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ABSTRACT 

Psychological testing has shown that there is an early 

preattentive stage in the human visual system. At this 

level, simple features and properties of objects known as 

visual primitives are detected spatially in parallel by 

groupingar of cells in the visual cortex known as feature 

maps. In order to study this preattentive stage in a 

machine vision system, the biologically inspired, highly 

parallel architecture of the artificial neural network shows 

great promise. This paper describes how the unique 

architecture of the counterpropagation neural network was 

used to simulate the feature maps which detect visual 

primitives in the human visual system. The results of the 

research showed that artificial neural networks are able to 

reproduce the function of the feature maps with accuracy. 

The counterpropagation network was able to reproduce the 

feature mape as theorized, however; future research might 

investigate the abilities of other neural network algorithms 

in this area. Development of a method for combining the 

results of feature maps in a simulation of full scale early 

vision is also a topic for future research that would bene- 

fit from the results reported here. 
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CHAPTER 1 
PREATTENTIVE VISION 

The concept of a machine that can identify and 

recognize objects as quickly and easily as humans can is an 

ambitious goal, but not an impossible one. The human visual 

system is one of the most complex neural assemblies known. 

Although it is not yet completely understood, psychologists 

and physiologists have obtained a great deal of insight into 

the structure and function of human vision. In all 

likelihood, the theories and principles of the biological 

vision system will provide the best starting point in the 

development of a machine visual system capable of equal 

performance. In this research, an attempt was made to 

understand a portion of tho biological vision system and 

reproduce its function on a machine in an effort to develop 

a more thorough understanding of complex visual mechanisms. 

From biological studies, it is clear that an image is 

registered by cells within the eye -. and transmitted to the 

brain by the optical nerve. In a computer based system, a 

camera can digitize a ecene and convert it into a collection 

of signals which are transmitted to the computer. The next 

step is analyzing and accurately recognizing the component 

objects within the scene. The human recognition system 

seems to have a striking dichotomy at this point. Many 

discriminations appear to be made automatically without 



attention and spatially in parallel, while other 

discriminations require focused attention or scrutiny. 

These two types of processing were originally attributed to 

different levels by Neisser (Neisser 1967). He identified 

an early or preattentive stage where simple features were 

registered determining texture segmentation and figure 

ground groupings. This preattentive stage is separate from 

a second, attentive stage where focused attention recognizes 

specific objects within a complex grouping of objects. The 

understanding of and recreation of a portion of the early 

visual stage was the primary goal of the research presented 

here., 

There are two types of psychological evidence that 

support the concept of preattentive processing. One is 

textural aegaentation and the other is visual search. 

Textural segmentation is the division o f  an image into 

segments based on the texture of its component parts. Figure 

1 shows an image which is easily partitioned into two 

segments. The zeros constitute one,segment and the other is 

comprised of ones. Julasz (Julesz 1981) has proposed that 

texture sagmantation is preattentively processed .using 

simple features called textons. When effortle~s texture 

segregation occurs, it is because the two segments do not 

contain the same type of texton. He defines the texton 

classes as color, elongated blobs of specific widths, 



orientation and aspect ratios, and the terminators of these 

blobs. 

Figure 1. An Example of Texture Segmentation. 

A second source of evidence that supports the early 

vision theory is visual search. When subjects are asked to 

identify a target object in displays containing a varying 

number of distractcrs, the target appears to "pop-outvv of 

the image when the target is defined by a simple visual 

feature (Treisman 1985). Figure 2 illustrates this "pop- 

out" phenomenon. The circular zero among the distracters of 

ones appears to npop-outv8 at the observer. The speed of 

target detection in these cases suggests spatially parallel 

processing at the stage prior to ,attentive vision. This 

conclusion supports the theory of early vision. Treisman 

and Gelade have developed an axpxanation known as feature 

integration theory (Treisman and Gelade 1980). This theory 

states that primitive elements are directly sensed by 

specialized populations of detectors called feature maps. 

Each feature map responds to a particular feature, and all 

maps operate in parallel. It is only when attention is 



focused on the results of the feature maps that location and 

identity of an object is obtained. This explains why an 

object that differe from its surrounding dietracters by only 

one simple feature will appear to wpop-outn. Attention is 

focused on the results of that one particular feature map, 

and when activity in that map signals the presence of the 

object, there is no need to combine the results of one map. 

An example is the "pop-outvq of a red circle among blue dis 

tracters. The circle would be the only object causing 

activity on the Hredvv feature map making identification 

easy. "Pop-outN does not occur when more than one feature 

map is involved. For example, the red circle would not 

qvpop-outvv of a background of red squares and blue circles. 

Figure 2. An Example of Pop-out Phenomenon. 

Although the feature integration theory is not meant to 

equate feature detectors with single neural units (Treisman 

and Patterson 1984), there is biological evidence to 

support the theory of neural networks in the brain devoted 

to the parallel detection of features. The projection of 



the retina has been plotted to several areas within the 

brain of cats and monkeys, and electrical measurements of 

brain activity have shown similar results in humans (Cowey 

1979). Although the exact number of visual areas in the 

human brain is not known, thirteen have been found in the 

cat (Tusa, Palmer, and Rosenquist 1975) and it is unlikely 

that the human brain has fewer areas. In experiments on 

live cats and monkeys, Hubel and Wiesel (Hubel 1988) were 

able to map activity in neural cells to a particular line 

orientation . These biological facts give much credence to 

the theory of maps that detect simple features in parallel 

whose reslults are combined for object recognition. 

Once we accept that preattentive vision exists, some 

questions arise. The most obvious is the question that asks 

which features and properties constitute the visual 

primitives detected by feature maps. There are some 

features which are generally agreed to be visual primitives 

(Beck and Ambler 1972, Beck, Prazdny, and Rosenf ield 1983, 

Treisman and Patterson 1984) These Xnclude line orientation, 

color, curvature, and blobnesa or closure. Other candidates 

which have had some doubt cast upon them include 

intersection, juncture, number and connectedness (Treisman 

1985). It is also interesting to note that new perceptual 

units may be established through extensive practice so that, 

for example, an arbitrary set of letters can come to be 



detected automatically in search (Schneider and Sheffrin 

1977). However, there is probably some built-in neural 

constraints making some physical properties or conjunction 

of properties difficult to detect preattentively and in 

parallel (Treisman and Gelade 1980). 

The question of how to implement and use feature maps 

using a computer arises. Traditional computer architectures 

are aerial and deterministic in nature. A mingle complex 

processor fetches and executes instructions from memory 

locations. Data is also stored in memory locations. The 

same data can be applied to the same program and the same 

results achieved. Pattern recognition tasks often take a 

considerable number of time steps to execute. Obviously, 

the traditional Von Neumann architecture is unsuited to a 

parallel task such as the detection of visual primitives. 

However, it will be shown that the biologically inspired 

architecture of artificial neural nets are a good candidate 

for this task. 



CHAPTER 2 
ARTIFICIAL NEURAL NETWORKS 

Artificial neural ~yotems are an area in which recent 

breakthroughs in algorithms and VLSI technology have enabled 

renewed interest. These systems, also called neural 

networks, connectionist eystems, and neurocomputers, are 

compooed of many simple processing elements that do little 

more than take a waighted sum of their inputs. In a neural 

system, a large number of elements are highly interconnected 

giving neural networks a parallel structure very unlike 

serial computers. 

The architecture of artificial neural networks (ANN) is 

biologically inspired. The processing elements perform in a 

fashion siailar to the elementary functions of the 

biological nauron that is the computing element of the 

cognitive systems of higher life forms. The elements of an 

ANN are connected in a manner that may or may not be 

related to the anatomy of the brain. recessing power 

of this architecture is a result of its massive parallelism 

and interconnections. Although the actual wintelligencemm 

of the moot sophisticated neural network is extremely 

limited, they do exhibit a surprising number of the 

~haract~ristics of biological neural syetems. h 

shown that ANNms can learn from experience, generalize from 



previous examples to new ones, and extract essential 

characteristics from inputs containing irrelevant data. An 

example of this is the Hopfield net (Hopf ield 1982) . In 

this work, the network was shown to be capable of learning 

the visual patterns of numerical digits during a training 

session. The network was then able to reproduce the digit 

when presented with a corrupted version. Neural networks 

have proved enormously useful in solving problems in many 

areas that have traditionally proved overwhelming. These 

tend to be the type of problems humans solve easily. Like 

humans, they also have limitations. Both neural networks 

and many humans seem to have difficulty in performing unaid- 

ed precise numerical calculations. Therefore, it seems 

obvious M a t  the role of artificial neural systems is not to 

eclipse traditional computer systems, but rather to work 

with them. The power of these two systems working together 

should prove greater than the sum of the two individual 

systems. 

There are many different types of artificial 

neural networks, and their differences are determined by the 

type of node algorithm they process. The concept behind 

artificial neural networks is the biological neural system. 

The nenrous system is built of cells called neurons and is 

extremely complex. In humans, the nervous system contains 

an estimated transmission paths known as 

interconnections. The neurons are similar to each other, 



Figure 3 .  me Biological Weuron. 



but each has its own unique capabilities to receive, 

process, and transmit electrochemical signals over the 

neural interconnections. 

A typical biological neuron is shown in Figure 3. 
- 

Dendrites connect neurons to each other. They receive 

input signals at a point known as a synapse and transmit 

them to the cell body. There the signals are weighted and 

summed. When the sum of the inputs exceed the threshold, 

the neuron fires, sending as signal down the axon to other 

neurons. This is a simplified explanation of the function, 

but most artificial neural systems model only these simple 

characteristics. 

The neuron or node used in artificial neural networks 

is typically nonlinear, analog, and may be slow compared to 

modern digital circuitry. The simplest node sums N weighted 

inputs and passes the results through a nonlinearity. Figure 

4 shows three cormmon types of nonlinearities; hard limiters, 

threshold logic elements and sigxaoidal nonlinearities. More 

complex nodes may use temporal integration and other types 

of time dependencies and more complex mathematical 

operations than summation. 

~rtificial neural networks can be differentiated by 

the type of node processing or algorithm used in the 

network. Neural nets are also distinguished by whether they 

accept binary or continuous valued inputs. They can also be 



Figure 4.  Common Types of Non-lineatities Used in Neural 
Networks. 



separated between those trained with or without 

supervision. Those trained with supervision have input and 

the desired output presented at training time. Theee types 

of nets are most often used as associative memory or 

classifiers. Nets trained without supervision have no 

information about the correct class provided at training 

time. Unsupervised nets are generally used as vector 

quantiears or to form clusters. Nets can be further 

categorized by whether or not they support adaptive 

training. Most nets do support adaptive training, but 

others use fixed weights during operation. 

One of the earliest types of neural networks developed 

is the perceptron (Minsky and Papart 1969). This is a 

mingle layer natwork which can accept either binary or 

continuous valued inputs. Figure 5 shows a model of a 

perceptron network. It generated much interest when de- 

veloped because of its ability to learn simple patterns. 

The percaptron accepts weighted inputs, sums then, and 

compares them to a threshold. If the sum exceeds the 

threshold, the node aets its output high. Otherwise, the 

output is set low. 

The perceptron learno in a oupervioed node and its 

learning procedure is fairly simple. First, the weights and 

threshold are initialized to small random non-zaro values, 

then an input vector is presented along with the desired 



Figure 5 .  Perceptron Network. 



output. The actual output is then calculated by multiplying 

each input by its associated weight and summing the results 

of the multiplication. The threshold values are then 

subtracted from the results giving the output. The weights 

are then adapted until the desired output is achieved. Then 

a new output and input can be presented and the weights 

again adaptad until all training sets have been presented. 

A number of different methods have been developed to adapt 

the weight8 allowing the perceptron to converge to the 

proper output. One important algorithm that can be used for 

binary or continuoue valued inputs is the delta rule. The 

weights are adjueted wing the equation: 

wi (t+l) -Q (t) +B (d(t) -Y (t) xi (t) 

where wi (t+l) is the weight associated with input x i  after 

adjustment, w i ( t )  is the current weight associated with 

input xi, d ( t )  is the desired output of the node, y(t) is 

the actual output of the node, and q(t) is the ith input of 

vector X. Modificatione to this algorithm can be made to 

develop a Least Mean Squared (INS) solution or a Gaussian 

classifier. 

Although the parceptron was innovative when introduced, 

the limitations of the single layer design nearly ended 

research into artificial neural networks. Research activity 



Figure 6 .  Two Layer Backpropagation Network. 



increased only when training algorithms tot multilayer nets 

were developed. 

The development of the backpropagation algorithm 

(Rumelhart, Hinton, and Williams 1986) played a large part 

in the resurgence of interest in artificial neural networks. 

The algorithm is a generalization of the LMS algorithm of 

the perceptron. It uses a gradient search technique to 

minimize a cost function equal to the mean square difference 

between the desired and actual net outputs. Figure 6 shows 

an example of a two layer natwork. Although backpropagation 

works on any number of layers, only two are needed to 

demonstrate the algorithm. Like perceptrons, 

backpropagation networks learn in the ouparvisad mode. 

The waights of the neurons are initially o e t  to small 

random non-zero values. The network is fully connected, 

that is , each neuron has a connection to each node or input 
in the previous and subsequent layer. Training begins by 

applying the input vector to the network. The network then 

calculates its output. This is compared to the desired 

output provided. Then the weights of the network are 

adjusted. First, the output layer weights are adjusted 

ueing the following equation: 

wij (t+f I-qj (t)+NSjXi 

where wij is the weight from hidden node i to node j at time 

t, x i  is the output of node i, N is a learning coefficient 



which can be any value in the range 0 < N < 1.0, Sj is an 

error term. For output nodes, Sj is calculated by the 

following equation : 

where y j  is the actual output and dj is the desired output 

of node j. Upon completion of the weight calculations for 

the output nodes, the connecting hidden layer nodesv weights 

are updated. This is done using the first equation with the 

S j  term begin calculated with the following equation: 

Sjmxj (1-xj)S-ation k ~ k * ~ j k  

where k is over all nodes in the layer above node j. The 

error is propagated back through the network in this manner 

which led to the development of the name backpropagation. 

The backpropagation network is currently one of 

the moat popular network. in use, because of its versatili- 

ty. It ham been proved effective in a number of application 

from .%clu~iv.-OR to epeach synthesis and recognition. 

However, it does have the disadvantage that in some cases 

the number of presentations of training data has been large . 
(more than 100 passes through all the training data). 

Although algorithms have been developed to help speed 

convergence, it seems unlikely that training can be speeded 

up significantly. As mentioned before, the backpropagation 

algorithm is a gradient descent algorithm with the associat- 

ed pitfall that it is quite possible for the algorithm to 

fail to provide a correct solution to the problem. 



The learning algorithm of the parceptron and 

backpropagation networks is a mathematical one and only 

loosely based on actual biological systems. Many research- 

ers are looking for more biologically based learning 

systems. This leads to the discussion of some unsupervised 

learning algorithms, such as the Kohonen self-organizing 

map.(Kohonan, 1988) Self-organization refers to the ability 

of the network to learn without being supplied the correct 

answer. Self-organizing networks are generally closely 

modeled after neurobiological systems and often are the 

result of researchers attempting to understand how the brain 

works. 

when initially compared to the networks already dis- 

cussed, the Kohonen network is deceptively simple. It is 

not a heirarchial eyetern and consists of a single layer of 

nodes. Howevar, it contains interconnections among the 

nodes within the single layer which do not exist in super- 

vised learning networks. Each node . contains a weighted 

connection to all of the other nodes within the network. 

Also, the initial weight vectors of a Kohonen network must 

be normalized to a constant fixed length, usually one, so 

that the weight vectors are normalized vectors pointing in 

random directions about the unit circle. 

When inputs ate applied to the Kohonen layer, each 

node computes the dot product of its weight vector with the 



F i g u r e  7 .  An Example of Kohonen Learning on the Unit C i r c l e .  



input vector. The dot product is the relative distance 

between the weight vector and the input vector. Once the dot 

product is calculated, the nodes compete to see who has the 

largest dot product. Only the winning node is allowed to 

output, and only the winner and his neighbors are allowed to 

adjust their weights. This is known as competitive 

learning. Figure 7 shows how a weight vector will adjust 

itself closer to the input vector on the unit circle. 

Neighbors are generally defined as the physically closest 

nodes. The exact size of a neighborhood allowed to output 

is variable. It generally shrinks in size during the 

trai ning process. The Kohonen learning rule for adjusting 

weights is actually quite simple. It oaye: 

wnewqold+A  old) 
where wnW is the new weight, wold is the old weight, A is 

the learning constant, and x is the input vector. As you can 

see , the weights of the vector are. adjusted to approximate 
the input. E-riments have clhown this syetem to be effec- 

tive tor associative classifier type applications such as 

associative memory and pattern recognition. It also shows a 

high resistance to noise in the input. 

The instar and outstar networks are also networks 

developed during studies of the brain.(Grossberg, 1982) The 

first is the instar. Each node is the center of a large 



number of inputs. These can be drawn as a star shape with 

the arrows pointing to the node. The second is the out 

star. Just as each node has a large number of inputs, its 

output goes to a large number of other nodes or outputs. 

This can be drawn with the node at the center of a large 

outwardly pointing star . network comprised 

interwoven mesh of instare and outstars. The operation of 

the network depends on the interaction of the instars and 

outstars. 
The learning algorithm for the instar is an 

unsupervised algorithm. The equation is: 

The result of the equation is the change in response of the 

node, y j  (t) ie the current activation of the node j, Ij (t) 

is the input to the nude from outside the system, wi is the 

weight lor the input from node i within the system, yi(t-to) 

is the activation of node i in the previous time frame, T is 

a threshold value below which no response is desired, and A 

is a forgetting constant. From the equation, it can be seen 

that the activity of the node is based on a percentage of 

its previous activity, external stimuli, and stimulation of 

the other nodes within the system. The weights of the node 

are adjusted by using the equation: 

d w i j  (t) 
m-...-...o.- = -wj (t) +GYj (t) lui (t-t,) -TI 
dt 

where yj is the activation of the node j, yi(t-to) is the 



activation of the node i in the previous time frame, T is a 

threshold value to f iltar out noise, F is a forgetting 

constant and G is a learning constant. 

The result of the equations is that the node acts 

in a manner similar to Pavlov's dogs. In psychological 

experiments, Pavlov observed that dogs salivate when pre- 

sented with food. He began ringing a bell just prior to 

presenting the dogs with food. Eventually the dogs were 

conditioned to salivate when hearing the bell. In the 

instar equations, activation occurs when the input Ij oc- 

curs. Ij is like the food in the Pavlov experiments. A t  

the same time, the node is receiving a pattern of stimula- 

tion from other sources in the network. This stimulation 

can be thought of as the ball. Eventually, the node will 

learn to give the ease response to the stimulation pattern 

as it does to the input Ij. This is a powerful tool because 

it gives insight into actual biological function, as well as 

increasing our knowledge about artificial neural networks. 

Instars and outstars hre rarely used as stand alone neural 

networks, but they have enormous potential for application. 

The application potential of all artificial neural 

networks is enornous and generally untapped. The similarity 

of the architecture to the biological neural systems of 

higher organisms suggests that the applications that the 

ANN'S are best suited to are those performed by the 



biological neural #system. It is for this reason that an 

artificial neural system was chosen to duplicate the 

functions of early vision. The purpose is not prove the 

unsuitability of a more traditional computer architecture, 

but rather to prove the suitability of the artificial neural 

network in this type of application. 



CHAPTER 3 
COUNTERPROPAGATION NETWORK 

It is also possible to create networks from a 

combination of different types of node algorithms. The 

counterpropagation network is the first developed in this 

manner (Hecht-Nielson 1987a), and it consists of a 

combination of both Kohonen learning and Grossberg learning 

methods. Figure 8 shows a graphical model of the network. 

The resulting network is capable of many of the same types 

of functions as the backpropagation networks, but it is able 

to train at a much faster rate. This makes it ideal for 

tasko where a lengthy training time is undesirable. In 

fact, because of the ability to train quickly, the 

counterpropagation algorithm can be used to test the 

feasibility of a neural network solution when the end 

product may be a backpropagation or other similar network. 

It is for this reason that a counterpropagation network was 

selected to test the feaeibility of a neural network 

solution to the detection of visual primitives. 

As shown in Figure 8, pairs of example vectors(x,y) are 

presented to the network at layers 1 and 5. These vectors 

propagate through the network in a counterflow pattern to 

yield x '  and y' at layers 2 and 4 (Hecht-Nielson, 1987). 



INPUT LAYER 

layer 1 

GROSSBERG LAYER 

layer 2 

Figure 8. Counterpropagation Network. 



For this application, the forward-only version of the 

counterpropagation network will be used. Figure 9 shows 

this version of the network. This version consists of three 

layers. An input layer consisting of N fanout units is the 

first layer. The middle layer contains M Kohomen nodes with 

one output each which connect to the third layer of 

Grossberg outstars. The output of the outstars is the 

output of the network. This version of the network trains 

in the supervised mode with the desired output presented to 

the output layer at training time. 

The inputs into the network are fanned out to the 

Kohonen layer. In this layer, the nodes sum of the product 

of each input with its associated weight. Then, the nodes 

compete to see which has the highest sum. This node is 

designated the winning node and is the only node allowed to 

output for that frame. It is also the only node allowed to 

adjust its weights. The layer will self-organize in re- 

sponse to the inputs so that the weights will be organized 

as more of less statistically optimal sets of the possible 

input vectors. The learning equation for the winning node 

is 

Wnew~ola+A(Iowold) 

where A is a learning conetant between 0 and 1, and I is the 

associated input into the node. This Kohonen learning law 

moves the closest matching weight vector towards the latest 



NPUT 
AYER 

(OHONEN 
AYER 

3FDSSBERG 
AYER 

Figure 9. Feed Forward Counterpropagation Network. 



input vector at a rate determined by the learning constant, 

A. A large value causes the network to converge more quickly 

than a smaller valua, but some statistical information may 

be lost with a too large value. 

An alternative variant of this layer is to operate 

in an interpolative mode, as opposed to the accretive mode 

discussed above. In this mode, more than one node is al- 

lowed to win the competition and produce an output. The 

outputo are adjusted so that they eum to one (the former 

single output signal), and all are allowed to adjust their 

weights. This interpolation process may lead to an increase 

in mapping approximation accuracy without increasing the 

network size, however, there is no conclusive evidence to 

proving this theory. 

The outputs of the Kohonen layer are connected to 

the Groesberg layer. The Grossberg layer learns the average 

output vector when each of the Kohonen processing elements 

wins the closeness competition. Each . Grossberg element sums 

the product of the Kohonen output with its associated 

weight. The output For a continuous valued network is this 

valua. In a binary network, the summation value 5s compared 

to a threshold value and set equal to one if greater than 

the threshold , or zero if less than the threshold. The 

layer then adjusts its weights appropriately. Only the 



weights associated with a non-zero input are allowed to 

adjust using the following equation: 

Wnewqold +B (d-wold) 

where d is the desirad output for that element and B is a 

learning constant similar to A for the Kohonen nodes. 

The CPN functions very much like a lookup table. 

The Kohonen layer learns the characteristics of the input 

data, and the Grossberg layer learns the desired output for 

that particular set of data. Because of this simplistic 

function, counterpropagation ie inferior to backpropagation 

for many applications. However, it forms a good statistical 

model of its input vectors and works well for applications 

~ u c h  as data compression, pattern recognition, function 

approximation, and statistical analysis(Hecht-Nielson 

1988). Tha network ohareo the high resistance to noise 

demonstrate4 by tha Kohonen self-organizing network. Also 

like tho Kohonen network, a large number of Kohonen nodes 

are oftan necessary to obtain good performance. 



CHAPTER 4 
DETECTION OF VISUAL PRIMITIVES 

For purposes of implementing the feature map function, 

a simulation of the feed forward counterpropagation network 

was developed in the C language. Listings of the program 

are included in ~ppendix A. The next step was to discover 

the limits on the size of the network and determine how 

large a visual modal was feasible. After experimentation, 

the maximum size wae fauna to be a 30 by 30 input image with 

35 Kohonen nodes. The Grossberg layer was designed to have 

either two or three output nodes. The limitations on the 

size was due to the capability of the computer chosen for 

the implementation, an Intel 80386 based personal computer 

with one megabyte of RAM. 

The simulation is capable of running in either training 

or operational mode. In training mode, . an input file is 

expected to hold both inputs and desired outputs of the 

network. In operational mode, only ihput data is expected in 

the input file. Two waight files are used; one contains the 

weights for the Kohonen layer and the second the weights 

for the Grossberg layer. The design of the network 

simulation in operational mode is fairly simple. The input 

vector is normalized and the sum of each Kohonen node is 

calculated. After the winning Kohonen nods is determined, 



the outputs to the Grossberg layer are set with the winning 

node outputting a one and the other nodes outputting zero. 

The summation of each Groesberg node is performed and the 

result is compared to a threshold value of 0.8. If the 

~ummation i m  grmater than the threshold, the output of the 

node is set to one, otherwise, it is set to zero. The three 

outputs are then examined to determine if the feature is 

present, not present, or undetermined (Waseerman 1989). 

The training m o d e  is similar with the addition of steps 

to adjust the weights of the winning Kohonen node, and the 

Grossberg nodesi weights. At the beginning of a training 

session, all weight vectors are normalized. By normalizing 

the input vector ae well, the Kohonen weight vectors will 

remain normalized vectors after adjustment. The weight 

adjustment will merely rotate the weight vector closer to 

the input vector on the unit circle. In many neural net- 

works it is customary to randomize the initial weight vec- 

tors. However, in Kohonen learning, this can cause serious 

training problems as it will unifo&ly distribute the weight 

vectors about the unit circle. If the input vectors are not 

evenly distributed about the unit circle, oome nodes will 

never win the competition and be allowed to adjust their 

weights. This wastes those nodes and effectively decreases 

the size of the network. This can be disastrous if a 

mapping of two similar inputs to different outputs is 



desired. In order to avoid this pitfall, all of the Kohonen 

weight vectors were set to equal coincident values, and a 

training technique known as the convex combination method 

was used to train tha Xohonen layer. 

In the convex combination method, all weights are 

initially set to 1/ (N) 'I2, where N ie the number of inputs. 

During training the input vector X is given the value: 

X=A*X+ (1/ (N) * ( 1-A) ) 

where A is initially the small value of 0.1 and is increased 

gradually until it reaches a value of 1.0. This allows the 

input vectors to gradually separate and assume their true 

values. Each node's weight vector will follow one or a 

group of the input vectors. This slows the training 
I 

process, but make8 sure that no Kohonen nodes are wasted 

(Wasoarman 1989). 

The Grorsbrg layer trains much faoter than the Kohonen 

layer. Therefore, the simulation does not adjust the Gross- 

berg weights until the Kohonen layer has had a chance t o  

converge. Five passes are made with a learning constant of 

0.7 before any adjustments are made to the Grossberg layer. 

On the sixth pass, tha Kohonen layer has converged ang the 

Groseberg layer can be gradually trained to match the de- 

sired output. At thia point, the learning constant fe 

gradually decreased to a mainimua value of 0.1 until the 

network converges. 



After the simulation was judged to be robust, visual 

primitives were selected for recognition. Since the network 

used a binary image, color was ruled out as a candidate. 

Line orientation was selected due to its general acceptance 

as a primitive (Treirrmaan 1985), as well as the biological 

evidence of cells that detect line orientation provided by 

Hubel and Waisel (Hubel 1988). Training sets were developed 

in three categories: sets containing the line, sets without 

the line, and sets containing more than one line. For the 

first orientation, which was horizontal, 38 training sets 

were developed. Thirty of these contained a single horizon- 

tal line, four contained a variety of non-horizontal lines, 

and four contained a number of horizontal lines. Initially, 

a network with only two outputs was used, one for feature 

present and one for feature not present. It became obvious 

during training that another output was needed. Some of the 

sets from the category without a horizontal line and from 

the category with many horizontal lines were mapping to the 

same Kohonen node. When this occurred, the network would 

not converge. When these similar sets were mapped to a 

third output called wundeterminedtt , the network converged 
quickly in only nine passes through the training sets. This 

result is understandable when some of the psychological test 

results are examined. Treisnan and Schmidt found that 

illusory con junctione can occur when attention is diverted 



Figure  10. A Training Image Happed to "UndeterminedM. 
I 



or overloaded (Traiaman and Schmidt 1982) . The images that 

mapped to "undetenninedH all contained a large number of 

lines or curves which would place a strain on attention. 

Figure 10 shows an example of an image which mapped to 

Hundetennined@t. 

Similar training sets were developed for different line 

orientation. Between 38 and 40 training images were 

developed for each. When the images containing a large 

concentration of features were mapped to the wtundeterminedw 

category, the network converged in eight or nine passes 

through the training set. As discussed in Chapter 3, the 

ability to train quickly is an advantage of  the using the 

counterpropagation neural network. A disadvantage is that 

the Kohonan layer training is unsupervised and if two data 

eats meant to be mapped to different outpute end up mapped 

to the same Icohonen node, the network will never converge. 

This can be avoidad by using a larger network, but if size 

is an issue, the counterpropagation network is a bad choice. 

Despite the constrained environment ueed for this research, 

the network was able to accurately map images containing 

different line orientations into the correct category. The 

most interesting result was the inability of the network to 

immediately identify whether or not a feature was present in 

tlnoisyn images. This trait is shared by the feature maps 

in the human visual system, although it was not intent,ional- 

ly trained into the artificial or biological network. 



CHAPTER 5 
RESULTS AND CONCLUSIONS 

After the counterpropagation network was trained to 

recognize the selected visual primitive, a series of test 

data similar to that used by Treisman in her experiments on 

human recognition of visual primitives (Treisman 1985) were 

passed through the network. Figures 11 and 12 show an 

examples of the images run through the network trained to 

recognize horizontal lines. Figure 11 shows an image which 

gave a result of feature present, and the image in Figure 

12 gave a result of feature not present. Other test data 

was passed through and the results were very accurate. 

The next step was to attempt to train a different 

visual primitive. Curvature was chosen as a good candidate 

for training. The network was trained using a series of 

images containing circles mapped to feature present, a 

aeries of lines in different orientations -. mapped to feature 

not present, and a few noisy images similar to those in 

used in line orientation mapped to undetermined. After the 

network was successfully trained to recognize curvature, a 

series of test images were run through the network. These 

included images in which the circle was bisected with a 

horizontal line, and others with only horizontal lines. 

Figure 13 shows a test image which mapped to feature present 



Figure 11. A Test Image Mapped to Feature Present. 





and Figure 14 shows a test image which mapped to feature 

not present. 

The results obtained in training the two types of 

visual primitive were excellent. The counterpropagation 

showed a great deal of resistance to noise and was able to 

pick out the desired primitive among a surprisingly large 

number of distractors. Obviously, there is a limit on the 

noise resistance as shown by the necessity of including the 

undetermined output. However, this limit is ehared by the 

human visual system and is an accurate recreation of feature 

maps in the human visual system, and that is the goal of the 

research presented here. 

Since such good results were received in training the 

network to recognize line orientation and curvature, it was 

decided to attempt to train a more complex property. The 

property of juncture is a possible visual primitive. There 

have been test results which show that it is probably not a 

primitive shared by most humans (Treisman 1985) . However, 

since there are results showing that some individuals can be 

trained to detect new perceptual units automatically in 

search (Schneider and Shiffrin 1977) , the attempt to train 
the counterpropagation network to detect a corner was made. 

A corner angled at -90 degrees was chosen as the feature to 

detect. While developing training data, it became obvious 

that a larger network would be necessary to get a good 



Figure 13. Image mapped to Curvature Feature Present. 
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result. By decreasing the size of the input image to a 25 

by 30 array,the network became proportionally larger. Even 

with the larger network and a proportionally larger training 

set, the network is still only capable of recognizing 

comers in a limited area within the image. 

Interestingly enough, this result was not unexpected. 

Treisman and Patterson conducted experiments to detect 

whether similar features known as emergent features were 

actually primitives or not. Their results were inconclusive 

(Treisman and Patterson 1980). Emergent features are 

defined as combinations of simple elements which appear to 

generate new interaction of relation properties. It is 

theorized that aome emergent features may also be detected 

by independent feature maps and thus qualify as visual 

primitives by themselves. As otated earlier, experiments to 

show that emergent features are primitives neither proved 

nor disproved the theory, just attempt train the 

network was successful in the sense that some corners are 

detected and unsuccessful in that all corners cannot be . 
detected by the network. 

The fact that both the training attempt and the 

experiments were inconclusive suggests that emergent 

features such as corners may be trained as primitives in 

certain individuals, but not in everyone. If a large enough 

network were used and enough time given, a network could be 

trained to recognize all corners or other emergent feature. 



Just as a human will train his or herself to recognize 

cornere automatically if there is a need, a machine visual 

system could be trained to recognize such features if there 

is a need. The decision to invest the time and resources to 

do train a network vareus recognizing the features at a 

secondary level would be a system application sensitive 

decision. 

The research presented here was very successful. The 

countatpropagation network trained and detected visual 

primitives in a manner not unlike that of human early 

vision. Tho network accurately mapped oimple visual 

primitives such as line orientation and curvature quickly 

and easily. The network was able to map the more complex 

feature of juncture as well, although not as quickly and 

easily. Although the simulation enviroment used was 

constrained, the network enviroment could easily be changed 

to a larger , more powerful computer and more complex 

mappings could be achieved. The counterpropagation network 

served its purpose well by converging in relatively few 

training attempts. However, it required a larger network 

than a more complex network paradigm such as backpropagation 

would due to the simplistic nature of the counterpropagation 

network. For this reason alone, it would worthwhile to 

explore the abilities of a different network pardigm in 

detecting visual primitives. On the other hand, if only the 



simpler primitives are to be detected, the 

counterpropagation model is ideal as shown by the results 

presented here. The counterpropagation model was easily 

trained to recogniee the simple visual primitives even in a 

cluttered enviroment. If a complete early visual system 

were developed, the counterpropagation network would work 

well as a feature detector for the simple visual primitives 

such as line orientation. If the need to detect a more 

complex feature was desired, the counterpropagation could be 

used to test the feasibility of a neural network solution 

and a more complex paradigm could be used for the final 

product. The next step in this research would be to train 

separate artificial neural networks to detect a selected 

number of visual p~i8itivec and devise a means to use the 

output of these neural networks to simulate the entire 

process of early vision. Once that is accomplished, the 

next step is simulating the attentive stage of the visual 

process and combining them for a -. complete machine visual 

system. 



APPENDICES 



APPENDIX A 

COUUTERPROPAGATIQM NE%WORX SIMUltrATION SOURCE CODE 



#include <atdio.h> 
#include <alloc.h> 
#include aath.h> 
main ( ) 
{ 
int c,itemp; 
int tie,k2,k3: 
FILE *weights, *idata,*kweight; 
unsigned char *input,*GROG,*OUTPUT ; 
float *GWT; 
float *temp,*FANIN, *KOH; 
float huge *KWT[Qb] ; 
float tryout,learn, ftotal, alpha; 
int I,J,N, M, kwin,pass; 
int i,j,k,l,m,sets,cureet,total; 
long n; 
short int train,rep,cont; 
unsigned long meaury; 
double square; 

n=f arcorelef t ( ) ; 
/*get number oF nobe. per layer*/ 

15-750; /*Number oi inputs*/ 
M-3; / * N W @ r  o f  @~tpuW*/ 
J=35; /*Nunbar of Kofionan cells*/ 
alphaa0.1; 

input=(unaign%d char *)calloc(N,sizeof(unsignad char)); 
if ( input-IkQUZJi) 
printt(rtrwy allocation error on input\nw); 

GROS=(unsign.d char *)aalloc(M,sizeof(unsigned char)); 
ir ( G R O - ~ U )  
printf(WHamary allocation error on GROS\nW) ; 

OUTPUT= (unsiqpQvdt char *) calloc (M, sizeof (unsigned char) ) ; 
i r  (ou~m--I 

printf(*Er~ary allocation error on OUTPUT\nVw); 
temp (float *) calloc(J, sizeof (float) ) ; 
if (teq-mu) Z 

printf ( " M u o r y  allocation error on temp\ntt) ; 
FANIN- (float *) oalloc (N, oizeof (float) ) ; 
ii (rmrM-mmi) 
printt(wm.nory allocation error on temp\nM); 

GWT=(float *)calloo((M*J),sizeof(float)); 
if (GWT-NULL) 
printf (uMmrory allocation error on GWT\nw) ; 

KOHl (float *) callec (3, sizeof (float) ) ; 

if ( KOH-NUU) 
printf (g8Memory allocation error on KOH\nw ) ; 

for (i=O;i<J;i++) 
{ 



KWT[i]=(float *) farcalloc(N,~izcrof (float)) ; 
if (KWT[i]-mWULL) 
~rintf(~Error in allocating KWT\nM)t 
printf (wi=%d\nu, i) : 

1 

~rinti(~Is this a training run-Y or N?\nn); 
elgetchar ( )  ; 
if (c-'Y' I I 0-l~') 
( 

/*Open files for raading*/ 
kweight=f~psn(~kwight.dat~,~r+~); 
if (kweight-0) 
~rintf(~crrror in opening weights file\nvl); 

/*read in weighto frar tile*/ 
/*Kohonen w e i  htrr*/ 
for (i=O;i<J; ++) 
( 

f 
for(j-0; j<#;j++) 
( 

h#%t,'%fH, &tryout) ; 
mti1 tjI=Qv~*~ 

I 
I 
close ( m i g h t )  ; 

weighta=fopern(~weights. aatn, *rn) ; 
/*Crosebarg waights*/ 

for (i=O;i<M*J;i++) 
{ 
facanf(waighte,*%fH,Ctryout); 
GWT[i]-tryout 1 

I 

/*Cloee weights file*/ 
iclose (weights) ; 

/* net is training*/ 
trainml ; 
idata=fapan(ntrain3.datn,Hrm); 
if (idata-0) 
printf("error opening input file\nvl); 

( 
/*Determine number of sets of training data*/ 
totalr0 ; 
paso=l ; 
sets-O ; 
contr0 ; 
while (cont-0) 



( 
sets++ ; 
for (i=O;i<N;i++) 
{ fs~ani(idata,~%d~,bitenrp); 
cent-feof (idata) ; 

1 
if (contl-0) 
sets-- ; 

for(i==~;i<M;i++) 
fs~anf(idata,~Sd~,Citeap); 
contaf eof ( idata) ; 

1 
f close ( idata) ; 
idatawfopen (tttrain3. datH , wrtl) t 

/*Begin a training session*/ 
cursret-1; 
learnno. 7 ; 
rep-1; 
while (rep-1) 

{ 
/*read in training data*/ 
for ( i=0 t i<N ; i++) 

{ 
f scani (idata, tt%dtt, britemp) ; 
input [ilritemp; 

f ecanf (idata, "%dgg, &itemp) ; 
ou~pu~[i]=it-p; 

1 
/*Normalize input vector*/ 
squareto ; 
for(i-a;i<N;i++) 
square=square+(input[i]*input[i]); 
if (squaret=O.O) 
{ 
spare-sqrt (square) ; 
for (i=O;i<Nii++) 
{ FMIN[i]=input[i]/s~are; 
FAPIIN[i]-alpha*F11l9Ii9[i]+(O.03125*(l-alpha)); 

1 
1 



/*Find winning Kohonen node*/ 
kwh-0; 

for(i-l;i<J;i++) 

/*Adjust weight. oi w-ing Kohonen nods*/ 
/*Read in node weights*/ 

/*Set output tor Kohonen nodes*/ 
for(i=O:i<J;i++) 

{ 
KOH[i]-Ot 
if (i==&iwin) 

( 
KOH[i]=l.O; 

1 
1 

/*Clear out tonp loortions*/ 
for(i=O;i<j ~i++) 
temp[i]=O. 0 ;  

{ 
/*Calculate value of 
temp[i]-GWT[i][O..J]*KOH[O..J]*/ 

Grossberg node- 



/*Set output of Grossberg layer*/ 

for(i-O;i<M;i++) 
{ 
if(tenrp[i]>0.8) 
GROS[i]=l; 
else 
CROS [i]=O; 

1 

/*Adjust weights of Crossberg layer*/ 
for(i=o:i<ari++) 

1 
1 

1 
/*Deternira. accuracy of result*/ 
j=o ; 
tor(i=O:i<M;i++) 

{ 
if (GRQS[i]irOUTPUT[i]) 
j++; 

1 
totalltotal* : 1 

* 

printi("Tra n l n g  s e t  %d, 
%d\ntm , cursat, j ) t 

Incorrect outputs= 

1 
else 

{ total-1; 
learnm0.7 ; 

1 
/*Determine if coagalete one pass training */ 
if (cursetl=sets) 
curset++ ; 

else 





( 
fscanf(kweight,*%fn,&tryout); 
KWT[i] [jl-tryout; 

1 
1 
close (Weight) ; 
weights-f open (Nnweights2. BatN, V") ; 

/*Grossberg weights*/ 

for (i=O:i<M*J;i++) 
( 
fscanf(~eights,~%f~,&tryout); 
GWT [ ilrtryout; 

I 

/*Close weights file*/ 
f close (weights) ; 

idatamfopen ( winput. datw , '@rn) ; 
if (idata-0) 
printf (@'error opening input f ile\n14) ; 

contsf eof ( idata) ; 
while (cant-0) 
{ 

, /*read in input data*/ 
for (i=O;i<N; i++) 
( 
fs~anF(idata,~%d~,6riternp); 
input[i]=iteap; 
contmf eoi ( idata) t 

1 
if (cont==O) 
{ 
/*Normalize input vector*/ 
squarer0 ; 
for(i=Oti<Nii++) . 
sguare=sguare+(input[i]*input[i]) ; 
if (squarel=O.O) 
( 
square-sqrt (square) i 
for(i=O;i<N;i++) 
{ FANIN [ i]=input [i]/equare ; 
I 
1 
/*Display input data to screen*/ 

for (i=O;i<30;i++) 
{ 
for(jr0; j<30;j++) 

( 



1 
printf (*\nVQ) ; 

1 

/*Find winning Ltohonan node*/ 
kwin=O ; 

for (i-l;i<J:i++) 

/ * S e t  output for SWhamm nodas+/ 
for(i-o8i<J?i++) 

{ 
KOH[i]-Oi 
if ( i-Win) 

{ 
XOH[i]=k*Ot 

1 
1 

/*Clear out t a p  locations*/ 
for (i-0; i<j t i++) 
tsmp[i]=O.O; 

Grossberg node- 



/ *Se t  output of Grossberg layer*/ 

( 
ii(temp[i]>O.8) 
6ROS [i)-1; 

sslrse 
OROS[i]=O; 

1 
if (6ROS [O]-1)  
printf ( *Feature gresent\nw ) ; 

{ 
if (GROS [I 1-1) 
printf ("Feature not present\ntv ) ; 

elase 
printf(nFeatur+ possibly present\ntl); 
1 
oontmfeof (idata) : 

1 
1 
f cloee ( idata) ; 



APPENDIX B 

SAMPLE TRAINING DATA 



Figure 15. Sample Training Data lor Horizontal Lines. 



Figure Sample Training Data for Slanted Lines. 





Figure 18. Sample Training Data for Curvature 
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