
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

1990

Counterpropagation neural network detection of visual primitives Counterpropagation neural network detection of visual primitives

Cynthia Lynn Johnson
cynthiajohnson@knights.ucf.edu

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information,

please contact STARS@ucf.edu.

STARS Citation STARS Citation
Johnson, Cynthia Lynn, "Counterpropagation neural network detection of visual primitives" (1990).
Retrospective Theses and Dissertations. 4011.
https://stars.library.ucf.edu/rtd/4011

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Frtd%2F4011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/4011?utm_source=stars.library.ucf.edu%2Frtd%2F4011&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

COUNTERPROPAGATION NEURAL NETWORK
DETECTION OF VISUAL PRIMITIVES

CYNTHIA LYNN JOHNSON
BoSeEoEe, University of Miami, 1986

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Eicience in Computer Engineering

in the Graduate Studies Program
of the College of Engineering
University of Central Florida

Orlando, Florida

Summner Term
1990

ABSTRACT

Psychological testing has shown that there is an early

preattentive stage in the human visual system. At this

level, simple features and properties of objects known as

visual primitives are detected spatially in parallel by

groupingar of cells in the visual cortex known as feature

maps. In order to study this preattentive stage in a

machine vision system, the biologically inspired, highly

parallel architecture of the artificial neural network shows

great promise. This paper describes how the unique

architecture of the counterpropagation neural network was

used to simulate the feature maps which detect visual

primitives in the human visual system. The results of the

research showed that artificial neural networks are able to

reproduce the function of the feature maps with accuracy.

The counterpropagation network was able to reproduce the

feature mape as theorized, however; future research might

investigate the abilities of other neural network algorithms

in this area. Development of a method for combining the

results of feature maps in a simulation of full scale early

vision is also a topic for future research that would bene-

fit from the results reported here.

TABLE OF CONTENTS

LIST OF FIGURES '. . . . i v

CHAPTER 1 PREATTENTIVE VISION 1

CHAPTER 2 ARTIFICIAL NEURAL NETWORKS 7

CHAPTER 3 COUNTERPROPAGATION NETWORK 24

CHAPTER 4 DETECTION OF VISUAL PRIMITIVES. 30

CHAPTER 5 RESULTS AND CONCLUSIONS 36
APPENDIX A COUNTERPROPAGATION NETWORK SIMULATION46

APPENDIX B TRAINING DATA l 56

BIBLIOGRAPHY o m o m a m a . m a a m m e e m a e m e a 6 1

iii

LIST OF FIGURES

. 1 . An Example of Texture Segmentation

. 2 . An Example of the Pop-out Phenomenon

. 3 . The Biological Neuron

4 . Common Types o f Non-linearities Used in Neural . Networks 11

. 6 . Two Layer Backpropagation Network 15

7 . An Example of Kohonen Learning on the Unit Circle . 19
. 8 . Counterpropagation Network 25

. 9 . Feed Forward Counterpropagation Network 27

. 10 . A Training Imga Happed to HUndaterminedH 34

. 11 . A Test Image Mapped to Feature Present 37

. 12 . A Test Image Mappad to Feature Not Present 38

. 13 . Image mapped to Curvature Feature Present 40

. . . 14 . Image mapped to Curvature Feature Not Pralsent 41

. 15 . Sample Training Data for ~orizontal Lines 56

. 16 . Sample Training Data for Slanted Lines 57

. 17 . Sample Training Data for Corners 58

. 18 . Sample Training Data for Curvature 59

CHAPTER 1
PREATTENTIVE VISION

The concept of a machine that can identify and

recognize objects as quickly and easily as humans can is an

ambitious goal, but not an impossible one. The human visual

system is one of the most complex neural assemblies known.

Although it is not yet completely understood, psychologists

and physiologists have obtained a great deal of insight into

the structure and function of human vision. In all

likelihood, the theories and principles of the biological

vision system will provide the best starting point in the

development of a machine visual system capable of equal

performance. In this research, an attempt was made to

understand a portion of tho biological vision system and

reproduce its function on a machine in an effort to develop

a more thorough understanding of complex visual mechanisms.

From biological studies, it is clear that an image is

registered by cells within the eye -. and transmitted to the

brain by the optical nerve. In a computer based system, a

camera can digitize a ecene and convert it into a collection

of signals which are transmitted to the computer. The next

step is analyzing and accurately recognizing the component

objects within the scene. The human recognition system

seems to have a striking dichotomy at this point. Many

discriminations appear to be made automatically without

attention and spatially in parallel, while other

discriminations require focused attention or scrutiny.

These two types of processing were originally attributed to

different levels by Neisser (Neisser 1967). He identified

an early or preattentive stage where simple features were

registered determining texture segmentation and figure

ground groupings. This preattentive stage is separate from

a second, attentive stage where focused attention recognizes

specific objects within a complex grouping of objects. The

understanding of and recreation of a portion of the early

visual stage was the primary goal of the research presented

here.,

There are two types of psychological evidence that

support the concept of preattentive processing. One is

textural aegaentation and the other is visual search.

Textural segmentation is the division o f an image into

segments based on the texture of its component parts. Figure

1 shows an image which is easily partitioned into two

segments. The zeros constitute one,segment and the other is

comprised of ones. Julasz (Julesz 1981) has proposed that

texture sagmantation is preattentively processed .using

simple features called textons. When effortle~s texture

segregation occurs, it is because the two segments do not

contain the same type of texton. He defines the texton

classes as color, elongated blobs of specific widths,

orientation and aspect ratios, and the terminators of these

blobs.

Figure 1. An Example of Texture Segmentation.

A second source of evidence that supports the early

vision theory is visual search. When subjects are asked to

identify a target object in displays containing a varying

number of distractcrs, the target appears to "pop-outvv of

the image when the target is defined by a simple visual

feature (Treisman 1985). Figure 2 illustrates this "pop-

out" phenomenon. The circular zero among the distracters of

ones appears to npop-outv8 at the observer. The speed of

target detection in these cases suggests spatially parallel

processing at the stage prior to ,attentive vision. This

conclusion supports the theory of early vision. Treisman

and Gelade have developed an axpxanation known as feature

integration theory (Treisman and Gelade 1980). This theory

states that primitive elements are directly sensed by

specialized populations of detectors called feature maps.

Each feature map responds to a particular feature, and all

maps operate in parallel. It is only when attention is

focused on the results of the feature maps that location and

identity of an object is obtained. This explains why an

object that differe from its surrounding dietracters by only

one simple feature will appear to wpop-outn. Attention is

focused on the results of that one particular feature map,

and when activity in that map signals the presence of the

object, there is no need to combine the results of one map.

An example is the "pop-outvq of a red circle among blue dis

tracters. The circle would be the only object causing

activity on the Hredvv feature map making identification

easy. "Pop-outN does not occur when more than one feature

map is involved. For example, the red circle would not

qvpop-outvv of a background of red squares and blue circles.

Figure 2. An Example of Pop-out Phenomenon.

Although the feature integration theory is not meant to

equate feature detectors with single neural units (Treisman

and Patterson 1984), there is biological evidence to

support the theory of neural networks in the brain devoted

to the parallel detection of features. The projection of

the retina has been plotted to several areas within the

brain of cats and monkeys, and electrical measurements of

brain activity have shown similar results in humans (Cowey

1979). Although the exact number of visual areas in the

human brain is not known, thirteen have been found in the

cat (Tusa, Palmer, and Rosenquist 1975) and it is unlikely

that the human brain has fewer areas. In experiments on

live cats and monkeys, Hubel and Wiesel (Hubel 1988) were

able to map activity in neural cells to a particular line

orientation . These biological facts give much credence to

the theory of maps that detect simple features in parallel

whose reslults are combined for object recognition.

Once we accept that preattentive vision exists, some

questions arise. The most obvious is the question that asks

which features and properties constitute the visual

primitives detected by feature maps. There are some

features which are generally agreed to be visual primitives

(Beck and Ambler 1972, Beck, Prazdny, and Rosenf ield 1983,

Treisman and Patterson 1984) These Xnclude line orientation,

color, curvature, and blobnesa or closure. Other candidates

which have had some doubt cast upon them include

intersection, juncture, number and connectedness (Treisman

1985). It is also interesting to note that new perceptual

units may be established through extensive practice so that,

for example, an arbitrary set of letters can come to be

detected automatically in search (Schneider and Sheffrin

1977). However, there is probably some built-in neural

constraints making some physical properties or conjunction

of properties difficult to detect preattentively and in

parallel (Treisman and Gelade 1980).

The question of how to implement and use feature maps

using a computer arises. Traditional computer architectures

are aerial and deterministic in nature. A mingle complex

processor fetches and executes instructions from memory

locations. Data is also stored in memory locations. The

same data can be applied to the same program and the same

results achieved. Pattern recognition tasks often take a

considerable number of time steps to execute. Obviously,

the traditional Von Neumann architecture is unsuited to a

parallel task such as the detection of visual primitives.

However, it will be shown that the biologically inspired

architecture of artificial neural nets are a good candidate

for this task.

CHAPTER 2
ARTIFICIAL NEURAL NETWORKS

Artificial neural ~yotems are an area in which recent

breakthroughs in algorithms and VLSI technology have enabled

renewed interest. These systems, also called neural

networks, connectionist eystems, and neurocomputers, are

compooed of many simple processing elements that do little

more than take a waighted sum of their inputs. In a neural

system, a large number of elements are highly interconnected

giving neural networks a parallel structure very unlike

serial computers.

The architecture of artificial neural networks (ANN) is

biologically inspired. The processing elements perform in a

fashion siailar to the elementary functions of the

biological nauron that is the computing element of the

cognitive systems of higher life forms. The elements of an

ANN are connected in a manner that may or may not be

related to the anatomy of the brain. recessing power

of this architecture is a result of its massive parallelism

and interconnections. Although the actual wintelligencemm

of the moot sophisticated neural network is extremely

limited, they do exhibit a surprising number of the

~haract~ristics of biological neural syetems. h

shown that ANNms can learn from experience, generalize from

previous examples to new ones, and extract essential

characteristics from inputs containing irrelevant data. An

example of this is the Hopfield net (Hopf ield 1982) . In

this work, the network was shown to be capable of learning

the visual patterns of numerical digits during a training

session. The network was then able to reproduce the digit

when presented with a corrupted version. Neural networks

have proved enormously useful in solving problems in many

areas that have traditionally proved overwhelming. These

tend to be the type of problems humans solve easily. Like

humans, they also have limitations. Both neural networks

and many humans seem to have difficulty in performing unaid-

ed precise numerical calculations. Therefore, it seems

obvious M a t the role of artificial neural systems is not to

eclipse traditional computer systems, but rather to work

with them. The power of these two systems working together

should prove greater than the sum of the two individual

systems.

There are many different types of artificial

neural networks, and their differences are determined by the

type of node algorithm they process. The concept behind

artificial neural networks is the biological neural system.

The nenrous system is built of cells called neurons and is

extremely complex. In humans, the nervous system contains

an estimated transmission paths known as

interconnections. The neurons are similar to each other,

Figure 3 . me Biological Weuron.

but each has its own unique capabilities to receive,

process, and transmit electrochemical signals over the

neural interconnections.

A typical biological neuron is shown in Figure 3.
-

Dendrites connect neurons to each other. They receive

input signals at a point known as a synapse and transmit

them to the cell body. There the signals are weighted and

summed. When the sum of the inputs exceed the threshold,

the neuron fires, sending as signal down the axon to other

neurons. This is a simplified explanation of the function,

but most artificial neural systems model only these simple

characteristics.

The neuron or node used in artificial neural networks

is typically nonlinear, analog, and may be slow compared to

modern digital circuitry. The simplest node sums N weighted

inputs and passes the results through a nonlinearity. Figure

4 shows three cormmon types of nonlinearities; hard limiters,

threshold logic elements and sigxaoidal nonlinearities. More

complex nodes may use temporal integration and other types

of time dependencies and more complex mathematical

operations than summation.

~rtificial neural networks can be differentiated by

the type of node processing or algorithm used in the

network. Neural nets are also distinguished by whether they

accept binary or continuous valued inputs. They can also be

Figure 4. Common Types of Non-lineatities Used in Neural
Networks.

separated between those trained with or without

supervision. Those trained with supervision have input and

the desired output presented at training time. Theee types

of nets are most often used as associative memory or

classifiers. Nets trained without supervision have no

information about the correct class provided at training

time. Unsupervised nets are generally used as vector

quantiears or to form clusters. Nets can be further

categorized by whether or not they support adaptive

training. Most nets do support adaptive training, but

others use fixed weights during operation.

One of the earliest types of neural networks developed

is the perceptron (Minsky and Papart 1969). This is a

mingle layer natwork which can accept either binary or

continuous valued inputs. Figure 5 shows a model of a

perceptron network. It generated much interest when de-

veloped because of its ability to learn simple patterns.

The percaptron accepts weighted inputs, sums then, and

compares them to a threshold. If the sum exceeds the

threshold, the node aets its output high. Otherwise, the

output is set low.

The perceptron learno in a oupervioed node and its

learning procedure is fairly simple. First, the weights and

threshold are initialized to small random non-zaro values,

then an input vector is presented along with the desired

Figure 5 . Perceptron Network.

output. The actual output is then calculated by multiplying

each input by its associated weight and summing the results

of the multiplication. The threshold values are then

subtracted from the results giving the output. The weights

are then adapted until the desired output is achieved. Then

a new output and input can be presented and the weights

again adaptad until all training sets have been presented.

A number of different methods have been developed to adapt

the weight8 allowing the perceptron to converge to the

proper output. One important algorithm that can be used for

binary or continuoue valued inputs is the delta rule. The

weights are adjueted wing the equation:

wi (t+l) -Q (t) +B (d(t) -Y (t) xi (t)

where wi (t+l) is the weight associated with input x i after

adjustment, w i (t) is the current weight associated with

input xi, d (t) is the desired output of the node, y(t) is

the actual output of the node, and q(t) is the ith input of

vector X. Modificatione to this algorithm can be made to

develop a Least Mean Squared (INS) solution or a Gaussian

classifier.

Although the parceptron was innovative when introduced,

the limitations of the single layer design nearly ended

research into artificial neural networks. Research activity

Figure 6 . Two Layer Backpropagation Network.

increased only when training algorithms tot multilayer nets

were developed.

The development of the backpropagation algorithm

(Rumelhart, Hinton, and Williams 1986) played a large part

in the resurgence of interest in artificial neural networks.

The algorithm is a generalization of the LMS algorithm of

the perceptron. It uses a gradient search technique to

minimize a cost function equal to the mean square difference

between the desired and actual net outputs. Figure 6 shows

an example of a two layer natwork. Although backpropagation

works on any number of layers, only two are needed to

demonstrate the algorithm. Like perceptrons,

backpropagation networks learn in the ouparvisad mode.

The waights of the neurons are initially o e t to small

random non-zero values. The network is fully connected,

that is , each neuron has a connection to each node or input
in the previous and subsequent layer. Training begins by

applying the input vector to the network. The network then

calculates its output. This is compared to the desired

output provided. Then the weights of the network are

adjusted. First, the output layer weights are adjusted

ueing the following equation:

wij (t+f I-qj (t)+NSjXi

where wij is the weight from hidden node i to node j at time

t, x i is the output of node i, N is a learning coefficient

which can be any value in the range 0 < N < 1.0, Sj is an

error term. For output nodes, Sj is calculated by the

following equation :

where y j is the actual output and dj is the desired output

of node j. Upon completion of the weight calculations for

the output nodes, the connecting hidden layer nodesv weights

are updated. This is done using the first equation with the

S j term begin calculated with the following equation:

Sjmxj (1-xj)S-ation k ~ k * ~ j k

where k is over all nodes in the layer above node j. The

error is propagated back through the network in this manner

which led to the development of the name backpropagation.

The backpropagation network is currently one of

the moat popular network. in use, because of its versatili-

ty. It ham been proved effective in a number of application

from .%clu~iv.-OR to epeach synthesis and recognition.

However, it does have the disadvantage that in some cases

the number of presentations of training data has been large .
(more than 100 passes through all the training data).

Although algorithms have been developed to help speed

convergence, it seems unlikely that training can be speeded

up significantly. As mentioned before, the backpropagation

algorithm is a gradient descent algorithm with the associat-

ed pitfall that it is quite possible for the algorithm to

fail to provide a correct solution to the problem.

The learning algorithm of the parceptron and

backpropagation networks is a mathematical one and only

loosely based on actual biological systems. Many research-

ers are looking for more biologically based learning

systems. This leads to the discussion of some unsupervised

learning algorithms, such as the Kohonen self-organizing

map.(Kohonan, 1988) Self-organization refers to the ability

of the network to learn without being supplied the correct

answer. Self-organizing networks are generally closely

modeled after neurobiological systems and often are the

result of researchers attempting to understand how the brain

works.

when initially compared to the networks already dis-

cussed, the Kohonen network is deceptively simple. It is

not a heirarchial eyetern and consists of a single layer of

nodes. Howevar, it contains interconnections among the

nodes within the single layer which do not exist in super-

vised learning networks. Each node . contains a weighted

connection to all of the other nodes within the network.

Also, the initial weight vectors of a Kohonen network must

be normalized to a constant fixed length, usually one, so

that the weight vectors are normalized vectors pointing in

random directions about the unit circle.

When inputs ate applied to the Kohonen layer, each

node computes the dot product of its weight vector with the

F i g u r e 7 . An Example of Kohonen Learning on the Unit C i r c l e .

input vector. The dot product is the relative distance

between the weight vector and the input vector. Once the dot

product is calculated, the nodes compete to see who has the

largest dot product. Only the winning node is allowed to

output, and only the winner and his neighbors are allowed to

adjust their weights. This is known as competitive

learning. Figure 7 shows how a weight vector will adjust

itself closer to the input vector on the unit circle.

Neighbors are generally defined as the physically closest

nodes. The exact size of a neighborhood allowed to output

is variable. It generally shrinks in size during the

trai ning process. The Kohonen learning rule for adjusting

weights is actually quite simple. It oaye:

wnewqold+A old)
where wnW is the new weight, wold is the old weight, A is

the learning constant, and x is the input vector. As you can

see , the weights of the vector are. adjusted to approximate
the input. E-riments have clhown this syetem to be effec-

tive tor associative classifier type applications such as

associative memory and pattern recognition. It also shows a

high resistance to noise in the input.

The instar and outstar networks are also networks

developed during studies of the brain.(Grossberg, 1982) The

first is the instar. Each node is the center of a large

number of inputs. These can be drawn as a star shape with

the arrows pointing to the node. The second is the out

star. Just as each node has a large number of inputs, its

output goes to a large number of other nodes or outputs.

This can be drawn with the node at the center of a large

outwardly pointing star . network comprised

interwoven mesh of instare and outstars. The operation of

the network depends on the interaction of the instars and

outstars.
The learning algorithm for the instar is an

unsupervised algorithm. The equation is:

The result of the equation is the change in response of the

node, y j (t) ie the current activation of the node j, Ij (t)

is the input to the nude from outside the system, wi is the

weight lor the input from node i within the system, yi(t-to)

is the activation of node i in the previous time frame, T is

a threshold value below which no response is desired, and A

is a forgetting constant. From the equation, it can be seen

that the activity of the node is based on a percentage of

its previous activity, external stimuli, and stimulation of

the other nodes within the system. The weights of the node

are adjusted by using the equation:

d w i j (t)
m-...-...o.- = -wj (t) +GYj (t) lui (t-t,) -TI
dt

where yj is the activation of the node j, yi(t-to) is the

activation of the node i in the previous time frame, T is a

threshold value to f iltar out noise, F is a forgetting

constant and G is a learning constant.

The result of the equations is that the node acts

in a manner similar to Pavlov's dogs. In psychological

experiments, Pavlov observed that dogs salivate when pre-

sented with food. He began ringing a bell just prior to

presenting the dogs with food. Eventually the dogs were

conditioned to salivate when hearing the bell. In the

instar equations, activation occurs when the input Ij oc-

curs. Ij is like the food in the Pavlov experiments. A t

the same time, the node is receiving a pattern of stimula-

tion from other sources in the network. This stimulation

can be thought of as the ball. Eventually, the node will

learn to give the ease response to the stimulation pattern

as it does to the input Ij. This is a powerful tool because

it gives insight into actual biological function, as well as

increasing our knowledge about artificial neural networks.

Instars and outstars hre rarely used as stand alone neural

networks, but they have enormous potential for application.

The application potential of all artificial neural

networks is enornous and generally untapped. The similarity

of the architecture to the biological neural systems of

higher organisms suggests that the applications that the

ANN'S are best suited to are those performed by the

biological neural #system. It is for this reason that an

artificial neural system was chosen to duplicate the

functions of early vision. The purpose is not prove the

unsuitability of a more traditional computer architecture,

but rather to prove the suitability of the artificial neural

network in this type of application.

CHAPTER 3
COUNTERPROPAGATION NETWORK

It is also possible to create networks from a

combination of different types of node algorithms. The

counterpropagation network is the first developed in this

manner (Hecht-Nielson 1987a), and it consists of a

combination of both Kohonen learning and Grossberg learning

methods. Figure 8 shows a graphical model of the network.

The resulting network is capable of many of the same types

of functions as the backpropagation networks, but it is able

to train at a much faster rate. This makes it ideal for

tasko where a lengthy training time is undesirable. In

fact, because of the ability to train quickly, the

counterpropagation algorithm can be used to test the

feasibility of a neural network solution when the end

product may be a backpropagation or other similar network.

It is for this reason that a counterpropagation network was

selected to test the feaeibility of a neural network

solution to the detection of visual primitives.

As shown in Figure 8, pairs of example vectors(x,y) are

presented to the network at layers 1 and 5. These vectors

propagate through the network in a counterflow pattern to

yield x ' and y' at layers 2 and 4 (Hecht-Nielson, 1987).

INPUT LAYER

layer 1

GROSSBERG LAYER

layer 2

Figure 8. Counterpropagation Network.

For this application, the forward-only version of the

counterpropagation network will be used. Figure 9 shows

this version of the network. This version consists of three

layers. An input layer consisting of N fanout units is the

first layer. The middle layer contains M Kohomen nodes with

one output each which connect to the third layer of

Grossberg outstars. The output of the outstars is the

output of the network. This version of the network trains

in the supervised mode with the desired output presented to

the output layer at training time.

The inputs into the network are fanned out to the

Kohonen layer. In this layer, the nodes sum of the product

of each input with its associated weight. Then, the nodes

compete to see which has the highest sum. This node is

designated the winning node and is the only node allowed to

output for that frame. It is also the only node allowed to

adjust its weights. The layer will self-organize in re-

sponse to the inputs so that the weights will be organized

as more of less statistically optimal sets of the possible

input vectors. The learning equation for the winning node

is

Wnew~ola+A(Iowold)

where A is a learning conetant between 0 and 1, and I is the

associated input into the node. This Kohonen learning law

moves the closest matching weight vector towards the latest

NPUT
AYER

(OHONEN
AYER

3FDSSBERG
AYER

Figure 9. Feed Forward Counterpropagation Network.

input vector at a rate determined by the learning constant,

A. A large value causes the network to converge more quickly

than a smaller valua, but some statistical information may

be lost with a too large value.

An alternative variant of this layer is to operate

in an interpolative mode, as opposed to the accretive mode

discussed above. In this mode, more than one node is al-

lowed to win the competition and produce an output. The

outputo are adjusted so that they eum to one (the former

single output signal), and all are allowed to adjust their

weights. This interpolation process may lead to an increase

in mapping approximation accuracy without increasing the

network size, however, there is no conclusive evidence to

proving this theory.

The outputs of the Kohonen layer are connected to

the Groesberg layer. The Grossberg layer learns the average

output vector when each of the Kohonen processing elements

wins the closeness competition. Each . Grossberg element sums

the product of the Kohonen output with its associated

weight. The output For a continuous valued network is this

valua. In a binary network, the summation value 5s compared

to a threshold value and set equal to one if greater than

the threshold , or zero if less than the threshold. The

layer then adjusts its weights appropriately. Only the

weights associated with a non-zero input are allowed to

adjust using the following equation:

Wnewqold +B (d-wold)

where d is the desirad output for that element and B is a

learning constant similar to A for the Kohonen nodes.

The CPN functions very much like a lookup table.

The Kohonen layer learns the characteristics of the input

data, and the Grossberg layer learns the desired output for

that particular set of data. Because of this simplistic

function, counterpropagation ie inferior to backpropagation

for many applications. However, it forms a good statistical

model of its input vectors and works well for applications

~ u c h as data compression, pattern recognition, function

approximation, and statistical analysis(Hecht-Nielson

1988). Tha network ohareo the high resistance to noise

demonstrate4 by tha Kohonen self-organizing network. Also

like tho Kohonen network, a large number of Kohonen nodes

are oftan necessary to obtain good performance.

CHAPTER 4
DETECTION OF VISUAL PRIMITIVES

For purposes of implementing the feature map function,

a simulation of the feed forward counterpropagation network

was developed in the C language. Listings of the program

are included in ~ppendix A. The next step was to discover

the limits on the size of the network and determine how

large a visual modal was feasible. After experimentation,

the maximum size wae fauna to be a 30 by 30 input image with

35 Kohonen nodes. The Grossberg layer was designed to have

either two or three output nodes. The limitations on the

size was due to the capability of the computer chosen for

the implementation, an Intel 80386 based personal computer

with one megabyte of RAM.

The simulation is capable of running in either training

or operational mode. In training mode, . an input file is

expected to hold both inputs and desired outputs of the

network. In operational mode, only ihput data is expected in

the input file. Two waight files are used; one contains the

weights for the Kohonen layer and the second the weights

for the Grossberg layer. The design of the network

simulation in operational mode is fairly simple. The input

vector is normalized and the sum of each Kohonen node is

calculated. After the winning Kohonen nods is determined,

the outputs to the Grossberg layer are set with the winning

node outputting a one and the other nodes outputting zero.

The summation of each Groesberg node is performed and the

result is compared to a threshold value of 0.8. If the

~ummation i m grmater than the threshold, the output of the

node is set to one, otherwise, it is set to zero. The three

outputs are then examined to determine if the feature is

present, not present, or undetermined (Waseerman 1989).

The training m o d e is similar with the addition of steps

to adjust the weights of the winning Kohonen node, and the

Grossberg nodesi weights. At the beginning of a training

session, all weight vectors are normalized. By normalizing

the input vector ae well, the Kohonen weight vectors will

remain normalized vectors after adjustment. The weight

adjustment will merely rotate the weight vector closer to

the input vector on the unit circle. In many neural net-

works it is customary to randomize the initial weight vec-

tors. However, in Kohonen learning, this can cause serious

training problems as it will unifo&ly distribute the weight

vectors about the unit circle. If the input vectors are not

evenly distributed about the unit circle, oome nodes will

never win the competition and be allowed to adjust their

weights. This wastes those nodes and effectively decreases

the size of the network. This can be disastrous if a

mapping of two similar inputs to different outputs is

desired. In order to avoid this pitfall, all of the Kohonen

weight vectors were set to equal coincident values, and a

training technique known as the convex combination method

was used to train tha Xohonen layer.

In the convex combination method, all weights are

initially set to 1/ (N) 'I2, where N ie the number of inputs.

During training the input vector X is given the value:

X=A*X+ (1/ (N) * (1-A))

where A is initially the small value of 0.1 and is increased

gradually until it reaches a value of 1.0. This allows the

input vectors to gradually separate and assume their true

values. Each node's weight vector will follow one or a

group of the input vectors. This slows the training
I

process, but make8 sure that no Kohonen nodes are wasted

(Wasoarman 1989).

The Grorsbrg layer trains much faoter than the Kohonen

layer. Therefore, the simulation does not adjust the Gross-

berg weights until the Kohonen layer has had a chance t o

converge. Five passes are made with a learning constant of

0.7 before any adjustments are made to the Grossberg layer.

On the sixth pass, tha Kohonen layer has converged ang the

Groseberg layer can be gradually trained to match the de-

sired output. At thia point, the learning constant fe

gradually decreased to a mainimua value of 0.1 until the

network converges.

After the simulation was judged to be robust, visual

primitives were selected for recognition. Since the network

used a binary image, color was ruled out as a candidate.

Line orientation was selected due to its general acceptance

as a primitive (Treirrmaan 1985), as well as the biological

evidence of cells that detect line orientation provided by

Hubel and Waisel (Hubel 1988). Training sets were developed

in three categories: sets containing the line, sets without

the line, and sets containing more than one line. For the

first orientation, which was horizontal, 38 training sets

were developed. Thirty of these contained a single horizon-

tal line, four contained a variety of non-horizontal lines,

and four contained a number of horizontal lines. Initially,

a network with only two outputs was used, one for feature

present and one for feature not present. It became obvious

during training that another output was needed. Some of the

sets from the category without a horizontal line and from

the category with many horizontal lines were mapping to the

same Kohonen node. When this occurred, the network would

not converge. When these similar sets were mapped to a

third output called wundeterminedtt , the network converged
quickly in only nine passes through the training sets. This

result is understandable when some of the psychological test

results are examined. Treisnan and Schmidt found that

illusory con junctione can occur when attention is diverted

Figure 10. A Training Image Happed to "UndeterminedM.
I

or overloaded (Traiaman and Schmidt 1982) . The images that

mapped to "undetenninedH all contained a large number of

lines or curves which would place a strain on attention.

Figure 10 shows an example of an image which mapped to

Hundetennined@t.

Similar training sets were developed for different line

orientation. Between 38 and 40 training images were

developed for each. When the images containing a large

concentration of features were mapped to the wtundeterminedw

category, the network converged in eight or nine passes

through the training set. As discussed in Chapter 3, the

ability to train quickly is an advantage of the using the

counterpropagation neural network. A disadvantage is that

the Kohonan layer training is unsupervised and if two data

eats meant to be mapped to different outpute end up mapped

to the same Icohonen node, the network will never converge.

This can be avoidad by using a larger network, but if size

is an issue, the counterpropagation network is a bad choice.

Despite the constrained environment ueed for this research,

the network was able to accurately map images containing

different line orientations into the correct category. The

most interesting result was the inability of the network to

immediately identify whether or not a feature was present in

tlnoisyn images. This trait is shared by the feature maps

in the human visual system, although it was not intent,ional-

ly trained into the artificial or biological network.

CHAPTER 5
RESULTS AND CONCLUSIONS

After the counterpropagation network was trained to

recognize the selected visual primitive, a series of test

data similar to that used by Treisman in her experiments on

human recognition of visual primitives (Treisman 1985) were

passed through the network. Figures 11 and 12 show an

examples of the images run through the network trained to

recognize horizontal lines. Figure 11 shows an image which

gave a result of feature present, and the image in Figure

12 gave a result of feature not present. Other test data

was passed through and the results were very accurate.

The next step was to attempt to train a different

visual primitive. Curvature was chosen as a good candidate

for training. The network was trained using a series of

images containing circles mapped to feature present, a

aeries of lines in different orientations -. mapped to feature

not present, and a few noisy images similar to those in

used in line orientation mapped to undetermined. After the

network was successfully trained to recognize curvature, a

series of test images were run through the network. These

included images in which the circle was bisected with a

horizontal line, and others with only horizontal lines.

Figure 13 shows a test image which mapped to feature present

Figure 11. A Test Image Mapped to Feature Present.

and Figure 14 shows a test image which mapped to feature

not present.

The results obtained in training the two types of

visual primitive were excellent. The counterpropagation

showed a great deal of resistance to noise and was able to

pick out the desired primitive among a surprisingly large

number of distractors. Obviously, there is a limit on the

noise resistance as shown by the necessity of including the

undetermined output. However, this limit is ehared by the

human visual system and is an accurate recreation of feature

maps in the human visual system, and that is the goal of the

research presented here.

Since such good results were received in training the

network to recognize line orientation and curvature, it was

decided to attempt to train a more complex property. The

property of juncture is a possible visual primitive. There

have been test results which show that it is probably not a

primitive shared by most humans (Treisman 1985) . However,

since there are results showing that some individuals can be

trained to detect new perceptual units automatically in

search (Schneider and Shiffrin 1977) , the attempt to train
the counterpropagation network to detect a corner was made.

A corner angled at -90 degrees was chosen as the feature to

detect. While developing training data, it became obvious

that a larger network would be necessary to get a good

Figure 13. Image mapped to Curvature Feature Present.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
)
l
r

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
P

O
O

O
O

O
O

O
O

O
O

O
O

O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
P

O
O

O
O

O
O

O
O

O
O

O
O

O

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

Q
0

0
0

0
0

0
0

0
0

0

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
P

O
O

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
9

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
~

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
)
l
r

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

Q
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
P

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

9
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

result. By decreasing the size of the input image to a 25

by 30 array,the network became proportionally larger. Even

with the larger network and a proportionally larger training

set, the network is still only capable of recognizing

comers in a limited area within the image.

Interestingly enough, this result was not unexpected.

Treisman and Patterson conducted experiments to detect

whether similar features known as emergent features were

actually primitives or not. Their results were inconclusive

(Treisman and Patterson 1980). Emergent features are

defined as combinations of simple elements which appear to

generate new interaction of relation properties. It is

theorized that aome emergent features may also be detected

by independent feature maps and thus qualify as visual

primitives by themselves. As otated earlier, experiments to

show that emergent features are primitives neither proved

nor disproved the theory, just attempt train the

network was successful in the sense that some corners are

detected and unsuccessful in that all corners cannot be .
detected by the network.

The fact that both the training attempt and the

experiments were inconclusive suggests that emergent

features such as corners may be trained as primitives in

certain individuals, but not in everyone. If a large enough

network were used and enough time given, a network could be

trained to recognize all corners or other emergent feature.

Just as a human will train his or herself to recognize

cornere automatically if there is a need, a machine visual

system could be trained to recognize such features if there

is a need. The decision to invest the time and resources to

do train a network vareus recognizing the features at a

secondary level would be a system application sensitive

decision.

The research presented here was very successful. The

countatpropagation network trained and detected visual

primitives in a manner not unlike that of human early

vision. Tho network accurately mapped oimple visual

primitives such as line orientation and curvature quickly

and easily. The network was able to map the more complex

feature of juncture as well, although not as quickly and

easily. Although the simulation enviroment used was

constrained, the network enviroment could easily be changed

to a larger , more powerful computer and more complex

mappings could be achieved. The counterpropagation network

served its purpose well by converging in relatively few

training attempts. However, it required a larger network

than a more complex network paradigm such as backpropagation

would due to the simplistic nature of the counterpropagation

network. For this reason alone, it would worthwhile to

explore the abilities of a different network pardigm in

detecting visual primitives. On the other hand, if only the

simpler primitives are to be detected, the

counterpropagation model is ideal as shown by the results

presented here. The counterpropagation model was easily

trained to recogniee the simple visual primitives even in a

cluttered enviroment. If a complete early visual system

were developed, the counterpropagation network would work

well as a feature detector for the simple visual primitives

such as line orientation. If the need to detect a more

complex feature was desired, the counterpropagation could be

used to test the feasibility of a neural network solution

and a more complex paradigm could be used for the final

product. The next step in this research would be to train

separate artificial neural networks to detect a selected

number of visual p~i8itivec and devise a means to use the

output of these neural networks to simulate the entire

process of early vision. Once that is accomplished, the

next step is simulating the attentive stage of the visual

process and combining them for a -. complete machine visual

system.

APPENDICES

APPENDIX A

COUUTERPROPAGATIQM NE%WORX SIMUltrATION SOURCE CODE

#include <atdio.h>
#include <alloc.h>
#include aath.h>
main ()
{
int c,itemp;
int tie,k2,k3:
FILE *weights, *idata,*kweight;
unsigned char *input,*GROG,*OUTPUT ;
float *GWT;
float *temp,*FANIN, *KOH;
float huge *KWT[Qb] ;
float tryout,learn, ftotal, alpha;
int I,J,N, M, kwin,pass;
int i,j,k,l,m,sets,cureet,total;
long n;
short int train,rep,cont;
unsigned long meaury;
double square;

n=f arcorelef t () ;
/*get number oF nobe. per layer*/

15-750; /*Number oi inputs*/
M-3; / * N W @ r o f @~tpuW*/
J=35; /*Nunbar of Kofionan cells*/
alphaa0.1;

input=(unaign%d char *)calloc(N,sizeof(unsignad char));
if (input-IkQUZJi)
printt(rtrwy allocation error on input\nw);

GROS=(unsign.d char *)aalloc(M,sizeof(unsigned char));
ir (G R O - ~ U)
printf(WHamary allocation error on GROS\nW) ;

OUTPUT= (unsiqpQvdt char *) calloc (M, sizeof (unsigned char)) ;
i r (ou~m--I

printf(*Er~ary allocation error on OUTPUT\nVw);
temp (float *) calloc(J, sizeof (float)) ;
if (teq-mu) Z

printf (" M u o r y allocation error on temp\ntt) ;
FANIN- (float *) oalloc (N, oizeof (float)) ;
ii (rmrM-mmi)
printt(wm.nory allocation error on temp\nM);

GWT=(float *)calloo((M*J),sizeof(float));
if (GWT-NULL)
printf (uMmrory allocation error on GWT\nw) ;

KOHl (float *) callec (3, sizeof (float)) ;

if (KOH-NUU)
printf (g8Memory allocation error on KOH\nw) ;

for (i=O;i<J;i++)
{

KWT[i]=(float *) farcalloc(N,~izcrof (float)) ;
if (KWT[i]-mWULL)
~rintf(~Error in allocating KWT\nM)t
printf (wi=%d\nu, i) :

1

~rinti(~Is this a training run-Y or N?\nn);
elgetchar () ;
if (c-'Y' I I 0-l~')
(

/*Open files for raading*/
kweight=f~psn(~kwight.dat~,~r+~);
if (kweight-0)
~rintf(~crrror in opening weights file\nvl);

/*read in weighto frar tile*/
/*Kohonen w e i htrr*/
for (i=O;i<J; ++)
(

f
for(j-0; j<#;j++)
(

h#%t,'%fH, &tryout) ;
mti1 tjI=Qv~*~

I
I
close (m i g h t) ;

weighta=fopern(~weights. aatn, *rn) ;
/*Crosebarg waights*/

for (i=O;i<M*J;i++)
{
facanf(waighte,*%fH,Ctryout);
GWT[i]-tryout 1

I

/*Cloee weights file*/
iclose (weights) ;

/* net is training*/
trainml ;
idata=fapan(ntrain3.datn,Hrm);
if (idata-0)
printf("error opening input file\nvl);

(
/*Determine number of sets of training data*/
totalr0 ;
paso=l ;
sets-O ;
contr0 ;
while (cont-0)

(
sets++ ;
for (i=O;i<N;i++)
{ fs~ani(idata,~%d~,bitenrp);
cent-feof (idata) ;

1
if (contl-0)
sets-- ;

for(i==~;i<M;i++)
fs~anf(idata,~Sd~,Citeap);
contaf eof (idata) ;

1
f close (idata) ;
idatawfopen (tttrain3. datH , wrtl) t

/*Begin a training session*/
cursret-1;
learnno. 7 ;
rep-1;
while (rep-1)

{
/*read in training data*/
for (i=0 t i<N ; i++)

{
f scani (idata, tt%dtt, britemp) ;
input [ilritemp;

f ecanf (idata, "%dgg, &itemp) ;
ou~pu~[i]=it-p;

1
/*Normalize input vector*/
squareto ;
for(i-a;i<N;i++)
square=square+(input[i]*input[i]);
if (squaret=O.O)
{
spare-sqrt (square) ;
for (i=O;i<Nii++)
{ FMIN[i]=input[i]/s~are;
FAPIIN[i]-alpha*F11l9Ii9[i]+(O.03125*(l-alpha));

1
1

/*Find winning Kohonen node*/
kwh-0;

for(i-l;i<J;i++)

/*Adjust weight. oi w-ing Kohonen nods*/
/*Read in node weights*/

/*Set output tor Kohonen nodes*/
for(i=O:i<J;i++)

{
KOH[i]-Ot
if (i==&iwin)

(
KOH[i]=l.O;

1
1

/*Clear out tonp loortions*/
for(i=O;i<j ~i++)
temp[i]=O. 0 ;

{
/*Calculate value of
temp[i]-GWT[i][O..J]*KOH[O..J]*/

Grossberg node-

/*Set output of Grossberg layer*/

for(i-O;i<M;i++)
{
if(tenrp[i]>0.8)
GROS[i]=l;
else
CROS [i]=O;

1

/*Adjust weights of Crossberg layer*/
for(i=o:i<ari++)

1
1

1
/*Deternira. accuracy of result*/
j=o ;
tor(i=O:i<M;i++)

{
if (GRQS[i]irOUTPUT[i])
j++;

1
totalltotal* : 1

*

printi("Tra n l n g s e t %d,
%d\ntm , cursat, j) t

Incorrect outputs=

1
else

{ total-1;
learnm0.7 ;

1
/*Determine if coagalete one pass training */
if (cursetl=sets)
curset++ ;

else

(
fscanf(kweight,*%fn,&tryout);
KWT[i] [jl-tryout;

1
1
close (Weight) ;
weights-f open (Nnweights2. BatN, V") ;

/*Grossberg weights*/

for (i=O:i<M*J;i++)
(
fscanf(~eights,~%f~,&tryout);
GWT [ilrtryout;

I

/*Close weights file*/
f close (weights) ;

idatamfopen (winput. datw , '@rn) ;
if (idata-0)
printf (@'error opening input f ile\n14) ;

contsf eof (idata) ;
while (cant-0)
{

, /*read in input data*/
for (i=O;i<N; i++)
(
fs~anF(idata,~%d~,6riternp);
input[i]=iteap;
contmf eoi (idata) t

1
if (cont==O)
{
/*Normalize input vector*/
squarer0 ;
for(i=Oti<Nii++) .
sguare=sguare+(input[i]*input[i]) ;
if (squarel=O.O)
(
square-sqrt (square) i
for(i=O;i<N;i++)
{ FANIN [i]=input [i]/equare ;
I
1
/*Display input data to screen*/

for (i=O;i<30;i++)
{
for(jr0; j<30;j++)

(

1
printf (*\nVQ) ;

1

/*Find winning Ltohonan node*/
kwin=O ;

for (i-l;i<J:i++)

/ * S e t output for SWhamm nodas+/
for(i-o8i<J?i++)

{
KOH[i]-Oi
if (i-Win)

{
XOH[i]=k*Ot

1
1

/*Clear out t a p locations*/
for (i-0; i<j t i++)
tsmp[i]=O.O;

Grossberg node-

/ *Se t output of Grossberg layer*/

(
ii(temp[i]>O.8)
6ROS [i)-1;

sslrse
OROS[i]=O;

1
if (6ROS [O]-1)
printf (*Feature gresent\nw) ;

{
if (GROS [I 1-1)
printf ("Feature not present\ntv) ;

elase
printf(nFeatur+ possibly present\ntl);
1
oontmfeof (idata) :

1
1
f cloee (idata) ;

APPENDIX B

SAMPLE TRAINING DATA

Figure 15. Sample Training Data lor Horizontal Lines.

Figure Sample Training Data for Slanted Lines.

Figure 18. Sample Training Data for Curvature

BIBLIOGRAPHY

Beck, J. an8 Ambler, B. 1972. Discrminability of differences
line slope and in line arrangement as a function of
mask delay, Pareention and Psvcho~hveic~t 1 2 (1 A) : 33-
38

Beck, Jacob, K. Prazdny , and Azriel Roseniield. 1983. A
Theory of Textural Segmentation, In Hygapnan8 Machine
V i m , ed. J. Beck, B. Hope and A. Rosenfald.
Orlando,FL: Acaaemic Press, Inc.

Cowey, A. 1979. Cortical Maps and Vieual Perception.
uarterlv Journal of Emerimental Psvcheloqy 8

3l:l-17.

Feldman, J.A. and D.H. Ballard. 1983. Computing with
 connection^. In ed. 5.
Back, B. Hope and A. Rosenfeld. Orlando,FL:Academic
Press, Inc.

Grossberg, Stephen. 1968. Some Physiological and Biochemical
Consequenoss of Poychological Postulates, -lied
nathen\atic~. 60:758-765.

Grocrsbarg, Stephen. 1982. Studies of mind and brain. Boston:
Reidel.

Grossberg, Stephen and E. Mingolla. 1986. Computer
Simulation of Neural Networks for Perceptual
Psychology, Wavior Research Methods. I~a-ents and
Com~utsrs. 18 (6) : 601-607.

Hecht-Nielson, Robert. 1987%. Counterpropagation Networks.
Amlied Ot>tice. 26:4979-4984.

Hecht-Nieleon, Robert. 1987b. Counterpropagation Networks.
In Procee- 1987 I=$ Conference on Neural Networks.
ed. M a Caudlll. New York: fEEE Press.

Hecht-Nielson, Robert. 1988a. "Applicatione of
Counterpropagation Networksn, Feural Networks, 1: 131-
139

Hecht-Nialson, Robert. 19881,. Neuroconrputing:picking the
human brain, . 25(March) : .36-41.

Hopfiald, J.J. 1982. Neural Networks and Physical Systems
with Emergent Collective Abilities. proceedinas of the

of science. USA. 79(April):2554-2558.

Hubel, D.H. and T.N. Wiesel. 1968. Receptive Fields and
functional charaoterimtics of monkey striate cortex.
J o u m af -logy. 195: 215-243.

Hubel, D.H. 1988. . New York:
Scientific Aa

Juleaz, Bela. 1981. Textons, the elements of texture
perception, and the interactions. Nature. 290:
91-97. -
--. New York: Springat-Verlag.

Kohonur, Tuevo. 1987. Adaptive, associative, and ealf-
organiaing functions in neural computing.
Qptics. 26:4910-1918.

Kohonen, Tuevo. 1988. Belt - Orgpnization and asnociative
aemorv. New York: Springer-Verlag.

Lippman, R.P. 1987. An Introduction to Computing with Neural
NetsN. . April: 4-22.

Minsky, M.L. and 8 . Papsrt. 1969. percex)trons.
Cambridge, Mi: WIT Preos.

Neiseer, U. 1967. ive Psvcholoav . New York:
Appleton-Century-CToft8.

Posner, L4.I. 1978. orn~metric Emlorations of the Mind,
H i l l 3 : Erlbaum.

Posner, M.I. and Honik, A. 1983. Isolating Representational
Systems. fn ed. J. Beck,'
B. Hope, and A. Roseniald. Orlando,FL: Academic Press.

Rumelhart, D., C. Hinton, G . , and Williams. 1986. Learning
Internal Repras.ntationo by Error Propagation. In - -

allel di strimted a-aW (Vol. 1) . ed. D. -

Rumelhart and J . L . McCLalland. Cambridge, MA: MIT
Press.

Rumelhart, D. an4 MeCldland, J.L. 1986. Parallel
g-: m a t i o n e in the micro -

cture of c o ~ t i o g l v o l s I and. If). Cambridge, MA:
HIT Press.

Schniederr W e and R.M. Shiffrin. 1977. Controlled and
Automatic Human Information Processing:I. Detection,
Search, and Attention. Psvcholoaical Review.
84: 1-66.

Treisman, A. and G . Galade. 1980. A Feature-Integration
Theory of Attention. Coanitivs Psvcholoav. 12 :
97-136 .

Treisman, A. 1982. Perceptual grouping and attention in
vieual saarch t o r features and for objects. Journal of

er- P&vcholocrv:Human Perception and
$ 8 134-214.

Treisman, A. and R. Patterson. 1984. Emergent Features,
A t t m t i u m , and Object Perception. pournal of Eweriman-

an Perception and Performance.
lO(1): 33-31.

Treisman, A. 1985. Preattentive Processing in Vision. In
an -e Vieion 11, ed. A. Rosenfeld. Orlando,

FL: Academic Pres8.

Treisman, A. 1986. Properties, Parts, and Objects. In Hand-
on and Human Performance . ed.

K.R.Bofi, L, lCauiaaan and J.P. Thomas. New York: John
Wiley & Sons.

Tusa, R.J., L.A. Palmer, and A.C. Rosenquist. 1975. The
Retionatcpio Organieation of the Visual Cortex in the
Cat. I: 52.

Waseerman, Philip D. 1989. eural Com~utina: Thaorv and
Practice. New York: Van Nostrand Reinhold.

	Counterpropagation neural network detection of visual primitives
	STARS Citation

	TITLE PAGE
	i

	ABSTRACT
	ii

	TABLE OF CONTENTS
	iii

	LIST OF FIGURES
	iv

	CHAPTER 1
	001
	002
	003
	004
	005
	006

	CHAPTER 2
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023

	CHAPTER 3
	024
	025
	026
	027
	028
	029

	CHAPTER 4
	030
	031
	032
	033
	034
	035

	CHAPTER 5
	036
	037
	038
	039
	040
	041
	042
	043
	044

	APPENDICES
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055

	APPENDIX B
	056
	057
	058
	059
	060

	BIBLIOGRAPHY
	061
	062
	063

