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ABSTRACT 

 
Neural networks play an important role in the execution of goal-oriented 

paradigms. They offer flexibility, adaptability and versatility, so that a variety of 

approaches may be used to meet a specific goal, depending upon the circumstances and 

the requirements of the design specifications. Development of higher-order neural units 

with higher-order synaptic operations will open a new window for some complex 

problems such as control of aerospace vehicles, pattern recognition, and image 

processing.  

The neural models described in this thesis consider the behavior of a single 

neuron as the basic computing unit in neural information processing operations. Each 

computing unit in the network is based on the concept of an idealized neuron in the 

central nervous system (CNS). Most recent mathematical models and their architectures 

for neuro-control systems have generated many theoretical and industrial interests. 

Recent advances in static and dynamic neural networks have created a profound impact 

in the field of neuro-control.  

Neural networks consisting of several layers of neurons, with linear synaptic 

operation, have been extensively used in different applications such as pattern recognition, 

system identification and control of complex systems such as flexible structures, and 

intelligent robotic systems. The conventional linear neural models are highly simplified 

models of the biological neuron. Using this model, many neural morphologies, usually 

referred to as multilayer feedforward neural networks (MFNNs), have been reported in 

the literature. The performance of the neurons is greatly affected when a layer of neurons 

are implemented for system identification, pattern recognition and control problems. 

Through simulation studies of the XOR logic it was concluded that the neurons with 

linear synaptic operation are limited to only linearly separable forms of pattern 

distribution. However, they perform a variety of complex mathematical operations when 

they are implemented in the form of a network structure. These networks suffer from 

various limitations such as computational efficiency and learning capabilities and 

moreover, these models ignore many salient features of the biological neurons such as 
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time delays, cross and self correlations, and feedback paths which are otherwise very 

important in the neural activity.  

In this thesis an effort is made to develop new mathematical models of neurons 

that belong to the class of higher-order neural units (HONUs) with higher-order synaptic 

operations such as quadratic and cubic synaptic operations. The advantage of using this 

type of neural unit is associated with performance of the neurons but the performance 

comes at the cost of exponential increase in parameters that hinders the speed of the 

training process. 

 In this context, a novel method of representation of weight parameters without 

sacrificing the neural performance has been introduced.  A generalised representation of 

the higher-order synaptic operation for these neural structures was proposed. It was 

shown that many existing neural structures can be derived from this generalized 

representation of the higher-order synaptic operation. In the late 1960’s, McCulloch and 

Pitts modeled the stimulation-response of the primitive neuron using the threshold logic. 

Since then, it has become a practice to implement the logic circuits using neural 

structures. In this research, realization of the logic circuits such as OR, AND, and XOR 

were implemented using the proposed neural structures. These neural structures were also 

implemented as neuro-controllers for the control problems such as satellite attitude 

control and model reference adaptive control. A comparative study of the performance of 

these neural structures compared to that of the conventional linear controllers has been 

presented. The simulation results obtained in this research were applicable only for the 

simplified model presented in the simulation studies.   
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CHAPTER 1  
Introduction 

1.1 Biological Motivation 

Biological systems are serving as inspirations for a variety of computational based 

learning systems. For example, biological knowledge has provided a great insight in the 

development of mathematical tools such as neural networks and genetic algorithms for 

the complex control problems. The research in this thesis conceptualizes the 

mathematical aspects of the basic building block of the central nervous system (CNS)-the 

neuron. From a computational standpoint, the CNS can be viewed as a parallel 

distributed system that has the capability to control a complex system over time. The 

primary objective of this thesis is to gain an insight in understanding the recognition, 

learning, and memory mechanisms of the CNS and to utilize these functions in the design 

and creation of the intelligent pattern classifiers and controllers. 

Humans have been learning from ‘Mother Nature’. Since the evolution of 

machines, man has always dreamt of building machines that can emulate biological 

species like humans, birds etc with attributes such as locomotion, speech, and cognition 

(thinking, learning, memory, adaptation and intelligence). It has been a desire of system 

scientists to build a machine that can operate in an unstructured and uncertain 

environment with a high level of autonomy. To some extent, they have imitated birds and 

have created super sonic machines. In fact, man has been successful in implementing 

some of the attributes of the biological species such as human locomotion to 

transportation systems, human vision and speech for communication systems, human 

low-level cognition to computing systems. Now efforts are being made to imitate some of 

the attributes of cognition and intelligence-the higher cognitive faculty of the brain, and 

researchers are striving hard for the creation of intelligent systems; that is, a machine that 

has both autonomy and cognitive capabilities. The successful operation of a cognitive 

machine depends on its ability to adapt with a variety of unexpected events in its 

operating environment. By having machines possess such a level of autonomy, it would 
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be easy for the machines to learn higher-level cognitive tasks. Also, these machines 

would continue to adapt and perform the tasks with increasing efficiency even under 

changing and unpredictable environmental conditions.  

The autonomous machines would be useful where direct human intervention is 

hazardous, tedious, or impossible. A hazardous task would be one where human 

intervention is in physical danger, such as in nuclear reactors, mining, and military 

operations. A tedious task would be one where a high level of concentration is required to 

perform tasks, such as programming the codes sitting in front of a computer where the 

human operator would be bored. A task impossible or difficult for humans would be the 

unmanned exploration of space, where a space craft is beyond the control of human 

intervention. For instance, spacecraft path planning is one of the major concerns in the 

design of autonomous vehicles for unstructured environments. It is very difficult to 

specify all functions a priori and in a deterministic way. Take, for instance, the Mars 

Mission- Spirit Rover. The vehicle was given high-level instructions (way points) and 

was equipped with smart cameras and laser sensors that would see the terrain. The 

information from the sensors was analyzed and catalogued in general classes. For each 

class a procedure was designed to accomplish the goal of moving from point A to point B. 

This brings a very different set of problems because the environment is complex and 

unpredictable. If the designed physical model does not capture the essentials of the 

environment, then the errors accumulate over time and the solution becomes impractical. 

Under these circumstances, the luxury of dictating the rules remotely is beyond our reach. 

It turns out that animals and humans do Sprit Rover-type tasks effortlessly.  

Biological systems may be considered as a plausible source of motivation and 

framework for the design of autonomous machines. It provides motivation as well as 

gives several clues for the development of robust learning and adaptation algorithms in 

machines (Rao and Gupta 1994). In the present technology, lack of these robust and 

adaptive algorithms is due to that fact that the biological methods of processing 

information are different from conventional control techniques. The design procedures of 

the conventional control techniques are model based in the sense that the design methods 

involve the construction of an explicit mathematical model of the dynamic system to be 

controlled. Biological systems, on other hand, are non-model based and are quite 
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successful at dealing with uncertainty and complexity, and can smoothly coordinate many 

degrees of freedom during the execution of manipulative tasks in an unstructured 

environment.  

Adaptive and neural control has gained renewed popularity in the past few 

decades, mainly emphasizing studies in the convergence of adaptive algorithms and in 

the stability of adaptive systems; that is, the systems considered are primarily systems 

described by differential (or difference) equations where the coefficients are (partially) 

unknown. In an attempt to enhance the applicability of adaptive control methods, learning 

control has been recently reintroduced in control literature; for example, (Gupta 1986), 

for learning methods in control with emphasis on neural networks.  

1.2 Neural Networks  

The conventional design methods of control systems involve the construction of a 

mathematical model describing the dynamic behaviour of the plant to be controlled and 

the application of analytical techniques to this model to derive a control law. Usually, 

such a mathematical model consists of a set of linear or nonlinear differential/difference 

equations, most of which are derived under some forms of approximation and 

simplification. These conventional techniques break down when a representative model is 

difficult to obtain due to uncertainty or sheer complexity. Modeling of a physical system 

for feedback control involves trade off between the simplicity of the model and its 

accuracy in matching the behaviour of the physical system. On the other hand, human 

operators do not always handle the system with a detailed mathematical model but they 

do with a qualitative feeling of the process, approximate reasoning and knowledge of the 

control process. 

In the literature, two approaches are usually described to achieve satisfactory 

performance from a vaguely known dynamic plant. One approach is robust stabilizers or 

robust controllers and the other one is adaptive control. A Robust controller guarantees 

stability only if the actual system is a member of a class of systems that are close to the 

nominal plant. Application of adaptive control techniques has been slow as they require 

prior knowledge of the plant under control to determine the stability of the adaptive 

system. Since both approaches had some limitations, implementation of the conventional 
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adaptive methods and the robust stabilizers may be difficult or some times impossible 

(Ortega 1989). Detailed description of robust and adaptive control techniques may be 

found in Gupta [1986], and Narendra [1986]. 

The need to control complex systems under significant uncertainties has led to 

revaluations of the existing control methodologies. Evolution in the control paradigm has 

been fueled with two major concerns: the need to deal with increasingly complex systems, 

and the need to accomplish increasingly demanding design requirements with less precise 

knowledge of the plant and its environment. In these situations, it is almost mandatory for 

the control schemes to enforce learning and adaptive features (neural-networks). Neural 

and adaptive systems is a unique and a growing interdisciplinary field that considers 

adaptive, distributed, and mostly nonlinear systems-three of the ingredients found in 

biological systems. Neural and adaptive systems are used in many important engineering 

applications such as classification of patterns, system identification, signal enhancement, 

noise cancellation, prediction and control.  

Neural network based controllers can be considered as a general class of adaptive 

controllers. The leading characteristic of neural and adaptive systems is their adaptivity, 

which brings a totally new system of design style. Instead of incorporating the a priori 

information from specifications, neural networks and adaptive systems use external data 

to automatically set their parameters. This means the neural systems are parametric. The 

neural-controller estimates the unknown information, and this information is used for 

future decisions and controls, thereby improving the performance of the control system. 

Neural networks, with their massive parallelism and ability to learn, offer good 

possibilities for improving techniques in control system, and may bring a bright future in 

the field of control system. 

1.2.1 Biological Neuronal Morphology 

In general, neural networks are described as connection models, parallel 

distributed processing units, or neuro-morphic systems (Rao and Gupta 1994). Neural 

networks consist of layers of neurons arranged in a set of rows and columns which 

perform some complex mathematical operations and mapping operations forming a 

complex pattern of neuronal layers. The neuronal inputs from the sensors are passed 
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through thread like structures called dendrites. The dendrites transmit the information to a 

synapse where it provides the confluence operation between the fresh neuronal 

information and the past experience, and sends a signal to the main body, soma of the 

neuron. This neural operation is termed as synaptic operation. The soma is the main body 

of the neuron. It receives all the signals from the synapses and provides an aggregation 

operation. If the aggregated value of the dendritic inputs exceeds a certain threshold, the 

neuron fires a signal along the axon (neural output). The firing of the neuron is associated 

with some nonlinear operation of the aggregated signal which is termed as somatic 

operation. A typical neural network structure is shown in Fig. 1.1. 

 

Figure 1.1 Layers of biological neurons arranged in a network depicting the flow of 

neuronal information in the forward direction as well as through inter and 

intra feedback direction.  

The information in the network flows from one layer to another in the forward direction 

with continuous feedback evolving into a dynamical pyramid structure. The inputs from 

the input domain are mapped to the output domain through synaptic and somatic neuronal 

operations. These two neuronal operations play two distinct mathematical functions in a 

biological neuron. From the biological point of view, these two operations are physically 
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separate. However, from the mathematical point of view, the threshold function is shifted 

to synaptic operation for sheer simplicity. 

1.2.2 Neuron: The Basic Unit of the CNS 

In nature, the biological neurons are involved in various complex sensory, control 

and cognitive aspects of mathematical processing and in decision making processes. The 

discussions described in the existing literature often consider the behaviour of single 

neuron as the basic computing unit for processing neural information. A neural network 

consists of many interconnected identical simple processing units called neurons. Figure 

1.2 shows a general mathematical model with confluence and somatic operations. 

 

Figure 1.2 A general mathematical model of the neuron with synaptic and somatic 

operation. The confluence operation compares the neural information with 

the past experience stored in the synaptic weights and the nonlinear 

activation function provides the bounded neural output. 

The synaptic operation provides the linear mapping from the neuronal inputs  

to through the weight vector  then the somatic operation performs 

nonlinear operation from  to  through an activation function 

)1( +∈ nRax

1Rv∈ ,w )1( T
a

+∈ nR

1Rv∈ 1Ry∈ [ ].vφ The 

somatic operation performs a nonlinear mapping through a nonlinear function called an 

activation function. There are different forms of activation functions such as linear, log 
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sigmoid, tansigmoid, bang-bang (hardlimiter), and radial basis functions. which are used 

in the mathematical model of the biological neuron. Figure 1.3 shows some of the most 

popular mapping functions employed in the neural networks. 

 
Figure 1.3 Different activation functions used in the mathematical model of the 

biological neuron for bipolar input signals. 

 The sigmoidal form is the most widely used activation function. However, the choice of 

nonlinear activation function in neural models depends on the nature of the problem 

under consideration. 
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1.3 Thesis Objectives 

The neural networks consisting of the conventional neural units provide the neural 

output as a nonlinear function of the linear combination of the weighted neural inputs. 

These neural units have been successfully implemented in various applications such as 

pattern recognition, system identification, adaptive control, optimization and signal 

processing (Gupta et al. 2003, Rao 1994, Hopfield 1990, Kuroe et al. 1997). One of the 

most significant characteristics of neural networks is their ability to approximate arbitrary 

nonlinear functions. This ability of the neural networks has made them useful for 

modeling the nonlinear systems especially for the synthesis of nonlinear controllers 

(Song 2001).The performance of the neurons in the neural network depends on the 

following important factors 

a) Structure of the neuron; that is, static or dynamic models; 

b) Learning and adaptation algorithm such as backpropagation, quasi-Newton 

methods (the method of adjusting the neuron parameters); 

c) Type of activation function used in the mathematical model of the neuron; and 

d) Models of synaptic connections; that is, linear, quadratic, cubic…and Higher-

order combinations of the neuronal inputs and the weights. 

A considerable amount of research has been done focusing on the first three factors of the 

neurons. In the literature, most of the mathematical models of the neuron described 

incorporated modifications either in structure or learning and adaptation algorithms to 

improve the performance of the neuron. The selection of the nonlinear function in neural 

models necessitates a careful study of the problem. To some extent, the performance is 

influenced by activation function. Rao (Ph.D. thesis 1994) changed the slope of the 

activation function to affect the performance of the neurons. However, the performance 

of the neuron also depends on the model of the synaptic operation. In conventional neural 

models, the synaptic operation is modeled in such a way that the net input to the neural 

unit is just a linear summation of the weighted inputs. This is the commonly implemented 

form in most of the neural models developed. There is another set of neurons which 

consider multiplicative connections between the inputs and the neurons which closely 

resemble the neuronal structure shown in Fig. 1.1. These are called as higher-order neural 
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units which capture the nonlinear properties of the input pattern space. Rumelhart et al. 

(1986), Shin and Ghosh (1991), Heywood and Noakes (1995), and Homma and Gupta 

(2002) made extensive attempts to develop the higher-order neural units which have good 

storage, learning and computational properties. The performance of the neuron depends 

on the order of the inputs entering the neuron and the synaptic weights associated with 

them in the neural network. It has been found by Homma and Gupta (2002 b) that the 

Higher-order combination of the weighted inputs will yield the higher neural 

performance for complex problems. Villalobos and Merat (1995) have proposed a 

learning assessment method to optimize the feature shapes. However, one of the 

disadvantages encountered with Higher-order neural units is the combinatorial increase in 

weights with product terms; that is, a larger number of learning parameters (weights) are 

associated (Leda and Francis 1995).  

In this thesis, a general method to develop Higher-order synaptic operation is 

presented in order to reduce the number of parameters without losing the Higher-order 

neural performance. The neurons with two levels of Higher-order neural synaptic 

operations are proposed. Using a novel general matrix form of the quadratic-operation, 

the Higher-order neural unit provides the output as a nonlinear function of the quadratic 

combination of the weighted input signals. The objectives of this thesis are as follows: 

• To develop the concept of Higher-order neural units (HONUs) with Higher-order 

neural synaptic operation for control and pattern recognition problems based on 

the biological neuronal morphology;  

• To propose the structure and general concept of a neural unit with Nth order  

synaptic operation for an Nth order HONU; 

• To develop the learning and adaptive algorithms for Nth order neurons with 

higher-order neural synaptic operation; 

• To validate the concept of the HONU by realizing the logic circuits such as 

Exclusive-OR (XOR), OR, AND circuits through simulation studies; and 

• To apply these HONUs as neural controllers to linear and nonlinear systems such 

as satellite control, and to study the performance of these neural controllers 

through computer simulation studies. 
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1.4 Thesis Outline 

In the following chapters, the mathematical foundation of the proposed neural 

structures of the HONUs such as the neural unit with quadratic synaptic operation (QSO) 

and the neural unit with cubic synaptic operation (CSO) and their potential for learning 

and control applications are presented. The neural unit with linear synaptic operation 

(LSO) which is a subset of the HONU is presented in Chapter 2. The structure and the 

mathematical modeling of the neural unit with LSO are discussed in this chapter. A 

nonlinear solution to XOR problem is presented along with the different applications of 

the neural unit with LSO for the control systems. 

The concept of HONU is developed based on the structure of biological neurons 

in Chapter 3. Two HONUs are developed with higher-order synaptic operations. The 

structure, mathematical modeling and their implementation scheme for different 

applications are presented. A novel general matrix form of the quadratic-operation is 

developed. A general concept of the nth order neural unit with nth synaptic operation is 

developed based on the structure of the biological neuron. 

The performance of the neural unit with QSO, as applied to pattern recognition 

problems, is demonstrated through simulation studies in Chapter 4. Basic logic circuits 

such as Exclusive-or (XOR), AND, and OR are realized using a single neural unit with 

QSO. A statistical perspective is provided to give a plausible explanation for the unique 

feature of the neural unit with QSO. This chapter also formulates the classification as the 

placement of discriminant functions in pattern space to minimize the probability of the 

classification error. 

In chapter 5, the developed concept of HONUs is further strengthened by 

implementing these neural units as neuro controllers for the control of linear and 

nonlinear systems. A simple satellite attitude control problem is considered for simulation 

studies. In this chapter, a control technique called the model reference adaptive control 

using the HONUs is discussed. Some stability analysis approaches and stability results 

are presented. The fundamental concepts such as energy and lyapunov functions are used 

for the stability analysis of nonlinear systems. A new damping function called the 
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universal damping function is developed and implemented in the neuro controller for 

control of unknown parameter varying system.  

Finally, the concluding remarks, the major contribution of the thesis, and 

suggested directions for future research are presented in Chapter 6. The major 

contributions of this thesis are as follows: (i) development of the HONUs for control and 

pattern recognition problems based on the structure of biological neuron, (ii) 

development of mathematical and structural models of the HONUs, (iii) application of 

HONUs for pattern recognition problems where basic logic circuits are realized using a 

single neural unit with QSO, (iv) development of new damping function named universal 

damping function for faster transient response. It is demonstrated through computer 

simulations that the neural structures with universal damping function developed in this 

thesis performed better compared to the conventional control techniques for control 

problems. 

1.5 Conclusion 

Neural networks play an important role in the execution of goal-oriented 

paradigms. They offer flexibility, adaptability and versatility, so that a variety of 

approaches may be used to meet a specific goal, depending upon the circumstances and 

the requirements of the design specifications. A brief review of the neural units with 

linear synaptic operation will be discussed in the next chapter. Development of higher-

order neural units will open a new window for potential applications like control, pattern 

recognition, and image processing. 
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CHAPTER 2  
Neural Units with Linear Synaptic Operation (LSO) 

2.1 Introduction 

Today, it is easy to build computers and other machines that can perform a variety 

of well defined tasks with celerity and reliability unmatched by humans. No humans with 

utmost cognizance can invert matrices or solve a system of differential equations at 

speeds rivaling these modern machines. However, no intelligent computer or machine 

can rival the human robust control mechanism (Widrow and Michael 1992). No doubt 

that these modern machines which are an extension of human muscular power, vision, 

and speech (car, aircrafts, robots, autonomous vehicles etc.) have brought luxury to 

human life but they are controlled by carbon-based computer- the brain (human 

intelligence and the human cognition). In this chapter, the mathematical details of a 

single neuron are described .These neural models emulate certain features of the 

biological neuron. One of the most important functions of the neuron is to make a 

decision. So, in this chapter, the neural models are implemented as decision makers.   

The chapter is organized as follows: a brief introduction of the neural unit with 

LSO is presented in Section 2.2, neural models for threshold logics using neural unit with 

LSO are presented in Section 2.3. The neural logic for XOR operation using the neural 

unit with LSOs is shown in Section 2.3, the neural logic for XOR operation using 

polynomial discriminant functions is described in Section 2.4. Applications of neural unit 

with LSOs in control design are presented in Section 2.5. A brief summary is given in 

Section 2.6. 

2.2 A Brief Description of the Neural Unit with LSO  

The basic building block of all artificial neural networks, and most other adaptive 

systems, is the adaptive neuron. They communicate through a network of axons and 

synapses having a density of approximately 104 synapses per neuron. It is assumed that 

the modeling of the central nervous systems is based on the fact that the neurons 

communicate with each other by means of electrical impulses (Arbib 1987). The structure 
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and mathematical model of the adaptive neuron is depicted in Fig. 2.1. The conventional 

model of neurons employed in control systems, pattern recognition and some other 

applications are linear in nature. Neural networks consisting of the linear neurons provide 

the neural out put as a nonlinear function of the weighted linear combination of the neural 

inputs. Let this element receive an input signal vector or input pattern vector  and a 

desired response , a special input used for learning. The components of the input vector 

are weighed by a set of coefficients , where the subscript ‘a’ stands for augmented 

notion of vectors which are defined as follows: 

ax

dy

aw

ax  = [  1] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 0 =x     (2.1) 

        (augmented vector of neural inputs, where 10 =x accounts for the   threshold (bias)). 

aw  = [      (2.2) ] 1
3210 ,.......,,,, +∈ nT

n Rwwwww

             (augmented vector of synaptic weights including the threshold weight )  0w

 

ax  =  1[ ] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 0 =x  is the threshold. 

          (augmented vector of neural inputs) 

aw  =   [ ] 1
3210 ,.......,,,, +∈ nT

n Rwwwww

          (augmented vector of synaptic weights) 

Figure 2.1 Basic mathematical model of an adaptive element: the neuron with linear 

synaptic operation. 
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Thus, as illustrated in Fig. 2.1, the sum of the weighted inputs v   can be expressed as a 

linear combination of neural inputs  and the synaptic weights ; that is  ax aw

  =         (2.3) v a
T
aa

T
a wxxw =

                                 =  (inner product of two vectors  and )  >< aa x,w aw ax

The somatic operation provides a nonlinear mapping of the aggregated signal ‘ ’yielding 

an output signal ‘ ’. Mathematically, the neural output,  can be represented as 

follows 

v

ny ny

  = ny [ ]vφ           (2.4) 

     = [ ]a
T
a xwφ  

where [ ]⋅φ  is some nonlinear activation function with threshold . Equation 2.3 

represents a measure of similarity between the neuronal input vector  and the synaptic 

weight vector  There are two types of measure of similarity measures: (1) the inner 

product of the vectors  and  and (2) the Euclidean distance between the vectors 

 and   The similarity measures are shown in Fig.2.2. 

0w

ax

.aw

ax ,aw

ax .aw

 
Figure 2.2 Similarity measures between the vectors  and    ax .aw

 The correlation strength between the new information vector  and the stored 

knowledge vector  depends on the angle 

,ax

aw α  and its strength for particular values of α   

are tabulated in Table. 2.1. It is very difficult to explain and visualize the physical 

significance of the correlation strength between the weights and the neural inputs in a 
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network. However, it is possible to draw explicit correlation when a single neuron is 

implemented to make a decision. 

Table 2.1 Correlation strength values for different similarity measure angles α  

Angle α  Correlation Similarity Graphical  representation 

α  = 0 Positive Close similarity (maximum)

α  = 90 Zero No similarity (minimum) 

α  = 180 Negative No similarity 

α  = 270 Zero No similarity 

α  = 360 Positive Close similarity (maximum)

 

II                I 
Negative          Positive 

 
 

III             IV 
Negative          Positive 

 

Using this model, many neural morphologies, usually referred to as feedforward neural 

networks, have been reported in literature. These feedforward networks respond 

instantaneously to inputs because they possess no dynamic elements in their structure. 

Therefore, these neural structures are also called static neural networks or memory less 

networks; that is, they generate the output response determined by the present excitation 

(Zurada 1992). Extensions of these feedforward networks are the dynamic neural 

networks that incorporate feedback and dynamic elements in their structure. There are 

several dynamic neural structures based on different neural paradigms (Gupta and Rao 

1994, Hopfield 1990). The neural networks either static or dynamic are implemented 

depending on the complexity of the problem. The following section describes the design 

of neural network classifiers for analyzing the threshold logic which were studied 

extensively in the 1960s. 

2.2.1 Linear Classifier 

The signals reaching the synapse and received by the dendrites are in the form of 

electrical impulses. The characteristic feature of the biological neuron is that the signals 

generated do not differ significantly in magnitude; that is, the signal in the nerve fiber is 

either absent or has the maximum value. It is assumed that the stimulus generates a train 

of pulses with a magnitude and a frequency.  In other words, the information is 

transferred between the nerve cells by means of binary signals (Zurada 1992). In neural 
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networks, the inputs and outputs are often binary and are preferred to be  rather than 

the unsymmetrical ‘0’ and ‘1’. With n binary inputs and one binary output, a single 

neuron shown in Fig. 2.1 is capable of implementing certain logic functions. There are 

 possible input patterns. A general logic implementation would be capable of 

classifying each pattern as either +1 or -1, in accordance with the desired response. Thus, 

there are  possible logic functions connecting n inputs to a single output. A single 

neuron is capable of realizing only the small subset of these functions, known as linearly 

separable logic functions. These are the set of logic functions that can be obtained with 

all possible settings of the weight values. In Figure 2.3, a two input neuron is shown. In 

Figure 2.4, all possible binary inputs for a two input neuron are shown in the pattern 

vector space. In this space, the coordinate axes are the components of the input pattern 

vector. The neuron separates the input patterns into two categories depending on the 

values of the input signal weights and the bias weight (threshold). A critical thresholding 

condition occurs when the output equals zero. 

1±

n2

n22

ny

 

Figure 2.3 Block diagram representation of a neuron with linear synaptic operation. 

           Synaptic operation:  a
T
aa

T
a xwwx ⋅=⋅=v

Somatic operation: [ ] Rvyn ∈= φ  

  0221100 =++= xwxwwxyn     (2.5) 

1
2

1

2

0
2 x

w
w

w
w

x −−=       (2.6) 
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The linear relationship is shown in the Fig. 2.4. It comprises of a separating line which 

has a slope  

Slope = 
2

1

w
w

−   

 
Figure 2.4  attribute plane showing the pattern classification. The discriminant 

line L separates the patterns Class A and Class B. 

21 xx −

and an intercept of           

      Intercept = 
2

0

w
w

−            (2.7) 

The line which separates the patterns appropriately is called the linear discriminant line L 

and is shown in Fig. 2.4. This mathematical model forms the basis of a neural network 

structure in contemporary neural computing. 

2.3 Neural Models for Threshold Logic  

On the basis of the highly simplified considerations of the biological neural 

systems, the first form of a neural model for the threshold logic is presented in this 

section. McCulloch and Pitts neural model is an element with n  two-valued inputs 

and a single two-valued output { ,1,.......,,, 321 −∈nxxxx }1 { ,1−∈ny }.1   The main goal in 

studying the threshold logic is to develop methods for identification and realization of 

threshold functions (logic functions). A switching function ),,,, 21 x( 3 nxxxfy ………=  is 
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said to be a threshold function if there exist weight coefficients  and a 

threshold  such that  

nwwww ,.......,,, 321

0w

),,,,( 321 nn xxxxfy ………=  =  ⎟
⎠

⎞
⎜
⎝

⎛
+∑

=

n

i
ii wxw

1
0sgn

Designing neural model for threshold logic involves three steps 

• Realization of switching function; 

• Network synthesis; and 

• Implementations of neural models for realizing the switching function. 

In realizing the switching functions, the weights  should be assigned an appropriate 

real, positive, negative, or zero value. If the threshold function equality is satisfied, the 

switching function can be considered as linearly separable function.  It is reported in 

literature that a single threshold element is sufficient to realize a switching function if the 

threshold function is linearly separable (Gupta et al 2003). For nonlinear separable 

functions, the threshold network requires more than one threshold element for realizing 

the given switching function. An effective approach to such a neural network synthesis is 

to decompose the non-threshold function into two or more terms, each of which will be a 

threshold function. For example consider a two-variable XOR function: 

iw

,),( 21212121 xxxxxxxxfy ⋅+⋅=⊕==  { }1,121 −∈xx                    (2.8) 

If it can be realized with a single neural unit with weights   and  then the 

output of the switching function is 1 for the input combinations 

,0w ,1w ,2w

21xx  or ,21xx and -1 for 

the input combinations  or 21xx .21xx  Then the following inequalities should be satisfied; 

that is, 

             
⎩
⎨
⎧

≤
≤

02

01

ww
ww

and 

         021 <+ ww  

         00 <w  

Obviously there is no such solution for which these contradictory inequalities are satisfied. 

Hence, the XOR logic function is not an ordinary threshold function that can be realized 
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by a single neural unit. The following section describes a method for realizing the XOR 

logic. 

2.3.1 Neural Model for XOR Logic Circuit (Gupta et al. 2003) 

For the binary state variables , the logic XOR operation is defined as ),( 21 xx

 [ ] [ ]212121 xxxxxxy   ANDOR    AND=⊕=  (2.9) 

(Two AND operations in parallel followed by one OR operation.) 

Alternatively, the XOR operation can also be defined as 

 [ ] [ ] OR    ANDOR  212121 xxxxxxy =⊕=  (2.10) 

(Two OR operations in parallel followed by one AND operation.) 

Thus, the XOR logic provides two classes of output which are defined as 

 Class A:  A1 ∪ A2 = {[-1, 1] ∪ [1, -1]} → + 1 (2.11a) 

 Class B:  B1 ∪ B2 = {[-1, -1] ∪ [1, 1]} → -1 (2.11b) 

These two classes of neural outputs are defined in Table 2.2 

Table 2.2 Truth table for an XOR operation on binary inputs 

        Neural Inputs       Neural Outputs 

      1x       2x          21 xxy ⊕=   

    -1               -1                    -1:  Class B1

    -1               1                       1:  Class A1    

   1              -1                     1:  Class A2

   1              1                     -1:  Class B2

              Class A = Class A1 ∪ Class A2

              Class B = Class B1 ∪ Class B2

  

There are four different neural methods for implementing the Exclusive-OR (XOR) logic 

operation.  The first two methods use the classical OR, AND and NOT operation, and the 

last-two methods use the nonlinear neural operations. 
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Figure 2.5  Realization of neural logic for XOR operation using two AND neurons in 

stage 1 and one OR neuron in stage 2. 

 It is obvious from Equations (2.9) and (2.10) that XOR switching function needs 

two stages (layers) of neurons:  the first stage will have two neurons in parallel, and the 

second, the output stage, will have one neuron. Figure 2.5 shows the implementation of 

the XOR neural machine using the relation (2.9), and Figure 2.6 shows the geometrical 

view of the mapping operations over these stages. Each neuron provides a mapping from 

two inputs to a single output.  Neuron N11 (row 1, column 1), the first AND neuron in 

stage 1, and N21 (row 2, column 1), the second AND neuron in stage 1, provide the 

mapping operation as shown in Table 2.3. Figure 2.6 shows the geometrical view of the 

mapping operations over these stages. The nonlinear mapping shown in Figures 2.6, and 

2.7 results from the operations of two parallel AND neurons in the first stage followed by 

a single OR neuron in the second stage. 
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0)1sgn( 2111 =+−−== xxyL  

0)1sgn( 2122 =−+−== xxyL  

Figure 2.6 Geometrical view of the mapping operations for the XOR problem in stage1. 

 

 

0)1sgn( 21 =++−== yyyL  

Figure 2.7 Geometrical view of the mapping operations for the XOR problem in stage 2. 
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Table 2.3 Truth table for neural stages 1 and 2 for realizing the XOR logic 

Neural   

Inputs 
Intermediate Stages 

 

Neural Output

 

1x  2x  

Points in the 

21 xx −  

plane (Fig. 2.6) 

211 xxy ⋅=  212 xxy ⋅=

Points in the 

21 yy −  plane 

(Fig. 2.7) 

21 yyy OR  =

-1 1 A1:  (-1, 1) 1 -1 A1:  (1, -1) 1: Class A1

1 -1 A2:  (1, -1) -1 1 A2:  (-1, 1) 1: Class A2

-1 -1 B1:  (-1, -1) -1 -1 B1:  (-1, -1) -1: Class B1

1 1     B2:  (1, 1) -1 -1 B2:  (-1, -1) -1: Class B2

Class A = Class A1 ∪ Class A2

Class B = Class B1 ∪ Class B2

 

These points are shown in the 21 xx −  attribute plane in Fig 2.6 and in the modified 

 attribute plane in Fig 2.7. The neural operation of Table 2.3 and Fig 2.7 are 

illustrated in detail using the two stage neural circuit given in Fig. 2.8.  

21 yy −

 

Figure 2.8  A two layered neural network with three neurons for realization of neural 

logic- XOR circuit using two AND and an OR neural unit. 
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The neural operation implemented in this neural network may be treated as a static, 

nonlinear, and discontinuous mapping from binary input space to the binary output space 

with preprogrammed weight parameters. The network is not associated with any sort of 

dynamics except that the information is fedback during the training process.  

2.3.2 Simulation Studies for the XOR Logic Circuit with Neural Units 

with LSO 

The simulation studies of XOR circuit implements the neuronal learning and 

adaptation capabilities. In this case three neurons are used as shown in Fig. 2.9 

incorporating the backpropagation (BP) learning method. The augmented weight vectors 

associated with the neuron N11, N21,   and N12 may be denoted as 

)1(
1aw  = [ ]Twww )1(

12
)1(

11
)1(

10  

)1(
2aw  = [ ]Twww )1(

22
)1(

21
)1(

20  

)2(
1aw  = [ ]Twww )2(

12
)2(

11
)2(

10  

and the input vectors for layers 1 and 2 are respectively 

ax  = [ ]Txxx 210 ,  10 =x  

ay  = [ ]Tyyy 210 ,  10 =y    

where  and  are bias terms. The input-output equations of the neurons are 

given by Eqns (2.3) and (2.4); that is, 

10 =x 10 =y

)( )1(
11

T
axw ⋅= ay φ  

)( )1(
22

T
axw ⋅= ay φ  

)( )2(
1

T
ayw ⋅= ay φ  

where )(⋅φ  is the sigmoidal nonlinear activation function. The learning rate for the 

simulation studies should be chosen in the range of 0.1 to 1.1 beyond which the learning 

phase could not be ensured (Gupta et al, 2003). The learning rate is the gain of the 

adaptable parameters of the network which determine the stability and speed of 

convergence during training. A learning rate of 0.8 was chosen for the simulation study 

and the initial weight values are randomly chosen by the Nguen-Widrow method. The 
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simulation results are shown in Fig. 2.8. The network took 2503 epochs to classify the 

patterns belonging to class A and B. The resulting weight vectors are 
)1(

1w  = [ ]T8854.11059.29467.1 −  

)1(
2w  = [ ]T9100.11298.29677.1 −  

)2(
1w  = [ ]T8244.28269.26688.2 −−  

 
    (a)       (b) 
   Error convergence with each iteration         Neural layer 1:  N11 and N21 in  plane 21 xx −

 
(c) Neural layer 2: N12 in 21 yy −  plane 

(a) N11 = Discriminant line L11: 210 8854.11059.29467.1 xxx +−  

(b) N21 = Discriminant line L21: 210 9100.11298.29667.1 xxx −+  

(c) N12 = Discriminant line L12: 210 8244.28269.26688.2 xxx −−  

Figure 2.9   A neural solution for the XOR problem obtained by BP learning algorithm 

with the learning rate of 0.8. 
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The convergence of the error with each epoch is shown in Fig. 2.8 (a).The learning 

stopped when the absolute value of the error 0001.0)( ≤ie  for i = 2 Ai and Bi. It took 

4692 iterations for solving the same problem when the weights are initialized manually 

than the weights initialized by the Nguen-Widrow method (Gupta et al, 2003). The BP 

algorithm can take varying amounts of time to solve this problem depending on the 

choice of weights and the learning rate. One more problem with the BP algorithm is that 

the error will converge very fast initially and tend to slack down as it approaches the 

desired tolerance limit (in this case10-04). This is due to the fact that the learning 

algorithm encounters more local minima as the performance curve is a nonlinear curve. 

The performance of the neural network depends on the learning algorithm employed, 

learning rate, network structure and the problem it self. The performance indicates the 

real computing power of network structure. It can be improved by incorporating different 

fast learning algorithms such as BP with momentum, quasi-Newton techniques etc. or by 

changing the network structure. In this thesis, an effort is made to improve the 

performance of the network by modifying the existing neural structure.  

2.4 Neural Logic for XOR-Operation using Polynomial Discriminant 

Function  

The linear classifier is limited in its capacity and, of course, it is limited to only 

linearly separable forms of pattern discrimination. Design of neural network classifiers 

becomes far more involved and intriguing when requirements for the membership in 

categories become complicated. More sophisticated classifiers with higher capacities are 

nonlinear. There are two types of nonlinear classifiers (Widrow and Michael 1992): 

1. Fixed preprocessor network connected to a single adaptive neuron 

2. Multielement feedforward neural network (Madline) 

Nonlinear functions of the applied inputs to single adaptive neuron will yield nonlinear 

decision boundaries. Useful nonlinearities include the polynomial functions. Consider the 

nonlinear classifier as shown in Fig. 2.10. The synaptic operation is a combination of 

linear and quadratic weighted combinations of the neural inputs. The sum of weighted 
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inputs  can be expressed as a nonlinear combination of the neural inputs  and the 

synaptic weights . 

v ax

aw

  = v 022222221121111110 =+++++ xxwxwxxwxxwxww  (2.12a) 

And the neural output  ny

  = ny [ ]vφ    (2.12b) 

or 

  = sgn [  (2.12c) ny ]),( aa xwf

where )(⋅φ is a nonlinear activation function which can yield a nonlinear discriminant 

surface of the shape shown in Fig. 2.11. With the proper choice of weights, the separating 

boundary pattern space can be established as shown in Fig. 2.11. This represents a solution 

for the XOR problem. 

 

 

Figure 2.10 Neural unit mapped with inputs through nonlinearities (higher-order synaptic 

operations). 

Of course, all linearly separable functions can also be realized using higher-order synaptic 

operations. This type of nonlinearities can be generalized for more than two inputs and 

higher degree polynomial functions of the inputs (Specht 1967).  From Fig. 2.11 it is clear 

that only one adaptive neuron is sufficient to separate the two classes A and B 

appropriately.  
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Figure 2.11 Different nonlinear boundaries separating the patterns which are not linearly 

separable (XOR operation). 

2.5 Application of Neural Units with LSO for Control Problems 

Based on the understanding of neuro-biological control aspects, the desire to 

develop simple models of neuronal structures has evolved into a promising area of 

research for many complex control problems in engineering industries. In the preceding 

sections, brief descriptions of single and multilayer feedforward network structures were 

introduced. These neural networks are called as static, feedforward, or non-recurrent 

neural networks. Such networks have no dynamic memory as the response of the network 

depends on its current inputs and the value of synaptic weights. Indeed, it is a well 

established fact that the feedforward neural networks can approximate nonlinear functions 
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to any desired degree of accuracy. This attribute of feedforward neural networks has 

motivated many researchers to utilize them as modern resourceful tools to model the 

dynamic systems. However, these networks suffer from many limitations (Hopfield 1990). 

The neural architectures with feedback have been introduced for various applications to 

overcome these limitations. These networks are called dynamic neural networks or 

recurrent neural networks. The dynamics in neural networks or neural computing does 

provide some functional basis of the cerebellum and its associated circuitry. In recent 

years, dynamic neural networks and recurrent networks have emerged as important 

components, which have proven to be extremely successful in system modeling 

(identification), adaptive control, signal processing and optimization problems (Widrow, 

Winter and Baxter, Hopfield 1982, Hopfield and Tank 1985, Narendra and Parthasarathy 

1989, Gupta et al. 2003, Rao 1994). These networks are important because many of the 

systems that are modeled in the real world are dynamic and nonlinear. Narendra and 

Parthasarathy developed new mathematical models for the identification and control of 

complex nonlinear dynamical systems with unknown parameters. Gupta and Rao (1994) 

have developed neural structures which are useful in control and identification of 

unknown nonlinear systems. There are several dynamic neural structures based on 

different neural paradigms and the list goes on. With the parallel growth in the field of 

fuzzy logic, many new neural models encompassing the principles of neural networks and 

fuzzy logic are developed. Although the static, dynamic, and fuzzy-neural networks are 

being used in many control and machine vision applications, the basic neural models 

remain a feeble imitation of the biological counterparts.  

2.6 Summary 

In this chapter, a brief description of a neuron with linear synaptic operation was 

presented. The basic mathematical model and structure of the adaptive element, the 

neuron, were outlined briefly. Neural networks have been used in different applications 

such as pattern recognition, system identification and control of complex systems such as 

flexible structures, and intelligent robotic systems. In order to explain the concepts and 

nuances associated with linear neuron, a simple pattern classification problem (XOR 

logic) is studied thoroughly. Through simulation studies of the XOR logic it was 
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concluded that the neurons with linear synaptic operation were limited to only linearly 

separable forms of pattern distribution. However, they perform a variety of complex 

mathematical operations when they are implemented in the form of a network structure. 

These networks suffer from various limitations such as computational efficiency, learning 

capabilities (Hopfield 1990). These limitations are motivating many researchers around 

the globe to develop novel neural morphologies with better learning and adaptive 

capabilities that can closely mimic biological neurons. 
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CHAPTER 3   
Development of Higher-Order Neural Units with Quadratic 

and Cubic Synaptic Operations 

3.1 Introduction 

The basic concepts of learning and adaptation in the field of control systems were 

introduced in the early sixties and many extensions and advances have been made since 

then. However, advances in understanding the physiology of biological control have 

spurred the interest of system scientists to explore the field of neuro-control systems. Due 

to the complex and diverse behaviour of the biological neurons, it is extremely difficult to 

compress their complicated characteristics into a model. However, recent mathematical 

models and the architectures of neuro-control systems have generated many theoretical 

and industrial interests. Towards this goal, a mathematical model of the biological neuron, 

named as the neural unit with linear synaptic operation (neural unit with LSO), or simply 

a neuron, was developed (Gupta and Rao 1994). Arranging neurons in layers or stages is 

supposed to mimic the layered structure of a certain portion of the brain. The most 

commonly used neural network architecture is the multilayer neural network (MFNN) 

with an error backpropagation algorithm. Although static, dynamic, and fuzzy neural 

networks are used in many control and machine vision applications, the basic neural 

models remain feeble imitations of their biological counterparts (Gupta and Rao 1994). In 

the previous chapter, it was shown that for solving a simple pattern classification problem 

requires a two layered linear neural network to realize the patterns. Many factors affect 

the learning performance of the MFNNs and must be dealt within order to have a 

successful learning process. The choice of initial weights, learning rate, network size and 

the learning database are the critical parameters that influence the performance of the 

MFNN. A good choice of these parameters will speed up the learning process to achieve 

the desired target. However, the MFNNs suffer from many limitations (Hopfield 1990, 

Gupta et al. 2003, and Principe et al. 2000). On the other hand, a new class of neural 

networks with higher-order neural units (HONUs) may provide a better solution which 
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decreases the training time, thereby improving the network efficiency (Lilly and Reid 

1993, Leda and Francis 1995).  

 
The objective of this research was to reduce the number of parameters of the 

HONUs without sacrificing the higher-order neural performance. In this chapter, two 

novel higher-order neural units are introduced; that is, the neural unit with quadratic 

synaptic operation (QSO) and the neural unit with cubic synaptic operation (CSO) are 

developed for pattern classification, control problems and other applications.  The term 

“quadratic and cubic” are applied to these neural units in the sense that the output of the 

synaptic operation is an aggregation of the weighted nonlinear combinations of the neural 

inputs. The structure and mathematical details of the neural unit with QSO and the neural 

unit with CSO are given in Section 3.2, and 3.3. The learning and adaptation algorithm 

for both neural units are discussed in respective Sections. A general methodology for 

developing the HONUs with higher-order neural synaptic operation is presented in 

Section 3.4.  A brief summary is given in Section 3.5. 

3.2 Development of Neural Unit with Quadratic Synaptic Operation 

(QSO) 

Computational neural networks can accommodate many inputs in parallel and 

encode the information in a distributed fashion. The learning capacity of a neural unit 

depends on its structure and the properties of its component elements (Rumelhart et al. 

1986). The structure of the biological neuron, shown in Fig. 3.1, manifests that it can 

process linear as well as nonlinear combinations of the weighted neural inputs. These 

neural structures belong to the class of HONUs which are the basic building blocks of the 

higher-order neural networks (HONNs). The higher-order weighted combination of the 

inputs will yield higher neural performance as they require fewer training passes and a 

smaller training set to achieve the generalization over the input domain. Further, in 

HONUs, the neural inputs exploit cross and self correlations between them and building 

such specific knowledge into the network structure results in “pretrained” network. The 

pretrained network doesn’t need more iterations to learn the transformations (Lilly and 

Reid 1993, Kuroe et al. 1997).  
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Figure 3.1 Structure of the biological neuron observed in the central nervous system 

(CNS). The soma of each neuron receives parallel inputs through its 

synapses and dendrites, and transmits the output via the axon to other 

neurons. 

Note that a HONU contains all the linear and nonlinear correlations terms of the input 

components to the order of  A generalized structure of the HONU is a polynomial 

network that includes the weighted sums of products of selected input components with 

an appropriate power. This type of network is called a sigma-pi network (S-PNNs) 

(Rumelhart et al. 1986). The synaptic operation of the S-PNNs creates the product of the 

selected input components computed with power operation while the conventional neural 

units compute the synaptic operation as a weighted sum of all the neural inputs. Since S-

PNNs result in exponential increase in the number of parameters, some modified forms of 

S-PNNs were introduced by Shin and Ghosh (1991) which involve smaller number of 

weights than the HONNs. They are called as pi-sigma network (PSN) where the synaptic 

operation is the product of the weighted sum of all nonlinear correlations terms of the 

input components to the order  Another type of HONNs called the ridge polynomial 

neural network (RPNN) were introduced by Shin and Ghosh (1991). However, the 

problem encountered with these HONNs is the combinatorial increase of the weight 

.N

.N
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numbers; that is, as the input size increases, the number of weights in HONNs increases 

exponentially (Zhengquan and Siyal 1998). 

In Chapter 2 Section 2.4, a nonlinear solution was provided for the realization of 

the XOR circuit using a HONU shown in Fig. 3.1. Consider the discrimanant equation of 

the HONU given in Section 2.4 by Eqn. (2.12 a) 

   = v 022222221121111110 =+++++ xxwxwxxwxxwxww       (3.1)  

The above equation belongs to the general second order equation which is of the form  

         (3.2) 0),( 22 =+++++= FEyDxCxyByAxyxH

where the coefficients A,B,C,D,E,F are real constants. When at least one of A, B, and C is 

nonzero, the above equation is referred to as the general second degree equation in two 

variables  andx y . This can be expressed in a general quadratic form in terms of matrices, 

column and row vectors. Consider the Eqn. (3.2) with  )31( ×X =  [ ]yx1  as a column 

vector and a symmetric matrix  which is expressed as   and 

expanded as shown below 

)33( ×Λ T
)13()33()31( ××× XΛX

    [ ]      (3.3) ),( yxH = yx1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

BCE
CAD
EDF

2/2/
2/2/
2/2/

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

y
x
1

Similarly expressing the Eqn. (3.1) in the quadratic form as  where 

 is the augmented vector of neural inputs including bias, 
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       =    (3.4) v [ ]210 xxx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

222/122/02

2/12112/01

2/022/0100

www
www
www

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

0

x
x
x

Weight matrix  is of the same form as  and a careful observation to the 

following elements of the matrix  will provide an interesting result; that is, the 

following elements have the same magnitude.  

aW )33( ×Λ

)33( ×Λ

)21( ×Λ  =   )12( ×Λ

)31( ×Λ  =   )13( ×Λ
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)32( ×Λ  =   )23( ×Λ

Since the magnitude of these elements is same, it is indeed a prudent choice to consider 

the upper triangle or the lower triangle of the weight matrix which results in less number 

of parameters (weights) in the HONU. Taking this fact into consideration, a new general 

mathematical model of the neural unit is described in the following section. 

3.2.1 Mathematical Model of the Neural Unit with Quadratic Synaptic 

Operation (QSO) 

In this chapter, a novel neural unit called the neural unit with QSO is introduced. 

The mathematical model of the neural unit with QSO with n-dimensional neural 

inputs,  and a single neural output, , is shown in Fig. 3.2. The neural 

inputs processed by the neural unit with QSO are summation of weighted linear and 

quadratic combination of inputs. The augmented neural input vector is defined as 

,)(x nRt ∈ 1)( Rtyn ∈

[ ] ,,,,, 1
1210

+
− ∈= nT

nn Rxxxxx "ax    (3.5) 

        [ T
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      is the threshold. 10 =x

The preprocessor of the neural unit with QSO generates a nonlinear combination of 

inputs (quadratic, cubic, etc.) depending on the requirement of the problem. The synaptic 

operation of the neural unit with QSO performs a new quadratic operation using an 

augmented weight matrix given by Eqn. (3.6) )1(*)1( ++∈ nnRaW
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T
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The neural output, , is given by a nonlinear function of the synaptic output, , as )(kyn )(kv
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[ ] 1)()( Rkvkyn ∈= φ       (3.7)  

where )(⋅φ  is the somatic nonlinear activation function. 

 

 
Figure 3.2 Structure of the new neural unit with quadratic synaptic operation (QSO). 

This nonlinear function maps the synaptic output )(kv [ ]∞∞−∈ ,  to a bounded neural 

output. Many different forms of mathematical nonlinear functions can be used to model 

the activation function. Typically, the sigmoidal activation function is a widely used 

nonlinear activation function. An example of such a function )(⋅φ  is given as 

gvgv

gvgv

ee
eegv
−

−

+

−
=)(φ  

where is a constant value which determines the slope of the 0>g ),(vφ the activation 

gain of the activation function.  It is clear from the Fig. 3.2 that the augmented neural 

inputs to the neuron are ,,,, 1210 −nxxxx " ,1+∈ n
n Rx ,10 =x  and the higher-order inputs 

are generated within the neuron. For simplicity, the discrete time variable k is not 

represented in the Fig. 3.2. This structure encapsulates the basic features and the structure 

of the biological neuron shown in Fig. 3.1. The weights  and , i, j ∈  {0, 1, 2 . . . ., 

n} in the augmented matrix  yield the same quadratic term or . Therefore, an 

upper triangle (or a lower triangle) of the augmented weight matrix  is sufficient to 

ijw jiw
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generate the discriminant equation which has the quadratic form. The upper triangle 

matrix can give the general quadratic discriminant equation as 

1

0

)()()( Rkxkxwkv
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i

n

ij
jiij ∈== ∑∑

= =
aa

T
a xWx ,      (3.8) 10 =x

A careful observation of the augmented weight matrix  reveals that the conventional 

neural units with linear synaptic operation are a subset of the neural unit with QSO. For 

example, the first row of the novel weight matrix  that is, the row vector  

aW

,aW

[ ]nwwww 0020100 "  ∈  )1()1( +×+ nnR  

can produce the weighted linear combination of the neural inputs. 

The total number of weights involved in this structure are 

( ) ∑
=

=
n

j
jj kxwkv

0
0 )(

,2/)2()1( +×+ nn   where  

is equal to the number of inputs. A comparison of the number of weights of different 

types of HONNs is given in Table 3.1. 

n

Table 3.1 The number weights in polynomial networks (HONNs) when the order of 
the neuron is 2 

Order of the Neuron N = 2 
Type of the 

HONNs 
General formula for the total 

number of parameters 

Number of parameters for 

2=n  

Neural Unit 

with QSO 
2/)2()1( +×+ nn  6 

PSN )1()1( ++ nn  27 

RPNN 2/)1()1( +×+ nNN  9 

 

The above table shows that when the networks have the same higher-order terms, the 

weights of the neural unit with QSO are significantly less than number of the weights in 

other HONNs. Therefore, the developed neural structure with a quadratic combination of 

the neural inputs and weights is more general and can improve the network efficiency 

significantly. The other HONUs like the neural unit with cubic synaptic operation can be 

expressed with different combinations of the higher-order synaptic operations.    
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3.2.2 Learning and Adaptation Algorithm for the Neural Unit with 

Quadratic Synaptic Operation (QSO) 

Developing a learning and adaptation rule involves optimizing the parameters of 

the neural structure; that is, the adaptable weights  and the slope of the nonlinear 

activation function 

ijw

[ )(kv ]φ′ (Gupta 1970). Learning is an iterative process in which the 

control sequence is modified in such a way that the neural output approaches the desired 

output as closely as possible. The equivalency of the input pattern sequence or 

desired response and the output  is a convenient condition for testing 

the learning process. Generally, the performance of a system is measured by defining an 

index called the error function,

1)( Rkyd ∈

1)( Rkyd ∈ )(kyn

[ ])(keJ , (or the cost function or performance 

index)(Gupta and Rao 1994). Defining the performance index is an optimizing process 

which finds a quantitative measure of the network performance. The performance index 

is small when the network performs well and is large when the network performs poorly.  

The learning and adaptation algorithm for the neural unit with QSO is developed 

in discrete time (k). The learning scheme is shown in Fig. 3.3. Let k denote the discrete 

time steps, k = 1, 2, 3 … and  be the desired output signal corresponding to 

the neural input vector at the  time step. Backpropagation algorithm 

using the gradient or steepest descent method can be used to derive the learning and 

adaptation algorithm. The error signal  is the difference between the desired output 

and the neural output  and is defined as 

1)( Rkyd ∈

)1()( +∈ nRkax thk

)(ke

)(kyd )(kyn

)()()( kykyke nd −=      (3.5) 

where 

  =   neural output )(kyn

  =  desired output )(kyd

       error between the desired output and the neural output =)(ke
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Figure 3.3 Learning and adaptation scheme for the neural unit with QSO. 

In this iterative process, the control sequence is modified in each learning iteration to 

cause the neural output  to approach the desired output  To achieve this, a 

performance index is defined as  

)(kyn ).(kyd

[ ] ))}(({)( keFEkeJ =        (3.6) 

where E is the expectation operator. A commonly used form of the  in Eqn. (3.6) 

is the squared function of the error; that is, the performance index is given as   

))(( keF

[ ] )}({
2
1)( 2 keEkeJ =       (3.7) 

The error function can be minimized using the following adaptation algorithm by 

adapting the weight matrix  as aW

   )()()1( kkk aaa ∆WWW +=+     (3.8) 

where denotes the change in the weight matrix. The changes in the weight matrix 

are proportional to the negative of the gradient of the error function . Hence, 

 is given as 
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where 0>µ  is the learning rate. The value ofµ determines the stability and the speed of 

convergence of the adaptive algorithm to optimal weights. The partial derivatives of the 
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error function, [ ]
)(
)(

k
ke

aW
J
∂
∂ , with respect to the weights can be calculated using the chain rule 

of derivatives as shown below 
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From the definitions of the performance index, [ ])(keJ  and the error signal  the 

gradient of the performance index with respect to the weight vector is obtained as follows 

),(ke

   [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
−∂

=
∂
∂

)(
))()((

2
1

)(
)( 2

k
kyky

E
k
ke nd

aa WW
J     (3.10) 

                  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
)(
)(

)(
k
ky

keE n

aW
     (3.11) 

 [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
)(
)()(

k
kvkeE

aW
φ      

   [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

−=
)(

)(
)(
)()(

k
kv

kv
kvkeE

aW
φ    (3.12)  

Note that, since 

                )()()()( kkkkv aa
T
a xWx=

and  

    
[ ]

)()(
)(

)()()(
)(

)( kk
k

kkk
k

kv
a

T
a

a

aa
T
a

a
xx

W
xWx

W
=

∂
∂

=
∂
∂     

Substituting this result in Eqn. (3.12) gives 
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where [ )(kv ]φ′  is the slope of the nonlinear activation function used in the neural unit 

with QSO. Therefore, [ ]
)(
)(

k
ke

aW
J
∂
∂  can be expressed using Eqn. (3.13) as 
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Substituting this result in Eqn. (3.9) gives the changes in the weight matrix which is 

given by                  
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Note that, taking the average of changes for the input vectors and the changes in the 

weights,  provides the strength of the cross-correlation between the error  

and the corresponding neural input terms Using this gradient estimate with 

steepest descent method provides a tool for minimizing the mean square error  

Thus the updating algorithm for the augmented weight vector is given by 
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The implementation scheme of Eqn. (3.16) is shown in Fig. 3.4. Usually the nonlinear 

activation function is chosen as sigmoidal function; that is, a hyperbolic tangent function 

tanh(s). In this case the derivative ))(( kvφ ′ is given by 
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Thus the Eqn. (3.16) can be rewritten as 
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Without loss of generality, the above algorithm can be converted into time domain.  
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Following observations are made with reference to the adaptation algorithm for the 

parameters of the neural unit with QSO 

• The desired model is an entity representing a physical reality as in the case of 

system identification and pattern classification problems (Rao 1994); 

• [ )(kv ]φ′  is the slope of the nonlinear activation function and can be considered as 

a gain of the changes in the weights; 

• µ  is the learning rate which determines the speed and the convergence of the 

adaptive algorithm to the optimal values; 

• The weight matrix contains ( ) ( )( )2/21 +×+ nn , [ ]nn …,3,2=  number of 

parameters and; 

• An upper (or lower) triangular weight matrix is sufficient to generate the 

nonlinear decision boundary. 

 

 

 

Figure 3.4 Schematic representation of the backpropagation algorithm for the neural unit 

with QSO  
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3.3 Development of Neural Unit with Cubic Synaptic Operation (CSO) 

 The higher-order neural units (HONUs) may be used in conventional feedforward 

neural network structures as the hidden units to form HONNs. These networks are proved 

to have good computational, storage, pattern recognition capabilities, and learning 

properties, and are realizable in hardware (Taylor and Commbes 1993). The higher 

correlation between the neural inputs is considered to improve the approximation and 

generalization capabilities of the neural networks (Gupta et al 2003). The following 

section describes another HONU called the neural unit with cubic synaptic operation 

(CSO). 

3.3.1 Structure and Mathematical Details of Neural Unit with CSO  

The structure of the neural unit with CSO is shown in Fig. 3.5. Defining the 

augmented vector of neural inputs and neural weights, the synaptic operation can be 

expressed as 
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Figure 3.5 Schematic representation of the neural unit with CSO with synaptic and 

somatic operations.    
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10 =x is the threshold and [ ]Tnn xxxxx 1210 −= "ax is the vector of augmented 

neural inputs augmented with the threshold (bias). The output, of the somatic 

operation is defined as a nonlinear mapping,

)(kyn

[ ])()( kvkyn φ=  which provides a bounded 

output for the neural inputs. 

To accomplish an approximation task for an input-output { }, the 

learning algorithm for the neural unit with CSO can be developed on the basis of the 

gradient descent method. The error function is formulated as 
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where is the desired output and is the output of the 

neural network. The error function is minimized using the steepest-descent technique and 

the weights are updated in discrete time (k) as given by the following equations 
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The changes in the weights are given by the cross-correlation between the error and the 

corresponding neural input terms. Even though the neural unit with CSO is a static neural 

unit, it can be implemented as a neuro-controller for complex control systems such as 

satellite control etc. A detailed description of the neural unit with CSO as neuro-

controller will be given in Chapter 5. 
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3.4   General Methodology to Develop HONUs with Higher-Order 

Synaptic Operation 

In this section, a general method for developing the HONUs is presented. In 

control systems, any higher-order systems can be expressed as a combination of first and 

second-order systems. Likewise, any HONU can be expressed as a combination of the 

neural unit with LSO and the neural unit with QSO. They can be considered as basic 

neural mathematical models with which any HONU can be represented. The basic 

principles and concepts of these neural models are utilized in the formulation of the 

HONUs with higher-order synaptic operations.  

Let  be the order of the neuron and n  be the number of inputs to the neuron. 

Consider  = [
N

ax ] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 10 =x to be the augmented vector of neural 

inputs, where accounts for the threshold (bias). Now consider the synaptic 

operation of the neuron when the order of the neuron is 1; that is, for =1, the synaptic 

operation for the neural unit with LSO is given by the following expression as 

10 =x

N
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For =2, the synaptic operation for the neural unit with QSO is given by the following 

expression as 

N
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For =3, the synaptic operation for the neural unit with CSO is given by the following 

expression as 

N
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Similarly, for the higher-orders the synaptic operation is given as 
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Equation (3.28) is the general expression of the synaptic operation for the order of 

the neuron. From Eqns. (3.23 to 3.28), it is clear that each synaptic expression of any 

order consists of mainly two terms; that is, 

thN

• Sigma’s ( and ;)∑

• An ensemble of weights and the neural inputs.   

Equations (3.23 and 3.24) can be represented in a nice matrix notation but it is difficult to 

represent the synaptic equation in a matrix notation for the HONUs (N=3, 4, 5…so on. 

Hyper matrices are beyond the knowledge of the author). In order to simplify the 

representation given by the Eqn. (3.28), the above two operators would be useful. 

Consider the Eqn. (3.28) which can be broken down into two operations 
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where sigma tuner precludes the exponential increase of the parameters for the  HONUs  

and the correlation operator provides the correlation strength between the input signals 

and the accumulated knowledge stored at the synapses in the form of weights. The sigma 

tuner contains three variables; that is,  which are defined in Eqn. (3.29)  NNn λ,,

  (3.29)      

where    

  n  = [ ] Rnn ∈− ,1,4,3,2 """"   

  = [ ]N RNN ∈− ,1,4,3,2,1 """"  

Νλ  =  and the variables take any one value of the 

set  The superscript of the pruner 

indicates the number of variables to consider in the sigma tuner. 
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Now, the general synaptic expression for any neural unit is given as 
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Sigma tuner Correlation operator  

When the network includes Pi-operator, number of weights increase exponentially which 

decreases the network efficiency during the training process. On other hand, the Sigma 

tuner decreases the number of weights without sacrificing the HONNs performance.     
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For better understanding of the Eqns. (3.29) and (3.30), the expansion of the expression is 

as follows: 
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 (3.31) 

The somatic operation provides a nonlinear mapping of the aggregated signal ‘ ’yielding 

an output signal ‘ ’. Mathematically, the neural output  can be represented as 

follows  =

v

ny ny

ny [ ]vφ .  Equation (3.31) is the generalised representation of the higher-order 

synaptic operation for the higher-order neural units. The neuron fires a signal only when 

the aggregated signal exceeds certain threshold associated with the neuron. However for 

mathematical representation, the threshold can be shifted to the aggregation operation. 

Now, it can be shown that many existing neural structures can be derived from this 

generalized representation of the higher-order synaptic operation. This is only possible 

when the bias is associated with the synaptic operation. 
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3.5 Summary 

Neural networks have undoubtedly been biologically inspired, but the close 

correspondence between them and the real neural systems is still rather weak. Vast 

discrepancies exist between both the architectures and capabilities of artificial and natural 

neural networks. Despite the loose analogy between artificial and natural neural systems, 

a new structure of a computational neuron called the quadratic neural unit (neural unit 

with QSO) was developed. The architecture and mathematical model of the neural unit 

with QSO has been presented. Neural unit with QSO incorporates linear as well as 

nonlinear combinations of neural inputs generated by the preprocessor. The neural unit 

with LSO is a subset of the neural unit with QSO and the higher-order neural units can be 

expressed using different combinations of the neural unit with QSO. The efficiency of the 

neural unit with QSO was greatly enhanced as the size of the weight matrix is reduced 

from  to [ ]nn× ,
2

)1(
⎥⎦
⎤

⎢⎣
⎡ +× nn and ).1( += Nn  An algorithm for updating the weights of 

the neural unit with QSO and an implementation scheme for the proposed learning 

algorithm have been presented. The concept of neural unit with QSO can be extended to 

develop any other higher-order neural units such as the neural unit with CSO and so on. 

The structure and mathematical details of the neural unit with CSO has been outlined. 

The learning and adaptation algorithm for the neural unit with CSO was presented. Due 

to their higher-order combination of the neural inputs, either the neural unit with QSO or 
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the neural unit with CSO can be trained to learn and control the unknown dynamic 

systems. A general methodology for developing the HONUs with higher-order synaptic 

operations is presented using sigma tuner and correlation operator. 
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CHAPTER 4   
Applications of the Higher-Order Neural Units to Static 

Problems: Pattern Classification and Function Approximation 

 
4.1 Introduction: Biological Motivation 

Biological systems employ the principles and concepts of pattern recognition to 

perform complex tasks such as recognising different visual, temporal and logical patterns. 

Using a broad enough interpretation, it is easy to find diverse applications of pattern 

recognition in every intelligent activity. In psychology, pattern recognition is defined as 

the process in which the external signals are converted into meaningful perceptual 

experiences by the sense organs (Pavlidis 1977). However, in engineering, it is viewed as 

a classification problem, where an object is assigned to one of the many classes. A basic 

task for the majority of biological systems (human beings, animals) is to decide if a 

particular pattern is the same or different from another pattern. In fact, a significant 

proportion of the information that is absorbed by biological systems is presented in the 

form of patterns. The human visual system, for example, has to differentiate if a certain 

image represents a friend’s face or that of a stranger. From an information–processing 

point of view, this task is achieved inherently by the neurons which are considered as the 

basic building blocks of the central nervous system (CNS). The human brain, the carbon 

based cognitive computing faculty, is based upon a different class of logic similar to 

fuzzy logic and soft computing whereas the silicon based digital computing machines are 

based on binary logic. In the late 1960’s, the stimulation-response of the primitive neuron 

was modeled using the threshold logic (McCulloch and Pitts 1943). Since then, it has 

become a practice to implement the logic circuits using neural structures. This 

methodology helped better in understanding the basic concepts of neural networks 

applied to pattern recognition (Gupta and Rao 1994 and Gupta et al. 2003). 

The classification problem needs a priori input data which may be generated by 

different mechanisms and the goal is to separate the data into various possible classes. 

The desired response is a set of arbitrary labels (a different integer is normally assigned 
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to each one of the classes), so every element of a class will share the same label. Since 

class assignments are mutually exclusive, a classifier needs a nonlinear mechanism such 

as an all-or-nothing switch to classify the patterns. At a higher level of abstraction, both 

the classification and the regression problems seek systems that transform inputs into 

desired responses. It is long old tradition/customary to utilize the Adaline and the LMS 

rule as pieces to build pattern classifiers (Lau 1992 and Principe et al. 2000). The Adeline 

can be applied for classification when the system topology is extended with a threshold as 

a decision device. However, there is no guarantee of good performance because the 

coefficients are being adapted to fit (in the least square sense) the data to the labels 1 and 

-1, and not to minimize the classification error. This is a simple example with only two 

classes. For the multiple-class case the results become even more fragile. The conclusion 

is that there is a need to develop a new methodology to study and design accurate 

classifiers.  

In this chapter, neural implementation of basic logic circuits such as OR, AND, 

and Exclusive-OR (XOR) are described using the neural unit with quadratic synaptic 

operation (QSO). The structure and the learning algorithm of neural unit with QSO for 

realizing the logic circuits are proposed in Sections 4.2 and 4.3. Computer simulation 

studies for realizing the different logic circuits are presented in Section 4.4. A statistical 

explanation is provided for the critical analysis of the neural unit with QSO in Section 4.5. 

The concept of Mahalanobis distance is introduced and a modified form of it is presented 

in Sections 4.6 and 4.7. The simulation results of the logic circuits are analysed in Section 

4.8 followed by a brief introduction to function approximation in Section 4.9.  

4.2 Structure of the Neural Unit with QSO for Realizing the Logic 

Circuits 

The structure of the neural unit with QSO for realizing the logic circuits is shown 

in Fig. 4.1. The synaptic connections of the proposed neural unit are weighted summation 

of linear and quadratic combinations of the neural inputs. The preprocessor of the neural 

unit with QSO generates the higher-order combination of the inputs inside the neuron. 

The preprocessed inputs determine how well the neural unit with QSO can 

generalize the patterns outside the training set. The structure of the neural unit with QSO 

),,( 2
221

2
1 xxxx
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is not associated with any sort of dynamic features (lateral recurrence, self recurrence). 

However, the higher-order inputs of the neural unit with QSO when employed in a 

network describe the dynamic characteristics of the network. These inputs take advantage 

of predefined relationships between the input nodes of the neural unit. As explained in 

Chapter 3, Section 3.2.1, the neural unit with QSO requires less number of training passes 

to generalize the patterns behind transformations. 

 
Figure 4.1 Schematic representation of the neural unit with QSO for realizing the logic 

circuits such as OR, AND, and Exclusive-OR (XOR).  

From Chapter 3 Section 3.4, the mathematical model of the neural unit with QSO for 

realizing the logic circuits can be expressed as 
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Before proceeding further, it is important to formulate the problem which evaluates the 

developed concept of the neural unit in a simple way. Any measurement can be thought 

of as a point in space called the pattern or the input space. The natural distribution of 

points, any deviation of these points from normalancy, leads to the definition of classes or 

category regions in the pattern space. The goal of the pattern recognition is to build 

machines called classifiers which will automatically assign measurements to the 

respective classes. A natural way to make the class assignment is to define the boundary 

called the decision surface. The decision surface is not trivially determined for many real 

world problems. It varies from time to time, from pattern to pattern and changes for the 

same pattern depending on the hour of the day, the subject’s state and so on. Thus the 

central problem in pattern-recognition is to define the shape and placement of the 

decision boundary so that the class-assignment errors are minimized. A learning and 

adaptive algorithm minimizes the error to give the optimal solution. Here the word 

optimal doesn’t necessarily mean good performance. It simply provides the best possible 

performance with the available data. The next section focuses on developing the learning 

and adaptive algorithm for realizing the logic circuits. 

4.3 Learning Algorithm for Realizing the Logic Circuits 

Many concepts and algorithms have been developed to mimic the learning 

process of the biological neural networks (Rosenblatt 1959, Minsky and Papert 1969, 

Fukushima 1983, and Grossberg 1988). Consider the neural system as depicted in Fig. 

4.2. The system has both learning and adaptation algorithm. The output of the logic 

function (desired model) is a scalar-desired output which continuously varies with the 

changes in the input. The objective of this scheme is to find a neural output  which 

is almost equivalent to the desired logic function . This can be defined in terms of 

the error  as the difference between the desired response  and the neural 

response . Thus, the error is defined as 

)(kyn

)(kyd

),(ke )(kyd

)(kyn

)()()( kykyke nd −=      (4.3) 

Ideally, the error should approach zero with increasing time (learning iteration). However, 

in practical situations, it is only possible to minimize the error which is expressed in 
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terms of performance index. For this purpose, an error function [ ])(keJ is defined as 

expected value of some even function of the error. One of the methods is to minimize the 

performance index with respect to the weights of the neural network. Based on this 

principle, a learning and adaptive algorithm was developed in Chapter 3 to modify the 

neural unit with QSO parameters. From Equations (3.8 and 3.13), the parameters of 

neural unit with QSO are updated based on the following algorithm; that is, the gradient 

vector associated with the augmented weight matrix is given as  

        [ ] (k)(k)xxW a
T
aa )()()( kvkek φµ ′=∆  

and the adaptation algorithm is given as 

[ ] (k)(k)xxWW a
T
aa )()()()1( kvkekk a φµ ′+=+   (4.4) 

where µ>0 is the adaptability rate in the learning scheme. For realization of logic circuits, 

the slope of the nonlinear activation function [ ])(kvφ′  is considered as a constant value. 

The implementation of the learning and adaptation algorithm of the neural unit with QSO 

is shown in Fig. 4.2. 

 
Figure 4.2   Learning and adaptation scheme for the realization of logic circuits. 
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4.4 Realization of Logic Circuits using Neural Units with Quadratic 

Synaptic Operation (QSO) 

In this section, neural implementations of binary logic circuits are discussed. 

Conventionally, binary logic operations are given for unipolar values 0’s and 1’s. With 

out loss of generality, these operations can be extended for bipolar inputs {-1, 1} as well. 

In many important practical applications, the signals obtained from the external world 

through measurements, are bipolar. The variables such as temperature and voltage are 

considered as bipolar signals. There are two simple transformation equations that convert 

unipolar signals to bipolar signals and vice versa. The equations are given as 

(i) Unipolar to bipolar: ,)(2)( γαβ −= kk  [ ]γγβ ,)( −∈k  and 

(ii) Bipolar to unipolar: [ ],)(
2
1 αβ +k  [ ].,0)( γα ∈k  

where ),(kα and )(kβ  are two classes of signals. Thus, for two neural inputs, 

and an output, is defined as a logical combination of and  as  )(1 kx )(2 kx )(ky )(1 kx )(2 kx

[ ])(),()( 21 kxkxfky =     (4.5) 

where  is a logical function usually defined as a combination of various logical 

operations such as OR, AND, NOT etc. These are well developed logic circuits which 

are extensively used in digital computers and control mechanisms. It is of interest to 

show that solving these logic circuits is equivalent to finding the decision surfaces in the 

pattern space such that the given data patterns are located on the decision surfaces (Gupta 

et al. 2003). Since the concept of higher-order neural synaptic operation is developed 

mainly for the nonlinear problems, the logic circuits are realized as follows: Exclusive-

OR (XOR), OR, and AND. 

[ ]⋅f

4.4.1 Realization of XOR (Exclusive-OR) using a Neural Unit with 

Quadratic Synaptic Operation (QSO) 

The XOR problem demonstrates the efficiency of a neural unit with QSO in 

providing the solution to a nonlinear classification problem. Since the XOR logic is not 

linearly separable, multilayered neural networks consisting of neural unit with LSOs are 
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required to classify the patterns. On the other hand, a single neural unit with QSO can 

solve the XOR problem using the quadratic function given by Eqn. (4.1). Consider a two 

variable XOR function defined as 

2121 ),( xxxxf ⊕=      (4.6) 

where are the bipolar binary inputs. Four bipolar learning patterns and the 

corresponding desired outputs are used to implement the XOR logic. The patterns are 

given in the Table 4.1.  

}{ 1,1, 21 −∈xx

Table 4.1  Truth Table for XOR Logic 

Neural Inputs Desired Outputs 

1x  2x  21 xxyd ⊕=  

-1 -1 -1:  Class B1 

-1 1 1:  Class A1 

1 -1 1:  Class A2 

1 1 -1:  Class B2 

Class A = Class A1 ∪ Class A2 

Class B = Class B1 ∪ Class B2 

 

Now, consider a higher-order neural unit which is used to realize this logic function as 
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222

2
1112112202101000 =+++++= xwxwxxwxwxwxwy  (4.7)  

and the desired response  is given by  )(kyd

[ ]ykyd sgn)( =       (4.8) 

The following sets of equations are obtained by substituting the neural input values from 

the Table.4.1 in Eqn. (4.7): 
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The set of equations given by the Eqn. (4.9) are indeterminate. Therefore there is no 

unique solution; that is, there is more than one solution that can satisfy the desired logic 

function. It is easy to implement the Eqns. (4.7 and 4.8) through simulation studies but 

finding the analytical solution is a difficult task. However, the above equations can be 

solved if Eqn. (4.9) is expressed in a matrix form by taking sgn(Eqn. 4.9) as 
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The above equations have the solution which is given as 

,1,0,0,0 120201221100 −====++ wwwwww  

and 

21xxy −=  

Hence the logic function can be implemented by a simple second-order polynomial. For 

simulation studies, the desired bipolar outputs are generated by means of a second-order 

polynomial function which is modified as 

( ) )5.0sgn( 21 −⋅−= xxkyd     (4.11)

The bias is added to the desired function in order to avoid the simulation glitch; that is, if 

the neural inputs and  take value ‘0’ during the simulation, the sgn of the function 

cannot be determined without bias. To overcome this simulation glitch, the bias is added 

to the logic function. The range of bias is between -1 and 1 as the maximum value of 

 The structure of the neural unit with QSO for implementing the XOR logic is 

shown in Fig. 4.1. The neural output is a function of weighted summation of linear and 

quadratic combination of the inputs. Since the logic function is a second-order 

polynomial, several nonlinear decision boundaries (hyperbolic, elliptical or parabolic) 

exist that can separate the patterns of the different logic circuits.  The orientation, 

placement and geometry of the decision boundaries depend on the initial values of the 

synaptic weights (Specht 1967, Widrow and Michael 1992). This realization ability of the 

1x 2x

.121 ±=xx
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neural unit with QSO is superior to the ability of a neural unit with linear synaptic 

operation (LSO) as the latter cannot achieve the nonlinear classification. 

4.4.1.1 Simulation Results for the XOR Logic 
The learning scheme proposed for training the neural unit with QSO is shown in 

Fig. 4.2. The adaptation algorithm was implemented using the SIMULINK toolbox in 

MATLAB 6.5. The initial values of the synaptic weights were generated using a random 

function (randn) in MATLAB 6.5. The convergence speed of a learning process depends 

on the choice of the learning rate as well as on the choice of the initial weight values 

(Guptal et al. 2003). Since the XOR logic has more than one solution, classification of 

patterns as class A or class B depends on the orientation of the nonlinear decision 

boundary. In this section, two non-linear boundaries were described classifying the 

patterns for the XOR logic.  

The learning algorithm is developed based on the backpropagation theorem. 

Backpropagation training with too small a learning rate will make slow progress while 

too large a learning rate will proceed much faster. This may simply produce oscillations 

which results in relatively poor solutions. Both of these conditions are generally 

detectable through experimentation and sampling of results after a fixed number of 

training epochs. Typical values for the learning rate parameter are numbers between 0 

and 1; that is, 0.75 <   < 0.05 µ . A learning rate µ = 0.03 was chosen for the simulation 

studies using the trial and error method. There is one more factor that needs to be taken 

care of during backpropagation; that is, initialization of weights in the neuron. Random 

initial state - unlike many other learning systems, the neural network begins in a random 

state. The network weights are initialized to some choice of random numbers with a 

range typically between -1 and 1.  

From the simulation studies, it is observed that the error converged to zero after 

200 iterations. Table 4.2 shows the synaptic weights for the zeroth and the 200th iteration. 

Figures 4.3 and 4.5 show the convergence of the error with each learning iteration k. 

This indicates that the neural output closely followed the desired output . The 

nonlinear decision boundaries (hyperbolic, elliptical) separating the patterns were shown 

)(ke

)(kyn )(kyd
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in Figs. 4.4, 4.6, and 4.8. It is presumed that the pattern space of class A and B is 

clustered around the points {Class A: [(-1, 1) (1,-1)] and Class B: [(-1, -1) (1, 1)]}. 

Table 4.2  Initial and Final values of the Synaptic Weights for the XOR Logic  

 

Iterations Synaptic weights 

Case k 00w  01w  02w  11w  12w  22w  

Boundary equations  and 

type of boundaries 

Initial 0 -.773 .818 .748 .793 -.525 .369 
I 

Final 170 -.902 -7.8e-5 1.1e-4 .6632 -.996 .2392 

10 411587902.0 xe-.xe-.xv ++−= -
2
221

2
1 23929966632 x.xx-.x. +++

 

  Ellipse 

 

Initial 0 .847 .397 .779 -.996 -.961 -.803 
II 

Final 135 1.164 -6.8e-5 6.1e-5 -.678 -.999 -.485 

210 5165861641 xe-.xe-.-x.v +=
2
221

2
1 485999678 x-.xx-.x-. ++  

Hyperbola

Initial 0 .323 -.87 -.153 .977 .031 -.332 
III 

Final 230 3.05e-4 -2.4e-4 3.18e-5 .6543 -.999 -.657 

10 518344524053 e-.xe-.-xe-.v +=
2
221

2
1 654799976543 x-.xx-.x.+  

Hyperbola

 
Figure 4.3 Desired output,  neural output, and error with the learning 

iteration k. 
)(kyd )(kyn )(ke
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2
221

2
1210 23929966632411587902.0 x.xx-.x.xe-.xe-.xv +++++−= -  

Figure 4.4 Hyperbolic boundary separating the patterns belonging to Class A and           

Class B for XOR logic with a single neural unit with QSO. 

 
Figure 4.5 Desired output,  neural output, and error with the learning 

iteration k. 

)(kyd )(kyn )(ke
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2
221

2
1210 4859996785165861641 x-.xx-.x-.xe-.xe-.-x.v +++=  

Figure4.6 Elliptical boundary separating the patterns belonging to Class A and Class B 

for the XOR logic with a single neural unit with QSO.  

 
Figure 4.7 Desired output,  neural output, and error with the learning 

iteration k. 

)(kyd )(kyn )(ke
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2
221

2
1210 654799976543518344524053 x-.xx-.x.xe-.xe-.-xe-.v ++=  

Figure 4.8 Hyperbolic boundary separating the patterns belonging to Class A and Class 

B for the XOR logic with a single neural unit with QSO. 

4.4.2 Realization of OR and AND Logic Circuits using a Neural Unit 

with QSO 

The neural unit with QSO is the most general neural unit that can generate higher 

and lower order neural units with different combinations. Therefore, neural unit with 

QSO can be used for linear as well as nonlinear separable forms of the pattern 

classification problems. In this section, the neural unit with QSO was implemented to 

realize the linearly separable OR and AND logic circuits. The truth tables for both the 

logic circuits are given in Table 4.3. The desired bipolar outputs for OR and AND are 

generated by mathematical logic functions which are given as 

( ) )1sgn(: 21 ++= xxkydOR              (4.12) 

( ) )1sgn(: 21 −+= xxkydAND      (4.13) 

The learning algorithm developed in Chapter 3, Section 3.7 was implemented to separate 

the patterns for the OR and AND logic circuits. The neural unit with QSO generated 

nonlinear discriminant surfaces, shown in Figs. 4.9, 4.10 and 4.11 to separate the patterns 
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of the OR and AND logic. Table 4.4 shows the initial and final values of the synaptic 

weights for learning iterations k=0 and k=200. 

Table 4.3  Truth Table for OR and AND Logic 

Neural 

inputs 
Desired outputs 

1x  2x  1xyd = OR  2x 1xyd = AND  2x

-1 -1 -1:  Class B -1:  Class B2 

-1 1 1:  Class A1 -1:  Class B1 

1 -1 1:  Class A2 -1:  Class B3 

1 1 1:  Class A3 1:   Class A 

 

Table 4.4   Initial and Final values of the synaptic weights for the OR and AND 
Logic 

 

OR Logic  

Iterations Synaptic weights 

Case k 00w  01w  02w  11w  12w  22w  

Boundary equations  and  

type of boundaries 

Initial 0 3 -8 -1 9 3 -3 
I 

Final 150 0.333 1.00 0.999 6.336 -8.6e-4 -5.664 

210 99900013330 x.x.x.v ++=
2
221

2
1 66454683366 x.-xxe-.-x.+

Hyperbola 

Initial 0 .847 .397 .779 -.996 -.961 -.803 
II 

Final 140 1.497 1.00 0.999 -.3453 -2.3e-4 -.1523 

210 99900014971 x.x.x.v ++=
2
221

2
1 15234323453 x-.xxe-.-x-.  

Parabola 

AND Logic  

Initial 0 3 -8 -1 9 3 -3 
I 

Final 150 -0.33 0.999 0.999 5.667 -0.001 -6.332 

210 9999993300 x.x.x.-v ++=
2
221

2
1 332600106675 x.-xx.-x.+  

Hyperbola 
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2
221

2
1210 6645468336699900013330 x.-xxe-.-x.x.x.x.v +++=  

Figure 4.9 Inverted hyperbolic boundary separating the patterns belonging to Class A 

and Class B for OR logic with a single neural unit with QSO. 

 
2
221

2
1210 1523432345399900014971 x-.xxe-.-x-.x.x.x.v +++=  

Figure 4.10  Parabolic boundary (nonlinear) separating the patterns belonging to Class A 

and Class B for OR logic with a single neural unit with QSO.  
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2
221

2
1210 3326001066759999993300 x.-xx.-x.x.x.x.-v +++=  

Figure 4.11  Hyperbolic boundary separating the patterns belonging to Class A and Class 

B for AND logic with a single neural unit with QSO. 

4.5 How does the Neural Unit with QSO provide a Better Solution than 

the Neural Unit with LSO? 

Statistical techniques and neural networks are widely used for classification in 

various pattern recognition problems. Statistical classifiers include linear discriminant 

function (LDF), quadratic discriminant function (QDF) etc. for classifying the patterns 

(Liu et al. 2004). The neural unit with QSO belongs to the class of optimal classifiers 

which are developed based on the statistical models of data. Statistical decision theory 

proposes very general principles to construct optimal classifiers. The basic function of the 

classifier is to make a decision. According to statistical pattern recognition, what matters 

for classification are the a posteriori probabilities , but they are generally 

unknown. The a posteriori probabilities are given by Eqn. 4.7 

)/( xAP i

)(
)()/(

)/(
xP

APAxp
xAP ii

i =      (4.14) 

 Bayes' rule provides a way to estimate the a posteriori probabilities. Equation 4.14 

provides a way to compute the a posteriori probability by multiplying the a priori 
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probability for the class,  with the likelihood,  that the data x  was 

produced by the class  (Principe et al. 2000). The likelihood can be estimated from the 

data by assuming a probability density function (pdf). Normally the pdf is the Gaussian 

distribution which is given by Eqn. (4.15). 

)( iAP )/( iAxp

iA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2)(
2
1exp

2
1)(

σ
µ

πσ
xxp     (4.15) 

where µ    = mean and is given as ∑
Γ

=Γ 1

1

i
ix   

           = variance and is given as 2σ ∑
Γ

=
−

Γ 1

2)(1

i
ix µ  

   = Number of samples. Γ

Using Baye’s rule, it is easy to estimate a posteriori probabilities from the data as mean 

and variance are known. Fisher showed that the optimal classifier chooses the class  

that maximizes the a posteriori probability  that the given sample  belongs to 

the class; that is,  belongs to class  if  

iA

)/( xAP i x

x iA

)/( xAP i  >   for all )/( xAP j ij ≠      (4.16) 

The problem is that the a posteriori probability cannot be measured directly but Baye’s 

rule provides the means to calculate it. The separation boundary is the point where the 

two a posteriori probabilities are identical. A general method to compute the Bayesian 

threshold is to substitute the likelihoods and find the value of x  that gives us equal a 

posteriori probabilities. Figure 4.12 explicitly shows that the class assignment is not error 

free. In fact, the tail of the “Class A1 (say Orange)” likelihood extends to the right of the 

intercept point, and the tail of the “Class A2 (say Apple)” likelihood extends to the left of 

the decision line S. The error in the classification is given by the sum of the areas under 

these tails, so the smaller the overlap the better is the classification accuracy. The 

maximum a posteriori probability assignment minimizes the probability of the error and 

is therefore optimal. Intuitively, one can conclude that the classification error depends on 

three factors 
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• The distance between the cluster (class) centers (mean µ ) for a given cluster 

variance  2σ

• The variance  of each cluster distribution 2σ

• The value of the Bayesian threshold 

 
Figure 4.12 The probability density function (pdf) of two Classes A1 and A2 with 

Bayesian Threshold S. 

If the distance between the cluster centers is larger for a given variance, the smaller the 

misclassification (minimum overlap) and the overall classification error. Likewise, for the 

same distance between the cluster means, the error is smaller if the variance of each 

cluster distribution is smaller. Since the decision region is a function of the threshold 

chosen, the error depends on the threshold also. It is clearly evident from the Fig. 4.12 

that the error is associated with the area under the tails of the class distributions. The 

Bayesian threshold quantifies the maximum error that can occur during the 

misclassification. Thus it is concluded that the probability of the error depends on the 

cluster mean difference, the cluster variance and the Bayesian threshold. Ideally for 

pattern classification problems, it is desirable to have a minimum misclassification error 

(even zero if possible). The error can be minimized in two ways:  

•  The distance can be increased between the cluster centers and 

• The second possibility is to vary the variance around the cluster centers 
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There is no assurance that increasing the distance between the class centers will minimize 

the error. The error can be minimized only when the tails of the pdf’s (Gaussians) are 

controlled in Fig. 4.12; that is, the class variance around the class mean should be as 

small as possible. This implies that one can minimize the error with the Bayes rule by 

selecting the threshold in such a way that the a posteriori probability is maximized. 

Hence, the metric for the classification is a function of both the mean and the variance of 

each class. The placement of the decision surface is determined by the class distance 

normalized by the class variance. This distance is called the Mahalanobis distance 

(Principe et al. 2000). The Following section briefly discusses the Mahalanobis distance 

and a modified Mahalanobis distance that is formulated to support the concept of the 

neural unit with QSO. 

4.6  Mahalanobis Distance 

The Mahalanobis distance is the exponent of the multivariate Gaussian distribution 

(Principe et al. 2000), which is given by 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −Ω−
−

Ω

=
−

2
)()(exp

)2(
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1

2
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2

µµ xxxp
T

D

π

  (4.17) 

where T indicates the transpose,  Ω  is the determinant of Ω , and 1−Ω  the inverse of Ω . 

Note that in the equation µ  is a vector containing the data means in each dimension, i.e. 

the vector has dimension equal to D.  
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The covariance is a matrix of dimension D x D where D is the dimension of the input 

space. The matrix  is  Ω
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and its elements are the product of dispersions among sample pairs in the  and 

coordinates (Γ is the number of samples in the data set): 

thi
thj

∑∑
Γ

=

Γ

=

−−
−Γ

=
1 1

,, ))((
1

1
k m

kikiij xx ji µµσ    (4.19) 

The covariance measures the variance among pairs of dimensions. Notice the difference 

in number of elements between the column vector m (D components) and the matrix ∑  

(D² components). The Mahalanobis distance is a normalized distance from the cluster 

center. The Mahalanobis distance is called M-distance for simplicity. The M-distance is 

shown in Fig. 4.14. It is obvious from Fig. 4.14 that, for classification, the dispersion of 

the samples around the cluster mean also affects the placement of thresholds for optimal 

classification. It is therefore reasonable to normalize the Euclidean distance (distance 

between cluster centers) by the sample dispersion around the mean, which is measured by 

the covariance matrix. The covariance matrix for each class is formed by the sample 

variance along pairs of directions in the input space. The covariance matrix measures the 

density of samples of the data cluster in the radial direction from the cluster center in 

each dimension of the input space. So, it quantifies the shape of the data cluster (Principe 

et al. 2000). 

4.7 Modified Mahalanobis Distance (MM-Distance) 

The objective of this thesis is to reduce the number of adaptable weights with out 

sacrificing the neural performance. The number of parameters (weights) in the covariance 

matrix increases with the increase in dimensions of the input space. In order to reduce the 

number of parameters, there is a need to modify the M-distance equation without 

changing the concept of Mahalanobis. The structure of MM-distance is similar to the 

distance formula proposed by Mahalanobis except the numbers of elements in the 

formula are reduced significantly. Consider the elements of the covariance matrix Ω  

given by Eqn. (4.18) 
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Figure 4.13 Mahalanobis distance (M-distance) from Class A1 and A2. 

 
Mu1, Mu2     : Means of the two classes A1 & A2 

      S     : Decision surface 

        Distance between S & Mu1, S & Mu2 : M- Distance 

Figure 4.14 Three dimensional view of the M-distance. 
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The covariance matrix for each class is formed by the sample variance along pairs of 

directions in the input space. For two a dimensional problems; that is, Class A1 and Class 

A2, the covariance matrix for each class are 

222221

1211
21

×
⎥
⎦

⎤
⎢
⎣

⎡
=Ω=Ω

σσ
σσ

AA        

The covariance matrix measures the density of samples of the data cluster in the radial 

direction from the cluster center in each dimension of the input space. So, it quantifies the 

shape of the data cluster. A careful observation to the covariance matrix reveals that the 

element 12σ  is same as the element 21σ . This holds good even for the D dimensions of the 

elements in the input space. So, the modified covariance matrix for the two dimension 

problem is given as 
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and for D-dimensions 
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The covariance matrix is always symmetric and positive definite (because of quadratic 

form and inverse always exist). It is positive definite, that is, the determinant is always 

greater than zero. The diagonal elements are the variance of the input data along each 

dimension. The off-diagonal terms are the covariance along pairs of dimensions. It is 

stated earlier that the placement of the decision region depends on three factors; that is, 

the distance between the class centers, the variance of each class centers and the 

threshold. The covariance matrix encapsulates the affect of covariance beautifully, but 

ignores other two factors completely. Hence, it is reasonable to incorporate the threshold 

term (bias) and the cluster mean to precisely determine the placement of the decision 

surface. Then the MM-distance is given by the same Eqn. (4.17)  
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where T indicates the transpose, Ω  is the determinant of Ω , and 1−Ω  the inverse of Ω  

which is given by the Eqn. (4.20) 
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The first row of the modified covariance matrix encapsulates the affect of the bias and 

cluster mean. The elements of the covariance matrix are the product of dispersions among 

sample pairs in the ith and jth coordinates: 
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Γ

=

Γ

=

−−
−Γ

=
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,, ))((
1

1
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kikiij xx ji µµσ    (4.21) 

The covariance matrix Ω  is an upper or lower triangle matrix that provides the sufficient 

condition for the placement of decision surface. The modified covariance matrix 

incorporates the affect of the Euclidean distance between the cluster centers, the 

threshold and the dispersion of the samples around the cluster mean which affects the 

placement of the thresholds for optimal classification. Hence, the structure of the 

covariance matrix is critical for the placement and shape of the discriminant functions in 

pattern space. Since the distance metric for classification is normalized by the covariance, 

if the class means stay the same but the covariance changes, the placement and shape of 

the discriminant function will change. Finally, it is concluded that the modified 

covariance matrix (weight matrix of the neural unit with QSO) is associated with the 

following terms 

 

• Threshold (bias);  

• Distance of the cluster means from the decision boundary (Euclidian distance); 

• Covariance’s (cross-correlation) among pairs of dimensions above the diagonal 

elements; and  

• Variances (auto-correlation) of the input data of each dimension along the diagonal. 
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4.8 Analysis of the Simulation Results 

4.8.1 Exclusive-OR (XOR) Logic  

The simulation results shown in Section 4.4 are for a particular value of an input signal 

whereas the following results shown are for different values of the input signals. The 

separation surface is given by the Eqn. 4.1, which yields the following equations for two 

different initial conditions 

0552.0890.1745.026.0242.0098.1:)( 2
221

2
121 =−−−++= xxxxxxva  (4.22) 

0703.0061.1896.0679.0497.0947.:)( 2
221

2
121 =−+−++= xxxxxxvb  (4.23) 

 
       (a)         (b) 

Figure 4.15 Nonlinear decision boundaries separating the patterns belonging to Class A 

and Class B for the XOR logic with a single neural unit with QSO.  
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Figure 4.15 show nonlinear decision boundaries separating the patterns belonging to 

Class A and Class B for the XOR logic with a single neural unit with QSO. From the 

above discussion, it was clear that the weight matrix must be symmetric and positive 

definite. The final weight matrices obtained for the XOR logic with different initial 

conditions are presented in Table. 4.5.  

Table 4.5  XOR Data Analysis 

Exclusive-OR (XOR) 

 Figure 4.15 : (a) Figure 4.15 : (b) 

Category Nonlinear Nonlinear 

Inputs range 1,1 21 ≤≤− xx  1,1 21 ≤≤− xx  

Output range [ ]1,1, 21 +−⊆xx  [ ]1,1, 21 +−⊆xx  

Initial 

Weight matrix 

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

803.000
961.0996.00

779.0397.0847.0

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

369.000
525.0793.00

748.0818.0773.0

Final 

Weight matrix 

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

552.000
890.1745.00

260.0242.00981.

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

703.000
061.1896.00
679.0497.0947.0

 
Type Symmetric Symmetric 

Determinant 

of the  aw 0.4515 0.5965 

Characteristic 

of the  aw Positive definite Positive definite 
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The two equations are quadratic in 2-D space as shown in Fig. 4.15.  In these cases the 

decision surface yields the smallest classification error for this problem. This may not 

necessarily mean good performance but it simply means the best possible performance 

with the chosen initial condition. 

4.8.2 OR Logic  

Figure 4.16 shows nonlinear decision boundaries separating the patterns 

belonging to Class A and Class B for the OR logic with a single neural unit with QSO. 

The separation surface is given by the Eqn. 4.1, which yields the following equations for 

two different initial conditions. The equations are 

0664.546.8336.6999.01333.0:)( 2
221

2
121 =−−−+++= xxxexxxva  (4.24) 

and 

01523.043.23453.0999.01497.1:)( 2
221

2
121 =−−−−++= xxxexxxvb      (4.25) 

 
(a)      (b) 

Figure 4.16 Nonlinear decision boundaries separating the patterns belonging to class A 

and class B for the OR logic with a single neural unit with QSO.  

For the OR logic, the linear and nonlinear decision surfaces can provide the classification 

as it belongs to the class of linearly separable problems. It is important to stress that the 

linear discriminant is less powerful than the quadratic discriminant. A linear discriminant 

primarily utilizes differences in means for classification. If the two classes have the same 

mean, the linear classifier will always produce poor results. However, the quadratic 



 76

discriminant does a much better job because it can utilize the differences in the 

covariance. The following table summarizes the OR logic simulation using a single 

neural unit with QSO. 

Table 4.6  OR Data Analysis 

OR Logic Circuit 

 Figure 4.16 : (a) Figure 4.16 : (b) 

Category Linear Linear 

Inputs range 1,1 21 ≤≤− xx  1,1 21 ≤≤− xx  

Output range [ ]1,1, 21 +−⊆xx  [ ]1,1, 21 +−⊆xx  

Initial 

Weight 

matrix 

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

369.000
525.0793.00

748.0818.0773.0

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

300
390
183

Final 

Weight 

matrix 

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

1523.000
43.23453.00

999.014971
e

.

 

aW =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

664.500
46.8336.60

999.01333.0
e

Type Symmetric Symmetric 

Determinant 

of the  aw 0.0787 -11.9504 

Characteristic Positive definite Negative definite 
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4.8.3 AND Logic  

Figure 4.17 shows nonlinear decision boundaries separating the patterns 

belonging to Class A and Class B for the AND logic with a single neural unit with QSO. 

The separation surface is given by the Eqn. 4.1, which yields the following equation 

08535.09860.0465.10248.10248.17965.0 2
221

2
121 =−+−++= xxxxxxv    (4.26) 

 
Figure 4.17  Nonlinear decision boundaries separating the patterns belonging to Class A 

and Class B for the AND logic with a single neural unit with QSO. 

This is quadratic in 2-D space as shown in Fig.4.17. Both linear and nonlinear classifiers 

can provide the correct pattern classification but nonlinear classifier provides the best 

possible solution. The following table summarizes the AND logic simulation using a 

single neural unit with QSO. 

Table 4.7  AND Data Analysis 

AND Logic Circuit 

 Figure 4.17 

Category Linear 

Inputs range 1,1 21 ≤≤− xx  
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Output range [ ]1,1, 21 +−⊆xx  

Initial 

Weight matrix
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8535.000
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Type Symmetric 

Determinant 
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Characteristic Positive definite 

 

The analysis of the logic circuits, XOR, OR and AND, strengthened the importance of 

the covariance matrix (weight matrix) as it decides the placement of the decision 

boundary for the classification of patterns. The sign of the determinant of the weight 

matrix determines the type of classification: good or poor classification. In the above 

simulation studies, the sign of the determinant of the weight matrix was always positive 

definite (PD) when the patterns were clearly separated and the determinant was negative 

definite (ND) when the patterns were misclassified. This was clearly evident in the 

simulation study of the OR logic circuit. In Figure 4.16 (a), the patterns belonging to 

Class A and Class B are clearly separated by the decision boundary whereas in Fig. 4.16 

(b), one of the patterns belonging to Class A lies on the decision boundary. Intuitively, 

the next question that arises is that what happens when the determinant of the weight 

matrix is zero? There are two interesting possibilities for this question 

• All the elements of the weight matrix can be zero  

• All the elements of the weight matrix should be zero except the first row 

The first possibility is beyond discussion and the second possibility is an interesting one. 

The weight matrix is a row vector; that is,  
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aW  or  [ ]020100 www=aW   (4.27)  

This implies that a neural unit with LSO is required for that specific pattern classification. 

The other interesting aspect of the above matrix is that the two classes are mutually 

exclusive as there is no cross and auto correlation terms associated with the inputs in the 

weight matrix. This boils down to another important conclusion that the choice of neural 

unit for a particular problem depends on the amount and type of data that is being 

processed by the neuron. Depending on these factors, one can decide before hand the type 

of neuron to be employed for a particular problem. This is technically termed as 

discriminant sensitivity to the size and type of data. Hence when the data is complex 

(mutually dependent and large data), it is always advisable to employ HONUs (neural 

unit with higher-order synaptic operations) for a better solution. This does not necessarily 

mean that the neural unit with LSOs can not provide a better solution but the difficulty is 

in deciding the number of neural units with LSOs that are required for obtaining the same 

solution. 

Important Observations Regarding Decision Surfaces for Logic Circuits 
 
(i) The discriminant surfaces could be elliptical, parabolic and hyperbolic for separating 

the patterns of the XOR logic. If the decision surface is hyperbolic, the bias cannot 

exceed the numerical value 22  because this is the critical condition for which the 

patterns lie on the surface as shown below. It may not be true for other logic circuits 

such as OR and AND. 

(ii) There can not be a circular discriminant surface of any radius for separating the 

patterns of the XOR logic. If a neural unit with quadratic synaptic operation provides 

a circular discriminant surface as one of the solution for the XOR logic then the 

elements other than the diagonal would be zero; that is, the weight matrix would have 

the elements as shown below 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

22

11

00
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00
00
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This implies that the weight matrix is a diagonal matrix and the diagonal elements   

are the eigen values of the quadratic synaptic operation but it was stated previous 

that the circle cannot be a solution. Hence an eigen value does not provide the 

solution for separating the patterns of the XOR logic. 

 

 

Figure 4.18 Critical bias for a hyperbolic decision boundary separating the patterns 

belonging to Class A and Class B 

(iii) The neural unit with quadratic synaptic operation always gives better performance as 

it finds the minimum in less number of iterations. 

Based on these observations, it is prude to conclude the following discriminate surfaces 

for separating the patterns belonging to different basic logic circuits  

Table 4.8 Discriminant solutions for classifying the patterns of basic logic circuits 

S. No 
Different basic 

logic circuits 

Discriminant surfaces for separating the patterns 

belonging to the basic logic circuits 

1 OR Linear, Parabolic, Circular, Elliptical, and Hyperbolic 

2 AND Linear, Parabolic, Circular, Elliptical, and Hyperbolic 

3 XOR Parabolic, Elliptical, and Hyperbolic 
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4.9 Function Approximation 

The problem of identification is a typical example of function approximation. One 

of the most significant characteristics of the neural networks is their ability to 

approximate any arbitrary nonlinear function to desired degree of accuracy. Neural 

networks potentially offer a general framework for modeling and control of nonlinear 

systems. The problem of learning a mapping from input and output space using neural 

networks is equivalent to the problem of estimating the system that transforms inputs and 

outputs given a set of examples of input-output pairs. Training a neural network using 

input-output data from a nonlinear dynamic system is considered as a problem of 

functional approximation.  

Function approximation seeks to describe the behaviour of very complicated 

functions by ensembles of simpler functions. Recently, a number of researchers have 

shown that multilayer static (feedforward) neural networks (MFNNs) can approximate 

any continuous function to desired degree of accuracy. Either Stone-Weirstrass theorem 

or Kolmogorov theorem has been employed for the theoretical development of functional 

approximation capabilities of neural networks. Other important analytic tools such as 

Series expansion, Trigonometric polynomials (Fourier expansion) are also widely used as 

function approximators, but their computation is bit more involved. In this section, the 

universal approximation capabilities of the HONNs are studied using a single neural unit 

with QSO. Computer simulations are presented to demonstrate the functional 

approximation capabilities of the neural unit with QSO. 

4.9.1 Simulation Studies 

It is demonstrated in this section, through computer simulation studies, that the 

neural unit with quadratic synaptic operation as the basic computing node, can 

approximate any arbitrary nonlinear function. Let  be a real function of a real valued 

vector  that is square integrable over the real numbers  The goal 

of the function approximation using the neural unit with QSO is to describe the behaviour 

of the function  in a compact area S  of the input space, by a combination of 

simpler functions such that  

)(xf

[ T
nxxx ""21=x ] .nR

),(xf
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ε<− )(,(ˆ))(( kfkf xwx a        (4.29) 

where ε  can be made arbitrarily small. The function  is called an 

approximant to  The learning scheme employed for this task is shown in Fig. 

4.19.  

)(,(ˆ kf xwa

)).(( kf x

 

Figure 4.19 The learning scheme for functional approximation using a HONU. 

For evaluating function approximation ability of the neural unit with QSOs, four 

simulation examples are discussed in this section. The task consists of learning a 

representation for an unknown one variable nonlinear function  Examples 1 and 

2 demonstrate the neural unit with QSOs ability to approximate arbitrary nonlinear 

functions as shown in Figs. 4.20 and 4.21. The simulation studies are carried out with 

different type of inputs such as sinusoidal, square, sawtooth and random signals.  

)).(( kf x

 The nonlinear functions used in these examples were as follows: 

 Example 1:  and ),())(( kxkxf =

 Example 2:  )(2)(5.0))(( 2 kxkxkxf +=
 
The mapping function obtained by a single neural unit with QSO for different type of 

inputs is shown in Fig. 4.20. The error reduced to desired limit (0.001) with in 50 

learning iterations. The approximation accuracy shown in Fig. 4.20 is extremely high by 
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the neural unit with QSO. This is an evidence for the high approximation ability of the 

proposed neural structure. 

 
Figure 4.20 Function approximation of a nonlinear function ( ) using a 

neural unit with QSO for Example 1 with different inputs such as 

sinusoidal, square, sawtooth and random signals. 

),())(( kxkxf =

In example 2, trigonometric functions were added to the desired nonlinear function to 

inspect the adaptability of the proposed neural unit. The simulation studies were shown in 

Fig. 4.21 for different inputs. In Examples 1 and 2, the neural unit with QSO took more 

learning iterations to approximate the desired nonlinear function when the input signal is 

random.  
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Figure 4.21 Function approximation of a nonlinear function using a neural unit with 

QSO for Example 2 ( ) with a sinusoidal signal. )(2)(5.0))(( 2 kxkxkxf +=

In Example 3, the desired nonlinear function was changed during the learning process to 

study the adaptiveness of the neural unit with QSO. The nonlinear functions used in this 

example were as follows: 

)250/2sin())(( kkxf π=    for 5000 ≤≤ k  and 

      
{ })(1

)(5.0
2 k

k

x

x

+
=   for .1000500 ≤≤ k  

The simulation studies for this example were shown in Fig. 4.22. The desired nonlinear 

function is changed at 500th learning iteration. Figure 4.22 show the different phases of 

the simulation studies. 
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Figure 4.22 Function approximation of a nonlinear function using a neural unit with 

QSO for Example 3 with change in desired function during the simulation 

at   500=k

In Example 4, another peculiar nonlinear desired function was chosen as follows: 

))(5sin(1.0))(2sin(3.0)())(( 3 kxkxkxkxf ππ ++=   

where          

       ).250/2sin()( kkx π=  

The simulation studies were shown in Fig.4.23 along with learning phase during the 

simulation study. It is observed from the Fig. 4.23 that the neural unit with QSO required 

more number of iterations to approximate the function. This is due to the fact that the 

function is associated with more nonlinearity. The above results do indicate that the 
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neural unit with QSO can approximate arbitrary nonlinear functions to desired degree of 

accuracy.  It was observed during the simulation studies that the neural unit with QSO 

adapted to the changes in nonlinear function during the approximation process. One thing 

should be noted that the high approximation accuracy is achieved only using a single 

neural unit with QSO. Better results can be achieved if a network of neural unit with 

QSOs is used for function approximation. 

 
Figure 4.23 Function approximation of a nonlinear function using a neural unit with 

QSO for Example 4 with an arbitrary desired function.  

4.10 Conclusions 

  The concept of the neural unit with QSO appears to be promising as it can process 

lower and higher-order inputs similar to the processing function of the biological neuron. 

Properties such as learning and adaptation associated with neural unit with QSO were 
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examined in great detail with examples. Different logic circuits such as OR, AND, and 

Exclusive-OR (XOR) are realized using a single neural unit with QSO. The 

mathematical model of the neural unit with QSO is greatly examined. The weight matrix 

beautifully encapsulates the concept of the Euclidian distance, the Mahalanobis distance 

and the effect of the threshold (bias) on the shape and the placement of the discriminant 

surface. The approximation capabilities of the neural unit with QSO were discussed in 

this chapter. The accuracy of the approximation does depend on the structure of the 

neurons employed in a network. The simulation studies of the neural unit with QSO 

provide enough evidence that it is a better computational node for the function 

approximation problems. It is well known fact that the MFNNs were considered as 

universal approximators for continuous functions. However, in author’s view that a 

network of neural unit with QSOs may provide a better approximation results than the 

approximation achieved by the MFNNs.  Apart from this, The HONUs with higher-order 

synaptic operations can be expressed using different combinations of the neural unit with 

QSO. Hence, it is the most general neural unit which can deal with both linearties and 

nonlinearities of the real world problems. The learning and adaptation algorithm for using 

the neural unit with QSO as a state feedback controller for control problems is being 

investigated in next chapter. 
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CHAPTER 5   
Applications of Higher-Order Neural Units with Higher-Order 

Neural Synaptic Operations for Control Problems 

5.1 Introduction: A Brief Review 

Neural networks are able to implement many nonlinear functions of control 

systems with higher degree of autonomy. The most commonly used neural network is the 

multilayer feedforward neural network (MFNNs) where no information is fedback during 

the operation. However, there is feedback information available during the training 

process. Supervised learning methods, where the neural network is trained to learn 

input/output patterns presented to it, are typically used. More often different versions of 

the backpropagation algorithm are used to adjust the neural network weights during the 

training process. This is generally a slow and very time consuming process as the 

algorithm usually takes longer time to converge. The convergence of the training process 

depends on the activation functions in the neural units; that is, sigmoidal, signum and 

gaussian functions are typically used depending on the requirement of the problem. 

One of the important applications of the MFNNs is for the identification and the 

control of nonlinear dynamic systems. Such networks can generate input/output maps 

which can approximate any function with a desired accuracy. One may have to use a 

large number of neurons, but any desired approximation can be accomplished with a 

multilayer network with one or two hidden layer of neurons. For a given task, this 

network architecture is associated with large number of neurons. On the other hand, 

higher-order neural networks (HONNs) require less number of neurons for achieving the 

same task but they are associated with large number of parameters (weights). However, 

for certain problems these weights are greatly reduced by constraining the architecture of 

the network; that is, for the problems that need to be classified regardless of some 

transformation groups such as translation, scaling and rotation. HONNs are also used for 

identification and control of nonlinear dynamic systems, and their performance is 

compared with the performance of conventional multilayer neural networks with linear 
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synaptic operation. Computer simulation studies reveal that the HONN models are more 

effective for the control of nonlinear dynamic systems (Gupta and Rao 1994). 

In this chapter, applications of HONUs with higher-order synaptic operations to 

control problems are discussed. Section 5.2 deals with the implementation of HONUs for 

control of linear systems where the neural unit with QSO and the neural unit with CSO 

are used as neuro-controllers for the satellite attitude control. Simulation studies of the 

HONUs as neuro-controllers to control the linear systems are discussed in Section 5.3. 

Similarly, applications of the HONUs as neuro-controllers to control the nonlinear 

systems are discussed in Section 5.4. The stability analysis of nonlinear systems using the 

energy approach and the lyapunvou method are presented in Section 5.5. A new damping 

function is developed in Section 5.6. In Section 5.7, neural unit with CSO is implemented 

as a nonlinear state feedback controller for control of unknown, varying parameter and 

structure, nonlinear dynamic system. The simulation results are presented in Section 5.8 

followed by the conclusion in Section 5.9. 

5.2 HONUs for Control of the Linear Systems 

The proposed HONUs utilize the linear and nonlinear correlation terms, and avoid 

the problem of combinatorial explosion of higher-order terms. In HONUs, there is no 

requirement to select the number of hidden units as in multilayer feedforward networks. 

HONUs are capable of learning linear and nonlinear functions extremely quickly due to 

the predefined relationships between the input nodes (Gupta and Knopf 1994). It was 

shown that these neural units can learn and process both functions and their derivatives 

with ease. This motivates system scientists to develop novel hierarchical and multilayer 

HONUs network architectures that can be trained using standard error backpropagation 

learning techniques. The following sections describe the application and implementation 

of HONUs such as the neural unit with QSO and the neural unit with CSO as neuro-

controllers for control problems. They are implemented as neuro-controllers for satellite 

attitude control problem. 
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5.2.1 Neural unit with QSO as a Neuro-Controller for Satellite Control 

Attitude Problem 

Satellites, as shown in Fig. 5.1, usually require attitude control equipment such as 

antennas, sensors, and solar panels should be properly oriented. Antennas are pointed 

towards a particular location on the earth, while solar panels need to be oriented towards 

the sun for maximum power generation. Consider the motion of satellite in its pitch plane. 

The angle Θ  that describes the satellite orientation must be measured with respect to an 

inertial reference as depicted in Fig. 5.1. The control force comes from the reaction jets 

that produce a moment of  about the mass center. Applying the basic Newton’s law 

to one dimensional rotational system, the equation of motion is written as 

dFc

Θ== ��IudFc        (5.1) 

The output of this system,  results from integrating the input torque twice and this type 

of system often referred to as the double integrator plant. Since, there are two states 

associated with the system; neural unit with QSO can be implemented as a neuro-

controller for satellite attitude control. The block diagram representation of the neural 

unit with QSO as a controller was shown in Fig 5.2.  

Θ

 

Figure 5.1 Schematic representation of satellite control in its pitch plane (one 

dimensional view) 
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Figure 5.2  Schematic representation of the HONU’s (the neural unit with QSO and the 

neural unit with CSO) as neural-controllers for the satellite attitude control  

Defining the augmented vectors of neural inputs and neural weights, the synaptic 

operation for neural unit with QSO is given as 
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The neural unit with QSO can be implemented as a nonlinear controller for complex 

problems such as satellite control problem and for problems in identification and inverse 

dynamic adaptive control.  From Figure 5.2, the governing equations for the satellite 

attitude control model are given as 

mm xx 21 =�        (5.3) 

rxxkxkux mmvmmpmmm +−−−== 2
2
112 )1(�    (5.4) 
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where  are position and velocity gains of the model respectively. Comparing 

Eqns. (5.2, 5.4), it is clear that only a subset of neural unit with QSO is required for 

control but a careful observation at the governing equation of the satellite control model 

indicates that a cubic term is associated with the control signal. Since the choice of neural 

controller depends on the structure and order of the system, the objective is to synthesize 

a control signal,  (as function of and ) in an optimal fashion (Gupta, 1970). 

Keeping this in mind, a HONU called the neural unit with CSO is described in detail as a 

neuro-controller for linear and nonlinear systems in the following sections.  

vmpm kk ,

nu 2
1nx nx2

5.2.2 Neural unit with CSO as a Neuro-Controller for Satellite Control 

Attitude Problem 

The neural unit with CSO can be considered as a combination of three neural 

units with LSO or a neural unit with LSO and a neural unit with QSO. The structure of 

the neural unit with CSO for satellite control attitude problem is shown in Fig. 5.3.  

 

 
Figure 5.3  Structure of the neural unit with CSO for control applications. 
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The synaptic operation of the neural unit with CSO is defined as follows: 
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where  is the output of the neural unit with CSO and ny )(⋅φ  is the activation function. In 

Figure 5.4, the neural unit with CSO is used as an identifier of a plant. The typical 

identification process consists of three components: the system to be identified, a 

postulated model (in this case either the neural unit with CSO or the neural unit with 

QSO) and an adaptation algorithm which updates the model based upon an error criterion. 

Since the adaptation algorithm shown in Fig. 5.4 processes the difference between the 

outputs of the neural unit with CSO and the system, the structure is called as parallel 

identifier. The importance of this type of identification is that it completely describes the 

external behaviour of the system. Normally, the injected signal to the plant is white noise 

or a signal of broad spectrum to excite all modes of the plant. If the input to the plant (and 

the model-neural unit with CSO) is sufficiently general and the weights of the neural 

network are adjusted for a sufficiently long time which ensures the minimum error for 

any input. These types of inputs are highly desirable which assures the convergence of 

the identification model to the desired set. 

 The objective of the neural unit with CSO is to emulate the plant by forcing the 

error to zero (within the tolerance limit) and to identify the synaptic weights equal to the 

plant parameter values. The learning and adaptation algorithm was already developed in 
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Chapter 3. In this identification process, the neural unit with CSO is considered as a static 

neural unit because it does not have any feedback properties; that is, the output of the 

neural unit with CSO depends only on its current inputs and the synaptic weights.  

 

 
Figure 5.4 Identification of a Plant using a neural unit with CSO  

 

Even though the neural unit with CSO is a static, it can be implemented as a neuro-

controller for complex control systems such as satellite control etc. The following section 

describes the implementation of the neural unit with CSO as a dynamic neural unit. 

5.2.2.1 Dynamic Cubic Neural Unit with CSO for Control Applications 
In this section, neural unit with CSO is implemented as a dynamic neural unit for 

control of complex systems (Satellite Attitude Control). The structure of the neural unit 

with CSO reveals that it is not associated with any dynamics but the introduction of states 

as feedback makes it a dynamic with several stable points. Hence, feeding back the states 

of the plant to the neural unit with CSO makes the whole structure a dynamic neuro-

controller. The simplified model of the satellite system is shown in Fig. 5.5. The purpose 

of this control system is to control the attitude of the space vehicle in one dimension. The 

block diagram of the space vehicle system shows that two states, the position  and the 1x
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velocity , are fedback by the position and rate sensors to form the closed loop control.  

The governing equations for the block diagram are given by Eqns. (5.3, 5.4). 

2x

                        

 
Figure 5.5 Block diagram of space vehicle (satellite control) system with nonlinear 

controller. 

The control signal  is associated with the cubic parameter i.e. . It was clearly 

evident that the neural unit with LSO and the neural unit with QSO don’t have a cubic 

term in their structures as discussed in previous sections.  This implies that they require 

more training passes or iteration time to control the satellite system. However, the neural 

unit with CSO is inherently associated with the cubic form in its structure as . This 

inherent structure helps the neural unit with CSO to adapt the plant more effectively and 

efficiently.  

mu mm xx 2
2
1

211 xxx

According to the Eqns. (5.3, 5.4),  is equal to two because there are two states as 

inputs to the neural unit with CSO such as the velocity ( ) and the position ( ). Thus, 

the synaptic operation of the neural unit with CSO is given as 
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Only a subset of the neural unit with CSO parameters are required to control the satellite 

system i.e. ,  and , each of which represent001w 002w 112w pk− , vk−  and  in sequence. 

The equation for the dynamic neural unit with CSO can be rewritten as 

vk

nn xx 21 =�        (5.8) 

nn ux =2�        (5.9) 

   rxxxwxxxwxxxwu nnnnnn +++= 211112200002100001  (5.10) 

np xy 1=                 (5.11) 

 
Figure 5.6  Adaptation of the neural unit with CSO as a nonlinear neuro-controller for 

satellite attitude control system.  

5.3 Simulation Results 

In this section, the response of the satellite control with different neuro-controllers 

such as neural unit with LSO, neural unit with QSO and the neural unit with CSO are 

compared. A block diagram depicting the different neural structures as state controllers is 

shown in Fig. 5.7.  The control methodology shown in Fig. 5.7 is called as Model 

Reference Adaptive Control (MRAC). This is the one of the most popular modern control 

methods that attracted many system scientists in control design. Selection of the model is 

referred to as structure estimation, where the model input-output signals and the internal 

components of the model are determined. In general, the model structure is derived using 

prior knowledge. In dynamic systems, the choice of the order of the model is always a 



 97

nontrivial problem. It is a compromise between reducing the unmodelled dynamics and 

increasing the complexity of the model which can lead to model stabilizability difficulties. 

  

 
r     : Input signal [Step or Square Inputs] 

ny   : Neural unit [neural unit with LSO, neural unit with QSO, neural    

unit with CSO] 

nu    : Control signal for the plant 

dy    : Desired output 

py   : Output of the plant when 

ax    : [  are the neural inputs ]Txxx 210

e      : Error between the desired output and the output of the plant 

Figure 5.7   Block diagram depicting different neural structures as neuro-controllers for a 

complex control system (satellite attitude control)  

In many practical cases, it is tacitly assumed that the reference model is linear. This is 

because linear systems theory is well developed and methods of choosing linear models 

that have desired properties are well established. This does not necessarily mean that the 

reference model cannot be a nonlinear model but an important practical consideration is 

that the dynamic mapping represented by the system, containing the controller and the 

plant, should approximate the reference model as tends to infinity (Miller et al. 1990). k
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In the model based approaches, the controller can be seen as an algorithm 

operating on a model of process and optimized in order to reach the given control design 

objectives (Ikonen and Najim 2002). For this study, a linear and a nonlinear model are 

considered for satellite attitude control. The objective of the attitude control is to point an 

antenna towards certain stellar object in its pitch plane. Therefore, inputs like step and 

square wave signals are considered for simulation studies. The simulation result shows 

that the neural unit with CSO can control a plant very effectively when compared with 

other neural structures as neuro-controllers. 

Most model validation tests are based on simply the difference between the 

simulated output and the measured output. The primary concern in satellite attitude 

control is the transient response of the plant. The transient response should be as fast as 

possible but without the overshoot. Simulations studies show that the neural controllers 

require 10 seconds to place the satellite to a desired state. Since it is a closed loop control, 

the response of the satellite can be improved by increasing the gain of the neural 

controllers but there is always an overshoot associated with it. This severely hinders the 

flexibility of the neural controllers despite its adaptive capabilities.  

5.3.1 Simulation Results for Satellite Control (Linear Model)  

Consider the attitude control of satellite in its pitch plane. The governing 

equations for the linear model are given as 

21 xx =�         (5.12) 

rxkxkx vp +−−= 212�       (5.13)       

where  2  are position and velocity gains respectively. The simulations of the 

satellite attitude control with these parameters using above differential equations are 

carried out. Figures 5.8 and 5.10 illustrate the comparison between the step and square 

responses of the satellite when three different neuro-controllers (neural unit with LSO, 

neural unit with QSO, and neural unit with CSO) are used. It can be noticed that the time 

required for the neural unit with CSO controller to drive the satellite to desired position is 

shorter than that of the other two controllers. Figures 5.8 (b), 5.9 (b), and 5.10 (b) show 

the convergence of the error with square and step inputs with different neural controllers.  

,1=pk =vk
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(a). Step response of the plant with different neural controllers. 

 
(b). The Convergence of the error with each learning iteration. 

Figure 5.8  Step and error response of the satellite control with the three different neural 

controllers when the model is a first order system. 
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(a). Step response of the plant with different neural controllers. 

 
(b). The Convergence of the error with each learning iteration. 

Figure 5.9  Step and error response of the satellite control with the three different neural 

controllers when the linear model is used. 
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(a). Square input response of the plant with different neural controllers.  

 
(b). The Convergence of the error with each learning iteration. 

Figure 5.10  Square input and the error response of the satellite control with the three 

different neural controllers when the linear model is used as MRAC. 
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5.3.2 Simulation Results for Satellite Control (Nonlinear Model)  

The transient response of the system can be improved by employing a nonlinear 

or time varying linear controller. The governing equations for the satellite attitude control 

with a nonlinear model are given as 

21 xx =�        (5.14) 

                    (5.15) rxxkxkx vp +−−−= 2
2
112 )1(�

where kp=1.05, kv=1.8 are position and velocity gains respectively. The velocity gain  

is a function of both position and velocity. The controller implements a nonlinear 

damping which varies with position as shown in Fig. 5.11. For Large , the damping is 

negative and for small , the damping is positive. The advantage of using this kind of 

nonlinear damping is to improve systems transient response by making damping small for 

large  (or possibly negative) and large for small . The damping limits can be 

increased or decreased depending on the design requirements of the system. 

vk

1x

1x

1x 1x

 

Figure 5.11  Nonlinear damping function 
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(a). Step input response of the plant with the three different neural controllers. 

 

(b). The convergence of the error with each learning iteration. 

Figure 5.12 Step input and the error response of the plant (satellite control) with different 

controllers when the nonlinear model is used as MRAC. 
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Figure 5.12 depicts the step response of the satellite with three different neuro-

controllers (neural unit with LSO, neural unit with QSO, and neural unit with CSO). It 

can be noticed that the time required for the neural unit with CSO controller to drive the 

satellite to desired position is shorter than that of the other two neuro-controllers. The 

transient response is associated with overshoot and almost required sixty iterations to 

settle which is not acceptable in the design of the control systems. 

From the simulation studies, it is concluded that the plant response is too sensitive 

to the changes in the parameters of the neural units (neural unit with LSO, neural unit 

with QSO, and neural unit with CSO). This was clearly evident when the plant was 

subjected to square inputs. The response of the plant was affected by the dynamics of the 

model notably in the transient phase. The transient response of the plant is faster with 

neural unit with CSO as a neuro-controller and an effort to improve the transient response 

resulted either in overshoot or instability of the plant forcing the response to infinity. 

A novel neural structure, called the neural unit with CSO, was presented as a 

neuro-controller for the control of a complex system such as satellite attitude control. The 

neural unit with CSO, as a dynamic neural unit with CSO, was able to control the satellite 

system better than the other neural controllers. The error converged to zero in less 

number of iterations with the dynamic neural unit with CSO. However, the response of 

the plant was associated with overshoot and the speed of the response was damped when 

the model was associated with the higher-order dynamics. This could be accounted to the 

large number of parameters that are associated with the neural unit with CSO. The 

solution to this problem is to find a method which reduces the overshoot without 

sacrificing the speed of the transient response. The following section describes a method 

to develop such type of controllers for linear and nonlinear systems. In this case, it is 

mainly focused on the development of new controllers which are subset of HONUs for 

control of nonlinear systems. 

5.4 HONUs for Control of Nonlinear Systems 

To model the input/output behaviour of a dynamical system, the neural network is 

trained using input/output data and the weights of the neural network are adjusted most 

often using the backpropagation algorithm. Because the typical application involves 
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nonlinear systems, the neural network is trained for classes of inputs and initial 

conditions. The underlying assumption is that the nonlinear static map generated by the 

neural network can adequately represent the system’s behaviour in the ranges of interest 

for a particular application. There is of course the question of how accurately a neural 

network, which realizes a static map, can represent the input/output behaviour of a 

dynamical system. One must provide the neural network with the information about the 

history of the system – typically delayed inputs and outputs. The amount of information 

needed depends on the desired accuracy but there is a trade-off between the accuracy and 

the computational complexity of the training process. This is because the number of 

inputs used affects the number of weights in the neural network and subsequently the 

training time. One sometimes starts with as many delayed input signals as the order of the 

system, and then modifies the neural network accordingly. The number of neurons in the 

hidden layer(s) is typically chosen based on empirical criteria and one may iterate over a 

number of networks to determine the neural network that has a reasonable number of 

neurons and accomplishes the desired degree of approximation. 

As seen previously, MFNN has only a linear correlation between the input vector 

and the synaptic vector. Extensive research attempts have been made by Rumelhart et al. 

[1986], Giles and Maxwell [1987], Softky and Kammen [1991], Xu et al [1992], Taylor 

and Commbes [1993], and Homma and Gupta [2002b] to develop HONUs for different 

applications. HONUs have been proved to have good computational, storage, pattern 

recognition, and learning properties and are realizable in hardware (Taylor and Commbes 

1993). These networks satisfy the Stone-Weierstrass theorem and hence considered to 

improve the approximation and generalization capabilities of the network. In recent years, 

adaptive neural control schemes have been found to be particularly useful for the control 

of nonlinear systems with unknown nonlinear functions. In the literature of adaptive 

neural control, neural networks (NNs) are primarily used as on-line approximators for the 

unknown nonlinearities due to their inherent approximation capabilities. However, the 

conventional models of neurons cannot deal with the discontinuities in the input training 

data.  In an effort to overcome such limitations of conventional neural unit with LSOs, 

some researchers have turned their attention to HONN models (Gupta et al. 2003).  
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In control systems theory, it is always difficult to prove typical control system 

properties such as stability when HONNs are used as neuro-controllers. The main reason 

is the mathematical complexity that is associated with the nonlinear systems. In the 

earlier NN control schemes, optimization techniques were mainly used to derive 

parameter adaptation laws, which lack for analytical results about stability and 

performance. To overcome these problems, several elegant adaptive NN control 

approaches have been proposed based on Lyapunov’s stability theory (Gupta Control 

notes 1970’s, and Ogata 1984). One main advantage of these schemes is that the 

parameter adaptation laws are derived based on Lyapunov synthesis and therefore 

stability of the closed-loop system is guaranteed. However, one limitation of these 

schemes is that they can only applied to nonlinear systems where certain types of 

matching conditions are required to be satisfied. Recently, some progress has been made 

in this area and certain important theoretical results have begun to emerge, but clearly the 

overall area is still at its infancy. The encouraging news is that there are successful 

applications of neural networks in control systems that work, and this certainly provides 

clues and guidelines for the corresponding theoretical development. This was the 

motivation to develop HONNs for nonlinear systems. 

In the following section stability analysis of nonlinear systems using Energy and 

Lyapunov methods are discussed. A new damping function called Universal damping 

function is introduced. A neuro-controller is designed using the universal damping 

function for control of unknown, varying parameter and structure, nonlinear dynamic 

system. 

5.5 Stability Analysis of Nonlinear Systems 

Most closed loop systems become unstable as gains are increased in an attempt to 

achieve higher performance. It is therefore correct to regard stability considerations as 

forming a rather general upper limit to control system performance (Leigh 2004). 

Stability is the most important subject in the control performance but there is no general 

stability analysis technique that will always determine stability for a given nonlinear 

system. A nonlinear system can have many stable points. When possible, it is always 

desirable to know the location of the stable points and which initial conditions would 
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converge to a given stable point. If the system is linear and time invariant, many stability 

criteria are available. Among them are the Nyquist stability criterion, Routh’s stability 

criterion, etc. If the system is nonlinear, or linear but time varying, however, then such 

stability criteria do not apply. Nevertheless, there are two popular methods for analyzing 

the stability of nonlinear systems (Alligood et al. 1996). They are 

• Motion in a Potential Field 

• Lyapunov Method 

5.5.1 Energy Method: Motion in a Potential Field 

Taking a cue from mechanics, consider the principle of conservation energy: In 

the absence of damping or any external forces, the system neither gains nor loses energy. 

Given an initial condition , the energy function E remains constant on the level 

curve , for all time t : 

),( 00 yx

)),(,( 00 yxtF

0))),(,(( 00 =yxtF
dt
dE       

where  is the flow of the solution. There is no need to know the explicit 

solution  of the governing equations. The governing motion in potential field 

for simple pendulum (assuming no damping and no external forces) is given as (Alligood 

et al. 1996) 
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This is another way of viewing Newton’s second law of motion; that is, acceleration is 

proportional to the force, which is the negative of the gradient of the potential field. 

Multiplying the Eqn. (5.16) with  and integrating both sides: x�
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where  is the constant of integration (Alligood et al. 1996). This leads to a simple 

technique for drawing the phase plane solutions of motion in a potential field. For 

example, the phase plane solutions of the pendulum problem are shown in Fig. 5.13. The 

1E
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solutions move along the level curves and the equilibrium points are denoted by star 

symbol.  Each trajectory of the system is trapped in a potential energy well and the total 

energy is constant for different trajectories. 

 

Figure 5.13 Level curves of the energy function and the solutions move along them. The 

equilibrium points are denoted by stars. 

 

Figure 5.14  Phase plane curves from the potential. (a) Graph of a potential energy 

function P(x). (b) A periodic orbit indicating absence of damping. 

In Figure 5.14, a trajectory with a fixed total energy  tries to climb out near  or , 

the kinetic energy goes to zero, as the energy 

1E 1x 2x

E  converts completely into potential 

energy. The function E  provides a useful partition of the points  in the phase plane 

into individual solution trajectories. For a conservative system, the energy is conserved 

),( yx



 109

but for a non conservative system, Eqn. (5.17) is no longer valid as it is associated with 

the damping and periodic forces. The basic idea of using energy-like functions is to 

investigate the dynamics of solutions that can be applied to more general equations rather 

than Eqn. (5.16). The theory of Lyapunov functions, a generalization of potential energy 

functions, gives us a global approach toward determining asymptotic behavior of 

solutions. By using any one of the methods, it is possible to determine the stability of a 

system without solving the state equations. There is a relationship between the Energy 

method and the Lyapunov function which will be explained in the next section. 

5.5.2 Lyapunov Function 

 Late in the nineteenth century the Russian mathematician A.M. Lyapunov 

developed an approach to stability analysis, now known as direct method of Lyapunov. It 

was widely used for stability analysis of linear and nonlinear, both time-invariant and 

time varying systems. Lyapunov’s theorem is limited in determining the stability in small 

regions about equilibrium points. It determines stability in the small. Ideally, the 

objective is to determine the stability in larger regions of the state space so that the 

stability about the equilibrium point is said to be globally asymptotically stable or 

asymptotically stable in large (Ogata 1984, Gupta). In many cases when Lyapunov 

method was applied, it was difficult to find suitable Lyapunov functions and when using 

linear approximation, it can not be decided whether nonlinear systems were stable or not 

on the outside of the region where linear stability theory can be applied. Therefore, a new 

stability analysis method is required to develop, which can be easily applied to nonlinear 

systems. In this Section, the stability analysis based on the higher-order (second order) 

derivatives of the neural unit with CSO and its application to nonlinear systems is 

discussed.  

Before dealing with stability of nonlinear control systems, it should be recalled 

that the stability of linear systems does not depend on initial conditions, but it depends 

only on the real values of the poles (Ogata 1984, Leigh 2004). In case of second order 

nonlinear dynamic systems, the motion in the potential field approach can be used to 

asses the stability of the nonlinear dynamic systems. Stability analysis of these systems 

often involves solving the differential equations of the form, 
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)()()()1()( 2 trtxktxxktx pv =+−+ ���  where the damping is not only a variable but also a 

function of position. The differential equations describing the dynamics of this type of 

nonlinear systems can be expressed in a more general form as 
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where 
))((
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∂
∂  is the partial derivative of potential function and are the states 

of a nonlinear system. The unity static gain in Eqn. (5.18) assures zero steady state error 

and the damping assures the stability. It should be mentioned that the unity gain can be 

reached either by neural unit with CSO or neural unit with QSO controller once the plant 

has been identified. For dissipative second order systems, the derivative of the energy 

function 
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E  (Alligood et al. 1996) is  
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The negative sign indicates that the total energy is decreasing along the orbits. Contrary 

to the potential field approach, the concept of the Lyapunov function can be applied for 

stability analysis of any dynamical system of any order. 

 

Theorem [Alligood et al. 1996]: 

If x  is an equilibrium point of the system of state differential equations and 

there exists a Lyapunov function for

)(xfx =�

x , then x  is stable. If a strict Lyapunov 

function exists, then the equilibrium x  is asymptotically stable.  

 

In case of nonlinear second order systems, the task simplifies as the nonlinear differential 

equations describing the system can be expressed in state space representation as 
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then, the Lyapunov function can be chosen as  
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where its derivative is given as 

221121 ),( xxxxxxV ��� ⋅+⋅=            (5.22) 
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From Equations (5.19) and (5.21), one concludes that the derivative of Lyapunov 

function (5.22) is equal to the derivative of the energy function for a second order 

nonlinear system (5.18). Now, the task is to develop a new controller which satisfies the 

following criteria: 

 

• The stability of a nonlinear control system is assured if the state space region in 

which the system to be controlled lies entirely within the basin of attraction and 

the solution of nonlinear system should converge to the equilibrium; 

• The morphological properties of the basin of attraction to the equilibrium are 

related to the properties of the strict Lyapunov function; 

• The larger area of existence of the strict Lyapunov function assures the larger 

basin of attraction to the equilibrium; and 

• Therefore, the existence of the strict Lyapunov function over large area, as 

large as possible, should be achieved to assure stability of a non-linear control 

loop. 

5.5.3 Concept of Nullclines 

The method of nullclines is a technique for determining the global behaviour of 

solutions of competing species models. This method provides an effective means of 

finding some trapping regions for some differential equations. The nullclines provide a 

bulk picture of how things change at different points in the phase plane. The concept of 

nullclines is used to identify the stability region and provides a clear picture of the 

variations of the slope field. Figure 5.15 shows the flow of one stable and one unstable 

solution of an autonomous system given by Eqn. (5.23)  

         (5.23)  )()()())(1()( 2
1 trtxktxtxktx pv =⋅+⋅−⋅+ ���



 112

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
Slope Field

x1

x2

 
Figure 5.15 The slope field, flow of two solutions, and nullclines of closed loop control 

(5.18) in the phase plane. 

 

Basin of 
Attraction 

Strict 
Lyapunov 

region  

Figure 5.16 The stability region for a nonlinear PD control system (5.23), area of 

decreasing energy and the nullclines. 

where ,  and the boundary of basin of attraction is partly denoted by the 

stable trajectory converging to equilibrium . Figure 5.16 shows the basin of attraction 

denoted by ‘o’ and the area of existence of strict Lyapunov function (with vertical ‘+’ 

stripes) in state space. The curves are nullclines denoting

1=pk 34.2=vk

]0,0[

0)( =tx� . In following sections, 

it will be shown that the appropriately modified subset of neural unit with CSO can 
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extend not only the range of the stability of a nonlinear controller over  

(assuming correctly identified plant) but also it can make the nonlinear controller to  have 

optimal performance from any initial condition for any desired value.  

2],[ Rxx ∈�

5.6 Neural Nonlinear Controller 

This study presents a methodology for specifying a neural controller for a system 

about which no a priori model information is available. The possibility of realizing 

feedback controllers for nonlinear dynamical systems is explored using neural designs. 

This topic has been addressed by many other researchers. Many prior studies have used 

the capability of neural networks to synthesize complex nonlinear functions. One such 

use is to implement state space control laws for partially known nonlinear dynamical 

systems. Most of these designs use iterative off-line techniques to develop the neural 

controller. These controllers are then inserted in a conventional feedback structure. The 

iterative adjustment of parameters can produce effective designs. However, such methods 

are computationally slow, and come equipped with no assurance of convergence. For on-

line adjustment of controller parameters, the iterative methods are too slow and, in 

addition, introduce the danger of coupling with process dynamics. The design procedure 

of the present study presumes no model information about the plant. However, the design 

format uses minimal apriori information that is broadly applicable to control applications. 

The focus here is in tracking the output trajectory. To evaluate the neural controller in 

this context, it is implemented in a closed loop feedback fashion in the system. The inputs 

to the neural controller are the system states. The neuro-controller accepts a job 

description in the form of a goal trajectory that the system outputs are to be driven along. 

It then causally determines the input signals which stimulate the system to track the 

desired output trajectory. The design uses no apriori information about the reference 

trajectory. While most neural network researchers draw tacit inspiration from 

neurological phenomena, very few neural network designs actually reflect such origins. 

However, the neural architecture has no sigmoidal activation function. Because of this, I 

make no claims concerning resemblance to natural neural calculations. The use of higher-

order derivatives provides a capability to store and distinguish information from the cross 

correlations and auto correlation terms of the HONU structure. Thus, from the most 
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recent I/O values and the target trajectory values, the HONU (neural unit with CSO), can 

interpolate (if necessary extrapolates) to determine the choice of the input value. 

Intuitively, one might view the neural unit with CSO controller as a very fast look-up and 

extrapolation device, with a subset of synaptic interconnections. The neural unit with 

CSO controller consists of a new damping function called universal damping function 

which provides robust tracking of the input. The following section explains the 

development of new damping function. 

5.6.1 Development of New Damping Function  

A nonlinear damping function which improves the system transient response was 

discussed in Section 5.3.2. Even though it improves the system transient response by 

making damping small for large  and large for small  but the operating region of  

remains in the range of [-1,1]. However, the required damping magnitude can be 

achieved by varying the damping gain. Now, the objective is to develop a method that 

determines the stability in larger regions of state space for achieving the stability in the 

large.  The new damping function is shown in Fig. 5.17. Figure 5.18 shows the different 

phases in the development of new damping function that enlarges the operating region. In 

Figure 5.18 (b), the absolute value of the function ensures positive damping. Initially, the 

damping is zero at the points ‘B’,’C’ and gradually increased to the desired value as the 

target approached the point ‘A’. However, the operating region still remains in the same 

range i.e. [-1, 1]. Now, in order to increase the operating region, the damping function 

needs to be modified. Consider the damping function with the absolute value  

1x 1x 1x

)1()( 2xabskxF v −=       (5.24) 

The above equation assures positive damping in the entire range of  but the desired 

damping value lies in the range of ‘zero’ and ‘one’. The damping function is again 

reformulated to achieve the desired characteristics. 

x

))(1()( 2
dv xxabskxF −−=      (5.25) 

where is the desired location.  Figure 5.18 (c) shows the damping function has moved 

to desired target but the operating region still lies in the range of [-1,1]. Now, a new gain 

dx
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term called the shift gain associated with the position is introduced in the damping 

function 

))(1()( 1
2 kvxxabskxF dv −−=     (5.26) 

where  is the gain associated in expanding the operating region. In order to achieve 

faster transient response, the damping should be zero or even negative. This condition 

evaluates the shift gain as  
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The damping function with desired characteristics is shown in Fig. 5.18(d) and is given as 
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where = Damping gain vk

           = Initial condition (Starting point) 0x

           =desired location (Target to reach) dx

 
Figure 5.17 Universal damping function 
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Figure 5.18  Different phases in the development of new damping function - universal 

damping function 
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5.7 Non-Linear State Feedback Neuro-Controller for Control of 

unknown, varying Parameter and Structure, Nonlinear Dynamic 

System 

In this section, a structure of nonlinear state feedback controller for any second 

order systems with a variable damping function is introduced. A linear state feedback 

controller is applied to the linear second order system which is given as 

)()( tutx =��        (5.29) 

then, the closed loop control equation ideally yields to a linear differential equation which 

is given as  

)()()()( trtxktxktu vp +−−= �      (5.30) 

with ,  as position and velocity feedback gains. Since the gains  as well as  are 

constant, the system is constrained in velocity by which it can reach the equilibrium point. 

In case of linear systems, real parts of the poles determine the stability of the closed loop 

control system. However, in case of nonlinear systems, there is no general method to 

determine the stability of the system. For example, a nonlinear equation given as 

pk vk vk pk

  0)(),()( 122112 =+== xfxxftux�      (5.31) 

where , has only an approximate solution. In Equation (5.31), damping is a 

variable and can be a function of the states 

21 , xxxx == �

1 2( , ),x x  the constants (weights), and the input 

value. This implies that the stability of a nonlinear system depends on many factors such 

as order of the nonlinearity, damping, nature of the input etc. For nonlinear systems, there 

are more degrees of freedom to modify the quality of the response (faster and with no 

overshoot) contrary to linear systems, where the damping is constant during the whole 

control process. A new damping function developed in Section 5.6.1 is introduced in the 

design of the controller as  

)())()((1 21
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1 txktrtxkf vvdamping ⋅−−⋅=      (5.32) 

where are the gains of the damping function. The damping gain achieves the 

required magnitude of the damping and  provides the variation of the damping from 

the initial position to the final position (target). The absolute value in the Eqn. (5.32) 
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assures the stability of the nonlinear controller for . The purpose of the 

nonlinear controller is to achieve a faster response by reducing the damping to a small 

value (initially zero) and gradually increasing it to a positive optimum value such that the 

system will not overshoot as soon as the desired position is reached. Assuming any 

square-like input function, the magnitude of  is determined by the initial position 

2
21 ],[ Rxx ∈

1vk

0x and the desired position  that is, ;dx
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where  is the initial position. Therefore, the damping function is given as )0(1x
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where  is the initial value and )0(1x dx  is the desired value. Thus the proposed structure 

of nonlinear stable state feedback controller is given by Eqn. (5.35). 
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Assuming the control input is represented by any step-like (or square-like) function, 

Figure 5.19 depict the characteristic features of the nonlinear damping which is applied to 

the modified subset of neural unit with CSO as a state controller to an unstable, second 

order plant (Eqn. 5.29). The proposed state controller (Eqn. 5.35) gives almost three 

times faster response without any overshoot compared with any other linear controllers. 

The proposed structure of neuro-controller which uses the neural unit with CSO for 

nonlinear plant identification is shown in Fig. 5.20. A modified subset of the neural unit 

with CSO is depicted as a state feedback controller (i.e. controller with universal variable 

damping function) in the same block diagram.   
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(Comparison of the proposed neural unit with CSO 
controller with common linear state- feedback controller) 

 

Figure 5.19(a) Step response of a satellite attitude control with different controllers. 

 
Figure 5.19(b) Response to square-like input function. 

Figure 5.19 Step response of a nonlinear system (Eqn. 5.29) with proposed neural 

controller. 
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First, the neural unit with CSO identifies the plant by back propagation (e.g., in case of an 

unstable system, data can be acquired by measuring the position, velocity and 

acceleration with different plant initial conditions). Now, the neural unit with CSO acts as 

an identifier of the plant (shown in Fig. 5.20) and the identified parameters are passed to 

the function  which corresponds to the state space representation of the dynamic 

system (Eqn. 5.20). The plant parameters that were identified by the neural unit with 

CSO are fed to the neuro-controller defined by the function as  (modified subset 

of the neural unit with CSO shown in Fig. 5.20). Now, the system switches into control 

mode.  

),( wf x

controllerf

In this mode, the neural unit with CSO can perform the control and identification of 

varying plant parameters with varying plant structure. 

 
Figure 5.20 Neural unit with CSO in a dual mode, as a nonlinear neuro-controller and as 

an identifier, performs state feedback control for optimal performance. 

However, it should be observed that convergence of the nonlinear neuro-controller tuned 

by back propagation (BP) in the above simulation is very sensitive (especially in case of 
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higher-order nonlinear systems), thus if the neural unit with CSO is to be operated in a 

dual mode, increased attention has to be paid on the accuracy of initially identified 

system parameters, size of learning rate, and the quality of data for identification.  

5.8 Simulation Results 

The unknown plant was represented as . 

Initial weights were set as [-10,-10,-10], learning rate for identification was chosen as 

µ=0.01. The learning rate for neural control mode was set much lower than the learning 

rate for identification (µ=0.00033) because the BP method was very sensitive. The results 

shown below come from simulations conducted in two distinct operating modes. In the 

first mode, the neural unit with CSO identified the plant and the structure switched into 

control mode using the identified weights as constants in the subset of neural unit with 

CSO. Figure. 5.21 shows that the weights were not exactly identified and the response 

deviated with increase in the step size of the input 
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Figure 5.21 Nonlinear plant controlled by neural unit with CSO as state feedback 

controller with constant parameters identified by the neural unit with CSO. 

In the second mode, the identified weights were used for further adaptation of the 

proposed neural state controller (Figs. 5.22(a), 5.22(b)) while the controller was 

simultaneously performing control and continuous identification of the plant parameter 
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values. Figure 5.22(b) manifests the capability of the controller to handle changes in 

parameter values of the plant where the parameter of damping changed from a = 0.1 to a 

= -0.5 at , which made the plant unstable. st 140≈

1.0
)()()()()( 35.12

=
=+++

a
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Figure 5.22(a) Nonlinear plant controlled by on-line tuned neural unit with CSO (as state 

feed back controller) by BP method. 

 
Figure 5.22 (b) Nonlinear plant controlled by neural unit with CSO as nonlinear neural 

state feedback   controller for unknown, unstable nonlinear plant with 

variable parameters 
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5.9 Conclusions 

A novel structure of a nonlinear state feedback controller which can perform 

almost three times faster than common linear controllers without overshoot for any 

square-like input function has been proposed. In combination with cubic neural unit, this 

controller can be applied to control any unknown, linear or nonlinear, stable or unstable 

second order system. The fast performance of the nonlinear controller structure has been 

demonstrated on a simplified satellite control problem. The capability of the neural unit 

with CSO (or the neural unit with QSO) to identify and control an unknown non-linear 

second order system with varying parameters has been demonstrated on a forced Duffing 

oscillator working with varying parameters including transition from stable to unstable 

modes. The development of neural structures such as quadratic and cubic neural units, or 

a subset of any higher-order neural unit and they are the potential tools for identification 

and control of an unknown nonlinear system with varying parameters and structure of 

higher-order thereby providing the scope for further research. 

Moreover, the experiments with these neural structures contributes to deeper 

understanding to real nonlinear dynamic systems and promises to reveal fairly novel 

ways of handling complex dynamic systems such as a human cardiovascular system. 
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CHAPTER 6  
Conclusions  

6.1 Concluding Remarks 

Neurons are the basic building block of the central nervous system (CNS) which 

is a central feature of the life. The CNS governs how we grow, respond to stress and 

challenge, and regulate factors such as body temperature, blood pressure, and cholesterol 

levels. The mechanisms operate at every level, from the interaction of proteins in cells to 

the interaction of organisms in complex ecologies. Like wise, the mathematical models of 

neurons do operate at different levels, from the interaction of robots at molecular level to 

the interaction of modern machines at macro level like “Spirit Rover” operating in a 

complex unpredictable environment. 

Neural networks have undoubtedly been biologically inspired, but the close 

correspondence between them and the real neural systems is still rather weak. Despite the 

loose analogy between the mathematical models and the natural neural systems, a new 

structure of the neuron called the neural unit with quadratic synaptic operation (QSO) 

was developed. The architecture and mathematical model of the neural unit with QSO has 

been presented. The neural unit with QSO incorporates linear as well as nonlinear 

combinations of weighted neural inputs generated by the preprocessor. The performance 

of the neural unit with QSO was greatly enhanced as the size of the weight matrix was 

reduced from 

[ ]nn×  to ,
2

)1(
⎥⎦
⎤

⎢⎣
⎡ +× nn and )1( += Nn   

where  is the number of inputs and N  is the order of the neuron. This was a very 

significant contribution as it improves the performance of the neuron; that is, the training 

time would be reduced greatly as the number of parameters in the weight matrix was 

reduced. The concept of neural unit with quadratic synaptic operation (QSO) can be 

extended to develop any other higher-order neural units such as the neural unit with cubic 

synaptic operation (CSO) and so on. Due to their higher-order combination of the neural 

inputs, either the neural unit with QSO or the neural unit with CSO can be trained to learn 

n
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and control the unknown nonlinear dynamic systems. A general methodology for 

developing the HONUs with higher-order synaptic operations was presented using sigma 

tuner and correlation operator. The proposed neural model closely resembles the structure 

of the biological neuron. However, it is not claimed that the neural model in this thesis 

incorporates all properties of the biological neuron. 

The Human ability to find patterns in the external world is ubiquitous. It is at the 

core of our ability to respond in a more systematic and reliable manner to external stimuli. 

Humans do it effortlessly, but the mathematics underlying the analysis and the design of 

pattern-recognition machines are still in their infancy. The neural unit with QSO is a 

basic step towards the development of such efficient machines to deal with the real world 

problems which are complex and unpredictable. 

  In Chapter 4, different logic circuits such as OR, AND, and Exclusive-OR 

(XOR) were realized using a single neural unit with QSO. The mathematical model of 

the neural unit with QSO was closely examined. The weight matrix beautifully 

encapsulates the concept of the Euclidian distance, the Mahalanobis distance and the 

affect of the threshold (bias) on the shape and the placement of the discriminant surface. 

The approximation capabilities of the neural unit with QSO were discussed in this 

chapter. The accuracy of the approximation does depend on the structure of the neurons 

employed in a network. The simulation studies of the neural unit with QSO provide 

enough evidence that it is a better computational node for the function approximation 

problems. It was well known fact that the MFNNs were considered as universal 

approximators for continuous functions. However in authors view, a network of neural 

units with QSOs would provide better approximation results than the results achieved by 

the MFNNs.  Apart from this, the HONUs with higher-order synaptic operations can be 

expressed using different combinations of the neural unit with QSO. Hence, it is the most 

general neural unit which can deal with both linearties and nonlinearities of the real world 

problems.  

 A novel structure of a nonlinear state feedback controller with universal damping 

function was proposed. This controller provided almost three times faster transient 

response than the common linear controllers without overshoot for any square-like input 

function. In combination with cubic neural unit, this controller can be applied to control 
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any unknown, linear or nonlinear, stable or unstable second-order system. The fast 

performance of the nonlinear controller structure was demonstrated on a simplified 

satellite control problem. The neural unit with CSO (or the neural unit with QSO) to 

identify and control an unknown nonlinear second order system with varying parameters 

was implemented on forced Duffing oscillator with varying parameters including 

transition from stable to unstable modes. The development of neural structures as neuro 

controllers with quadratic and cubic synaptic operations, or a subset of any higher-order 

synaptic operation would provide a better performance than any other linear or nonlinear 

controllers. These neural controllers are very sensitive to the learning rate and utmost 

care must be taken during the training process. They can be considered as the potential 

tools for identification and control of an unknown nonlinear system with varying 

parameters and structure of higher-order systems thereby providing the scope for further 

research. In most control systems, disturbances of one type or another exist. In this 

research, only a simplified model of satellite attitude control was considered for 

simulation studies. The system response to disturbance inputs, noise and parameter 

sensitivity were not considered in the simulation studies. However, the simulation studies 

and the experiments with these neural structures could contribute to the deeper 

understanding of nonlinear dynamic systems and promise to reveal fairly novel ways of 

handling complex dynamic systems such as a human cardiovascular system, robot path 

planning and weather forecasting. 

6.2 Contributions of the Thesis 

The main contribution of this thesis was the development of higher-order neural 

units with higher-order synaptic operation. Based on this concept, two neural units one 

with quadratic synaptic operation and the other with cubic synaptic operation were 

proposed. The mathematical model closely resembles the topology of the biological 

neuron in the central nervous system (CNS). Of course, the mathematical complexity 

restricts one to incorporate all features of the biological neuron. The learning and 

adaptation algorithms and their implementation scheme were outlined for the proposed 

neural units. 
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In conventional control systems, first and second-order systems can adequately 

represent any higher-order system and fairly reveal the characteristics of the system. Like 

wise, it is presumed that the neural units with quadratic and cubic synaptic operation can 

express any higher-order neural unit with higher-order synaptic operation. The major 

contribution of this thesis was the reduction and representation of the parameters in the 

novel weight matrix without losing the important information associated with the neural 

inputs. For the neural unit with quadratic synaptic operation (QSO), the parameters are 

represented in an upper triangular matrix in a quadratic form. In advanced mathematics, 

quadratic representation has significance because there are many applications in which 

the quadratic function appears and many functions can be approximated by them in small 

neighborhoods, especially near local minimum points.  

A general expression for the higher-order neural unit with higher-order synaptic 

operation was given in Chapter 3.  Any N-1th higher-order neuron is a subset of Nth 

higher-order neuron. This assumption is valid only when the bias of the neuron is 

associated with the augmented weight matrix. It is always possible to find (N-1) higher-

order neurons in any Nth higher-order neuron; that is, neural units with quadratic and 

linear synaptic operations are a subset of the neural unit with cubic synaptic operations. A 

close observation of the general higher-order synaptic operation reveals that the neural 

units with different synaptic operations are systematically arranged from top to bottom at 

different levels of the pyramid known as the neural unit with Nth order synaptic operation. 

This type of structure and representation of synaptic operation may lead to different 

direction of research in the field of neural networks. The structure is completely different 

from the conventional representation of neural units in the following way 

 

i. Cross and self correlations of the neural inputs are considered. These inputs 

incorporate pretrained data there by reduce the training time during the learning 

process. 

ii. The parameters are reduced significantly without losing the important information 

associated with the neural units. 
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The performance of the neural units with quadratic and cubic synaptic operation 

was compared, through simulation studies, with the conventional neural units and the 

existing higher-order neural structures. In particular, the neural unit with quadratic 

synaptic operation was applied to static problems such as pattern recognition and function 

approximation problems. For both problems, the performance of the neural unit with 

QSO was found to be better than the conventional neural units especially in realization of 

the logic circuits such as XOR, OR, and AND. This is due to the fact that the 

mathematical model of the neural unit encapsulates the effect of the threshold (bias), the 

mean (Euclidian distance) and the auto and self correlation terms (radial distance). The 

concept of Mahalanobis distance interprets the neural unit with QSO as an optimal 

classifier.  

The analysis of the logic circuits, XOR, OR and AND, strengthened the 

importance of the weight matrix (covariance matrix) as it decides the placement of the 

decision boundary for the classification problems. The sign of the determinant of the 

weight matrix determines the type of classification: good or poor classification. During 

the simulation studies, it was observed that the neural unit with QSO approximated the 

nonlinear functions to the desired degree of accuracy. The author believes that the better 

results could be achieved if a network of neural units with QSO is used for function 

approximation problems. 

Well known adaptive methods such as model reference adaptive control (MRAC) 

methods were used to study the neural units with higher-order synaptic operation as 

neuro controllers for the control of complex problems such as satellite attitude control. A 

new damping function called universal damping function was implemented in the neuro 

controllers which increased the speed of the transient response three times faster than the 

transient response achieved by the conventional controllers. The main advantage of using 

this type of damping function was that it provides the robust tracking of the input with 

out any overshoot in the transient response. It was found that the neuro controllers were 

too sensitive to the gain of the learning process. The author highly recommends utmost 

care to be taken while choosing the learning rate for the neural units with higher-order 

synaptic operation as neural controllers.  
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The development of the neural units with higher-order synaptic operations like 

quadratic synaptic operation (QSO) and cubic synaptic operation (CSO) is a basic step 

towards the development of intelligent machines to deal with the real world problems 

which are complex and unpredictable. Though researchers still have a long way to 

provide significant breakthroughs into an understanding of the human intelligentsia- 

Cognition and Perception, this work hints at the possibilities of developing the useful 

biological mathematical models for engineering applications. 

6.3 Future Scope of the Research 

This thesis has presented the basic concept of higher-order neural units with 

higher-order synaptic operation and their topology based on the structure of the biological 

neuron for control and pattern recognition problems. The author does not make any 

claims that the proposed structure of the neural unit has all features of the biological 

neuron. 

The performance of the neural units can be improved by adapting the slope of the 

activation function and including the dynamic elements such as delays in the 

mathematical model of the neuron but the inclusion comes at the cost of the mathematical 

complexity; that is, the problem arises in developing the learning and adaptation 

algorithms. Inter and Intra feedback can be associated with the structure of neuron. These 

neurons are called P-N type (Positive and Negative neurons) .This type of neural 

structures have potential applications in the analysis of complex problems such as image 

processing, human cardiovascular system, robot path planning and weather forecasting.   

From technical point of view important questions regarding the overall 

performance, speed and stability of the higher-order neural units need to be addressed. It 

is very difficult to find a general stability rule for nonlinear systems that would readily 

address the stability of the system. Basic concepts like energy method and Lyapunov 

function should be redefined and refined for achieving the desired stability. The real 

challenge would be the incorporation of these learning and adaptive algorithms for 

general higher-order neuron into hardware circuitry.  

Recent advances in the field of fuzzy logic and the new emerging field, fuzzy 

neural networks which is a marriage between the fuzzy logic and neural networks, should 
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provide significant breakthroughs for the implementation and the realization of the 

subjective phenomena such as cognition and perception for the creation of intelligent 

machines. It would be interesting and challenging to integrate the principles of the 

higher-order neural units and the fuzzy logic to develop completely new area of research. 
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