeEWOTK: « o o + o s« s o & o % s s

Two Layer Backpropagation Network

An Example of Kohonen Learning on the Unit Circle

Counterpropagation Network

Feed Forward Counterpropagation Network . . .

A Training Image Mapped to "Undetermined" . .

A Test Image Mapped to Feature Present . . .

A Test Image Mapped to Feature Not Present. .

Image mapped to
Image mapped to
Sample Training
Sample Training
Sample Training

Sample Training

Curvature Feature Present . .
Curvature Feature Not Present
Data for Horizontal Lines . .
Data for Slanted Lines . . .
Data for Corners . . « « s« =

pata for Curvature . . « « &

iv

11

13

2D

19

25

27

34

37

38

40

41

56

87

58

59

CHAPTER 1
PREATTENTIVE VISION

The concept of a machine that can identify and
recognize objects as quickly and easily as humans can is an
ambitious goal, but not an impossible one. The human visual
system is one of the most complex neural assemblies known.
Although it is not yet completely understood, psychologists
and physiologists have obtained a great deal of insight into
the structure and function of human vision. In all
likelihood, the theories and principles of the biological
vision system will provide the best starting point in the
development of a machine visual system capable of equal
performance. In this research, an attempt was made to
understand a portion of the biological vision system and
reproduce its function on a machine in an effort to develop
a more thorough understanding of complex visual mechanisms.

From biological studies, it is clear that an image is
registered by cells within the eye and transmitted to the
brain by the optical nerve. In a computer based system, a
camera can digitize a scene and convert it into a collection
of signals which are transmitted to the computer. The next
step is analyzing and accurately recognizing the component
objects within the scene. The human recognition system
seems to have a striking dichotomy at this point. Many

discriminations appear to be made automatically without

attention and spatially in parallel, while other
discriminations regquire focused attention or scrutiny.
These two types of processing were originally attributed to
different levels by Neisser (Neisser 1967). He identified
an early or preattentive stagé where simple features were
registered determining texture segmentation and figure
ground groupings. This preattentive stage is separate from
a second, attentive stage where focused attention recognizes
specific objects within a complex grouping of objects. The
understanding of and recreation of a portion of the early
visual stage was the primary goal of the research presented
here.

There are two types of psychological evidence that
support the concept of preattentive processing. One is
textural segmentation and the other is visual search.
Textural segmentation is the division of an image into
segments based on the texture of its component parts. Figure
1 shows an image which is easily partitioned into two
segments. The zeros constitute one segment and the other is
comprised of ones. Julesz (Julesz 1981) has proposed that
texture segmentation is preattentively processed using
simple features called textons. When effortless texture
segregation occurs, it is because the two segments do not
contain the same type of texton. He defines the texton

classes as color, elongated blobs of specific widths,

orientation and aspect ratios, and the terminators of these

blobs.

D0 0C =t =
OO0OO0OOHHKHKE
OCOO0O0OKHHH
OO0 00D RE =
OCO0OO0OOKHHHH
(o Mo Mo il o 3 A ol
D0 OO B
OO0 EHMHME
S QO .=
0000 HFHHKEKE
QOO0 OKHE
OO0 OO0 M
O0CO0OOKHHKHH
COO0OOHFHHMHH

Figure 1. An Example of Texture Segmentation.

A second source of evidence that supports the early
vision theory is visual search. When subjects are asked to
identify a target object in displays containing a varying
number of distracters, the target appears to "pop-out" of
the image when the target is defined by a simple visual
feature (Treisman 1985). Figure 2 illustrates this "pop-
out" phenomenon. The circular zero among the distracters of
ones appears to "pop-out" at the observer. The speed of
target detection in these cases suggests spatially parallel
processing at the stage prior to attentive wvision. This
conclusion supports the theory of early vision. Treisman
and Gelade have developed an explanation known as feature
integration theory (Treisman and Gelade 1980). This theory
states that primitive elements are directly sensed by
specialized populations of detectors called feature maps.
Each feature map responds to a particular feature, and all

maps operate in parallel. It is only when attention is

focused on the results of the feature maps that location and
identity of an object is obtained. This explains why an
object that differs from its surrounding distracters by only
one simple feature will appear to "pop-out". Attention is
focused on the results of that one particular feature map,
and when activity in that map signals the presence of the
object, there is no need to combine the results of one map.
An example is the "pop-out" of a red circle among blue dis
tracters. The circle would be the only object causing
activity on the "red" feature map making identification
easy. "Pop-out" does not occur when more than one feature
map is involved. For example, the red circle would not

"pop-out" of a background of red squares and blue circles.

e
e e e
O
el e
el el
H
HE e
MO e
HEH O
el e
HEHH R
HHEFHRFEERER -
o e
e el I S S S S e
e

Figure 2. An Example of Pop-out Phenomenon.

Although the feature integration theory is not meant to
equate feature detectors with single neural units (Treisman
and Patterson 1984), there is biological evidence to
support the theory of neural networks in the brain devoted

to the parallel detection of features. The projection of

the retina has been plotted to several areas within the
brain of cats and monkeys, and electrical measurements of
brain activity have shown similar results in humans (Cowey
1979). Although the exact number of visual areas in the
human brain is not known, thirteen have been found in the
cat (Tusa, Palmer, and Rosenquist 1975) and it is unlikely
that the human brain has fewer areas. In experiments on
live cats and monkeys, Hubel and Wiesel (Hubel 1988) were
able to map activity in neural cells to a particular line
orientation . These biological facts give much credence to
the theory of maps that detect simple features in parallel
whose results are combined for object recognition.

Once we accept that preattentive vision exists, some
questions arise. The most obvious is the question that asks
which features and properties constitute the visual
primitives detected by feature maps. There are some
features which are generally agreed to be visual primitives
(Beck and Ambler 1972, Beck, Prazdny, and Rosenfield 1983,
Treisman and Patterson 1984) These include line orientation,
color, curvature, and blobness or closure. Other candidates
which have had some doubt cast upon them include
intersection, juncture, number and connectedness (Treisman
1985). It is also interesting to note that new perceptual
units may be established through extensive practice so that,

for example, an arbitrary set of letters can come to be

detected automatically in search (Schneider and Sheffrin
1977). However, there is probably some built-in neural
constraints making some physical properties or conjunction
of properties difficult to detect preattentively and in
parallel (Treisman and Gelade 1980).

The question of how to implement and use feature maps
using a computer arises. Traditional computer architectures
are serial and deterministic in nature. A single complex
processor fetches and executes instructions from memory
locations. Data is also stored in memory locations. The
same data can be applied to the same program and the same
results achieved. Pattern recognition tasks often take a
considerable number of time steps to execute. Obviously,
the traditional Von Neumann architecture is unsuited to a
parallel task such as the detection of visual primitives.
However, it will be shown that the biologically inspired
architecture of artificial neural nets are a good candidate

for this task.

CHAPTER 2
ARTIFICIAL NEURAL NETWORKS

Artificial neural systems are an area in which recent
breakthroughs in algorithms and VLSI technology have enabled
renewed interest. These systems, also called neural
networks, connectionist systems, and neurocomputers, are
composed of many simple processing elements that do little
more than take a weighted sum of their inputs. In a neural
system, a large number of elements are highly interconnected
giving neural networks a parallel structure very unlike
serial computers.

The architecture of artificial neural networks (ANN) is
biologically inspired. The processing elements perform in a
fashion similar to the elementary functions of the
biological neuron that is the computing element of the
cognitive systems of higher life forms. The elements of an
ANN are connected in a manner that may or may not be
related to the anatomy of the brain. The processing power
of this architecture is a result of its massive parallelism
and interconnections. Although the actual "intelligence"
of the most sophisticated neural network is extremely
limited, they do exhibit a surprising number of the
characteristics of biological neural systems. It has been

shown that ANN's can learn from experience, generalize from

previous examples to new ones, and extract essential
characteristics from inputs containing irrelevant data. An
example of this is the Hopfield net(Hopfield 1982). In
this work, the network was shown to be capable of learning
the visual patterns of numerical digits during a training
session. The network was then able to reproduce the digit
when presented with a corrupted version. Neural networks
have proved enormously useful in solving problems in many
areas that have traditionally proved overwhelming. These
tend to be the type of problems humans solve easily. Like
humans, they also have limitations. Both neural networks
and many humans seem to have difficulty in performing unaid-
ed precise numerical calculations. Therefore, it seenms
obvious that the role of artificial neural systems is not to
eclipse traditional computer systems, but rather to work
with them. The power of these two systems working together
should prove greater than the sum of the two individual
systems.

There are many different types of artificial
neural networks, and their differences are determined by the
type of node algorithm they process. The concept béhind
artificial neural networks is the biological neural system.
The nervous system is built of cells called neurons and is
extremely complex. In humans, the nervous system contains

1015

an estimated transmission paths known as

interconnections. The neurons are similar to each other,

'Figure 3. The Biological Neuron.

but each has its own unique capabilities to receive,
process, and transmit electrochemical signals over the
neural interconnections.

A typical biological neuron is shown in Figure 3.
Dendrites connect neurons to each other. They receive
input signals at a point known as a synapse and transmit
them to the cell body. There the signals are weighted and
summed. When the sum of the inputs exceed the threshold,
the neuron fires, sending as signal down the axon to other
neurons. This is a simplified explanation of the function,
but most artificial neural systems model only these simple
characteristics.

The neuron or node used in artificial neural networks
is typically nonlinear, analog, and may be slow compared to
modern digital circuitry. The simplest node sums N weighted
inputs and passes the results through a nonlinearity. Figure
4 shows three common types of nonlinearities; hard limiters,
threshold logic elements and sigmoidal nonlinearities. More
complex nodes may use temporal integration and other types
of time dependencies and more complex mathematical
operations than summation.

Artificial neural networks can be differentiated by
the type of node processing or algorithm used in the
network. Neural nets are also distinguished by whether they

accept binary or continuous valued inputs. They can also be

10

11

FQ FQ

+1

-1 THRESHOLDLOGIC

HARD UMITER

FX

Figure 4. Common Types of Non-linearities Used in Neural
Networks.

separated between those trained with or without
supervision. Those trained with supervision have input and
the desired output presented at training time. These types
of nets are most often used as associative memory or
classifiers. Nets trained without supervision have no
information about the correct class provided at training
time. Unsupervised nets are generally used as vector
gquantizers or to form clusters. Nets can be further
categorized by whether or not they support adaptive
training. Most nets do support adaptive training, but
others use fixed weights during operation.

One of the earliest types of neural networks developed
is the perceptron (Minsky and Papart 1969). This is a
single layer network which can accept either binary or
continuous valued inputs. Figure 5 shows a model of a
perceptron network. It generated much interest when de-
veloped because of its ability to learn simple patterns.
The perceptron accepts weighted inputs, sums them, and
compares them to a threshold. If the sum exceeds the
threshold, the node sets its output high. Otherwise, the
output is set low.

The perceptron learns in a supervised mode and its
learning procedure is fairly simple. First, the weights and
threshold are initialized to small random non-zero values,

then an input vector is presented along with the desired

12

Figure 5.

Perceptron Network.

13

output. The actual output is then calculated by multiplying
each input by its associated weight and summing the results
of the multiplication. The ihreshold values are then
subtracted from the results giving the output. The weights
are then adapted until the desired output is achieved. Then
a new output and input can be presented and the weights
again adapted until all training sets have been presented.
A number of different methods have been developed to adapt
the weights allowing the perceptron to converge to the
proper output. One important algorithm that can be used for
binary or continuous valued inputs is the delta rule. The
weights are adjusted using the equation:
Wy (E+1)=wy (£)+B(d(t)-y(t))x4(t)

where wj (t+1) is the weight associated with input x; after
adjustment, wj(t) is the current weight associated with
input xj, d(t) is the desired output of the node, y(t) is
the actual output of the node, and xj(t) is the ith input of
vector X. Modifications to this algorithm can be made to
develop a Least Mean Squared (LMS) solution or a Gaussian
classifier.

Although the perceptron was innovative when introduced,
the limitations of the single layer design nearly ended

research into artificial neural networks. Research activity

14

HIDDEN LAYER OUTPUT LAYER

Figure 6.

Two Layer Backpropagation Network.

15

increased only when training algorithms for multilayer nets
were developed.

The development of the backpropagation algorithm
(Rumelhart, Hinton, and Williams 1986) played a large part
in the resurgence of interest in artificial neural networks.
The algorithm is a generalization of the IMS algorithm of
the perceptron. It uses a gradient search technique to
minimize a cost function equal to the mean square difference
between the desired and actual net outputs. Figure 6 shows
an example of a two layer network. Although backpropagation
works on any number of layers, only two are needed to
demonstrate the algorithm. Like perceptrons,
backpropagation networks learn in the supervised mode.

The weights of the neurons are initially set to small
random non-zero values. The network is fully connected,
that is , each neuron has a connection to each node or input
in the previous and subsequent layer. Training begins by
applying the input vector to the network. The network then
calculates its output. This is compared to the desired
output provided. Then the weights of the network are
adjusted. First, the output layer weights are adjusted
using the following equation:

wij(t+1)=wij(t)+stxi
where Wiy is the weight from hidden node i to node j at time

t, x; is the output of node i, N is a learning coefficient

16

which can be any value in the range 0 < N < 1.0, Sj is an

error term. For output nodes, Sj is calculated by the

following equation:
S4=Y4 (1-y5) (d5-Y5)
where Yy is the actual output and dj is the desired output
of node j. Upon completion of the weight calculations for
the output nodes, the connecting hidden layer nodes' weights
are updated. This is done using the first equation with the
Sj term begin calculated with the following equation:
Sj=xj(1—xj)Summation ksk*wjk

where k is over all nodes in the layer above node j. The
error is propagated back through the network in this manner
which led to the development of the name backpropagation.

The backpropagation network is currently one of
the most popular networks in use, because of its versatili-
ty. It has been proved effective in a number of application
from exclusive-OR to speech synthesis and recognition.
However, it does have the disadvantage that in some cases
the number of presentations of training data has been large
(more than 100 passes through all the training data).
Although algorithms have been developed to help speed
convergence, it seems unlikely that training can be speeded
up significantly. As mentioned before, the backpropagation
algorithm is a gradient descent algorithm with the associat-
ed pitfall that it is quite possible for the algorithm to

fail to provide a correct solution to the problem.

17

The learning algorithm of the perceptron and
backpropagation networks is a mathematical one and only
loosely based on actual biological systems. Many research-
ers are looking for more biologically based learning
systems. This leads to the discussion of some unsupervised
learning algorithms, such as the Kohonen self-organizing
map. (Kohonen, 1988) Self-organization refers to the ability
of thé network to learn without being supplied the correct
answer. Self-organizing networks are generally closely
modeled after neurobiological systems and often are the
result of researchers attempting to understand how the brain
works.

When initially compared to the networks already dis-
cussed, the Kohonen network is deceptively simple. It is
not a heirarchial system and consists of a single layer of
nodes. However, it contains interconnections among the
nodes within the single layer which do not exist in super-
vised learning networks. Each node contains a weighted
connection to all of the other nodes within the network.
Also, the initial weight vectors of a Kohonen network must
be normalized to a constant fixed length, usually one, so
that the weight vectors are normalized vectors pointing in
random directions about the unit circle.

When inputs are applied to the Kohonen layer, each

node computes the dot product of its weight vector with the

18

19

adjustment
of weight vector
nput
*
\ weightvector

Figure 7. An Example of Kohonen Learning on the Unit circle.

input vector. The dot product is the relative distance
between the weight vector and the input vector. Once the dot
product is calculated, the nodeé compete to see who has the
largest dot product. Only the winning node is allowed to
output, and only the winner and his neighbors are allowed to
adjust their weights. This is known as competitive
learning. Figure 7 shows how a weight vector will adjust
itself closer to the input vector on the unit circle.
Neighbors are generally defined as the physically closest
nodes. The exact size of a neighborhood allowed to output
is wvariable. It generally shrinks in size during the
training process. The Kohonen learning rule for adjusting
weights is actually quite simple. It says:
Ynew Wol1q*tA(X-W514)

where wp., is the new weight, Wo1q is the old weight, A is
the learning constant, and x is the input vector. As you can
see , the weights of the vector are adjusted to approximate
the input. Experiments have shown this system to be effec-
tive for associative classifier type applications such as
associative memory and pattern recognition. It also shows a
high resistance to noise in the input.

The instar and outstar networks are also networks
developed during studies of the brain. (Grossberg, 1982) The

first is the instar. Each node is the center of a large

20

number of inputs. These can be drawn as a star shape with
the arrows pointing to the node. The second is the out
star. Just as each node has a large number of inputs, its
output goes to a large number of other nodes or outputs.
This can be drawn with the node at the center of a large
outwardly pointing star. Every network is comprised of a
interwoven mesh of instars and outstars. The operation of
the network depends on the interaction of the instars and

outstars.
The learning algorithm for the instar is an

unsupervised algorithm. The equation is:
-;; ----- = -ij(t)+Ij(t)+di Wi (Yj(t-ty)=T).

The result of the equation is the change in response of the
node, yj(t) is the current activation of the node 7j, Ij(t)
is the input to the node from outside the system, w; is the
weight for the input from node i within the system, y;(t-t,)
is the activation of node i in the previous time frame, T is
a threshold value below which no response is desired, and A
is a forgetting constant. From the equation, it can be seen
that the activity of the node is based on a percentage of
its previous activity, external stimuli, and stimulation of
the other nodes within the system. The weights of the node

are adjusted by using the equation:

e = -Fy4 (t)+Gy4 (t) [¥ (t-t,) =T)
where Y5 is the activation of the node j, yj(t-t,) is the

21

activation of the node i in the previous time frame, T is a
threshold value to filter out noise, F is a forgetting
constant and G is a learning constant.

The result of the equations is that the node acts
in a manner similar to Pavlov's dogs. In psychological
experiments, Pavlov observed that dogs salivate when pre-
sented with food. He began ringing a bell just prior to
presenting the dogs with food. Eventually the dogs were
conditioned to salivate when hearing the bell. In the
instar equations, activation occurs when the input Ij oc-
curs. Ij is like the food in the Pavlov experiments. At
the same time, the node is receiving a pattern of stimula-
tion from other sources in the network. This stimulation
can be thought of as the bell. Eventually, the node will
learn to give the same response to the stimulation pattern

as it does to the input I This is a powerful tool because

3
it gives insight into actual biological function, as well as
increasing our knowledge about artificial neural networks.
Instars and outstars are rarely used as stand alone neural
networks, but they have enormous potential for application.
The application potential of all artificial neural
networks is enormous and generally untapped. The similarity
of the architecture to the biological neural systems of

higher organisms suggests that the applications that the

ANN's are best suited to are those performed by the

22

biological neural system. It is for this reason that an
artificial neural system was chosen to duplicate the
functions of early vision. The purpose is not prove the
unsuitability of a more traditional computer architecture,
but rather to prove the suitability of the artificial neural

network in this type of application.

23

CHAPTER 3
COUNTERPROPAGATION NETWORK

It is also possible to create networks from a
combination of different types of node algorithms. The
counterpropagation network is the first developed in this
manner (Hecht-Nielson 1987a), and it consists of a
combination of both Kohonen learning and Grossberg learning
methods. Figure 8 shows a graphical model of the network.
The resulting network is capable of many of the same types
of functions as the backpropagation networks, but it is able
to train at a much faster rate. This makes it ideal for
tasks where a lengthy training time is undesirable. 1In
fact, because of the ability to train quickly, the
counterpropagation algorithm can be used to test the
feasibility of a neural network solution when the end
product may be a backpropagation or other similar network.
It is for this reason that a counterpropagation network was
selected to test the feasibility of a neural network
solution to the detection of visual primitives.

As shown in Figure 8, pairs of example vectors(x,y) are
presented to the network at layers 1 and 5. These vectors
propagate through the network in a counterflow pattern to

yield x' and y' at layers 2 and 4 (Hecht-Nielson, 1987).

24

INPUT LAYER

GROSSBERG LAYER
“
X
KOHONEN LAYER X
ﬁ-
/
layer 1 layer 2
\
Y | &
e ey #
ﬁ
layer 3
layer 5
layer 4

Figure 8. Counterpropagation Network.

29

For this application, the forward-only version of the
counterpropagation network will be used. Figure 9 shows
this version of the network. This version consists of three
layers. An input layer consisting of N fanout units is the
first layer. The middle layer contains M Kohomen nodes with
one output each which connect to the third layer of
Grossberg outstars. The output of the outstars is the
output of the network. This version of the network trains
in the supervised mode with the desired output presented to
the output layer at training time.

The inputs into the network are fanned out to the
Kohonen layer. In this layer, the nodes sum of the product
of each input with its associated weight. Then, the nodes
compete to see which has the highest sum. This node is
designated the winning node and is the only node allowed to
output for that frame. It is also the only node allowed to
adjust its weights. The layer will self-organize in re-
sponse to the inputs so that the weights will be organized
as more of less statistically optimal sets of the possible
input vectors. The learning equation for the winning node
is

Wnew Wo1atA(I-W514)
where A is a learning constant between 0 and 1, and I is the
associated input into the node. This Kohonen learning law

moves the closest matching weight vector towards the latest

26

X1

X3

INPUT
LAYER

Figure 9.

Y

27

A 4

Y1
Y2
: N o
Y3
KOHONEN GROSSBERG

LAYER

LAYER

Feed Forward Counterpropagation Network.

input vector at a rate determined by the learning constant,
A. A large value causes the network to converge more quickly
than a smaller value, but some statistical information may
be lost with a too large value.

An alternative variant of this layer is to operate
in an interpolative mode, as opposed to the accretive mode
discussed above. In this mode, more than one node is al-
lowed to win the competition and produce an output. The
outputs are adjusted so that they sum to one (the former
single output signal), and all are allowed to adjust their
weights. This interpolation process may lead to an increase
in mapping approximation accuracy without increasing the
network size, however, there is no conclusive evidence to
proving this theory.

The outputs of the Kohonen layer are connected to
the Grossberg layer. The Grossberg layer learns the average
output vector when each of the Kohonen processing elements
wins the closeness competition. Each Grossberg element sums
the product of the Kohonen output with its associated
weight. The output for a continuous valued network is this
value. In a binary network, the summation value is compared
to a threshold value and set equal to one if greater than
the threshold , or zero if less than the threshold. The

layer then adjusts its weights appropriately. Only the

28

weights associated with a non-zero input are allowed to
adjust using the following equation:
Vnew Wo1dtB(d-W514)

where d is the desired output for that element and B is a
learning constant similar to A for the Kohonen nodes.

The CPN functions very much like a lookup table.
The Kohonen layer learns the characteristics of the input
data, and the Grossberg layer learns the desired output for
that particular set of data. Because of this simplistic
function, counterpropagation is inferior to backpropagation
for many applications. However, it forms a good statistical
model of its input vectors and works well for applications
such as data compression, pattern recognition, function
approximation, and statistical analysis(Hecht_Nielson
1988) . The network shares the high resistance to noise
demonstrated by the Kohonen self-organizing network. Also
like the Kohonen network, a large number of Kohonen nodes

are often necessary to obtain good performance.

29

CHAPTER 4
DETECTION OF VISUAL PRIMITIVES

For purposes of implementing the feature map function,
a simulation of the feed forward counterpropagation network
was developed in the C language. Listings of the program
are included in Appendix A. The next step was to discover
the limits on the size of the network and determine how
large a visual model was feasible. After experimentation,
the maximum size was found to be a 30 by 30 input image with
35 Kohonen nodes. The Grossberg layer was designed to have
either two or three output nodes. The limitations on the
size was due to the capability of the computer chosen for
the implementation, an Intel 80386 based personal computer
with one megabyte of RAM.

The simulation is capable of running in either training
or operational mode. In training mode, an input file is
expected to hold both inputs and desired outputs of the
network. In operational mode, only input data is expected in
the input file. Two weight files are used; one contains the
weights for the Kohonen layer and the second the weights
for the Grossberg layer. The design of the network
simulation in operational mode is fairly simple. The input
vector is normalized and the sum of each Kohonen node is

calculated. After the winning Kohonen node is determined,

30

4

the outputs to the Grossberg layer are set with the winning
node outputting a one and the other nodes outputting zero.
The summation of each Grossberg node is performed and the
result is compared to a threshold value of 0.8. If the
summation is greater than the threshold, the output of the
node is set to one, otherwise, it is set to zero. The three
outputs are then examined to determine if the feature is
present, not present, or undetermined (Wasserman 1989).

The training mode is similar with the addition of steps
to adjust the weights of the winning Kohonen node, and the
Grossberg nodes' weights. At the beginning of a training
session, all weight vectors are normalized. By normalizing
the input vector as well, the Kohonen weight vectors will
remain normalized vectors after adjustment. The weight
adjustment will merely rotate the weight vector closer to
the input vector on the unit circle. In many neural net-
works it is customary to randomize the initial weight vec-
tors. However, in Kohonen learning, this can cause serious
training problems as it will uniformly distribute the weight
vectors about the unit circle. If the input vectors are not
evenly distributed about the unit circle, some nodes will
never win the competition and be allowed to adjust their
weights. This wastes those nodes and effectively decreases
the size of the network. This can be disastrous if a

mapping of two similar inputs to different outputs is

32

desired. In order to avoid this pitfall, all of the Kohonen
weight vectors were set to equal coincident values, and a
training technique known as the convex combination method
was used to train the Kohonen layer.

In the convex combination method, all weights are
initially set to 1/(N)1/2, where N is the number of inputs.
During training the input vector X is given the value:

X=A*X+(1/ (N) 1/ 2% (1-2))

where A is initially the small value of 0.1 and is increased
gradually until it reaches a value of 1.0. This allows the
input vectors to gradually separate and assume their true
values. Each node's weight vector will follow one or a
group of the input vectors. This slows the training
process, but makes sure that no Kohonen nodes are wasted
(Wasserman 1989).

The Grossberg layer trains much faster than the Kohonen
layer. Therefore, the simulation does not adjust the Gross-
berg weights until the Kohonen layer has had a chance to
converge. Five passes are made with a learning constant of
0.7 before any adjustments are made to the Grossberg layer.
On the sixth pass, the Kohonen layer has converged and the
Grossberg layer can be gradually trained to match the de-
sired output. At this point, the learning constant is
gradually decreased to a minimum value of 0.1 until the

network converges.

33

After the simulation was judged to be robust, visual
primitives were selected for recognition. Since the network
used a binary image, color was ruled out as a candidate.
Line orientation was selected due to its general acceptance
as a primitive (Treisman 1985), as well as the biological
evidence of cells that detect line orientation provided by
Hubel and Weisel (Hubel 1988). Training sets were developed
in three categories: sets containing the line, sets without
the line, and sets containing more than one line. For the
first orientation, which was horizontal, 38 training sets
were developed. Thirty of these contained a single horizon-
tal line, four contained a variety of non-horizontal lines,
and four contained a number of horizontal lines. Initially,
a network with only two outputs was used, one for feature
present and one for feature not present. It became obvious
during training that another output was needed. Some of the
sets from the category without a horizontal line and from

the category with many horizontal lines were mapping to the

same Kohonen node. When this occurred, the network would
not converge. When these similar sets were mapped to a
third output called "undetermined" , the network converged

quickly in only nine passes through the training sets. This
result is understandable when some of the psychological test
results are examined. Treisman and Schmidt found that

illusory conjunctions can occur when attention is diverted

34

O000000000000D0000OO0O0D0OO0O0O0O0OO0OOO0O0O00OO
4441414114014t ~A~0O0
OO0 O00C0000O0O00D0D0DO0DO0OO0O0ODO0O0O0O0O0O0O0O0O0O0O0O0OO0OOOO
O000D0D0DO0O0O000D0000DO0OO0OO0O0ODO0O0O0O0O0O0O0OO0ODO0O0O0O00O0O
O00000D0000000DO0O0D0DO0ODO0OO0O0O0O0O0O0O0O0O00O0O0OO0OO
444144141101t ddtd1d1O0O-1d1d1dddd1ddA~0O0
O0O0OO0OO0ODOOOOODOOOOOOOOOOOOOOOOOOOO
4441141411011 d1d1d1O0O-AdddddddA-4~40O0
O000000000000DO00O0D0O0O0OHO0O0O0O00O0O0O0O0O00O0O
O0O0O0O0OO0OO0OO0OOO0OO0OCOOOOOOOOHMOOOOOOOOOO
O0O0O0OO0OO0OO0O0OOOOOOOOOCOOOOAOOOODOOOOOO
4444141101111 d10A-d1ddddddd~A 400
0O000000000D000000DO0DO0O0OHO0O0O00DO0OO0OO0O00O
O0O0OO0OO0ODOOOOOOOOOOOOOOFNOOOOOOOOOO
O00oO0OAO0OO0OO0OO0OOOOCODOOOOOOAHOOOOOOOOOO
4441411110111 dddddA4~0O0
OC00O0OHOOOO0ODO0ODO0OO0OD0ODO0OO0ODO0OO0OO0OO0ODO0OO0OO0OO0OO0ODO0OOO0O0OO
cooodtdddddAdddddddddddAAAAAAA
O0O0O0OA000D000000OO0ODO0OO0O0O0O0O0O0O0O0O00O0O00O0O000O0O
OO00O0OHA000000D00D0DO0O0OO0O0O0O0O0ODO0O0O00DO0O0O0O00O0O
4444444041411 dtddd1O0OAAdddddAd4A~ 00
0O00O0OHO0OO0O0O0O000O00O0O0O0O0O0O0OOO0OFOO0CAHO00OO0O
e B B B e O B B B e R B I B B B o e I e I e B M B B B B = B
O00O000000000O0D0O0O0OO0O0O0O0D0O0OFNO0OO0OHO00O0O
HOO0O00O0O0O0O0O0O0O0O0O0O0O0OD0O0O0O0O0OOH0O0OH0O0O0OO
HOO0OO0OO0O0OOHOOOOOOOOOOO0OOOOHOOHOOOO
HO0OO0O0O0OO0OHO0OOOODO0OO0O0OO0OOOHOOAOOOO
A AdAAdAdAdAAdAdAdAd A dAddd A A A A A A
HFO0O00000HO0O0O0O0O0O0O0O0O0O0O0O0O0OO0OHNOO0ON000O0O
MAeArdddrdrddrdddAdAd A 10O A A0 i OO0

A Training Image Mapped to "Undetermined".

Figure 10.

35

or overloaded (Treisman and Schmidt 1982). The images that
mapped to "undetermined" all contained a large number of
lines or curves which would place a strain on attention.
Figure 10 shows an example of an image which mapped to
"undetermined".

Similar training sets were developed for different line
orientation. Between 38 and 40 training images were
developed for each. When the images containing a large
concentration of features were mapped to the "undetermined"
category, the network converged in eight or nine passes
through the training set. As discussed in Chapter 3, the
ability to train quickly is an advantage of the using the
counterpropagation neural network. A disadvantage is that
the Kohonen layer training is unsupervised and if two data
sets meant to be mapped to different outputs end up mapped
to the same Kohonen node, the network will never converge.
This can be avoided by using a larger network, but if size
is an issue, the counterpropagation network is a bad choice.
Despite the constrained environment used for this research,
the network was able to accurately map images containing
different line orientations into the correct category. The
most interesting result was the inability of the network to
immediately identify whether or not a feature was present in
"noisy" images. This trait is shared by the feature maps
in the human visual system, although it was not intentional-

ly trained into the artificial or biological network.

CHAPTER 5
RESULTS AND CONCLUSIONS

After the counterpropagation network was trained to
recognize the selected visual primitive, a series of test
data similar to that used by Treisman in her experiments on
human recognition of visual primitives (Treisman 1985) were
passed through the network. Figures 11 and 12 show an
examples of the images run through the network trained to
recognize horizontal lines. Figure 11 shows an image which
gave a result of feature present, and the image in Figure
12 gave a result of feature not present. Other test data
was passed through and the results were very accurate.

The next step was to attempt to train a different
visual primitive. Curvature was chosen as a good candidate
for training. The network was trained using a series of
images containing circles mapped to feature present, a
series of lines in different orientations mapped to feature
not present, and a few noisy images similar to those in
used in line orientation mapped to undetermined. After the
network was successfully trained to recognize curvature, a
series of test images were run through the network. These
included images in which the circle was bisected with a
horizontal line, and others with only horizontal lines.

Figure 13 shows a test image which mapped to feature present

36

37

C0O000D0O0O00O0O0000000DO00O0000D0O00O0O0O0OO0O
O0OHO0OO0OO0ODO0OO0O0ODO0OH0O0O0O0O0O0O0O0O0O00O0OO0O0O0ODODOOOO
OCO0OHO0O000000HO0OO0000000D0C0O0D0O0O0D0O0D0ODO0OO
OO0 OO0 O00D000FN0000000HO0O000D0D0D0O0OD0D0O00O0O
0O0HOO0OO0OO0OO0OO0OO0OHO0OO0OO0OHOOOH0OO0OOOOOOOOOO
0O0HO0O0OO0OO00O0O0O0O0O0OHO0OO0OH0O0OO0O0O0O0O0O0OD0O0OO0OO
OCO0OHOO0OO0D0DO0DO0O0OHOOOHOOOHOOHOODODOOOOO
CO0OH0000000HO0OO0OO0OO0OO0OO0OHOO0OHOOODODOOOH
OC0OHO0OO0O00O0OO00HOOOOO0ODOHOO0OHOODOOOCOOH
oOo0oHO0OO0OO0COOCOOOOOO0OO0OOOOCHOOHOODOODOOOH
oOooHOOOOCOOOHOOOCOOOOHOO0OHOHOOOOOA
ocooHH000O0COCOO0OHOOOHOO0COHOO0OHOH0OO0COO0OCOHA
OCO0OHO0OO0OO0DO0D00O0OHOOOHO0OO0OOHOOHOHOOODOOA
OoO0O0OO0ODO0DO0OO0O0DO0OAO0OO0OO0OHOO0OCOO0OHO0OO0OHOHOOOOO A
oOooocoo0oo0oo00OO0O00OO0CHOO0OO0OHO0OO0OH0H0O00O0CO0A
O0O000O0OHOO0OO0O0O0D0O0OH0000000000D0O0C0OCOH
o000 O0OAOO0OO0COO0OO0ODOHOOOHOO0OHOO0COOO0OO0OOH
OoOO0OO0OO0ODO0OOOOOOOCDOHOO0OOHOO0OOOOOCOOCOA
0O000O0O0OHOHOOO0OO0OONO0O0O00DO0O0000D000COH
0O00000HAO0OHO0O0O00O0OH0O0O0O0O0OO0OOO0OO0OO0OD0COOH
O0O00O0DO0OHOHO0OO0O0OOO0OH0O0O0O0D0O0O0OFO0OCOO0OCOOH
O0O0OO0O0OO0OHOAOO0OO0O0OO0OHOO0OO0ODO0OO0OO0OHOOODOOOCOH
0O0000O0OHO0OHOOO0OO0OO0OHO0OOO0OO0O0OOHO0OOOODOOH
OC0000O0OHOHOOODO0OOHOO0OO0OO0OO0ODOH0O00OO0OO0ODODOOH
OC00O0O0O0OHOH0O0O00O0O0OH000000HO0O0C00COO00OH
O00 00 O0OHOHOOO0ODO0ODO0OHOO0OO0ODO0OO0O0OHOO0ODO0OO0O0OCOOH
0O00000HOHOO0OOO0OOHOOOOOOHOO0O0OOO0OO0OOH
0O0000O0OHAO0OHO0O000O0OHOO0OOHOOHOOOODODOOH
O0O0 0000000000000 00000000000O0O
O0O0 0000000000000 000H0000000O0

Figure 11. A Test Image Mapped to Feature Present.

38

OC00000CO0O0D000D0DO0ODO0O0O0D0O0O0ODO0O0D0O0DOO0ODO0O0OD0O0O0O0OO
L e e B B B B e I B B e e B B B B B B B e e e N e e N e e W e
CO0O0DO0OO0O0O00O0O0O0OD0OD0OO0OO0O0OCO0O0O0ODO0OO0ODO0O0O0OD0OO0O0OO
OO0 0000000000000 0C0O0O0O0O0OD0OO0O0O0O0O0O0O0O0OO0OO
CO0O000000D00O0O0D0O00D00D0O0DO0O0DO0ODO0OD0O0O0ODO0OD0O0O0O0O0O0O0O
s S W 0 e I8 B B M I e I o W B B W N [0 T o B B e 8 [Wi o B BT, i W =l |
OCO0O0O0OO0OO0C0O0O0OD0OO0O0D0O0O0O0O0O0OD0ODO0O0O0ODO0ODO0O0O0ODO0O0OD0OOO
e I B e e B B O I e I e B B M U o = R (s B I B W i I W e [W =
CO0O0OO0O0D0O0O0O0D0O0O0OD0O0ODO0O0O0ODO0OO0OD0O0O0OO0ODO0OO0ODO0ODO0OO0O0OOO0O
OO0 00000000 0OCO0ODO0O0O0O0O0O0O0O0O0O0O0O0O0O0OD0O0O0O0O0OO0OO
OO0 000C00D0000D00DO0DO0O0O0D00O0DO0ODO0O0ODO0ODO0O0O0O0OO0O
4444141411011 d1dd1d1d1d1O0O-A-ddddddd14140O0
OCO0O00OO0O0C0O0O00O0DO0D0O0ODO0O0O0O0O0O0O0O0D0O0O0O0ODOO0O0ODOO0OO
OO0 0000000000000 00D0D0O0O0O00D0O00O0OO0O00OO0O
O0000D000D0000O0O0O0OD0O0O0O00O0OD0O0O0O0OD0O0O0O0O0OO
o S O W 6 N I B e WO I W o e M B N 0 RO B O B B o B e B 8 o0 =
O0O0O0O0O00O0OD0OO0O0OD0O0O0O0O0O0O0O0O0OO0O0OO0ODO0OO0OO0OD0OODO0ODOOO
OC0O0O0O00O0O0O0OO0O0O0D0O0O0O0O0O0ODO0OO0O0O0OO0O0O0OO0OO0O0O0O0O0OO0OO0OO
OCO0OO0O0O0DO0O0OO0O00O0OD0O0O0O0O0O0OO0O0OO0O0O0OO0O0OO0OO0ODO0O0O0OO0OO0OO
OCO0O0O0D0D0O00D000D0000O0O0D0000O0O00O00CO0OO0O0O
el e e W e e N N e B I e e I I e e I B B B B B B e e e e e
0O00000000000000D0DO0DO0O0O0DO0O0O0OO0DO0OO0O0O0O0O0O
el e N e B B e e B B B B B e I e e I B B B B B e e B B e e
OC0O0O0OO0O0D0OO0O0O0OO0ODOO0OO0OO0OO0O0O0O0OO0O0O0OO0O0O0O0O0OO0ODO0O0O0OO0OO
OC0O0OO0OO0OO0OOO0ODOOOOOOOOOOOOOOOOOOOOOO
OC0O0O0OO0O0OO0OOOO0ODOOOOCOOOOOOOOODOOODOOOO
OC0O00O0D0D0O00O0O0OD0OO0O0O0O0OO0O0ODOO0OO0OO0OO0OO0O0O0OO0O0O0OOO
OC0O00D0D0D0D0D000DO0OO0O0D0OD0OO0O0O0O0O0O0O0O0O0O0O0O0O0OO0OO
OO0 0000000000000 00000D0D0D000000O0O
441111041 dddddd1d1O0O1 11110 A4 4400

Figure 12. A Test Image Mapped to Feature Not Present.

and Figure 14 shows a test image which mapped to feature
not present.

The results obtained in training the two types of
visual primitive were excellent. The counterpropagation
showed a great deal of resistance to noise and was able to
pick out the desired primitive among a surprisingly large
number of distractors. Obviously, there is a limit on the
noise resistance as shown by the necessity of including the
undetermined output. However, this limit is shared by the
human visual system and is an accurate recreation of feature
maps in the human visual system, and that is the goal of the
research presented here.

Since such good results were received in training the
network to recognize line orientation and curvature, it was
decided to attempt to train a more complex property. The
property of juncture is a possible visual primitive. There
have been test results which show that it is probably not a
primitive shared by most humans (Treisman 1985). However,
since there are results showing that some individuals can be
trained to detect new perceptual units automatically in
search (Schneider and Shiffrin 1977), the attempt to train
the counterpropagation network to detect a corner was made.
A corner angled at -90 degrees was chosen as the feature to
detect. While developing training data, it became obvious

that a larger network would be necessary to get a good

39

40

eliejfiejieojlefefelellcNollocNoololcNoloNooRoNeRoloRolc oo RoNoN ol o)
O0000O0O00000DO0O0OOO0OOO0O0O0DO0O0OO0OODO0OO0OO0OO0O0O0OO0O
OCO0O000000000DO0O0O0OO0O0O0D0O0DO0OOD0DO0DO0OO0OO0O0ODO0OO0OO00OO
CO0O0000000O0O0DO0O0OO0OO0OO0OO0OO00DO0OO0O0O0ODOO0OO0O0O00OO0O
OCO0O00000D00O00O0O0O0OO0O0O00O0O0O0O0O0OD0DO0OO0OO0O0O0OO0O
OCO0O000O0O00CO0O00O0O0O0OO0OO0OO0OOO0OOO0OOOOODO0OO00OO0O
0000000000000 O0O0O0OO0O0O0CO0O0O0O0OO0OO0DO0OO0OO0OO
CO0O00000O0000D0O0O0O0ODO0DO0DO0O0OO0DOODO0OO0OODO0OOO0OO0OO
(eliejelieo oo jolelNeNoleNoNolloNelloleoNolloNeNoRoNoloNeloNoNoNoNo N
CO000000000O0O0O0OHOOOODO0OO0OO0OO0OOOO0OO0OOO0OO
OCO0O0O000D0000DO00U0OHOO0O0DO0OO0OO0DO0ODO0DO0ODO0OO0ODO0OO0OOOOO
OC0O0O0000000D0DO0O0OHOOODOO0OOO0OODOODOOOOOOO
CO0O0O0000D000D0DO0O0OHOOO0ODODOO0OODODOODOODOOOOO
O000000D00O0O0O0OAHHOOO0OOO0ODO0OODODO0OO0OO0OOOOO0OO
COO0000000O0OHH1O0OHOHOO0OO0OO0OO0OO0OO0OO0OO0OO0OOO0O0OO
OCO00000000O0HOOHOOHOOOOODODODODOOODOOOOO
CO0000000DO0O0OHOOHOOHOODDODODODOODOOODOOOO
000000000 HO0OO0OHOOHOOODOOODODOOODOOOOO
CO0O00000D0O00O0OHOHOHOOOODODODODOODOOOOOOO
CO00000O000O0O0O0OHHHOOOOO0OOOOOODOOOOOO
000000000000 HOODO0ODO0OO0ODOODOO0OO0ODO0OODOOOOO
CO0000D0CO0000D0D0DO0O0O0O0DO0OO0OO0OO0O0O0O0DOO0OO0O0OO0OO00OO0
CO0O000000000D00O0DO0DO0OO0DO0O0O0O0DO0OO0DOO0O0DO0OO0OO0OO0O
CO00000000D00D0O0O0DO0OO0OO0OO0OODO0O0OO0OOO0O0DO0OO0OO0OO
OCO000000D0D00O0DO00DO0O0O0DO0O0DO0OO0O0DO0DO0OODOO0OO0OOOOO0O
0000000000000 O0OO0DO0OO0DO0DO0ODO0DOO0DO0OO0OO0OO0OOOO0O
0000000000000 O0DO0OO0O0DO0OO0DO0OO0ODO0ODO0ODO0ODO0OO0OODOOO0O
CO0000000D00DO0DO0D0DO0DO0DO0O0DO0OO0OO0DO0DO0DO0OO0DO0ODO0ODODOOOO0O
CO0000000O0O0000DO00O0DO0DO0DO0OO0O0ODO0OO0DO0OO0OO0OOOOOO
CO0000000O00D0D0DO0D0DDO0OO0O0OO0O0ODO0OO0DO0OO0OODOOOOO

Image mapped to Curvature Feature Present.

Figure 13.

41

OC0000000000000000O0O0O0O0O0DO00O0O0O0OO0O0O0
0O00000000000D00D000O0O0O00O0OO0ODO0OO0OO0O0O00OO0
0O00000000000000000D00O0000O0O000O0O
O0000000000000000O0O0O0OO0OO0ODO0O0O0OO0OOO00O0O0O
C00000000000D0DO0O00DO0O0O0O0DO0OO0O0OO0O0OO0O0O00O0O0O
C0O0000000000DO0DO0OO0O0O0OO00O0O0OO0O0O0OO0OO0DO00O00OO
0O00000000000D00000000D00OO000O0O0O00O0O0
0000000000000 HO0O0000C0O0000O0O000O00O0O
0000000000000 HO0O0000000O0C0O0000O0O
0000000000000 HOO0OO0ODOO0O0O0O0O0OO0O0O00OO0O
0O000000000000OHO0O0O0O0O0O0000000O0O0O
0O000000D0D000D00OHO0O0O0O0OD0O000O00O0O0O0O0OO0O0O
0000000000000 HO00O0O00000O0O00O0O0O0O
OC0000D0D00D0D00DO0O0OHOO0OO0O0O0O0ODO0OO0OO0OO0OOO0OO0O0O
0000000000000 HO0O0OO0O0O0OO0OOOOOO0OOOO
0000000000000 HOO0OO0OO0OO0OO0O0O0OO0OO0OO0O0O0OO0OO
0000000000000 H0000000000D0DOO00OO
0000000000000 HO0O0O0D0D000D000000O0O
0000000000000 MNO0OO0000D000000000O0O
0000000000000 H000000D0O0O0000O0O0O0OO0
0000000000000 HOO0OO0OO0OO0O0OO0O00O0OO0DO0O0OO
0O00000000000000D000D00000O0OO0DO0O0O
0000000000000 000D0O00D0O0000O0O0O00O0O
0O000000000000000O0OO0O0O0O0OO0OO0OO0O0OO00O0OO
0000000000000 0000000000O0O00O00O0O0O
0O00000000D000D000D00DO0OO00000O0O0OO0O0O0O0O
OC0000000D000D00D00O0DO0OO0O0OO0O0OO0O0OODOO0O0OO0O
0O000O0000O000O0O0O0OD0O0OO0O0O0O0O00O0000000O0O
0O000000000D0000000O000O00O0O0O000O0O0
0O000000000000000000000OO0O00D00O00O0O0O

Image mapped to Curvature Feature Not Present.

Figure 14.

result. By decreasing the size of the input image to a 25
by 30 array,the network became proportionally larger. Even
with the larger network and a proportionally larger training
set, the network is still only capable of recognizing
corners in a limited area within the image.

Interestingly enough, this result was not unexpected.
Treisman and Patterson conducted experiments to detect
whether similar features known as emergent features were
actually primitives or not. Their results were inconclusive
(Treisman and Patterson 1980). Emergent features are
defined as combinations of simple elements which appear to
generate new interaction of relation properties. It is
theorized that some emergent features may also be detected
by independent feature maps and thus qualify as visual
primitives by themselves. As stated earlier, experiments to
show that emergent features are primitives neither proved
nor disproved the theory, just as my attempt to train the
network was successful in the sense that some corners are
detected and unsuccessful in that all corners cannot be
detected by the network.

The fact that both the training attempt and the
experiments were inconclusive suggests that emergent
features such as corners may be trained as primitives in
certain individuals, but not in everyone. If a large enough
network were used and enough time given, a network could be

trained to recognize all corners or other emergent feature.

42

Just as a human will train his or herself to recognize
corners automatically if there is a need, a machine visual
system could be trained to recognize such features if there
is a need. The decision to invest the time and resources to
do train a network versus recognizing the features at a
secondary level would be a system application sensitive
decision.

The research presented here was very successful. The
counterpropagation network trained and detected visual
primitives in a manner not unlike that of human early
vision. The network accurately mapped simple visual
primitives such as line orientation and curvature quickly
and easily. The network was able to map the more complex
feature of juncture as well, although not as quickly and
easily. Although the simulation enviroment used was
constrained, the network enviroment could easily be changed
to a larger , more powerful computer and more complex
mappings could be achieved. The counterpropagation network
served its purpose well by converging in relatively few
training attempts. However, it required a larger network
than a more complex network paradigm such as backpropagation
would due to the simplistic nature of the counterpropagation
network. For this reason alone, it would worthwhile to
explore the abilities of a different network pardigm in

detecting visual primitives. On the other hand, if only the

43

simpler primitives are to be detected, the
counterpropagation model is ideal as shown by the results
presented here. The counterpropagation model was easily
trained to recognize the simple‘visual primitives even in a
cluttered enviroment. If a complete early visual system
were developed, the counterpropagation network would work
well as a feature detector for the simple visual primitives
such as line orientation. If the need to detect a more
complex feature was desired, the counterpropagation could be
used to test the feasibility of a neural network solution
and a more complex paradigm could be used for the final
product. The next step in this research would be to train
separate artificial neural networks to detect a selected
number of visual primitives and devise a means to use the
output of these neural networks to simulate the entire
process of early vision. Once that is accomplished, the
next step is simulating the attentive stage of the visual
process and combining them for a complete machine visual

system.

L4

APPENDICES

APPENDIX A

COUNTERPROPAGATION NETWORK SIMULATION SOURCE CODE

47

#include <stdio.h>

#include <alloc.h>

#include <math.h>

main()

{
int c,itemp;
int tie,k2,k3;
FILE *weights, #*idata, *kweight;
unsigned char *input, *GROS, *OUTPUT ;
float *GWT;
float *temp,*FANIN, #*KOH;
float huge *KWT[45];
float tryout,learn, ftotal, alpha;
int 1,J,N, M, kwin,pass;
int i,j,k,1,m,sets,curset,total;
long n;
short int train,rep,cont;
unsigned long memory:
double square:;

n=farcoreleft();
/*get number of nodes per layer*/
N=750; /*Number of inputs#*/

M=3; /*Number of outputs*/

J=35; /*Number of Kohonen cells*/
alpha=0.1;

input=(unsigned char *)calloc(N,sizeof(unsigned char)):;
if (input==NULL)
printf ("Memory allocation error on input\n"):
GROS=(unsigned char *)calloc(M,sizeof(unsigned char)):;
if (GROS==NULL)
printf ("Memory allocation error on GROS\n");
OUTPUT=(unsigned char *)calloc(M,sizeof (unsigned char)):;
if (OUTPUT==NULL)
printf ("Memory allocation error on OUTPUT\n"):;
temp=(float *)calloc(J,sizeof(float)):
if (temp==NULL)
printf ("Memory allocation error on temp\n"):
FANIN=(float *)calloc(N,sizeof(float));
if (FANIN==NULL)
printf ("memory allocation error on temp\n"):;
GWT=(float *)calloc((M*J),sizeof(float)):
if (GWT==NULL)
printf ("Memory allocation error on GWT\n");
KOH=(float *)calloc(J,sizeocf(float)):

if (KOH==NULL)
printf ("Memory allocation error on KOH\n");
for (i=0;i<J;i++)
{

48

KWT[i]=(float *)farcalloc(N,sizeof(float)):
if (KWT[i)==NULL)
printf ("Error in allocating KWT\n"):;
printf ("i=%d\n",1i):;
}

printf("Is this a training run-Y or N?\n"):;
c=getchar() ;
1f(cmmtYt || =iyt

{
/*0Open files for reading*/
kweight=fopen ("kweight.dat" K "r+");
if (kweight==0)
printf ("error in opening weights file\n"):

/*read in weights from file*/
/*Kohonen weights*/
for (i=0;i<J;i++)

{

for(j=0;j<N;j++)

fscanf (kweight,"%£f", &tryout) ;
KWT[i][j]l=tryout;

}

close (kweight) ;
weights=fopen("weights.dat","r");
/*Grossberg weights*/

for (i=0;i<M*J;i++)
{
fscanf (weights, "%£f", &tryout) ;
GWT[i]=tryout;
}

/*Close weights file*/
fclose (weights) ;
/* net is training*/
train=1;
idata=fopen("train3.dat","r");
if (idata==0)
printf ("error opening input file\n"):

if (train==1)

{

/*Determine number of sets of training data*/
total=0;

pass=1l;

sets=0;

cont=0;

while (cont==0)

sets++;

for (i=0;i<N;i++)

{ fscanf(idata,"%d",&itemp);
cont=feof (idata) ;

}
if (cont!=0)
sets--;

for (i=0;i<M;i++)

fscanf (idata,"%d", &itemp) ;
cont=feof (idata) ;
}
fclose(idata);
idata=fopen("train3.dat", "r")

~e

/*Begin a training session*/
curset=1;

learn=0.7;

rep=1l;

while(rep==1)

/*read in training datax*/
for(i=0;i<N;i++)
{
fscanf (idata, "%d", &itemp)
input[i]=itemp;

-

}
for(i=0;i<M;i++)

{
fscanf (idata,"%d", &itemp) ;
OUTPUT[i]=itemp;
}
/*Normalize input vector*/
square=0;
for(i=0;i<N;i++)
square=square+ (input[i)*input[i]):
if (square!=0.0)
{
square=sqrt (square) ;
for(i=0;i<N;i++)
{ FANIN[i]=input[i)/square;
FANIN[i]=alpha*FANIN[i]+(0.03125%(1-alpha));
}
}

/ *KOHONEN CALCULATIONS*/

/*Calculate temp[i] = KWT[i][O..N]*FANIN[O..N]*/
for(i=0;i<J;i++)
{

temp[i]=0;
for(j=0;j<N;j++)
{

temp[i]=temp[i]+ (FANIN[J]*KWT[i]1[F]):

}
)

/*Find winning Kohonen node*/
kwin=0;
for(i=1;i<J;i++)

{
if(temp[i]>=temp[kwin])
kwin=i;
)

/*Adjust weights of winning Kohonen node*/

/*Read in node weights*/

for(i=0;i<N;i++)

KWT[kwin][i]=KWT[kwin][i]+learn* (FANIN[i]-

KWT[kwin][i]):
}

/*Set output for Kohonen nodes*/
for(i=0;i<J;i++)

KOH[1]=0;

if (i==kwin)
{
KOH[1]=1.0;
}

}

/*GROSSBERG CALCULATIONS*/
/*Clear out temp locations*/
for(i=0;i<j:i++)
temp[i]=0.0;
if (pass>=6)

{
/*Calculate value of
temp[i]=GWT[i][0..J]*KOH[O..J]*/

for(i=0;i<M;i++)
{

Grossberg

node-

51

for (j=0;3j<J;j++)

{
temp[i]=temp[i]+ (KOH[J]*GWT[(i*J)+3j])

)
}

/*Set output of Grossberg layer*/
for(i=0;i<M;i++)
if(temp[i]>0.8)
GROS[1i]=1;
else

GROS[1]=0;
}

/*Adjust weights of Grossberg layer*/
for(i=0;i<M;i++)

for(j=0;3<J;j++)
{
if (KOH[J]>0)
{
GWT[(i*J)+3j]=GWT[(i*J)+Jj]+learn* (QUTPUT[i]-GWT[(i*J)+3])

}

-e

}
)
/*Deternime accuracy of result*/
j=0:
for(i=0;i<M;i++)

if (GROS[i]!=OUTPUT[i])
J++;
}
total=total+j:;
printf ("Training set %d, Incorrect outputs=
%d\n",curset,j);
}

else
{ total=1;
learn=0.7;
}
/*Determine if complete one pass training */
if (curset!=sets)
curset++;
else
{
if (total==0)
rep=0;
else

52

fclose(idata) ;
idata=fopen("train3.dat","r");
curset=1l;
learn=learn-0.005;

if (learn<0.1l)

learn=0.1;

alpha=alpha+0.1;

if (alpha>1.0)

alpha=1.0;
total=0;
pass++;
printf ("Training pass=%d\n",pass):;

}

fclose(idata);
printf ("Total number of training passes=%d\n",hpass);

/*write weights out to file*/

kweight=fopen("nkweights3.dat", "w");
/*Kohonen weights*/
for (i=0;i<J;i++)

{
for(j=0;j<N;j++)

{
fprintf (kweight,"$f ", KWT[i][]F]):
)

}
weights=fopen("nweights3.dat",K "w");
/*Grossberg weights*/
for (i=0;i<M*J;i++)

fprintf (weights,"$£f\n" ,GWT[1]);
}
/*Close weights filex/
fclose (weights) ;
}

else

{

/*Open files for reading*/
kweight=fopen ("nkweight2.dat" 6 "r+");
if (kweight==0)
printf ("error in opening weights file\n");

/*read in weights from file*/
/*Kohonen weights*/
for (i=0;i<J;i++)

{
for(j=0;j<N;j++)

{
fscanf (kweight, "%£f", &tryout) ;
KWT[i][j]=tryout;

}

close (kweight) ;
weights=fopen("nweights2.dat","x");
/*Grossberg weights*/

for (i=0;i<M*J;i++)

fscanf (weights, "$£f", &tryout) ;
GWT[i]=tryout;
}

/*Close weights file*/
fclose(weights) ;
idata=fopen("input.dat","r");
if (idata==0)
printf ("error opening input file\n"):

cont=feof (idata) ;
while (cont==0)

{

/*read in input data*/
for (i=0;i<N;i++)

{
fscanf (idata,"%d", &itemp) ;
input[i]=itemp:
cont=feof (idata);
}
if (cont==0)
{
/*Normalize input vector#*/
square=0;
for(i=0;i<N;i++)
square=square+ (input[i]*input([i]):
if (square!=0.0)
{
square=sqrt (square) ;
for(i=0;i<N;i++)
{ FANIN[i]=input[i]/square:;
}

}
/*Display input data to screen*/

for (i=0;i<30;i++)
{

for(j=0;3<30;3j++)
{

53

54

printf("%d ",input[(i*30)+j]):

}
printf("\n");
}

/*KOHONEN CALCULATIONS*/

/*Calculate temp[i] = KWT[i][O..N]*FANIN[O..N]*/
for(i=0;i<J;i++)
{
temp[i]=0;
for(j=0;3<N;j++)

temp[i]=temp[i]+ (FANIN[J]*KWT[i][3]);
}
}

/*Find winning Kohonen node*/
kwin=0;
for(i=1l;i<J;i++)

{
if(temp[i]>=temp[kwin])
kwin=i;
}

/*Set output for Kohonen nodes*/
for(i=0;i<T;i++)

{
KOH[i]=0;
if (i==kwin)

{
KOH[1]=1.0;

}
}

/*GROSSBERG CALCULATIONS*/
/*Clear out temp locations#*/

for(i=0;i<j;i++)
temp[i]=0.0;

/*Calculate value of Grossberg
temp[i]=GWT[i][0..J]*KOH[O0..J]*/
for(i=0;i<M;i++)

{

for(j=0;3j<J;j++)

temp[i]=temp[i]+ (KOH[J]*GWT[(i*J)+3]):

node-

55

}
)

/*Set output of Grossberg layer*/

for(i=0;i<M;i++)
{
if(temp[i]>0.8)
GROS[i]=1;
else
GROS[1]=0;
}
if (GROS[0]==1)
printf ("Feature present\n");
else

{
if (GROS[1]==1)
printf ("Feature not present\n"):;

else
printf ("Feature possibly present\n");

}
cont=feof (idata);

}

}
fclose(idata);

APPENDIX B

SAMPLE TRAINING DATA

57

000000000000000000000000000000

00000000OOOOQOOQOOOOOOOOOGOOOO

000oooooOOOOQQOOOOOOOOUOOUOOQO
00000000000000000000000100

ooocoO

000000OOUGOOOQOOOOOOOOOOOOIOOL
000000OOOOOOOOOOOOOOQOOOOIOOOO
000000000000000000000000100000
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
000000000000000000000000000000
00O000000000000000000000&00000
000000000000000000000300000000
0000O00000000000000000000OOOOO
0000D0000000010000000000000000
000000000000100000000000000000
000000000001000000000000000000
00OOOOOODDIOOOODOOOOGO00000000
DOOOG0000100000000000100000000
60D 60040600 0N 00000000005
o00000010000000000010000000000
0000o0000000000000100000000000
o00000000000u00001600000000000
000000000000000010900000000000
000000000000000100000000000000
0000100000000000o0000000000000
000100000000000000000000000000

OOOQOOOOOOOOOO
[=J- -0 -]

00~0000000000000

HOOOOO0O00DO0000000000000000000~
HOODD0000O00000000000000000000
HOOO0O0ODOOO00O0O000000000OO00000000D~
HOOOO0O0DO0000000000000000000000
HO00O0O000000000000000OLO00CO00O00~
HOOOOODODOO000O000000DO0O000000
HOOOOOD0OOO0O000000000000000000~
HODOOOODOOOOO000DO00000O00D0O00000H
HOODOOO000000000000000O00000000
HODO0OO0O0O0O000D0000000000C0O00C00000~
HOO0O0DOC00O00000000000000000000~
HO0O0ODOOODOOOOO00000000000000O0-
HOOO0OO000O0000000000000000000O0O0
HOODOO000OO00000000000000000000H
HOOODOOOO000O0O00O00000C000O000000
HODOO0O0OCO0OODO000O00000000000O00000~
~0O0000000000C000000O0ODO00DO0O00000~
HOO0ODOO0000OO0O0ODOO00OO0000O00ODOOO0
H0000000000000000000DOC000C00000 ~
~000000000000000000O00000000O00~
1uooooonooooooooouoooooonnoool
HOOOOD0000000000C0000000DOC0000 =
HOOODOOOODOO000000O000O000O0O00CO000
HO0O0OOOOD0DOODO0O00O0000OO000000000H
HOOO0000000000000000000000000~
0000000000000 00000OO00000000H
HODODOCOCOOOO0ODOO0DO00OOO0DODO0O0D00D0
HOOODOODODO00000000D000OCO00O00000A
HOOO0D0O0CO00000000000000000O000 -

©H4000000000000000000000000 HO00ODO000O0DOOCOODOOODOODOOODOO0ODOHAOO

100OI.OOQ00000000!—1111\.11111.1.11010

Figure 15. Sample Training Data for Horizontal Lines.

58

0000
0000

0000000000001 00000O0OOO
0000000000001 0000000D0O0O0OCO
0000000000000l 00000O00O0O0
0000000000001 00000000O0O0OCO

000000000000000000O0O000D0O0OCOOQO
0000000000D000010000000O0O0

o
o0
00
0

0
o
1
1
1
1

oo0Ccooo
oooococo

0C0000000000O0O0OOO0O0CODO0000
C0O00000O000000000000000
C00000000000000O0OOOD0O0000
C0000C000000000O0OO0OO0O00000
0000000000000 00D00O000000
0000000000000 000000000
0000000000000 0O0O0DOD0O0000
C0OO0O00C0000C0O00O0O0O0O0DOO0OC0O
C00C00000000HHHHA~~0000
CO0C00C00O0OC00000D0O00OO0DO00O000
CO0OO0O0O00000000O00O0O0OO0O0O0CO
DO0ODOCO0OO0O0C0CO0O0O0O0OCOO0O0O0O0OO
0O00DOCO0OO0OODDO0O00000000C00DO0O
CO0O00Q0CO0OO0OO0O00000000000O0
CO0O00C000000000D0O0O0DODO0O000O
0000000000000 0D0O0ODOODO0O0O
CO0O00O000000000000D0000O0
0000000000000 000000O0
c0o0DO0OO0OO0OO0O0O0000O000O0O00COO0O
CoO0OOCO0OOCOOO00DO0OO0ODO0OO0OO0OCOOO0C0O
co0OCO0OOCOODOOOOOOOOOOOO
C0O00Q0O00CO000000O00OO0OO0O00C
C0OO0"fO00CO0000000D0OO0O0000CO
C0O0OO0D 0000000000000 0000
oOococooOCOOOOOO0OO0OO0OOO0OO0O0OO0OO0OO00OO
OCo0o0OO0DO0OO0OO0OO0O00O000000000000OO
0000000000000 0MHHA~A~0000
-~ OMNOOOODO0DO000000000000DO
0000000000000 000000000C00
C0O0CO0OODODO0O00O00000000000~0

00000000001 0000000O0O0OGOO
0o0oo00ODO0OO0QBOOO0OI1l1O0OQ0

(=l =00 =]
(=N -]
0o
oo
oo
oo
oo
0o
[=J=1R=]
(===
(=R =]
oo
(=N =1=
(===
(==
ocoo
oo
oo
oo©o
ooo
=N -]
=R =N~
o000
o000
0o
oo0o
0o

COO0OOOVLOOODOOODO000000C0O0O0COOOHA
CODOOOOOODODO00O0DO000000000O0OO~O
CO0OOOODOOODOODO000000000D0O0O~NOO
COOOCO0OOOCOOOOOO0O0DO000000D000O~0O0O0O
CO0OOPOOOODOODOD00000000~0000
COO0OO0ODODODODOODO000D00000MODO000O
OC00O0O0O0ODOOODOO0OO0OO0000000NMO0O0O0000O
0000000000000 0000O0O0HO0000000
0000000000000 0000O0-HO00000000
0000000000000 0000~NOD0D0000000
CO0OCODODOOODOOOODO00N0000000000C
0000000000000 00OH000000000C00
0000000000000 0HO0DO00O00O00D000
0000000000000~ 0000000000000
COCO0DODODOODODOO~ODOO0O000000O000O00O
COOOODOODOOODO~NO0D0000000O0OC0OO00C
0000000000~ 0000000000000000
00000000 D~0000000D000C0000000O
00000000~ 000000000000000000
0000000 ~0000000000000000000
0C0000O0O~NOO0OODODOOO000000000000C00O
CO0DO0OHNODODODOODOOOO0OO0O0000D0O0D0O0O0OO0
C0O0DO~OODODODOOOO0000000000C0OD0O00C
0C00~N00CO000DO0O000O0000000000000
DO~NOODODOODOOOOO0OO0OO00DO0000000O00
O~00000000000000D0000000000
~000O0OOOOOOODOO0OO0OO000000000O00O00O0O0

00~000000000000000000000000000

o ~0

~O00O0DOOCO0OO0OO0O0000000000000000000~0O0

000000 O0OO0O0DO0D0O0OODOOD000000000C0

Figure 16. Sample Training Data for Slanted Lines.

59

OC000O0O00O0O00O0DOOO0O0D00O000000C0O0O
OC000O0O0OC0CO0DODO0OO0OO0O0O0O000C0000C0O0C0CC0O
0000000000000 000000000C00C
0000000 OCO00O00000000O0000O0000
0000000000000 00000000000
000000000~ 000000000000CO00C
O000O00O0O0O0OO0O~00000000000000
0000000000~ 0000000C0C00O0O0OO0C
00000 PCPOCO00O0O~HO0000O0000000000O
0000000000 ~N0OO0O000000C0C0O0O0O00
0000000000 ~NOOOO0O00OO0OO0OO0O0000
00000000~ 000000C0O0OO0O00O0OO0
CC0C0CO0OODOOOO0O~000000C0O00O0O00OCO
0000000000~ 00000000000000
0O000CO0DO0O0O0C00ON0O00000000000O0O0
000 C00O0OO0OOCO0O~00000000C00000O0
000 QCO000DO0OC~H0O0000000Q00Q0O0O00QO0O0O
0000000000« ~00000
000000 O0OOCODOOO0O0O0O0O0O0GOOOOOO
00000000000 EOO0O000O000DO0O0000O0O
0000000000000 000000O000000
C00C0C0OC0O0O000OO0O0OO0O0C0O0O00O000CO0OO0OCO
CO0O000000000000000O00O00000O0
©C0000COCODOO0OOOO0OOOOO0OOOOOO0OO0O
OC00000C00OO0ODODOOD0O0OO0ODO0O0O0O0O0O0O0OO
O0C00O0000O0OO0OO0O00O0O0O0O0OO0O0O0O0O00OO
O00O0PCO0O0OOCO0O00O0O00O0000C00000C0OO0O
0O000000O0O0O0000000000000000

OC0C0Q0O0OOCO0O0O0O~NOO0O0O0O0DO0O00O00000000
000000000000 000000D0OD0OO0O
C0~0000000~0000000000CO0O0O0O
0040000000400 000C00M0DODO0D0OOO0O
0O0~N0000000~000~000~N000000
00~0000000HMNOO0OO0ONODOO0O~0D0O0000O
O0~000000O0ONO0ODONODOMOO~NOOO
00~0000000HOO0O0DHOOOHNDOHNODOO
0C0~0000000H000~000HM0O0~000
0040000000 HOO0ODOHODOO~HOO~OOO
000000000 HOODOHOODOHOO~NO~ND
00~N0C000000HODODOHODODOHOOHO~NO
CO0O~N0C000000HOODODHODODOHOOHO~ND
OO0O00O0000O0O0OMOOCO"ODONOOHNO~NO
D000 00HOO0ODOHNOOODOHODOOHNODONOMNO
CO00000~0000000~00000C0000O0
CO0O00O0O0~N0O0O0O0O00O0O~DODO~NOODO~NDOO
000000~ 0000000~H000~00~<000
000000~ 0~HO0O0O0O0O0O~HO0O00ODDO~NOOO
0000000 ~00O0O0O0OHO0OO0OCOOROODO
CO0O0000~N0 0000000000 O~NDOO
000000~ 0~00000~000000~NOODDO
000000~ 0HNO00O0O0ONODOOO0OO~NDOO
0000000 HNOO0ODOODOHOOOODOOHOOO
00000~ 0~00000~000000~000
00000000000 HO0000OO0O~NDOO
000000 ~0~00000~000000~000
000000~ 0~00000~000~00~000
000000 HOHNOOO0O0ODO0OO0O0O0OO0O0DOO0OO0O

OC0C00O0OO0O0O0O0OO0O000O0O00O0000000O 000000 ~HO0O~H000O000O0OCOO0O0ONODOOA~D

00000 OCO0O00O0O0O0O0O00O0CO0O0O000000O~A0O

Figure 17. Sample Training Data for Corners.

60

0000000000000 O0OO0O0OOODODOOOOO0O0C0OO0OOC0CO
000000000 OO00CO0O00O0OO0O0O000000C00000
0000000000000 O0OO0O0DOODO0O0ODOO0O0O0OO0O00
0000000000000 000000000000000000
CO000O0C00C00000O0O00ODO0DO0OO0DO0O00DO000000CO0O
CO000O0O00O0O00O00DO0OODOO0O0OO0O00000000000
0000000000000 00O0O0O0O000O0C0QO0OO0CO0OO
00000000000 00000000000000000000
CO000QCO00COCO00CO0O0O0000O0O00O000O0ODOOOCOOOO
CO0O00O0000CO00ODODOOOO0OO0O00O00O000000000
0000000000000 000000000000000000
00000000000 PCO00O0O00O00000O00OOO0O0OO0OO0O
C0O000O000OOO0ODOOO0O0O0O0OO00O0O0DDO0O0O0O0C0OO0O
CO0000000CO0HH~DO00000COO0OO0O0OO0O0O00O0OO0O
OO0 0C00O0O0O0OHHOOO~O0O0O0O00000000000
CO0O0Q0O0O0DOO0OOHNOOOOONOOODOOO0O0O0000C0OO
CO000O0000O0HO0O00CO0OD~HNO0O0O0O0O0CODOO0O0QOO
000000000 ~000C00HMO0000000000000O0
0000000000 ~N000HNO0000000000000O0O
00000000000~ ~<~0000000000000000
OCO0O0O0O00O0CO00OO0000000000000000CO0O0O00CO
0000000000000 0O00000000000O0C0O0QO0OC0O
OCC000O0OO0O0OO0OODOODOOODOOOODOO0O0OOO0O0OOO
0000000000000 0000000000000000C0
CO0O0C0C00000DO0DO0OO0O0OO0O00O0D00DO0OO000000000
0000OCCO000000000000000000C0000000
0000000000000 0O000DO0O0O0O00000000O000O
OCOCODOCODOOO0OO0OOCODOODOOOO00000000000CO
e s e = - - - - N N-F-N-N-N-R-N-N-N-N-N-N-N-N-
OCO0OO0OOOO0OOODOOOOCODOOODOOO0O0O000O0O0O0O00O0O

00000cﬂ00000000000000000000000
l.1111110111!—111101111111111100
.U00000000000000000000900000000
000000000000000000000000000000
000000OOGOOOUUOOOQOUQUQOOOQUOQ
1...1111101111111101111111111100
000000000000000000000000000000
11.1111101111111101111111111100
000_000000000000000010000000000
00000000OUOOOOQOOOQIOOOQOOOOOO
0000000000000000000100000000‘0
AAAAAAAD A AAAAAAAOAAAH AN AA~A~“00O
00000000000000000001ﬂ0000000°°
00_0000000000000000010000000000
000010000000000000010000000000
11111110111111\.101111111111100
0nuO010000000000000000000000000
000011111111111111111111111111
000010000000000000000000000000
000010000000000000000000000000
111111101111111101111111\.11100
00001o000000000000000010010000
1!.\.1.11101111\.11101111111111100
0000D0000000000000000010010000
100000000000000000.“00010010000
!.00000010000000000000010010000
1000000109000000000000100-10000
e g gy ga g gurge e I I B Ko R o o o Batia latie o o
.|.O0000010000000000000010010000

111111111111111101111110111100

Sample Training Data for Curvature

Figure 18.

BIBLIOGRAPHY

Beck, J. and Ambler, B. 1972. Discrminability of differences
line slope and in line arrangement as a function of

mask delay, Perception and Psychophysics 12(1A): 33-
38.

Beck, Jacob, K. Prazdny , and Azriel Rosenfield. 1983. A
Theory of Textural Segmentation, In Human and Machine
Vision, ed. J. Beck, B. Hope and A. Rosenfeld.
Orlando,FL: Academic Press, Inc.

Cowey, A. 1979. Cortical Maps and Visual Perception.

Quarterly Journal of Experimental Psychology,
31:1=17.

Feldman, J.A. and D.H. Ballard. 1983. Computing with
Connections. In Human and Machine Vision. ed. J.
Beck, B. Hope and A. Rosenfeld. Orlando,FL:Academic
Press, Inc.

Grossberg, Stephen. 1968. Some Physiological and Biochemical
Consequences of Psychological Postulates, Applied
Mathematics. 60:758-=765.

Grossberg, Stephen. 1982. Studies of mind and brain. Boston:
Reidel.

Grossberg, Stephen and E. Mingolla. 1986. Computer
Simulation of Neural Networks for Perceptual
Psychology, Behavior Research Methods, Instruments and

Computers. 18(6):601-607.

Hecht-Nielson, Robert. 1887a. Counterpropagation Networks.
Applied Optics. 26:4979-4984.

Hecht-Nielson, Robert. 1987b. Counterpropagation Networks.
In Proceedings 1987 IEEE Conference on Neural Networks.
ed. M. Caudill. New York: IEEE Press.

Hecht-Nielson, Robert. 1988a. "Applications of
Counterpropagation Networks", Neural Networks, 1: 131-
139.

61

62

Hecht-Nielson, Robert. 1988b. Neurocomputing:picking the
human brain. IEEE Spectrum. 25(March):.36-41.

Hopfield, J.J. 1982, Neural Networks and Physical Systems
with Emergent Collective Abilities. Proceedings of the
National Academy of Science, USA. 79 (April):2554-2558.

Hubel, D.H. and T.N. Wiesel. 1968. Receptive Fields and
functional characteristics of monkey striate cortex.
Journal of Physiology. 195: 215-243.

Hubel, D.H. 1988. Eye, Brain and Vision. New York:
Scientific American Library.

Julesz, Bela. 1981. Textons, the elements of texture
perception, and the interactions. Nature. 290:
91-97.

Kohonen, Tuevo. 1977. Associative Memory:A System-
Theoretical Approach. New York: Springer-Verlag.

Kohonen, Tuevo. 1987. Adaptive, associative, and self-
organizing functions in neural computing. Applied
Optics. 26:4910-4918.

Kohonen, Tuevo. 1988. Self-Organization and associative
memory. New York: Springer-Verlag.

Lippman, R.P. 1987. An Introduction to Computing with Neural
Nets". IEEE ASSP Magazine. April: 4-22.

Minsky, M.L. and S. Papert. 1969. Perceptrons.
Cambridge, MA: MIT Press.

Neisser, U. 1967. Cognitive Psychology. New York:
Appleton-Century-Crofts.

Posner, M.I. 1978. Chornometric Explorations of the Mind.
Hillsdale, NJ: Erlbaum.

Posner, M.I. and Henik, A. 1983. Isolating Representational

Systems. In Human and Machine Vision ed. J. Beck,
B. Hope, and A. Rosenfeld. Orlando,FL: Academic Press.

Rumelhart, D., G. Hinton, G., and Williams. 1986. Learning
Internal Representations by Error Propagation. In
Parallel distributed processing"(Vol. 1). ed. D.
Rumelhart and J.L. McCLelland. Cambridge, MA: MIT
Press.

63

Rumelhart, D. and McClelland, J.L. 1986. _Parallel

distributed processing: Explorations in the micro-
structure of cognition(vols I and II). Cambridge, MA:

MIT Press.

Schnieder W. and R.M. Shiffrin. 1977. Controlled and
Automatic Human Information Processing:I. Detection,
Search, and Attention. Psychological Review.

84: 1-66.

Treisman, A. and G. Gelade. 1980. A Feature-Integration
Theory of Attention. Cognitive Psychology. 12:
97-136.

Treisman, A. 1982. Perceptual grouping and attention in
visual search for features and for objects. Journal of

Experimental Psychology:Human Perception and
Performance. 8: 194-214.

Treisman, A. and R. Patterson. 1984. Emergent Features,
Attention, and Object Perception. Journal of Experimen-

tal Psychology: Human Perception and Performance.
10(1): 12-31.

Treisman, A. 1985. Preattentive Processing in Vision. In
Human and Machine Vision II, ed. A. Rosenfeld. Orlando,
FL: Academic Press.

Treisman, A. 1986. Properties, Parts, and Objects. In _Hand-
book of Perception and Human Performance . ed.
K.R.Boff, L. Kaufman and J.P. Thomas. New York: John
Wiley & Sons.

Tusa, R.J., L.A. Palmer, and A.C. Rosenquist. 1975. The
Retionatopic Organization of the Visual Cortex in the
Cat. Neuroscience Abstracts. I: 52.

Wasserman, Philip D. 1989. Neural Computing: Theory and
Practice. New York: Van Nostrand Reinhold.

	Counterpropagation neural network detection of visual primitives
	STARS Citation

	TITLE PAGE

	i

	ABSTRACT

	ii

	TABLE OF CONTENTS

	iii

	LIST OF FIGURES

	iv

	CHAPTER 1

	001

	002

	003

	004

	005

	006

	CHAPTER 2

	007

	008

	009

	010

	011

	012

	013

	014

	015

	016

	017

	018

	019

	020

	021

	022

	023

	CHAPTER 3

	024

	025

	026

	027

	028

	029

	CHAPTER 4

	030

	031

	032

	033

	034

	035

	CHAPTER 5

	036

	037

	038

	039

	040

	041

	042

	043

	044

	APPENDICES
	045

	046

	047

	048

	049

	050

	051

	052

	053

	054

	055

	APPENDIX B

	056

	057

	058

	059

	060

	BIBLIOGRAPHY

	061

	062

	063

