

Development of Neural Units with Higher-Order

Synaptic Operations and their Applications to
Logic Circuits and Control Problems

A Thesis

Submitted to the College of Graduate Studies and Research

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

In the

Department of Mechanical Engineering

and

Intelligent Systems Research Laboratory

University of Saskatchewan

By

Sanjeeva Kumar Redlapalli

Saskatoon, Saskatchewan, Canada

© Copyright Sanjeeva Kumar Redlapalli, 2004. All rights reserved

 i

COPYRIGHT

The author has agreed that the Library, University of Saskatchewan, may make

this thesis freely available for inspection. Moreover, I further agree that permission for

copying this thesis in any manner, in whole or in part, for scholarly purposes. This may

be granted either by the supervisor or the professors who supervised this thesis work or,

in their absence, by the Head of the Department or the Dean of the College in which the

thesis work was done. It is understood that due recognition will be given to the author for

this thesis and to the University of Saskatchewan in any use of the material in this thesis.

Copying or publication or any other use of the thesis for financial gain without approval

by the University of Saskatchewan and the author’s written permission is prohibited.

Requests for permission to copy or to make any other use of material in this thesis

in whole or in part should be addressed to:

Head of the Department of Mechanical Engineering

University of Saskatchewan,

College of Engineering,

Saskatoon, Saskatchewan,

Canada, S7N 5A9.

 ii

ACKNOWLEDGMENTS

I wish to express my sincere thanks to Dr. Madan M. Gupta for his valuable

guidance throughout this work. His encouragement and positive criticism have been

mainly responsible for the success of this project. He has spent an enormous amount of

time having many enlightening discussions with me on the project as well as guiding me

in the preparation of this thesis and other materials for publication. His advice and help

are greatly appreciated.

I would also like to express my sincere thanks to the advisory committee

members, Professor Chris Zhang, Professor Allan Dolovich and Professor Saeid Habibi

for their assistance.

I would like to extend my sincere appreciation for the visiting professor Dr. Zeng

Guang Hou for his advice and assistance in the preparation of this thesis. I would also

like to thank an exchange student at ISRL from Prague, Mr. Ivo Bukovsky, who is a

Ph.D. student in the Department of Instrumentation and Control Engineering, Division of

Automatic Control and Engineering Informatics, Czech Technical University in Prague,

for his valuable suggestions on simulations.

Financial assistance provided partially by the Natural Sciences and Engineering

Research Council (NSERC) is greatly acknowledged. I am also grateful to my parents for

their financial support, during the initial and final phase of the project, without which this

work would not have been possible.

I would like to take this opportunity to express my thanks to my friends who

always provided constructive criticism and moral support throughout this work.

Sanjeeva Kumar Redlapalli.

 iii

DEDICATION

Dedicated to my grand mother and my beloved parents

Smt. Redlapalli Sulochana Devi and Sri. Redlapalli Anjaneyulu Setty

&

my family members

For their continuous love and unwavering support throughout this work

 iv

ABSTRACT

Neural networks play an important role in the execution of goal-oriented

paradigms. They offer flexibility, adaptability and versatility, so that a variety of

approaches may be used to meet a specific goal, depending upon the circumstances and

the requirements of the design specifications. Development of higher-order neural units

with higher-order synaptic operations will open a new window for some complex

problems such as control of aerospace vehicles, pattern recognition, and image

processing.

The neural models described in this thesis consider the behavior of a single

neuron as the basic computing unit in neural information processing operations. Each

computing unit in the network is based on the concept of an idealized neuron in the

central nervous system (CNS). Most recent mathematical models and their architectures

for neuro-control systems have generated many theoretical and industrial interests.

Recent advances in static and dynamic neural networks have created a profound impact

in the field of neuro-control.

Neural networks consisting of several layers of neurons, with linear synaptic

operation, have been extensively used in different applications such as pattern recognition,

system identification and control of complex systems such as flexible structures, and

intelligent robotic systems. The conventional linear neural models are highly simplified

models of the biological neuron. Using this model, many neural morphologies, usually

referred to as multilayer feedforward neural networks (MFNNs), have been reported in

the literature. The performance of the neurons is greatly affected when a layer of neurons

are implemented for system identification, pattern recognition and control problems.

Through simulation studies of the XOR logic it was concluded that the neurons with

linear synaptic operation are limited to only linearly separable forms of pattern

distribution. However, they perform a variety of complex mathematical operations when

they are implemented in the form of a network structure. These networks suffer from

various limitations such as computational efficiency and learning capabilities and

moreover, these models ignore many salient features of the biological neurons such as

 v

time delays, cross and self correlations, and feedback paths which are otherwise very

important in the neural activity.

In this thesis an effort is made to develop new mathematical models of neurons

that belong to the class of higher-order neural units (HONUs) with higher-order synaptic

operations such as quadratic and cubic synaptic operations. The advantage of using this

type of neural unit is associated with performance of the neurons but the performance

comes at the cost of exponential increase in parameters that hinders the speed of the

training process.

 In this context, a novel method of representation of weight parameters without

sacrificing the neural performance has been introduced. A generalised representation of

the higher-order synaptic operation for these neural structures was proposed. It was

shown that many existing neural structures can be derived from this generalized

representation of the higher-order synaptic operation. In the late 1960’s, McCulloch and

Pitts modeled the stimulation-response of the primitive neuron using the threshold logic.

Since then, it has become a practice to implement the logic circuits using neural

structures. In this research, realization of the logic circuits such as OR, AND, and XOR

were implemented using the proposed neural structures. These neural structures were also

implemented as neuro-controllers for the control problems such as satellite attitude

control and model reference adaptive control. A comparative study of the performance of

these neural structures compared to that of the conventional linear controllers has been

presented. The simulation results obtained in this research were applicable only for the

simplified model presented in the simulation studies.

 vi

TABLE OF CONTENTS
COPYRIGHT i

ACKNOWLEDGEMENTS ii

DEDICATION iii

ABSTRACT iv

TABLE OF CONTENTS vi

LIST OF FIGURES ix

LIST OF TABLES xiv

CHAPTER 1: Introduction

1.1 Biological Motivation 1

1.2 Neural Networks 3

1.2.1 Biological Neuronal Morphology 4

1.2.2 Neuron: The Basic Unit of the CNS 6

1.3 Thesis Objectives 8

1.4 Thesis Outline 10

1.5 Conclusion 11

CHAPTER 2: Neural Units with Linear Synaptic Operation (LSO)

2.1 Introduction 12

2.2 A Brief Description of the Neural Unit with LSO 12

2.2.1 Linear Classifier 15

2.3 Neural Models for Threshold Logic 17

2.3.1 Neural Model for XOR Logic Circuit 19

2.3.2 Simulation Studies for the XOR Logic Circuit with Neural Units with LSO 23

2.4 Neural Logic for XOR-Operation using Polynomial Discriminant Function 25

2.5 Application of Neural Units with LSO for Control Problems 27

2.6 Summary 28

CHAPTER 3: Development of Higher-Order neural Units with Quadratic and

Cubic Synaptic Operation

3.1 Introduction 30

 vii

3.2 Development of Neural Unit with Quadratic Synaptic Operation (QSO) 31

3.2.1 Mathematical Model of the Neural Unit with Quadratic Synaptic Operation

(QSO) 34

3.2.2 Learning and Adaptation Algorithm for the Neural Unit with Quadratic

Synaptic Operation (QSO) 37

3.3 Development of Neural Unit with Cubic Synaptic Operation (CSO) 42

3.3.1 Structure and Mathematical Details of Neural Unit with CSO 42

3.4 General Methodology to Develop HONUs with Higher-Order Synaptic Operation

 44

3.5 Summary 48

CHAPTER 4: Applications of Higher-Order Neural Units to Static Problems:

Pattern Classification and Function Approximation

4.1 Introduction: Biological Motivation 50

4.2 Structure of the Neural Unit with QSO for Realizing the Logic Circuits 51

4.3 Learning Algorithm for Realizing the Logic Circuits 53

4.4 Realization of Logic Circuits using Neural Units with Quadratic Synaptic

Operation (QSO) 55

4.4.1 Realization of XOR (Exclusive-OR) using a Neural Unit with Quadratic

Synaptic Operation (QSO) 55

4.4.2 Realization of OR and AND Logic Circuits using a Neural Unit with QSO 62

4.5 How does the Neural Unit with QSO provide a Better Solution than the Neural

Unit with LSO? 65

4.6 Mahalanobis Distance 68

4.7 Modified Mahalanobis Distance (MM-Distance) 69

4.8 Analysis of the Simulation Results 73

4.8.1 Exclusive-OR (XOR) Logic 73

4.8.2 OR Logic 75

4.8.3 AND Logic 77

4.9 Function Approximation 81

4.9.1 Simulation Studies 81

 viii

4.10 Conclusions 86

CHAPTER 5: Applications of Higher-Order Neural Units with Higher-Order

Neural Synaptic Operations for Control Problems

5.1 Introduction: A Brief Review 88

5.2 HONUs for Control of the Linear Systems 89

5.2.1 Neural unit with QSO as a Neuro-Controller for Satellite Control Attitude

Problem 90

5.2.2 Neural unit with CSO as a Neuro-Controller for Satellite Control Attitude

Problem 92

5.3 Simulation Results 96

5.3.1 Simulation Results for Satellite Control (Linear Model) 98

5.3.2 Simulation Results for Satellite Control (Nonlinear Model) 102

5.4 HONUs for Control of Nonlinear Systems 104

5.5 Stability Analysis of Nonlinear Systems 106

5.5.1 Energy Method: Motion in a Potential Field 107

5.5.2 Lyapunov Function 109

5.5.3 Concept of Nullclines 111

5.6 Neural Nonlinear Controller 113

5.6.1 Development of New Damping Function 114

5.7 Non-Linear State Feedback Neuro-Controller for Control of unknown, varying

Parameter and Structure, Nonlinear Dynamic System 117

5.8 Simulation Results 121

5.9 Conclusions 123

CHAPTER 6: Conclusions

6.1 Concluding Remarks 124

6.2 Contributions of the Thesis 126

6.3 Future Scope of the Research 129

 ix

LIST OF FIGURES

Figure 1.1 Layers of biological neurons arranged in a network depicting the flow of

neuronal information in the forward direction as well as through inter and

intra feedback direction.

5

Figure 1.2 A general mathematical model of the neuron with synaptic and somatic

operation. The confluence operation compares the neural information

with the past experience stored in the synaptic weights and the nonlinear

activation function provides the bounded neural output.

6

Figure 1.3 Different activation functions used in the mathematical model of the

biological neuron for bipolar input signals.

7

Figure 2.1 Basic mathematical model of an adaptive element: the neuron with linear

synaptic operation.

14

15 Figure 2.2 Similarity measures between the vectors and ax aw

Figure 2.3 Block diagram representation of a neuron with linear synaptic operation. 17

Figure2.4 Attribute plane showing the pattern classification. The

discriminant line L separates the patterns Class A and Class B.

21 xx − 17

Figure 2.5 Realization of neural logic for XOR operation using two AND neurons

in stage 1 and one OR neuron in stage 2.

20

Figure 2.6 Geometrical view of the mapping operations for the XOR problem in

stage1.

21

Figure 2.7 Geometrical view of the mapping operations for the XOR problem in

stage 2.

21

Figure 2.8 A two layered neural network with three neurons for realization of neural

logic- XOR circuit using two AND and an OR neural unit.

22

Figure 2.9 A neural solution for the XOR problem obtained by BP learning

algorithm with the learning rate of 0.8.

25

Figure 2.10 Neural unit mapped with inputs through nonlinearities (Higher-order

synaptic operations).

26

Figure 2.11 Different nonlinear boundaries separating the patterns which are not 27

 x

linearly separable (XOR operation).

Figure 3.1 Structure of the biological neuron observed in the central nervous system

(CNS). The soma of each neuron receives parallel inputs through its

synapses and dendrites, and transmits the output via the axon to other

neurons.

32

Figure 3.2 Structure of the new neural unit with quadratic synaptic operation (QSO). 35

Figure 3.3 Learning and adaptation scheme for the neural unit with QSO. 38

Figure 3.4 Schematic representation of the backpropagation algorithm for the neural

unit with QSO

41

Figure 3.5 Schematic representation of the neural unit with CSO with synaptic and

somatic operations.

42

Figure 4.1 Schematic representation of the neural unit with QSO for realizing the

logic circuits such as OR, AND, and Exclusive-OR (XOR).

52

Figure 4.2 Learning and adaptation scheme for the realization of logic circuits. 54

59 Figure 4.3 Desired output, neural output, and the error with the

learning iteration .

)(kyd)(kyn)(ke

k

Figure 4.4 Hyperbolic boundary separating the patterns belonging to Class A and

Class B for XOR logic with a single neural unit with QSO.

60

60 Figure 4.5 Desired output, neural output, and the error with the

learning iteration .

)(kyd)(kyn)(ke

k

Figure4.6 Elliptical boundary separating the patterns belonging to Class A and Class

B for the XOR logic with a single neural unit with QSO.

61

61 Figure 4.7 Desired output, neural output, and the error with the

learning iteration .

)(kyd)(kyn)(ke

k

Figure 4.8 Hyperbolic boundary separating the patterns belonging to Class A and

Class B for the XOR logic with a single neural unit with QSO.

62

Figure 4.9 Inverted hyperbolic boundary separating the patterns belonging to Class

A and Class B for OR logic with a single neural unit with QSO.

64

Figure 4.10 Parabolic boundary (nonlinear) separating the patterns belonging to

Class A and Class B for OR logic with a single neural unit with QSO.

64

 xi

Figure 4.11 Hyperbolic boundary separating the patterns belonging to Class A and

Class B for AND logic with a single neural unit with QSO.

65

Figure 4.12 The probability density function (pdf) of two Classes A1 and A2 with

Bayesian Threshold S.

67

Figure 4.13 Mahalanobis distance (M-distance) from Class A1 and A2. 70

Figure 4.14 Three dimensional view of the M-distance. 70

Figure 4.15 Nonlinear decision boundaries separating the patterns belonging to

Class A and Class B for the XOR logic with a single neural unit with

QSO.

73

Figure 4.16 Nonlinear decision boundaries separating the patterns belonging to class

A and class B for the OR logic with a single neural unit with QSO.

75

Figure 4.17 Nonlinear decision boundaries separating the patterns belonging to

Class A and Class B for the AND logic with a single neural unit with

QSO.

77

Figure 1.1 Critical bias for a hyperbolic decision boundary separating the patterns

belonging to Class A and Class B

80

Figure 4.19 The learning scheme for functional approximation using a HONU. 82

Figure 4.20 Function approximation of a nonlinear function using a neural unit with

QSO for Example 1 with different inputs such as sinusoidal, square,

sawtooth and random signals.

83

Figure 4.21 Function approximation of a nonlinear function using a neural unit with

QSO for Example 2 with a sinusoidal signal.

84

85 Figure 4.22 Function approximation of a nonlinear function using a neural unit with

QSO for Example 3 with change in desired function during the simulation

at 500=k

Figure 4.23 Function approximation of a nonlinear function using a neural unit with

QSO for Example 4 with an arbitrary desired function.

86

Figure 5.1 Schematic representation of satellite control in its pitch plane (one

dimensional view)

90

Figure 5.2 Schematic representation of the HONU’s (the neural unit with QSO and

the neural unit with CSO) as neural-controllers for the satellite attitude

91

 xii

control

Figure 5.3 Structure of the neural unit with CSO for control applications. 92

Figure 5.4 Identification of a Plant using a neural unit with CSO 94

Figure 5.5 Block diagram of space vehicle (satellite control) system with nonlinear

controller.

95

Figure 5.6 Adaptation of the neural unit with CSO as a nonlinear neuro-controller

for satellite attitude control system.

96

Figure 5.7 Block diagram depicting different neural structures as neuro-controllers

for a complex control system (satellite attitude control)

97

Figure 5.8 Step and error response of the satellite control with the three different

neural controllers when the model is a first order system.

99

Figure 5.9 Step and error response of the satellite control with the three different

neural controllers when the linear model is used.

100

Figure 5.10 Square input and the error response of the satellite control with the three

different neural controllers when the linear model is used as MRAC.

101

Figure 5.11 Nonlinear damping function 102

Figure 5.12 Step input and the error response of the plant (satellite control) with

different controllers when the nonlinear model is used as MRAC.

103

Figure 5.13 Level curves of the energy function and the solutions move along them.

The equilibrium points are denoted by stars.

108

Figure 5.14 Phase plane curves from the potential. (a) Graph of a potential energy

function P(x). (b) A periodic orbit indicating absence of damping.

108

Figure 5.15 The slope field, flow of two solutions, and nullclines of closed loop

control (5.18) in the phase plane.

112

Figure 5.16 The stability region for a nonlinear PD control system (5.23), area of

decreasing energy and the nullclines.

112

Figure 5.17 Universal damping function 115

Figure 5.18 Different phases in the development of new damping function -

universal damping function

116

Figure 5.19 Step response of a nonlinear system (Eqn. 5.29) with proposed neural

controller.

119

 xiii

Figure 5.20 Neural unit with CSO in a dual mode, as a nonlinear neuro-controller

and as an identifier, performs state feedback control for optimal

performance.

120

Figure 5.21 Nonlinear plant controlled by neural unit with CSO as state feedback

controller with constant parameters identified by the neural unit with

CSO.

121

Figure 5.22 (b) Nonlinear plant controlled by neural unit with CSO as nonlinear

neural state feedback controller for unknown, unstable nonlinear plant

with variable parameters

122

 xiv

LIST OF TABLES

Table 2.1 Correlation strength values for different similarity measure angles α 15

Table 2.2 Truth table for an XOR operation on binary inputs 19

Table 2.3 Truth table for neural stages 1 and 2 for realizing the XOR logic 22

Table 3.1 The number weights in polynomial networks (HONNs) when the order of the

neuron is 2 36

Table 4.1 Truth Table for XOR Logic 56

Table 4.2 Initial and Final values of the Synaptic Weights for the XOR Logic 59

Table 4.3 Truth Table for OR and AND Logic 63

Table 4.4 Initial and Final values of the synaptic weights for the OR and AND Logic 63

Table 4.5 XOR Data Analysis 74

Table 4.6 OR Data Analysis 76

Table 4.7 AND Data Analysis 77

Table 4.8 Discriminant solutions for classifying the patterns of basic logic circuits 80

 xv

LIST OF SYMBOLS

Symbol Meaning

© Confluence operator

CNS Central nervous system

CSO Neural unit with cubic synaptic operation

ed Euclidean distance between new neural information and

the stored knowledge

ax

aw

d Distance between the reaction jets and the center of mass of

the satellite

D Dimension

csoe Error of the neuron with cubic synaptic operation

lsoe Error of the neuron with linear synaptic operation

qsoe Error of the neuron with quadratic synaptic operation

)(ke Error signal in discrete time

E Total energy

{}⋅E Expectation operator

)(xf Damping function which is function of states

[]⋅f̂ Approximation of the function []⋅f

),,,,(321 nxxxxf … Threshold function

F Flow curve of the solution from the initial conditions

() 00 , yx

g Gain of the activation function

HONN Higher-order neural network

HONU Higher-order neural unit

J Performance index

[]⋅J Performance or cost function

 xvi

k Discrete time index

pk Position gain

vk Velocity gain

1vk Shift gain in the universal damping function

EK. Kinetic energy

LSO Neural unit with linear synaptic operation

iL Discriminant line

M-distance Mahalonobis distance

MM-distance Modified Mahalonobis distance

n Number of inputs

N Order of the neuron

ijN Discriminant line equation (ij represents the neuron number

in the network)

Nth Order of the neuron

ND Negative Definite

P Potential energy

)(xp Probability of an event x

)/(xAp i Probability of an event x belonging to one of the class iA

PD Positive Definite

QSO Neural unit with quadratic synaptic operation

R Set of real numbers

sgn Sign function

S Bayesian threshold

t Continuous time index

v Output of the synaptic operation

ijw Elements of the weight matrix

aw Augmented synaptic weight matrix

)(i
aiw Augmented weight matrix in a specific layer of the network

 xvii

aW Augmented synaptic weight matrix in HONUs

dx Desired location (target)

00 , yx Initial condition

[]Txx 21 Two states (position and velocity) of the satellite control

x Neural inputs from sensors

ax Augmented neural input vector

)(kax Augmented neural input vector in discrete time

u Control signal to the satellite

)(kyd Desired output

)(kyn Output of the neural unit

py Plant (satellite) output

ny Output of the new neural units

csoy Output of the neuron with cubic synaptic operation

lsoy Output of the neuron with linear synaptic operation

qsoy Output of the neuron with quadratic synaptic operation

∞ Infinity symbol

[]⋅φ Nonlinear activation function

∫ Aggregation

α Angle between the new neural information and the

stored knowledge

ax

aw

µ Learning rate in backpropagation algorithm

ε Small positive number

⊆ Is a subset of (inclusion)

µ Mean vector [Mu1 Mu2]T

2σ Variance

Γ Number of samples of the data

 xviii

Ω Covariance matrix defined in Mahalonobis distance

Ω Determinant of the covariance matrixΩ

ijσ Elements of the covariance matrix Ω along the coordinates

Θ Angular displacement of the satellite

Θ� Angular velocity of the satellite

Θ�� Angular acceleration of the satellite

[]⋅φ Nonlinear activation function

[]⋅′φ Slope of the nonlinear activation function

N
n

mlji N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

λ"",,,
 Sigma tuner

aa xW , Inner product between the weight matrix and the

augmented neural input vector

aW

ax

 1

CHAPTER 1
Introduction

1.1 Biological Motivation

Biological systems are serving as inspirations for a variety of computational based

learning systems. For example, biological knowledge has provided a great insight in the

development of mathematical tools such as neural networks and genetic algorithms for

the complex control problems. The research in this thesis conceptualizes the

mathematical aspects of the basic building block of the central nervous system (CNS)-the

neuron. From a computational standpoint, the CNS can be viewed as a parallel

distributed system that has the capability to control a complex system over time. The

primary objective of this thesis is to gain an insight in understanding the recognition,

learning, and memory mechanisms of the CNS and to utilize these functions in the design

and creation of the intelligent pattern classifiers and controllers.

Humans have been learning from ‘Mother Nature’. Since the evolution of

machines, man has always dreamt of building machines that can emulate biological

species like humans, birds etc with attributes such as locomotion, speech, and cognition

(thinking, learning, memory, adaptation and intelligence). It has been a desire of system

scientists to build a machine that can operate in an unstructured and uncertain

environment with a high level of autonomy. To some extent, they have imitated birds and

have created super sonic machines. In fact, man has been successful in implementing

some of the attributes of the biological species such as human locomotion to

transportation systems, human vision and speech for communication systems, human

low-level cognition to computing systems. Now efforts are being made to imitate some of

the attributes of cognition and intelligence-the higher cognitive faculty of the brain, and

researchers are striving hard for the creation of intelligent systems; that is, a machine that

has both autonomy and cognitive capabilities. The successful operation of a cognitive

machine depends on its ability to adapt with a variety of unexpected events in its

operating environment. By having machines possess such a level of autonomy, it would

 2

be easy for the machines to learn higher-level cognitive tasks. Also, these machines

would continue to adapt and perform the tasks with increasing efficiency even under

changing and unpredictable environmental conditions.

The autonomous machines would be useful where direct human intervention is

hazardous, tedious, or impossible. A hazardous task would be one where human

intervention is in physical danger, such as in nuclear reactors, mining, and military

operations. A tedious task would be one where a high level of concentration is required to

perform tasks, such as programming the codes sitting in front of a computer where the

human operator would be bored. A task impossible or difficult for humans would be the

unmanned exploration of space, where a space craft is beyond the control of human

intervention. For instance, spacecraft path planning is one of the major concerns in the

design of autonomous vehicles for unstructured environments. It is very difficult to

specify all functions a priori and in a deterministic way. Take, for instance, the Mars

Mission- Spirit Rover. The vehicle was given high-level instructions (way points) and

was equipped with smart cameras and laser sensors that would see the terrain. The

information from the sensors was analyzed and catalogued in general classes. For each

class a procedure was designed to accomplish the goal of moving from point A to point B.

This brings a very different set of problems because the environment is complex and

unpredictable. If the designed physical model does not capture the essentials of the

environment, then the errors accumulate over time and the solution becomes impractical.

Under these circumstances, the luxury of dictating the rules remotely is beyond our reach.

It turns out that animals and humans do Sprit Rover-type tasks effortlessly.

Biological systems may be considered as a plausible source of motivation and

framework for the design of autonomous machines. It provides motivation as well as

gives several clues for the development of robust learning and adaptation algorithms in

machines (Rao and Gupta 1994). In the present technology, lack of these robust and

adaptive algorithms is due to that fact that the biological methods of processing

information are different from conventional control techniques. The design procedures of

the conventional control techniques are model based in the sense that the design methods

involve the construction of an explicit mathematical model of the dynamic system to be

controlled. Biological systems, on other hand, are non-model based and are quite

 3

successful at dealing with uncertainty and complexity, and can smoothly coordinate many

degrees of freedom during the execution of manipulative tasks in an unstructured

environment.

Adaptive and neural control has gained renewed popularity in the past few

decades, mainly emphasizing studies in the convergence of adaptive algorithms and in

the stability of adaptive systems; that is, the systems considered are primarily systems

described by differential (or difference) equations where the coefficients are (partially)

unknown. In an attempt to enhance the applicability of adaptive control methods, learning

control has been recently reintroduced in control literature; for example, (Gupta 1986),

for learning methods in control with emphasis on neural networks.

1.2 Neural Networks

The conventional design methods of control systems involve the construction of a

mathematical model describing the dynamic behaviour of the plant to be controlled and

the application of analytical techniques to this model to derive a control law. Usually,

such a mathematical model consists of a set of linear or nonlinear differential/difference

equations, most of which are derived under some forms of approximation and

simplification. These conventional techniques break down when a representative model is

difficult to obtain due to uncertainty or sheer complexity. Modeling of a physical system

for feedback control involves trade off between the simplicity of the model and its

accuracy in matching the behaviour of the physical system. On the other hand, human

operators do not always handle the system with a detailed mathematical model but they

do with a qualitative feeling of the process, approximate reasoning and knowledge of the

control process.

In the literature, two approaches are usually described to achieve satisfactory

performance from a vaguely known dynamic plant. One approach is robust stabilizers or

robust controllers and the other one is adaptive control. A Robust controller guarantees

stability only if the actual system is a member of a class of systems that are close to the

nominal plant. Application of adaptive control techniques has been slow as they require

prior knowledge of the plant under control to determine the stability of the adaptive

system. Since both approaches had some limitations, implementation of the conventional

 4

adaptive methods and the robust stabilizers may be difficult or some times impossible

(Ortega 1989). Detailed description of robust and adaptive control techniques may be

found in Gupta [1986], and Narendra [1986].

The need to control complex systems under significant uncertainties has led to

revaluations of the existing control methodologies. Evolution in the control paradigm has

been fueled with two major concerns: the need to deal with increasingly complex systems,

and the need to accomplish increasingly demanding design requirements with less precise

knowledge of the plant and its environment. In these situations, it is almost mandatory for

the control schemes to enforce learning and adaptive features (neural-networks). Neural

and adaptive systems is a unique and a growing interdisciplinary field that considers

adaptive, distributed, and mostly nonlinear systems-three of the ingredients found in

biological systems. Neural and adaptive systems are used in many important engineering

applications such as classification of patterns, system identification, signal enhancement,

noise cancellation, prediction and control.

Neural network based controllers can be considered as a general class of adaptive

controllers. The leading characteristic of neural and adaptive systems is their adaptivity,

which brings a totally new system of design style. Instead of incorporating the a priori

information from specifications, neural networks and adaptive systems use external data

to automatically set their parameters. This means the neural systems are parametric. The

neural-controller estimates the unknown information, and this information is used for

future decisions and controls, thereby improving the performance of the control system.

Neural networks, with their massive parallelism and ability to learn, offer good

possibilities for improving techniques in control system, and may bring a bright future in

the field of control system.

1.2.1 Biological Neuronal Morphology

In general, neural networks are described as connection models, parallel

distributed processing units, or neuro-morphic systems (Rao and Gupta 1994). Neural

networks consist of layers of neurons arranged in a set of rows and columns which

perform some complex mathematical operations and mapping operations forming a

complex pattern of neuronal layers. The neuronal inputs from the sensors are passed

 5

through thread like structures called dendrites. The dendrites transmit the information to a

synapse where it provides the confluence operation between the fresh neuronal

information and the past experience, and sends a signal to the main body, soma of the

neuron. This neural operation is termed as synaptic operation. The soma is the main body

of the neuron. It receives all the signals from the synapses and provides an aggregation

operation. If the aggregated value of the dendritic inputs exceeds a certain threshold, the

neuron fires a signal along the axon (neural output). The firing of the neuron is associated

with some nonlinear operation of the aggregated signal which is termed as somatic

operation. A typical neural network structure is shown in Fig. 1.1.

Figure 1.1 Layers of biological neurons arranged in a network depicting the flow of

neuronal information in the forward direction as well as through inter and

intra feedback direction.

The information in the network flows from one layer to another in the forward direction

with continuous feedback evolving into a dynamical pyramid structure. The inputs from

the input domain are mapped to the output domain through synaptic and somatic neuronal

operations. These two neuronal operations play two distinct mathematical functions in a

biological neuron. From the biological point of view, these two operations are physically

 6

separate. However, from the mathematical point of view, the threshold function is shifted

to synaptic operation for sheer simplicity.

1.2.2 Neuron: The Basic Unit of the CNS

In nature, the biological neurons are involved in various complex sensory, control

and cognitive aspects of mathematical processing and in decision making processes. The

discussions described in the existing literature often consider the behaviour of single

neuron as the basic computing unit for processing neural information. A neural network

consists of many interconnected identical simple processing units called neurons. Figure

1.2 shows a general mathematical model with confluence and somatic operations.

Figure 1.2 A general mathematical model of the neuron with synaptic and somatic

operation. The confluence operation compares the neural information with

the past experience stored in the synaptic weights and the nonlinear

activation function provides the bounded neural output.

The synaptic operation provides the linear mapping from the neuronal inputs

to through the weight vector then the somatic operation performs

nonlinear operation from to through an activation function

)1(+∈ nRax

1Rv∈ ,w)1(T
a

+∈ nR

1Rv∈ 1Ry∈ [].vφ The

somatic operation performs a nonlinear mapping through a nonlinear function called an

activation function. There are different forms of activation functions such as linear, log

 7

sigmoid, tansigmoid, bang-bang (hardlimiter), and radial basis functions. which are used

in the mathematical model of the biological neuron. Figure 1.3 shows some of the most

popular mapping functions employed in the neural networks.

Figure 1.3 Different activation functions used in the mathematical model of the

biological neuron for bipolar input signals.

 The sigmoidal form is the most widely used activation function. However, the choice of

nonlinear activation function in neural models depends on the nature of the problem

under consideration.

 8

1.3 Thesis Objectives

The neural networks consisting of the conventional neural units provide the neural

output as a nonlinear function of the linear combination of the weighted neural inputs.

These neural units have been successfully implemented in various applications such as

pattern recognition, system identification, adaptive control, optimization and signal

processing (Gupta et al. 2003, Rao 1994, Hopfield 1990, Kuroe et al. 1997). One of the

most significant characteristics of neural networks is their ability to approximate arbitrary

nonlinear functions. This ability of the neural networks has made them useful for

modeling the nonlinear systems especially for the synthesis of nonlinear controllers

(Song 2001).The performance of the neurons in the neural network depends on the

following important factors

a) Structure of the neuron; that is, static or dynamic models;

b) Learning and adaptation algorithm such as backpropagation, quasi-Newton

methods (the method of adjusting the neuron parameters);

c) Type of activation function used in the mathematical model of the neuron; and

d) Models of synaptic connections; that is, linear, quadratic, cubic…and Higher-

order combinations of the neuronal inputs and the weights.

A considerable amount of research has been done focusing on the first three factors of the

neurons. In the literature, most of the mathematical models of the neuron described

incorporated modifications either in structure or learning and adaptation algorithms to

improve the performance of the neuron. The selection of the nonlinear function in neural

models necessitates a careful study of the problem. To some extent, the performance is

influenced by activation function. Rao (Ph.D. thesis 1994) changed the slope of the

activation function to affect the performance of the neurons. However, the performance

of the neuron also depends on the model of the synaptic operation. In conventional neural

models, the synaptic operation is modeled in such a way that the net input to the neural

unit is just a linear summation of the weighted inputs. This is the commonly implemented

form in most of the neural models developed. There is another set of neurons which

consider multiplicative connections between the inputs and the neurons which closely

resemble the neuronal structure shown in Fig. 1.1. These are called as higher-order neural

 9

units which capture the nonlinear properties of the input pattern space. Rumelhart et al.

(1986), Shin and Ghosh (1991), Heywood and Noakes (1995), and Homma and Gupta

(2002) made extensive attempts to develop the higher-order neural units which have good

storage, learning and computational properties. The performance of the neuron depends

on the order of the inputs entering the neuron and the synaptic weights associated with

them in the neural network. It has been found by Homma and Gupta (2002 b) that the

Higher-order combination of the weighted inputs will yield the higher neural

performance for complex problems. Villalobos and Merat (1995) have proposed a

learning assessment method to optimize the feature shapes. However, one of the

disadvantages encountered with Higher-order neural units is the combinatorial increase in

weights with product terms; that is, a larger number of learning parameters (weights) are

associated (Leda and Francis 1995).

In this thesis, a general method to develop Higher-order synaptic operation is

presented in order to reduce the number of parameters without losing the Higher-order

neural performance. The neurons with two levels of Higher-order neural synaptic

operations are proposed. Using a novel general matrix form of the quadratic-operation,

the Higher-order neural unit provides the output as a nonlinear function of the quadratic

combination of the weighted input signals. The objectives of this thesis are as follows:

• To develop the concept of Higher-order neural units (HONUs) with Higher-order

neural synaptic operation for control and pattern recognition problems based on

the biological neuronal morphology;

• To propose the structure and general concept of a neural unit with Nth order

synaptic operation for an Nth order HONU;

• To develop the learning and adaptive algorithms for Nth order neurons with

higher-order neural synaptic operation;

• To validate the concept of the HONU by realizing the logic circuits such as

Exclusive-OR (XOR), OR, AND circuits through simulation studies; and

• To apply these HONUs as neural controllers to linear and nonlinear systems such

as satellite control, and to study the performance of these neural controllers

through computer simulation studies.

 10

1.4 Thesis Outline

In the following chapters, the mathematical foundation of the proposed neural

structures of the HONUs such as the neural unit with quadratic synaptic operation (QSO)

and the neural unit with cubic synaptic operation (CSO) and their potential for learning

and control applications are presented. The neural unit with linear synaptic operation

(LSO) which is a subset of the HONU is presented in Chapter 2. The structure and the

mathematical modeling of the neural unit with LSO are discussed in this chapter. A

nonlinear solution to XOR problem is presented along with the different applications of

the neural unit with LSO for the control systems.

The concept of HONU is developed based on the structure of biological neurons

in Chapter 3. Two HONUs are developed with higher-order synaptic operations. The

structure, mathematical modeling and their implementation scheme for different

applications are presented. A novel general matrix form of the quadratic-operation is

developed. A general concept of the nth order neural unit with nth synaptic operation is

developed based on the structure of the biological neuron.

The performance of the neural unit with QSO, as applied to pattern recognition

problems, is demonstrated through simulation studies in Chapter 4. Basic logic circuits

such as Exclusive-or (XOR), AND, and OR are realized using a single neural unit with

QSO. A statistical perspective is provided to give a plausible explanation for the unique

feature of the neural unit with QSO. This chapter also formulates the classification as the

placement of discriminant functions in pattern space to minimize the probability of the

classification error.

In chapter 5, the developed concept of HONUs is further strengthened by

implementing these neural units as neuro controllers for the control of linear and

nonlinear systems. A simple satellite attitude control problem is considered for simulation

studies. In this chapter, a control technique called the model reference adaptive control

using the HONUs is discussed. Some stability analysis approaches and stability results

are presented. The fundamental concepts such as energy and lyapunov functions are used

for the stability analysis of nonlinear systems. A new damping function called the

 11

universal damping function is developed and implemented in the neuro controller for

control of unknown parameter varying system.

Finally, the concluding remarks, the major contribution of the thesis, and

suggested directions for future research are presented in Chapter 6. The major

contributions of this thesis are as follows: (i) development of the HONUs for control and

pattern recognition problems based on the structure of biological neuron, (ii)

development of mathematical and structural models of the HONUs, (iii) application of

HONUs for pattern recognition problems where basic logic circuits are realized using a

single neural unit with QSO, (iv) development of new damping function named universal

damping function for faster transient response. It is demonstrated through computer

simulations that the neural structures with universal damping function developed in this

thesis performed better compared to the conventional control techniques for control

problems.

1.5 Conclusion

Neural networks play an important role in the execution of goal-oriented

paradigms. They offer flexibility, adaptability and versatility, so that a variety of

approaches may be used to meet a specific goal, depending upon the circumstances and

the requirements of the design specifications. A brief review of the neural units with

linear synaptic operation will be discussed in the next chapter. Development of higher-

order neural units will open a new window for potential applications like control, pattern

recognition, and image processing.

 12

CHAPTER 2
Neural Units with Linear Synaptic Operation (LSO)

2.1 Introduction

Today, it is easy to build computers and other machines that can perform a variety

of well defined tasks with celerity and reliability unmatched by humans. No humans with

utmost cognizance can invert matrices or solve a system of differential equations at

speeds rivaling these modern machines. However, no intelligent computer or machine

can rival the human robust control mechanism (Widrow and Michael 1992). No doubt

that these modern machines which are an extension of human muscular power, vision,

and speech (car, aircrafts, robots, autonomous vehicles etc.) have brought luxury to

human life but they are controlled by carbon-based computer- the brain (human

intelligence and the human cognition). In this chapter, the mathematical details of a

single neuron are described .These neural models emulate certain features of the

biological neuron. One of the most important functions of the neuron is to make a

decision. So, in this chapter, the neural models are implemented as decision makers.

The chapter is organized as follows: a brief introduction of the neural unit with

LSO is presented in Section 2.2, neural models for threshold logics using neural unit with

LSO are presented in Section 2.3. The neural logic for XOR operation using the neural

unit with LSOs is shown in Section 2.3, the neural logic for XOR operation using

polynomial discriminant functions is described in Section 2.4. Applications of neural unit

with LSOs in control design are presented in Section 2.5. A brief summary is given in

Section 2.6.

2.2 A Brief Description of the Neural Unit with LSO

The basic building block of all artificial neural networks, and most other adaptive

systems, is the adaptive neuron. They communicate through a network of axons and

synapses having a density of approximately 104 synapses per neuron. It is assumed that

the modeling of the central nervous systems is based on the fact that the neurons

communicate with each other by means of electrical impulses (Arbib 1987). The structure

 13

and mathematical model of the adaptive neuron is depicted in Fig. 2.1. The conventional

model of neurons employed in control systems, pattern recognition and some other

applications are linear in nature. Neural networks consisting of the linear neurons provide

the neural out put as a nonlinear function of the weighted linear combination of the neural

inputs. Let this element receive an input signal vector or input pattern vector and a

desired response , a special input used for learning. The components of the input vector

are weighed by a set of coefficients , where the subscript ‘a’ stands for augmented

notion of vectors which are defined as follows:

ax

dy

aw

ax = [1] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 0 =x (2.1)

 (augmented vector of neural inputs, where 10 =x accounts for the threshold (bias)).

aw = [(2.2)] 1
3210 ,.......,,,, +∈ nT

n Rwwwww

 (augmented vector of synaptic weights including the threshold weight) 0w

ax = 1[] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 0 =x is the threshold.

 (augmented vector of neural inputs)

aw = [] 1
3210 ,.......,,,, +∈ nT

n Rwwwww

 (augmented vector of synaptic weights)

Figure 2.1 Basic mathematical model of an adaptive element: the neuron with linear

synaptic operation.

 14

Thus, as illustrated in Fig. 2.1, the sum of the weighted inputs v can be expressed as a

linear combination of neural inputs and the synaptic weights ; that is ax aw

 = (2.3) v a
T
aa

T
a wxxw =

 = (inner product of two vectors and) >< aa x,w aw ax

The somatic operation provides a nonlinear mapping of the aggregated signal ‘ ’yielding

an output signal ‘ ’. Mathematically, the neural output, can be represented as

follows

v

ny ny

 = ny []vφ (2.4)

 = []a
T
a xwφ

where []⋅φ is some nonlinear activation function with threshold . Equation 2.3

represents a measure of similarity between the neuronal input vector and the synaptic

weight vector There are two types of measure of similarity measures: (1) the inner

product of the vectors and and (2) the Euclidean distance between the vectors

 and The similarity measures are shown in Fig.2.2.

0w

ax

.aw

ax ,aw

ax .aw

Figure 2.2 Similarity measures between the vectors and ax .aw

 The correlation strength between the new information vector and the stored

knowledge vector depends on the angle

,ax

aw α and its strength for particular values of α

are tabulated in Table. 2.1. It is very difficult to explain and visualize the physical

significance of the correlation strength between the weights and the neural inputs in a

 15

network. However, it is possible to draw explicit correlation when a single neuron is

implemented to make a decision.

Table 2.1 Correlation strength values for different similarity measure angles α

Angle α Correlation Similarity Graphical representation

α = 0 Positive Close similarity (maximum)

α = 90 Zero No similarity (minimum)

α = 180 Negative No similarity

α = 270 Zero No similarity

α = 360 Positive Close similarity (maximum)

II I
Negative Positive

III IV
Negative Positive

Using this model, many neural morphologies, usually referred to as feedforward neural

networks, have been reported in literature. These feedforward networks respond

instantaneously to inputs because they possess no dynamic elements in their structure.

Therefore, these neural structures are also called static neural networks or memory less

networks; that is, they generate the output response determined by the present excitation

(Zurada 1992). Extensions of these feedforward networks are the dynamic neural

networks that incorporate feedback and dynamic elements in their structure. There are

several dynamic neural structures based on different neural paradigms (Gupta and Rao

1994, Hopfield 1990). The neural networks either static or dynamic are implemented

depending on the complexity of the problem. The following section describes the design

of neural network classifiers for analyzing the threshold logic which were studied

extensively in the 1960s.

2.2.1 Linear Classifier

The signals reaching the synapse and received by the dendrites are in the form of

electrical impulses. The characteristic feature of the biological neuron is that the signals

generated do not differ significantly in magnitude; that is, the signal in the nerve fiber is

either absent or has the maximum value. It is assumed that the stimulus generates a train

of pulses with a magnitude and a frequency. In other words, the information is

transferred between the nerve cells by means of binary signals (Zurada 1992). In neural

 16

networks, the inputs and outputs are often binary and are preferred to be rather than

the unsymmetrical ‘0’ and ‘1’. With n binary inputs and one binary output, a single

neuron shown in Fig. 2.1 is capable of implementing certain logic functions. There are

 possible input patterns. A general logic implementation would be capable of

classifying each pattern as either +1 or -1, in accordance with the desired response. Thus,

there are possible logic functions connecting n inputs to a single output. A single

neuron is capable of realizing only the small subset of these functions, known as linearly

separable logic functions. These are the set of logic functions that can be obtained with

all possible settings of the weight values. In Figure 2.3, a two input neuron is shown. In

Figure 2.4, all possible binary inputs for a two input neuron are shown in the pattern

vector space. In this space, the coordinate axes are the components of the input pattern

vector. The neuron separates the input patterns into two categories depending on the

values of the input signal weights and the bias weight (threshold). A critical thresholding

condition occurs when the output equals zero.

1±

n2

n22

ny

Figure 2.3 Block diagram representation of a neuron with linear synaptic operation.

 Synaptic operation: a
T
aa

T
a xwwx ⋅=⋅=v

Somatic operation: [] Rvyn ∈= φ

 0221100 =++= xwxwwxyn (2.5)

1
2

1

2

0
2 x

w
w

w
w

x −−= (2.6)

 17

The linear relationship is shown in the Fig. 2.4. It comprises of a separating line which

has a slope

Slope =
2

1

w
w

−

Figure 2.4 attribute plane showing the pattern classification. The discriminant

line L separates the patterns Class A and Class B.

21 xx −

and an intercept of

 Intercept =
2

0

w
w

− (2.7)

The line which separates the patterns appropriately is called the linear discriminant line L

and is shown in Fig. 2.4. This mathematical model forms the basis of a neural network

structure in contemporary neural computing.

2.3 Neural Models for Threshold Logic

On the basis of the highly simplified considerations of the biological neural

systems, the first form of a neural model for the threshold logic is presented in this

section. McCulloch and Pitts neural model is an element with n two-valued inputs

and a single two-valued output { ,1,.......,,, 321 −∈nxxxx }1 { ,1−∈ny }.1 The main goal in

studying the threshold logic is to develop methods for identification and realization of

threshold functions (logic functions). A switching function),,,, 21 x(3 nxxxfy ………= is

 18

said to be a threshold function if there exist weight coefficients and a

threshold such that

nwwww ,.......,,, 321

0w

),,,,(321 nn xxxxfy ………= = ⎟
⎠

⎞
⎜
⎝

⎛
+∑

=

n

i
ii wxw

1
0sgn

Designing neural model for threshold logic involves three steps

• Realization of switching function;

• Network synthesis; and

• Implementations of neural models for realizing the switching function.

In realizing the switching functions, the weights should be assigned an appropriate

real, positive, negative, or zero value. If the threshold function equality is satisfied, the

switching function can be considered as linearly separable function. It is reported in

literature that a single threshold element is sufficient to realize a switching function if the

threshold function is linearly separable (Gupta et al 2003). For nonlinear separable

functions, the threshold network requires more than one threshold element for realizing

the given switching function. An effective approach to such a neural network synthesis is

to decompose the non-threshold function into two or more terms, each of which will be a

threshold function. For example consider a two-variable XOR function:

iw

,),(21212121 xxxxxxxxfy ⋅+⋅=⊕== { }1,121 −∈xx (2.8)

If it can be realized with a single neural unit with weights and then the

output of the switching function is 1 for the input combinations

,0w ,1w ,2w

21xx or ,21xx and -1 for

the input combinations or 21xx .21xx Then the following inequalities should be satisfied;

that is,

⎩
⎨
⎧

≤
≤

02

01

ww
ww

and

 021 <+ ww

 00 <w

Obviously there is no such solution for which these contradictory inequalities are satisfied.

Hence, the XOR logic function is not an ordinary threshold function that can be realized

 19

by a single neural unit. The following section describes a method for realizing the XOR

logic.

2.3.1 Neural Model for XOR Logic Circuit (Gupta et al. 2003)

For the binary state variables , the logic XOR operation is defined as),(21 xx

 [] []212121 xxxxxxy ANDOR AND=⊕= (2.9)

(Two AND operations in parallel followed by one OR operation.)

Alternatively, the XOR operation can also be defined as

 [] [] OR ANDOR 212121 xxxxxxy =⊕= (2.10)

(Two OR operations in parallel followed by one AND operation.)

Thus, the XOR logic provides two classes of output which are defined as

 Class A: A1 ∪ A2 = {[-1, 1] ∪ [1, -1]} → + 1 (2.11a)

 Class B: B1 ∪ B2 = {[-1, -1] ∪ [1, 1]} → -1 (2.11b)

These two classes of neural outputs are defined in Table 2.2

Table 2.2 Truth table for an XOR operation on binary inputs

 Neural Inputs Neural Outputs

 1x 2x 21 xxy ⊕=

 -1 -1 -1: Class B1

 -1 1 1: Class A1

 1 -1 1: Class A2

 1 1 -1: Class B2

 Class A = Class A1 ∪ Class A2

 Class B = Class B1 ∪ Class B2

There are four different neural methods for implementing the Exclusive-OR (XOR) logic

operation. The first two methods use the classical OR, AND and NOT operation, and the

last-two methods use the nonlinear neural operations.

 20

Figure 2.5 Realization of neural logic for XOR operation using two AND neurons in

stage 1 and one OR neuron in stage 2.

 It is obvious from Equations (2.9) and (2.10) that XOR switching function needs

two stages (layers) of neurons: the first stage will have two neurons in parallel, and the

second, the output stage, will have one neuron. Figure 2.5 shows the implementation of

the XOR neural machine using the relation (2.9), and Figure 2.6 shows the geometrical

view of the mapping operations over these stages. Each neuron provides a mapping from

two inputs to a single output. Neuron N11 (row 1, column 1), the first AND neuron in

stage 1, and N21 (row 2, column 1), the second AND neuron in stage 1, provide the

mapping operation as shown in Table 2.3. Figure 2.6 shows the geometrical view of the

mapping operations over these stages. The nonlinear mapping shown in Figures 2.6, and

2.7 results from the operations of two parallel AND neurons in the first stage followed by

a single OR neuron in the second stage.

 21

0)1sgn(2111 =+−−== xxyL

0)1sgn(2122 =−+−== xxyL

Figure 2.6 Geometrical view of the mapping operations for the XOR problem in stage1.

0)1sgn(21 =++−== yyyL

Figure 2.7 Geometrical view of the mapping operations for the XOR problem in stage 2.

 22

Table 2.3 Truth table for neural stages 1 and 2 for realizing the XOR logic

Neural

Inputs
Intermediate Stages

Neural Output

1x 2x

Points in the

21 xx −

plane (Fig. 2.6)

211 xxy ⋅= 212 xxy ⋅=

Points in the

21 yy − plane

(Fig. 2.7)

21 yyy OR =

-1 1 A1: (-1, 1) 1 -1 A1: (1, -1) 1: Class A1

1 -1 A2: (1, -1) -1 1 A2: (-1, 1) 1: Class A2

-1 -1 B1: (-1, -1) -1 -1 B1: (-1, -1) -1: Class B1

1 1 B2: (1, 1) -1 -1 B2: (-1, -1) -1: Class B2

Class A = Class A1 ∪ Class A2

Class B = Class B1 ∪ Class B2

These points are shown in the 21 xx − attribute plane in Fig 2.6 and in the modified

 attribute plane in Fig 2.7. The neural operation of Table 2.3 and Fig 2.7 are

illustrated in detail using the two stage neural circuit given in Fig. 2.8.

21 yy −

Figure 2.8 A two layered neural network with three neurons for realization of neural

logic- XOR circuit using two AND and an OR neural unit.

 23

The neural operation implemented in this neural network may be treated as a static,

nonlinear, and discontinuous mapping from binary input space to the binary output space

with preprogrammed weight parameters. The network is not associated with any sort of

dynamics except that the information is fedback during the training process.

2.3.2 Simulation Studies for the XOR Logic Circuit with Neural Units

with LSO

The simulation studies of XOR circuit implements the neuronal learning and

adaptation capabilities. In this case three neurons are used as shown in Fig. 2.9

incorporating the backpropagation (BP) learning method. The augmented weight vectors

associated with the neuron N11, N21, and N12 may be denoted as

)1(
1aw = []Twww)1(

12
)1(

11
)1(

10

)1(
2aw = []Twww)1(

22
)1(

21
)1(

20

)2(
1aw = []Twww)2(

12
)2(

11
)2(

10

and the input vectors for layers 1 and 2 are respectively

ax = []Txxx 210 , 10 =x

ay = []Tyyy 210 , 10 =y

where and are bias terms. The input-output equations of the neurons are

given by Eqns (2.3) and (2.4); that is,

10 =x 10 =y

)()1(
11

T
axw ⋅= ay φ

)()1(
22

T
axw ⋅= ay φ

)()2(
1

T
ayw ⋅= ay φ

where)(⋅φ is the sigmoidal nonlinear activation function. The learning rate for the

simulation studies should be chosen in the range of 0.1 to 1.1 beyond which the learning

phase could not be ensured (Gupta et al, 2003). The learning rate is the gain of the

adaptable parameters of the network which determine the stability and speed of

convergence during training. A learning rate of 0.8 was chosen for the simulation study

and the initial weight values are randomly chosen by the Nguen-Widrow method. The

 24

simulation results are shown in Fig. 2.8. The network took 2503 epochs to classify the

patterns belonging to class A and B. The resulting weight vectors are
)1(

1w = []T8854.11059.29467.1 −

)1(
2w = []T9100.11298.29677.1 −

)2(
1w = []T8244.28269.26688.2 −−

 (a) (b)
 Error convergence with each iteration Neural layer 1: N11 and N21 in plane 21 xx −

(c) Neural layer 2: N12 in 21 yy − plane

(a) N11 = Discriminant line L11: 210 8854.11059.29467.1 xxx +−

(b) N21 = Discriminant line L21: 210 9100.11298.29667.1 xxx −+

(c) N12 = Discriminant line L12: 210 8244.28269.26688.2 xxx −−

Figure 2.9 A neural solution for the XOR problem obtained by BP learning algorithm

with the learning rate of 0.8.

 25

The convergence of the error with each epoch is shown in Fig. 2.8 (a).The learning

stopped when the absolute value of the error 0001.0)(≤ie for i = 2 Ai and Bi. It took

4692 iterations for solving the same problem when the weights are initialized manually

than the weights initialized by the Nguen-Widrow method (Gupta et al, 2003). The BP

algorithm can take varying amounts of time to solve this problem depending on the

choice of weights and the learning rate. One more problem with the BP algorithm is that

the error will converge very fast initially and tend to slack down as it approaches the

desired tolerance limit (in this case10-04). This is due to the fact that the learning

algorithm encounters more local minima as the performance curve is a nonlinear curve.

The performance of the neural network depends on the learning algorithm employed,

learning rate, network structure and the problem it self. The performance indicates the

real computing power of network structure. It can be improved by incorporating different

fast learning algorithms such as BP with momentum, quasi-Newton techniques etc. or by

changing the network structure. In this thesis, an effort is made to improve the

performance of the network by modifying the existing neural structure.

2.4 Neural Logic for XOR-Operation using Polynomial Discriminant

Function

The linear classifier is limited in its capacity and, of course, it is limited to only

linearly separable forms of pattern discrimination. Design of neural network classifiers

becomes far more involved and intriguing when requirements for the membership in

categories become complicated. More sophisticated classifiers with higher capacities are

nonlinear. There are two types of nonlinear classifiers (Widrow and Michael 1992):

1. Fixed preprocessor network connected to a single adaptive neuron

2. Multielement feedforward neural network (Madline)

Nonlinear functions of the applied inputs to single adaptive neuron will yield nonlinear

decision boundaries. Useful nonlinearities include the polynomial functions. Consider the

nonlinear classifier as shown in Fig. 2.10. The synaptic operation is a combination of

linear and quadratic weighted combinations of the neural inputs. The sum of weighted

 26

inputs can be expressed as a nonlinear combination of the neural inputs and the

synaptic weights .

v ax

aw

 = v 022222221121111110 =+++++ xxwxwxxwxxwxww (2.12a)

And the neural output ny

 = ny []vφ (2.12b)

or

 = sgn [(2.12c) ny]),(aa xwf

where)(⋅φ is a nonlinear activation function which can yield a nonlinear discriminant

surface of the shape shown in Fig. 2.11. With the proper choice of weights, the separating

boundary pattern space can be established as shown in Fig. 2.11. This represents a solution

for the XOR problem.

Figure 2.10 Neural unit mapped with inputs through nonlinearities (higher-order synaptic

operations).

Of course, all linearly separable functions can also be realized using higher-order synaptic

operations. This type of nonlinearities can be generalized for more than two inputs and

higher degree polynomial functions of the inputs (Specht 1967). From Fig. 2.11 it is clear

that only one adaptive neuron is sufficient to separate the two classes A and B

appropriately.

 27

Figure 2.11 Different nonlinear boundaries separating the patterns which are not linearly

separable (XOR operation).

2.5 Application of Neural Units with LSO for Control Problems

Based on the understanding of neuro-biological control aspects, the desire to

develop simple models of neuronal structures has evolved into a promising area of

research for many complex control problems in engineering industries. In the preceding

sections, brief descriptions of single and multilayer feedforward network structures were

introduced. These neural networks are called as static, feedforward, or non-recurrent

neural networks. Such networks have no dynamic memory as the response of the network

depends on its current inputs and the value of synaptic weights. Indeed, it is a well

established fact that the feedforward neural networks can approximate nonlinear functions

 28

to any desired degree of accuracy. This attribute of feedforward neural networks has

motivated many researchers to utilize them as modern resourceful tools to model the

dynamic systems. However, these networks suffer from many limitations (Hopfield 1990).

The neural architectures with feedback have been introduced for various applications to

overcome these limitations. These networks are called dynamic neural networks or

recurrent neural networks. The dynamics in neural networks or neural computing does

provide some functional basis of the cerebellum and its associated circuitry. In recent

years, dynamic neural networks and recurrent networks have emerged as important

components, which have proven to be extremely successful in system modeling

(identification), adaptive control, signal processing and optimization problems (Widrow,

Winter and Baxter, Hopfield 1982, Hopfield and Tank 1985, Narendra and Parthasarathy

1989, Gupta et al. 2003, Rao 1994). These networks are important because many of the

systems that are modeled in the real world are dynamic and nonlinear. Narendra and

Parthasarathy developed new mathematical models for the identification and control of

complex nonlinear dynamical systems with unknown parameters. Gupta and Rao (1994)

have developed neural structures which are useful in control and identification of

unknown nonlinear systems. There are several dynamic neural structures based on

different neural paradigms and the list goes on. With the parallel growth in the field of

fuzzy logic, many new neural models encompassing the principles of neural networks and

fuzzy logic are developed. Although the static, dynamic, and fuzzy-neural networks are

being used in many control and machine vision applications, the basic neural models

remain a feeble imitation of the biological counterparts.

2.6 Summary

In this chapter, a brief description of a neuron with linear synaptic operation was

presented. The basic mathematical model and structure of the adaptive element, the

neuron, were outlined briefly. Neural networks have been used in different applications

such as pattern recognition, system identification and control of complex systems such as

flexible structures, and intelligent robotic systems. In order to explain the concepts and

nuances associated with linear neuron, a simple pattern classification problem (XOR

logic) is studied thoroughly. Through simulation studies of the XOR logic it was

 29

concluded that the neurons with linear synaptic operation were limited to only linearly

separable forms of pattern distribution. However, they perform a variety of complex

mathematical operations when they are implemented in the form of a network structure.

These networks suffer from various limitations such as computational efficiency, learning

capabilities (Hopfield 1990). These limitations are motivating many researchers around

the globe to develop novel neural morphologies with better learning and adaptive

capabilities that can closely mimic biological neurons.

 30

CHAPTER 3
Development of Higher-Order Neural Units with Quadratic

and Cubic Synaptic Operations

3.1 Introduction

The basic concepts of learning and adaptation in the field of control systems were

introduced in the early sixties and many extensions and advances have been made since

then. However, advances in understanding the physiology of biological control have

spurred the interest of system scientists to explore the field of neuro-control systems. Due

to the complex and diverse behaviour of the biological neurons, it is extremely difficult to

compress their complicated characteristics into a model. However, recent mathematical

models and the architectures of neuro-control systems have generated many theoretical

and industrial interests. Towards this goal, a mathematical model of the biological neuron,

named as the neural unit with linear synaptic operation (neural unit with LSO), or simply

a neuron, was developed (Gupta and Rao 1994). Arranging neurons in layers or stages is

supposed to mimic the layered structure of a certain portion of the brain. The most

commonly used neural network architecture is the multilayer neural network (MFNN)

with an error backpropagation algorithm. Although static, dynamic, and fuzzy neural

networks are used in many control and machine vision applications, the basic neural

models remain feeble imitations of their biological counterparts (Gupta and Rao 1994). In

the previous chapter, it was shown that for solving a simple pattern classification problem

requires a two layered linear neural network to realize the patterns. Many factors affect

the learning performance of the MFNNs and must be dealt within order to have a

successful learning process. The choice of initial weights, learning rate, network size and

the learning database are the critical parameters that influence the performance of the

MFNN. A good choice of these parameters will speed up the learning process to achieve

the desired target. However, the MFNNs suffer from many limitations (Hopfield 1990,

Gupta et al. 2003, and Principe et al. 2000). On the other hand, a new class of neural

networks with higher-order neural units (HONUs) may provide a better solution which

 31

decreases the training time, thereby improving the network efficiency (Lilly and Reid

1993, Leda and Francis 1995).

The objective of this research was to reduce the number of parameters of the

HONUs without sacrificing the higher-order neural performance. In this chapter, two

novel higher-order neural units are introduced; that is, the neural unit with quadratic

synaptic operation (QSO) and the neural unit with cubic synaptic operation (CSO) are

developed for pattern classification, control problems and other applications. The term

“quadratic and cubic” are applied to these neural units in the sense that the output of the

synaptic operation is an aggregation of the weighted nonlinear combinations of the neural

inputs. The structure and mathematical details of the neural unit with QSO and the neural

unit with CSO are given in Section 3.2, and 3.3. The learning and adaptation algorithm

for both neural units are discussed in respective Sections. A general methodology for

developing the HONUs with higher-order neural synaptic operation is presented in

Section 3.4. A brief summary is given in Section 3.5.

3.2 Development of Neural Unit with Quadratic Synaptic Operation

(QSO)

Computational neural networks can accommodate many inputs in parallel and

encode the information in a distributed fashion. The learning capacity of a neural unit

depends on its structure and the properties of its component elements (Rumelhart et al.

1986). The structure of the biological neuron, shown in Fig. 3.1, manifests that it can

process linear as well as nonlinear combinations of the weighted neural inputs. These

neural structures belong to the class of HONUs which are the basic building blocks of the

higher-order neural networks (HONNs). The higher-order weighted combination of the

inputs will yield higher neural performance as they require fewer training passes and a

smaller training set to achieve the generalization over the input domain. Further, in

HONUs, the neural inputs exploit cross and self correlations between them and building

such specific knowledge into the network structure results in “pretrained” network. The

pretrained network doesn’t need more iterations to learn the transformations (Lilly and

Reid 1993, Kuroe et al. 1997).

 32

Figure 3.1 Structure of the biological neuron observed in the central nervous system

(CNS). The soma of each neuron receives parallel inputs through its

synapses and dendrites, and transmits the output via the axon to other

neurons.

Note that a HONU contains all the linear and nonlinear correlations terms of the input

components to the order of A generalized structure of the HONU is a polynomial

network that includes the weighted sums of products of selected input components with

an appropriate power. This type of network is called a sigma-pi network (S-PNNs)

(Rumelhart et al. 1986). The synaptic operation of the S-PNNs creates the product of the

selected input components computed with power operation while the conventional neural

units compute the synaptic operation as a weighted sum of all the neural inputs. Since S-

PNNs result in exponential increase in the number of parameters, some modified forms of

S-PNNs were introduced by Shin and Ghosh (1991) which involve smaller number of

weights than the HONNs. They are called as pi-sigma network (PSN) where the synaptic

operation is the product of the weighted sum of all nonlinear correlations terms of the

input components to the order Another type of HONNs called the ridge polynomial

neural network (RPNN) were introduced by Shin and Ghosh (1991). However, the

problem encountered with these HONNs is the combinatorial increase of the weight

.N

.N

 33

numbers; that is, as the input size increases, the number of weights in HONNs increases

exponentially (Zhengquan and Siyal 1998).

In Chapter 2 Section 2.4, a nonlinear solution was provided for the realization of

the XOR circuit using a HONU shown in Fig. 3.1. Consider the discrimanant equation of

the HONU given in Section 2.4 by Eqn. (2.12 a)

 = v 022222221121111110 =+++++ xxwxwxxwxxwxww (3.1)

The above equation belongs to the general second order equation which is of the form

 (3.2) 0),(22 =+++++= FEyDxCxyByAxyxH

where the coefficients A,B,C,D,E,F are real constants. When at least one of A, B, and C is

nonzero, the above equation is referred to as the general second degree equation in two

variables andx y . This can be expressed in a general quadratic form in terms of matrices,

column and row vectors. Consider the Eqn. (3.2) with)31(×X = []yx1 as a column

vector and a symmetric matrix which is expressed as and

expanded as shown below

)33(×Λ T
)13()33()31(××× XΛX

 [] (3.3)),(yxH = yx1
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

BCE
CAD
EDF

2/2/
2/2/
2/2/

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

y
x
1

Similarly expressing the Eqn. (3.1) in the quadratic form as where

 is the augmented vector of neural inputs including bias,

T
aaa xWx=v

[] ,3
210 Rxxx ∈=ax ,10 =x

threshold (bias) of the neuron and is the weight matrix; that is, aW

 = (3.4) v []210 xxx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

222/122/02

2/12112/01

2/022/0100

www
www
www

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

0

x
x
x

Weight matrix is of the same form as and a careful observation to the

following elements of the matrix will provide an interesting result; that is, the

following elements have the same magnitude.

aW)33(×Λ

)33(×Λ

)21(×Λ =)12(×Λ

)31(×Λ =)13(×Λ

 34

)32(×Λ =)23(×Λ

Since the magnitude of these elements is same, it is indeed a prudent choice to consider

the upper triangle or the lower triangle of the weight matrix which results in less number

of parameters (weights) in the HONU. Taking this fact into consideration, a new general

mathematical model of the neural unit is described in the following section.

3.2.1 Mathematical Model of the Neural Unit with Quadratic Synaptic

Operation (QSO)

In this chapter, a novel neural unit called the neural unit with QSO is introduced.

The mathematical model of the neural unit with QSO with n-dimensional neural

inputs, and a single neural output, , is shown in Fig. 3.2. The neural

inputs processed by the neural unit with QSO are summation of weighted linear and

quadratic combination of inputs. The augmented neural input vector is defined as

,)(x nRt ∈ 1)(Rtyn ∈

[] ,,,,, 1
1210

+
− ∈= nT

nn Rxxxxx "ax (3.5)

 [T
nn xxxx ,,,,1 121 −= "]

 is the threshold. 10 =x

The preprocessor of the neural unit with QSO generates a nonlinear combination of

inputs (quadratic, cubic, etc.) depending on the requirement of the problem. The synaptic

operation of the neural unit with QSO performs a new quadratic operation using an

augmented weight matrix given by Eqn. (3.6))1(*)1(++∈ nnRaW
1)(Rkv ∈= aa

T
a xWx (3.6)

 [] 1
1210 ,,,, +
− ∈= nT

nn Rxxxxx "ax

)1()1(

)1(

11211

0020100

0000
000

0
+×+

−

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= nn

nn

nn

n

n

R

w
w

www
wwww

%
#"###

"
"

aW

The neural output, , is given by a nonlinear function of the synaptic output, , as)(kyn)(kv

 35

[] 1)()(Rkvkyn ∈= φ (3.7)

where)(⋅φ is the somatic nonlinear activation function.

Figure 3.2 Structure of the new neural unit with quadratic synaptic operation (QSO).

This nonlinear function maps the synaptic output)(kv []∞∞−∈ , to a bounded neural

output. Many different forms of mathematical nonlinear functions can be used to model

the activation function. Typically, the sigmoidal activation function is a widely used

nonlinear activation function. An example of such a function)(⋅φ is given as

gvgv

gvgv

ee
eegv
−

−

+

−
=)(φ

where is a constant value which determines the slope of the 0>g),(vφ the activation

gain of the activation function. It is clear from the Fig. 3.2 that the augmented neural

inputs to the neuron are ,,,, 1210 −nxxxx " ,1+∈ n
n Rx ,10 =x and the higher-order inputs

are generated within the neuron. For simplicity, the discrete time variable k is not

represented in the Fig. 3.2. This structure encapsulates the basic features and the structure

of the biological neuron shown in Fig. 3.1. The weights and , i, j ∈ {0, 1, 2,

n} in the augmented matrix yield the same quadratic term or . Therefore, an

upper triangle (or a lower triangle) of the augmented weight matrix is sufficient to

ijw jiw

aW ji xx ij xx

aW

 36

generate the discriminant equation which has the quadratic form. The upper triangle

matrix can give the general quadratic discriminant equation as

1

0

)()()(Rkxkxwkv
n

i

n

ij
jiij ∈== ∑∑

= =
aa

T
a xWx , (3.8) 10 =x

A careful observation of the augmented weight matrix reveals that the conventional

neural units with linear synaptic operation are a subset of the neural unit with QSO. For

example, the first row of the novel weight matrix that is, the row vector

aW

,aW

[]nwwww 0020100 " ∈)1()1(+×+ nnR

can produce the weighted linear combination of the neural inputs.

The total number of weights involved in this structure are

() ∑
=

=
n

j
jj kxwkv

0
0)(

,2/)2()1(+×+ nn where

is equal to the number of inputs. A comparison of the number of weights of different

types of HONNs is given in Table 3.1.

n

Table 3.1 The number weights in polynomial networks (HONNs) when the order of
the neuron is 2

Order of the Neuron N = 2
Type of the

HONNs
General formula for the total

number of parameters

Number of parameters for

2=n

Neural Unit

with QSO
2/)2()1(+×+ nn 6

PSN)1()1(++ nn 27

RPNN 2/)1()1(+×+ nNN 9

The above table shows that when the networks have the same higher-order terms, the

weights of the neural unit with QSO are significantly less than number of the weights in

other HONNs. Therefore, the developed neural structure with a quadratic combination of

the neural inputs and weights is more general and can improve the network efficiency

significantly. The other HONUs like the neural unit with cubic synaptic operation can be

expressed with different combinations of the higher-order synaptic operations.

 37

3.2.2 Learning and Adaptation Algorithm for the Neural Unit with

Quadratic Synaptic Operation (QSO)

Developing a learning and adaptation rule involves optimizing the parameters of

the neural structure; that is, the adaptable weights and the slope of the nonlinear

activation function

ijw

[)(kv]φ′ (Gupta 1970). Learning is an iterative process in which the

control sequence is modified in such a way that the neural output approaches the desired

output as closely as possible. The equivalency of the input pattern sequence or

desired response and the output is a convenient condition for testing

the learning process. Generally, the performance of a system is measured by defining an

index called the error function,

1)(Rkyd ∈

1)(Rkyd ∈)(kyn

[])(keJ , (or the cost function or performance

index)(Gupta and Rao 1994). Defining the performance index is an optimizing process

which finds a quantitative measure of the network performance. The performance index

is small when the network performs well and is large when the network performs poorly.

The learning and adaptation algorithm for the neural unit with QSO is developed

in discrete time (k). The learning scheme is shown in Fig. 3.3. Let k denote the discrete

time steps, k = 1, 2, 3 … and be the desired output signal corresponding to

the neural input vector at the time step. Backpropagation algorithm

using the gradient or steepest descent method can be used to derive the learning and

adaptation algorithm. The error signal is the difference between the desired output

and the neural output and is defined as

1)(Rkyd ∈

)1()(+∈ nRkax thk

)(ke

)(kyd)(kyn

)()()(kykyke nd −= (3.5)

where

 = neural output)(kyn

 = desired output)(kyd

 error between the desired output and the neural output =)(ke

 38

Figure 3.3 Learning and adaptation scheme for the neural unit with QSO.

In this iterative process, the control sequence is modified in each learning iteration to

cause the neural output to approach the desired output To achieve this, a

performance index is defined as

)(kyn).(kyd

[]))}(({)(keFEkeJ = (3.6)

where E is the expectation operator. A commonly used form of the in Eqn. (3.6)

is the squared function of the error; that is, the performance index is given as

))((keF

[])}({
2
1)(2 keEkeJ = (3.7)

The error function can be minimized using the following adaptation algorithm by

adapting the weight matrix as aW

)()()1(kkk aaa ∆WWW +=+ (3.8)

where denotes the change in the weight matrix. The changes in the weight matrix

are proportional to the negative of the gradient of the error function . Hence,

 is given as

)(ka∆W

[)(keJ]
)(ka∆W

 []
)(
)()(

k
kek

a
a W

J∆W
∂
∂

−= µ (3.9)

where 0>µ is the learning rate. The value ofµ determines the stability and the speed of

convergence of the adaptive algorithm to optimal weights. The partial derivatives of the

 39

error function, []
)(
)(

k
ke

aW
J
∂
∂ , with respect to the weights can be calculated using the chain rule

of derivatives as shown below

 []
)(
)(

k
ke

aW
J
∂
∂ =

T

nnwwww ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

∂
∂

∂
∂ JJJJ "",,,

020100

From the definitions of the performance index, [])(keJ and the error signal the

gradient of the performance index with respect to the weight vector is obtained as follows

),(ke

 []
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
−∂

=
∂
∂

)(
))()((

2
1

)(
)(2

k
kyky

E
k
ke nd

aa WW
J (3.10)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
)(
)(

)(
k
ky

keE n

aW
 (3.11)

 []
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

−=
)(
)()(

k
kvkeE

aW
φ

 []
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

−=
)(

)(
)(
)()(

k
kv

kv
kvkeE

aW
φ (3.12)

Note that, since

)()()()(kkkkv aa
T
a xWx=

and

[]

)()(
)(

)()()(
)(

)(kk
k

kkk
k

kv
a

T
a

a

aa
T
a

a
xx

W
xWx

W
=

∂
∂

=
∂
∂

Substituting this result in Eqn. (3.12) gives

 []
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∂
∂′−=

)(
)()()(
k

kvkvkeE
aW

φ

 [])()()()(kkkvke a
T
a xxφ′−= (3.13)

where [)(kv]φ′ is the slope of the nonlinear activation function used in the neural unit

with QSO. Therefore, []
)(
)(

k
ke

aW
J
∂
∂ can be expressed using Eqn. (3.13) as

 40

 [] [])()()()(
)(
)(kkkvke

k
ke

a
T
a

a
xx

W
J

⋅⋅′⋅−=
∂
∂ φ (3.14)

Substituting this result in Eqn. (3.9) gives the changes in the weight matrix which is

given by

 []
)(
)()(

k
kek

a
a W

J∆W
∂
∂

−= µ

 [])()()()()(kkkvkek a
T
aa xx∆W ⋅⋅′⋅−⋅−= φµ (3.15)

 [])()()()(kkkvke a
T
a xx ⋅⋅′⋅⋅= φµ

Note that, taking the average of changes for the input vectors and the changes in the

weights, provides the strength of the cross-correlation between the error

and the corresponding neural input terms Using this gradient estimate with

steepest descent method provides a tool for minimizing the mean square error

Thus the updating algorithm for the augmented weight vector is given by

),(kaW∆)(ke

).()(kk a
T
a xx ⋅

).(2 ke

)()()1(kkk aaa ∆WWW +=+

 [])()()()()()1(kkkvkekk a
T
aaa xxWW ⋅⋅′⋅⋅+=+ φµ (3.16)

The implementation scheme of Eqn. (3.16) is shown in Fig. 3.4. Usually the nonlinear

activation function is chosen as sigmoidal function; that is, a hyperbolic tangent function

tanh(s). In this case the derivative))((kvφ ′ is given by

))((

)))((tanh())((
kv

kvkv
∂

∂
=′φ

))((1))((tanh1 22 kvkv φ−=−=

Thus the Eqn. (3.16) can be rewritten as

)()()))((1()()()1(2 kkkvkekk a
T
aaa xxWW ⋅⋅−⋅⋅+=+ φµ (3.17)

Without loss of generality, the above algorithm can be converted into time domain.

 41

Following observations are made with reference to the adaptation algorithm for the

parameters of the neural unit with QSO

• The desired model is an entity representing a physical reality as in the case of

system identification and pattern classification problems (Rao 1994);

• [)(kv]φ′ is the slope of the nonlinear activation function and can be considered as

a gain of the changes in the weights;

• µ is the learning rate which determines the speed and the convergence of the

adaptive algorithm to the optimal values;

• The weight matrix contains () ()()2/21 +×+ nn , []nn …,3,2= number of

parameters and;

• An upper (or lower) triangular weight matrix is sufficient to generate the

nonlinear decision boundary.

Figure 3.4 Schematic representation of the backpropagation algorithm for the neural unit

with QSO

 42

3.3 Development of Neural Unit with Cubic Synaptic Operation (CSO)

 The higher-order neural units (HONUs) may be used in conventional feedforward

neural network structures as the hidden units to form HONNs. These networks are proved

to have good computational, storage, pattern recognition capabilities, and learning

properties, and are realizable in hardware (Taylor and Commbes 1993). The higher

correlation between the neural inputs is considered to improve the approximation and

generalization capabilities of the neural networks (Gupta et al 2003). The following

section describes another HONU called the neural unit with cubic synaptic operation

(CSO).

3.3.1 Structure and Mathematical Details of Neural Unit with CSO

The structure of the neural unit with CSO is shown in Fig. 3.5. Defining the

augmented vector of neural inputs and neural weights, the synaptic operation can be

expressed as

lji

n

i

n

ij

n

jl
ijl xxxwkv ∑∑∑

= = =
=

0
)((3.18)

 . nnnnnnnnnnnn xxxwxxxwxxxwxxxw ++++= −− 1)1(100001000000 ""

Figure 3.5 Schematic representation of the neural unit with CSO with synaptic and

somatic operations.

 43

10 =x is the threshold and []Tnn xxxxx 1210 −= "ax is the vector of augmented

neural inputs augmented with the threshold (bias). The output, of the somatic

operation is defined as a nonlinear mapping,

)(kyn

[])()(kvkyn φ= which provides a bounded

output for the neural inputs.

To accomplish an approximation task for an input-output { }, the

learning algorithm for the neural unit with CSO can be developed on the basis of the

gradient descent method. The error function is formulated as

)(),(kykx n

[] []
⎭
⎬
⎫

⎩
⎨
⎧ −=

⎭
⎬
⎫

⎩
⎨
⎧= 22)()(

2
1)(

2
1)(kykyEkeEkeJ nd (3.19)

where is the desired output and is the output of the

neural network. The error function is minimized using the steepest-descent technique and

the weights are updated in discrete time (k) as given by the following equations

),()()(kykyke nd −=)(kyd)(kyn

)()()1(kwkwkw ijlijlijl ∆+=+ (3.20)

)(
)(

2
1

)(
)]([

)(
2

kw
ke

kw
keJ

kw
ijlijl

ijl ∂
∂

−=
∂
∂

−=∆ µµ (3.21)

)(

2/)]()([2

kw
kyky

ijl

nd

∂
−∂

−= µ

)(
)]()([

)]()([
kw

kyky
kyky

ijl

nd
nd ∂

−∂
−−= µ

)(

)]()([
)(

kw
kyky

ke
ijl

nd

∂
−∂

−= µ

)(
)(

)(
kw
ky

ke
ijl

n

∂
∂

= µ (3.22)

The changes in the weights are given by the cross-correlation between the error and the

corresponding neural input terms. Even though the neural unit with CSO is a static neural

unit, it can be implemented as a neuro-controller for complex control systems such as

satellite control etc. A detailed description of the neural unit with CSO as neuro-

controller will be given in Chapter 5.

 44

3.4 General Methodology to Develop HONUs with Higher-Order

Synaptic Operation

In this section, a general method for developing the HONUs is presented. In

control systems, any higher-order systems can be expressed as a combination of first and

second-order systems. Likewise, any HONU can be expressed as a combination of the

neural unit with LSO and the neural unit with QSO. They can be considered as basic

neural mathematical models with which any HONU can be represented. The basic

principles and concepts of these neural models are utilized in the formulation of the

HONUs with higher-order synaptic operations.

Let be the order of the neuron and n be the number of inputs to the neuron.

Consider = [
N

ax] ,,.......,,,, 1
3210

+∈ nT
n Rxxxxx 10 =x to be the augmented vector of neural

inputs, where accounts for the threshold (bias). Now consider the synaptic

operation of the neuron when the order of the neuron is 1; that is, for =1, the synaptic

operation for the neural unit with LSO is given by the following expression as

10 =x

N

 () 1=Nv = a
T
aa

T
a WxxW =

= 〉〈 aa x,W (inner product of two vectors and) aW ax

∑
=

=
n

i
ii xw

0
 (3.23)

For =2, the synaptic operation for the neural unit with QSO is given by the following

expression as

N

 () 2=Nv = aa
T
a xWx

 (3.24) ∑∑
= =

=
n

i

n

ij
jiij xxw

0

For =3, the synaptic operation for the neural unit with CSO is given by the following

expression as

N

 () (3.25) 3=Nv ∑∑∑
= = =

=
n

i

n

ij

n

jl
ljiijk xxxw

0

Similarly, for the higher-orders the synaptic operation is given as

 45

() 4=Nv m

n

i

n

ij

n

jl

n

lm
ljiijlm xxxxw∑∑∑∑

= = = =
=

0
 (3.26)

() 5=Nv ∑∑∑∑ ∑
= = = = =

=
n

i

n

ij

n

jl

n

lm

n

mo
omljiijlmo xxxxxw

0
 (3.27)

#
#

###
###

###
###

###
###

() 1−Nv y

n

i

n

ij

n

jl

n

lm

n

uy
mljiyijkl xxxxxxw """""""""∑∑∑∑ ∑

= = = = =
=

0

()Nv ∑∑∑∑ ∑
= = = = =

=
n

i

n

ij

n

jl

n

lm

n

yz
zmljizijlm xxxxxxw

0
""""""""""" (3.28)

Equation (3.28) is the general expression of the synaptic operation for the order of

the neuron. From Eqns. (3.23 to 3.28), it is clear that each synaptic expression of any

order consists of mainly two terms; that is,

thN

• Sigma’s (and ;)∑

• An ensemble of weights and the neural inputs.

Equations (3.23 and 3.24) can be represented in a nice matrix notation but it is difficult to

represent the synaptic equation in a matrix notation for the HONUs (N=3, 4, 5…so on.

Hyper matrices are beyond the knowledge of the author). In order to simplify the

representation given by the Eqn. (3.28), the above two operators would be useful.

Consider the Eqn. (3.28) which can be broken down into two operations

()Nv ∑∑∑∑ ∑
= = = = =

=
n

i

n

ij

n

jl

n

lm

n

yz
zmljizijlm xxxxxxw

0
"""""""""""

Nn

N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
λ

[] 〉〈 N
N

N xw
λλ ,

Sigma Tuner Correlation operator

 46

where sigma tuner precludes the exponential increase of the parameters for the HONUs

and the correlation operator provides the correlation strength between the input signals

and the accumulated knowledge stored at the synapses in the form of weights. The sigma

tuner contains three variables; that is, which are defined in Eqn. (3.29) NNn λ,,

 (3.29)

where

 n = [] Rnn ∈− ,1,4,3,2 """"

 = []N RNN ∈− ,1,4,3,2,1 """"

Νλ = and the variables take any one value of the

set The superscript of the pruner

indicates the number of variables to consider in the sigma tuner.

[Ν"""""" ,,,,,, zylkji]

][.,1,4,3,2,1,0 1+Ν∈Ν−Ν R""""

 = =
Nn

N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
λ

N
n

zji N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

λ""" ,,,
∑∑ ∑ ∑ ∑
= = = = = −

n

i

n

ij

n

jk

n

kl

n

NN0 1λλ
"""

[] 〉〈 N
NN xw

λλ , = [] 〉〈 N
zjizij NN xw

λλ """""" ,,
,

 = NN xxxxxxw mljizijk λλ """⋅⋅⋅⋅⋅

Now, the general synaptic expression for any neural unit is given as

()Nv =
N

n

zji N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

λ""" ,,,
[] 〉〈 N

zjizij NN xw
λλ """""" ,,

,

()Nv =
Nn

N ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
λ

[] 〉〈 N
N

N xw
λλ , (3.30)

Sigma tuner Correlation operator

When the network includes Pi-operator, number of weights increase exponentially which

decreases the network efficiency during the training process. On other hand, the Sigma

tuner decreases the number of weights without sacrificing the HONNs performance.

 47

For better understanding of the Eqns. (3.29) and (3.30), the expansion of the expression is

as follows:

[]
⎪
⎪
⎩

⎪⎪
⎨

⎧

=〉〈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

∑∑
=

n

i
ii

n
xwxw

N

0

1
1

11

1

,

1

λλ
λ

[] []
⎪
⎪
⎩

⎪
⎪
⎨

⎧

=〉〈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=〉〈

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

∑∑∑∑
= =

n

i

n

ij
jiijjiij

n

ji

n
xxwxwxw

N

0

2
,

2

,

2
2

,,

2

22

2
λλ

λ

[] []
⎪
⎪
⎩

⎪
⎪
⎨

⎧

=〉〈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=〉〈⎥

⎦

⎤
⎢
⎣

⎡

=

∑∑∑∑∑
= = =

n

i

n

ij

n

jl
ljiijlljiijk

n

lji

n
xxxwxwxw

N

0

3
,,

3

,,

3
3

,,

3

33

3
λλ

λ

####################

####################

[] []

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

〉〈
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=〉〈⎥

⎦

⎤
⎢
⎣

⎡

=

∑∑∑∑ ∑

∑∑

= = = = =
⋅⋅⋅⋅⋅

−

n

i

n

ij

n

jl

n

lm

n

mljizijk

N
zjizij

N
n

zji

N
Nn

NN

NN

NN

N

NN

N

xxxxxxw

xwxw

NN

0

,,
,,,

1

,,

λλ
λλ

λλ
λ

λλ
λ

"""

""""""
"""

"""

 (3.31)

The somatic operation provides a nonlinear mapping of the aggregated signal ‘ ’yielding

an output signal ‘ ’. Mathematically, the neural output can be represented as

follows =

v

ny ny

ny []vφ . Equation (3.31) is the generalised representation of the higher-order

synaptic operation for the higher-order neural units. The neuron fires a signal only when

the aggregated signal exceeds certain threshold associated with the neuron. However for

mathematical representation, the threshold can be shifted to the aggregation operation.

Now, it can be shown that many existing neural structures can be derived from this

generalized representation of the higher-order synaptic operation. This is only possible

when the bias is associated with the synaptic operation.

 48

3.5 Summary

Neural networks have undoubtedly been biologically inspired, but the close

correspondence between them and the real neural systems is still rather weak. Vast

discrepancies exist between both the architectures and capabilities of artificial and natural

neural networks. Despite the loose analogy between artificial and natural neural systems,

a new structure of a computational neuron called the quadratic neural unit (neural unit

with QSO) was developed. The architecture and mathematical model of the neural unit

with QSO has been presented. Neural unit with QSO incorporates linear as well as

nonlinear combinations of neural inputs generated by the preprocessor. The neural unit

with LSO is a subset of the neural unit with QSO and the higher-order neural units can be

expressed using different combinations of the neural unit with QSO. The efficiency of the

neural unit with QSO was greatly enhanced as the size of the weight matrix is reduced

from to []nn× ,
2

)1(
⎥⎦
⎤

⎢⎣
⎡ +× nn and).1(+= Nn An algorithm for updating the weights of

the neural unit with QSO and an implementation scheme for the proposed learning

algorithm have been presented. The concept of neural unit with QSO can be extended to

develop any other higher-order neural units such as the neural unit with CSO and so on.

The structure and mathematical details of the neural unit with CSO has been outlined.

The learning and adaptation algorithm for the neural unit with CSO was presented. Due

to their higher-order combination of the neural inputs, either the neural unit with QSO or

 49

the neural unit with CSO can be trained to learn and control the unknown dynamic

systems. A general methodology for developing the HONUs with higher-order synaptic

operations is presented using sigma tuner and correlation operator.

 50

CHAPTER 4
Applications of the Higher-Order Neural Units to Static

Problems: Pattern Classification and Function Approximation

4.1 Introduction: Biological Motivation

Biological systems employ the principles and concepts of pattern recognition to

perform complex tasks such as recognising different visual, temporal and logical patterns.

Using a broad enough interpretation, it is easy to find diverse applications of pattern

recognition in every intelligent activity. In psychology, pattern recognition is defined as

the process in which the external signals are converted into meaningful perceptual

experiences by the sense organs (Pavlidis 1977). However, in engineering, it is viewed as

a classification problem, where an object is assigned to one of the many classes. A basic

task for the majority of biological systems (human beings, animals) is to decide if a

particular pattern is the same or different from another pattern. In fact, a significant

proportion of the information that is absorbed by biological systems is presented in the

form of patterns. The human visual system, for example, has to differentiate if a certain

image represents a friend’s face or that of a stranger. From an information–processing

point of view, this task is achieved inherently by the neurons which are considered as the

basic building blocks of the central nervous system (CNS). The human brain, the carbon

based cognitive computing faculty, is based upon a different class of logic similar to

fuzzy logic and soft computing whereas the silicon based digital computing machines are

based on binary logic. In the late 1960’s, the stimulation-response of the primitive neuron

was modeled using the threshold logic (McCulloch and Pitts 1943). Since then, it has

become a practice to implement the logic circuits using neural structures. This

methodology helped better in understanding the basic concepts of neural networks

applied to pattern recognition (Gupta and Rao 1994 and Gupta et al. 2003).

The classification problem needs a priori input data which may be generated by

different mechanisms and the goal is to separate the data into various possible classes.

The desired response is a set of arbitrary labels (a different integer is normally assigned

 51

to each one of the classes), so every element of a class will share the same label. Since

class assignments are mutually exclusive, a classifier needs a nonlinear mechanism such

as an all-or-nothing switch to classify the patterns. At a higher level of abstraction, both

the classification and the regression problems seek systems that transform inputs into

desired responses. It is long old tradition/customary to utilize the Adaline and the LMS

rule as pieces to build pattern classifiers (Lau 1992 and Principe et al. 2000). The Adeline

can be applied for classification when the system topology is extended with a threshold as

a decision device. However, there is no guarantee of good performance because the

coefficients are being adapted to fit (in the least square sense) the data to the labels 1 and

-1, and not to minimize the classification error. This is a simple example with only two

classes. For the multiple-class case the results become even more fragile. The conclusion

is that there is a need to develop a new methodology to study and design accurate

classifiers.

In this chapter, neural implementation of basic logic circuits such as OR, AND,

and Exclusive-OR (XOR) are described using the neural unit with quadratic synaptic

operation (QSO). The structure and the learning algorithm of neural unit with QSO for

realizing the logic circuits are proposed in Sections 4.2 and 4.3. Computer simulation

studies for realizing the different logic circuits are presented in Section 4.4. A statistical

explanation is provided for the critical analysis of the neural unit with QSO in Section 4.5.

The concept of Mahalanobis distance is introduced and a modified form of it is presented

in Sections 4.6 and 4.7. The simulation results of the logic circuits are analysed in Section

4.8 followed by a brief introduction to function approximation in Section 4.9.

4.2 Structure of the Neural Unit with QSO for Realizing the Logic

Circuits

The structure of the neural unit with QSO for realizing the logic circuits is shown

in Fig. 4.1. The synaptic connections of the proposed neural unit are weighted summation

of linear and quadratic combinations of the neural inputs. The preprocessor of the neural

unit with QSO generates the higher-order combination of the inputs inside the neuron.

The preprocessed inputs determine how well the neural unit with QSO can

generalize the patterns outside the training set. The structure of the neural unit with QSO

),,(2
221

2
1 xxxx

 52

is not associated with any sort of dynamic features (lateral recurrence, self recurrence).

However, the higher-order inputs of the neural unit with QSO when employed in a

network describe the dynamic characteristics of the network. These inputs take advantage

of predefined relationships between the input nodes of the neural unit. As explained in

Chapter 3, Section 3.2.1, the neural unit with QSO requires less number of training passes

to generalize the patterns behind transformations.

Figure 4.1 Schematic representation of the neural unit with QSO for realizing the logic

circuits such as OR, AND, and Exclusive-OR (XOR).

From Chapter 3 Section 3.4, the mathematical model of the neural unit with QSO for

realizing the logic circuits can be expressed as

aa
T
a xWx=v (4.1)

[]vyn φ= (4.2)

where is the augmented vector of neural inputs including bias, [] ,3
210 Rxxxa ∈=x

 threshold (bias) of the neuron, and ,10 =x

 is the augmented synaptic weight matrix of the neural

unit with QSO and (dc gain).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

22

1211

020100

00
0

w
ww
www

aW

100 =w

 53

Before proceeding further, it is important to formulate the problem which evaluates the

developed concept of the neural unit in a simple way. Any measurement can be thought

of as a point in space called the pattern or the input space. The natural distribution of

points, any deviation of these points from normalancy, leads to the definition of classes or

category regions in the pattern space. The goal of the pattern recognition is to build

machines called classifiers which will automatically assign measurements to the

respective classes. A natural way to make the class assignment is to define the boundary

called the decision surface. The decision surface is not trivially determined for many real

world problems. It varies from time to time, from pattern to pattern and changes for the

same pattern depending on the hour of the day, the subject’s state and so on. Thus the

central problem in pattern-recognition is to define the shape and placement of the

decision boundary so that the class-assignment errors are minimized. A learning and

adaptive algorithm minimizes the error to give the optimal solution. Here the word

optimal doesn’t necessarily mean good performance. It simply provides the best possible

performance with the available data. The next section focuses on developing the learning

and adaptive algorithm for realizing the logic circuits.

4.3 Learning Algorithm for Realizing the Logic Circuits

Many concepts and algorithms have been developed to mimic the learning

process of the biological neural networks (Rosenblatt 1959, Minsky and Papert 1969,

Fukushima 1983, and Grossberg 1988). Consider the neural system as depicted in Fig.

4.2. The system has both learning and adaptation algorithm. The output of the logic

function (desired model) is a scalar-desired output which continuously varies with the

changes in the input. The objective of this scheme is to find a neural output which

is almost equivalent to the desired logic function . This can be defined in terms of

the error as the difference between the desired response and the neural

response . Thus, the error is defined as

)(kyn

)(kyd

),(ke)(kyd

)(kyn

)()()(kykyke nd −= (4.3)

Ideally, the error should approach zero with increasing time (learning iteration). However,

in practical situations, it is only possible to minimize the error which is expressed in

 54

terms of performance index. For this purpose, an error function [])(keJ is defined as

expected value of some even function of the error. One of the methods is to minimize the

performance index with respect to the weights of the neural network. Based on this

principle, a learning and adaptive algorithm was developed in Chapter 3 to modify the

neural unit with QSO parameters. From Equations (3.8 and 3.13), the parameters of

neural unit with QSO are updated based on the following algorithm; that is, the gradient

vector associated with the augmented weight matrix is given as

 [] (k)(k)xxW a
T
aa)()()(kvkek φµ ′=∆

and the adaptation algorithm is given as

[] (k)(k)xxWW a
T
aa)()()()1(kvkekk a φµ ′+=+ (4.4)

where µ>0 is the adaptability rate in the learning scheme. For realization of logic circuits,

the slope of the nonlinear activation function [])(kvφ′ is considered as a constant value.

The implementation of the learning and adaptation algorithm of the neural unit with QSO

is shown in Fig. 4.2.

Figure 4.2 Learning and adaptation scheme for the realization of logic circuits.

 55

4.4 Realization of Logic Circuits using Neural Units with Quadratic

Synaptic Operation (QSO)

In this section, neural implementations of binary logic circuits are discussed.

Conventionally, binary logic operations are given for unipolar values 0’s and 1’s. With

out loss of generality, these operations can be extended for bipolar inputs {-1, 1} as well.

In many important practical applications, the signals obtained from the external world

through measurements, are bipolar. The variables such as temperature and voltage are

considered as bipolar signals. There are two simple transformation equations that convert

unipolar signals to bipolar signals and vice versa. The equations are given as

(i) Unipolar to bipolar: ,)(2)(γαβ −= kk []γγβ ,)(−∈k and

(ii) Bipolar to unipolar: [],)(
2
1 αβ +k [].,0)(γα ∈k

where),(kα and)(kβ are two classes of signals. Thus, for two neural inputs,

and an output, is defined as a logical combination of and as)(1 kx)(2 kx)(ky)(1 kx)(2 kx

[])(),()(21 kxkxfky = (4.5)

where is a logical function usually defined as a combination of various logical

operations such as OR, AND, NOT etc. These are well developed logic circuits which

are extensively used in digital computers and control mechanisms. It is of interest to

show that solving these logic circuits is equivalent to finding the decision surfaces in the

pattern space such that the given data patterns are located on the decision surfaces (Gupta

et al. 2003). Since the concept of higher-order neural synaptic operation is developed

mainly for the nonlinear problems, the logic circuits are realized as follows: Exclusive-

OR (XOR), OR, and AND.

[]⋅f

4.4.1 Realization of XOR (Exclusive-OR) using a Neural Unit with

Quadratic Synaptic Operation (QSO)

The XOR problem demonstrates the efficiency of a neural unit with QSO in

providing the solution to a nonlinear classification problem. Since the XOR logic is not

linearly separable, multilayered neural networks consisting of neural unit with LSOs are

 56

required to classify the patterns. On the other hand, a single neural unit with QSO can

solve the XOR problem using the quadratic function given by Eqn. (4.1). Consider a two

variable XOR function defined as

2121),(xxxxf ⊕= (4.6)

where are the bipolar binary inputs. Four bipolar learning patterns and the

corresponding desired outputs are used to implement the XOR logic. The patterns are

given in the Table 4.1.

}{ 1,1, 21 −∈xx

Table 4.1 Truth Table for XOR Logic

Neural Inputs Desired Outputs

1x 2x 21 xxyd ⊕=

-1 -1 -1: Class B1

-1 1 1: Class A1

1 -1 1: Class A2

1 1 -1: Class B2

Class A = Class A1 ∪ Class A2

Class B = Class B1 ∪ Class B2

Now, consider a higher-order neural unit which is used to realize this logic function as

02
222

2
1112112202101000 =+++++= xwxwxxwxwxwxwy (4.7)

and the desired response is given by)(kyd

[]ykyd sgn)(= (4.8)

The following sets of equations are obtained by substituting the neural input values from

the Table.4.1 in Eqn. (4.7):

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<+++++
>++−−+
>++−+−
<+++−−

0
0
0
0

221112020100

221112020100

221112020100

221112020100

wwwwww
wwwwww
wwwwww
wwwwww

 (4.9)

 57

The set of equations given by the Eqn. (4.9) are indeterminate. Therefore there is no

unique solution; that is, there is more than one solution that can satisfy the desired logic

function. It is easy to implement the Eqns. (4.7 and 4.8) through simulation studies but

finding the analytical solution is a difficult task. However, the above equations can be

solved if Eqn. (4.9) is expressed in a matrix form by taking sgn(Eqn. 4.9) as

)14(

)16(22

11

12

02

01

00

)64(1
1
1
1

111111
111111
111111
111111

×

×

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+
+
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++++++
++−−++
++−+−+
+++−−+

w
w
w
w
w
w

 (4.10)

The above equations have the solution which is given as

,1,0,0,0 120201221100 −====++ wwwwww

and

21xxy −=

Hence the logic function can be implemented by a simple second-order polynomial. For

simulation studies, the desired bipolar outputs are generated by means of a second-order

polynomial function which is modified as

())5.0sgn(21 −⋅−= xxkyd (4.11)

The bias is added to the desired function in order to avoid the simulation glitch; that is, if

the neural inputs and take value ‘0’ during the simulation, the sgn of the function

cannot be determined without bias. To overcome this simulation glitch, the bias is added

to the logic function. The range of bias is between -1 and 1 as the maximum value of

 The structure of the neural unit with QSO for implementing the XOR logic is

shown in Fig. 4.1. The neural output is a function of weighted summation of linear and

quadratic combination of the inputs. Since the logic function is a second-order

polynomial, several nonlinear decision boundaries (hyperbolic, elliptical or parabolic)

exist that can separate the patterns of the different logic circuits. The orientation,

placement and geometry of the decision boundaries depend on the initial values of the

synaptic weights (Specht 1967, Widrow and Michael 1992). This realization ability of the

1x 2x

.121 ±=xx

 58

neural unit with QSO is superior to the ability of a neural unit with linear synaptic

operation (LSO) as the latter cannot achieve the nonlinear classification.

4.4.1.1 Simulation Results for the XOR Logic
The learning scheme proposed for training the neural unit with QSO is shown in

Fig. 4.2. The adaptation algorithm was implemented using the SIMULINK toolbox in

MATLAB 6.5. The initial values of the synaptic weights were generated using a random

function (randn) in MATLAB 6.5. The convergence speed of a learning process depends

on the choice of the learning rate as well as on the choice of the initial weight values

(Guptal et al. 2003). Since the XOR logic has more than one solution, classification of

patterns as class A or class B depends on the orientation of the nonlinear decision

boundary. In this section, two non-linear boundaries were described classifying the

patterns for the XOR logic.

The learning algorithm is developed based on the backpropagation theorem.

Backpropagation training with too small a learning rate will make slow progress while

too large a learning rate will proceed much faster. This may simply produce oscillations

which results in relatively poor solutions. Both of these conditions are generally

detectable through experimentation and sampling of results after a fixed number of

training epochs. Typical values for the learning rate parameter are numbers between 0

and 1; that is, 0.75 < < 0.05 µ . A learning rate µ = 0.03 was chosen for the simulation

studies using the trial and error method. There is one more factor that needs to be taken

care of during backpropagation; that is, initialization of weights in the neuron. Random

initial state - unlike many other learning systems, the neural network begins in a random

state. The network weights are initialized to some choice of random numbers with a

range typically between -1 and 1.

From the simulation studies, it is observed that the error converged to zero after

200 iterations. Table 4.2 shows the synaptic weights for the zeroth and the 200th iteration.

Figures 4.3 and 4.5 show the convergence of the error with each learning iteration k.

This indicates that the neural output closely followed the desired output . The

nonlinear decision boundaries (hyperbolic, elliptical) separating the patterns were shown

)(ke

)(kyn)(kyd

 59

in Figs. 4.4, 4.6, and 4.8. It is presumed that the pattern space of class A and B is

clustered around the points {Class A: [(-1, 1) (1,-1)] and Class B: [(-1, -1) (1, 1)]}.

Table 4.2 Initial and Final values of the Synaptic Weights for the XOR Logic

Iterations Synaptic weights

Case k 00w 01w 02w 11w 12w 22w

Boundary equations and

type of boundaries

Initial 0 -.773 .818 .748 .793 -.525 .369
I

Final 170 -.902 -7.8e-5 1.1e-4 .6632 -.996 .2392

10 411587902.0 xe-.xe-.xv ++−= -
2
221

2
1 23929966632 x.xx-.x. +++

 Ellipse

Initial 0 .847 .397 .779 -.996 -.961 -.803
II

Final 135 1.164 -6.8e-5 6.1e-5 -.678 -.999 -.485

210 5165861641 xe-.xe-.-x.v +=
2
221

2
1 485999678 x-.xx-.x-. ++

Hyperbola

Initial 0 .323 -.87 -.153 .977 .031 -.332
III

Final 230 3.05e-4 -2.4e-4 3.18e-5 .6543 -.999 -.657

10 518344524053 e-.xe-.-xe-.v +=
2
221

2
1 654799976543 x-.xx-.x.+

Hyperbola

Figure 4.3 Desired output, neural output, and error with the learning

iteration k.
)(kyd)(kyn)(ke

 60

2
221

2
1210 23929966632411587902.0 x.xx-.x.xe-.xe-.xv +++++−= -

Figure 4.4 Hyperbolic boundary separating the patterns belonging to Class A and

Class B for XOR logic with a single neural unit with QSO.

Figure 4.5 Desired output, neural output, and error with the learning

iteration k.

)(kyd)(kyn)(ke

 61

2
221

2
1210 4859996785165861641 x-.xx-.x-.xe-.xe-.-x.v +++=

Figure4.6 Elliptical boundary separating the patterns belonging to Class A and Class B

for the XOR logic with a single neural unit with QSO.

Figure 4.7 Desired output, neural output, and error with the learning

iteration k.

)(kyd)(kyn)(ke

 62

2
221

2
1210 654799976543518344524053 x-.xx-.x.xe-.xe-.-xe-.v ++=

Figure 4.8 Hyperbolic boundary separating the patterns belonging to Class A and Class

B for the XOR logic with a single neural unit with QSO.

4.4.2 Realization of OR and AND Logic Circuits using a Neural Unit

with QSO

The neural unit with QSO is the most general neural unit that can generate higher

and lower order neural units with different combinations. Therefore, neural unit with

QSO can be used for linear as well as nonlinear separable forms of the pattern

classification problems. In this section, the neural unit with QSO was implemented to

realize the linearly separable OR and AND logic circuits. The truth tables for both the

logic circuits are given in Table 4.3. The desired bipolar outputs for OR and AND are

generated by mathematical logic functions which are given as

())1sgn(: 21 ++= xxkydOR (4.12)

())1sgn(: 21 −+= xxkydAND (4.13)

The learning algorithm developed in Chapter 3, Section 3.7 was implemented to separate

the patterns for the OR and AND logic circuits. The neural unit with QSO generated

nonlinear discriminant surfaces, shown in Figs. 4.9, 4.10 and 4.11 to separate the patterns

 63

of the OR and AND logic. Table 4.4 shows the initial and final values of the synaptic

weights for learning iterations k=0 and k=200.

Table 4.3 Truth Table for OR and AND Logic

Neural

inputs
Desired outputs

1x 2x 1xyd = OR 2x 1xyd = AND 2x

-1 -1 -1: Class B -1: Class B2

-1 1 1: Class A1 -1: Class B1

1 -1 1: Class A2 -1: Class B3

1 1 1: Class A3 1: Class A

Table 4.4 Initial and Final values of the synaptic weights for the OR and AND
Logic

OR Logic

Iterations Synaptic weights

Case k 00w 01w 02w 11w 12w 22w

Boundary equations and

type of boundaries

Initial 0 3 -8 -1 9 3 -3
I

Final 150 0.333 1.00 0.999 6.336 -8.6e-4 -5.664

210 99900013330 x.x.x.v ++=
2
221

2
1 66454683366 x.-xxe-.-x.+

Hyperbola

Initial 0 .847 .397 .779 -.996 -.961 -.803
II

Final 140 1.497 1.00 0.999 -.3453 -2.3e-4 -.1523

210 99900014971 x.x.x.v ++=
2
221

2
1 15234323453 x-.xxe-.-x-.

Parabola

AND Logic

Initial 0 3 -8 -1 9 3 -3
I

Final 150 -0.33 0.999 0.999 5.667 -0.001 -6.332

210 9999993300 x.x.x.-v ++=
2
221

2
1 332600106675 x.-xx.-x.+

Hyperbola

 64

2
221

2
1210 6645468336699900013330 x.-xxe-.-x.x.x.x.v +++=

Figure 4.9 Inverted hyperbolic boundary separating the patterns belonging to Class A

and Class B for OR logic with a single neural unit with QSO.

2
221

2
1210 1523432345399900014971 x-.xxe-.-x-.x.x.x.v +++=

Figure 4.10 Parabolic boundary (nonlinear) separating the patterns belonging to Class A

and Class B for OR logic with a single neural unit with QSO.

 65

2
221

2
1210 3326001066759999993300 x.-xx.-x.x.x.x.-v +++=

Figure 4.11 Hyperbolic boundary separating the patterns belonging to Class A and Class

B for AND logic with a single neural unit with QSO.

4.5 How does the Neural Unit with QSO provide a Better Solution than

the Neural Unit with LSO?

Statistical techniques and neural networks are widely used for classification in

various pattern recognition problems. Statistical classifiers include linear discriminant

function (LDF), quadratic discriminant function (QDF) etc. for classifying the patterns

(Liu et al. 2004). The neural unit with QSO belongs to the class of optimal classifiers

which are developed based on the statistical models of data. Statistical decision theory

proposes very general principles to construct optimal classifiers. The basic function of the

classifier is to make a decision. According to statistical pattern recognition, what matters

for classification are the a posteriori probabilities , but they are generally

unknown. The a posteriori probabilities are given by Eqn. 4.7

)/(xAP i

)(
)()/(

)/(
xP

APAxp
xAP ii

i = (4.14)

 Bayes' rule provides a way to estimate the a posteriori probabilities. Equation 4.14

provides a way to compute the a posteriori probability by multiplying the a priori

 66

probability for the class, with the likelihood, that the data x was

produced by the class (Principe et al. 2000). The likelihood can be estimated from the

data by assuming a probability density function (pdf). Normally the pdf is the Gaussian

distribution which is given by Eqn. (4.15).

)(iAP)/(iAxp

iA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−= 2

2)(
2
1exp

2
1)(

σ
µ

πσ
xxp (4.15)

where µ = mean and is given as ∑
Γ

=Γ 1

1

i
ix

 = variance and is given as 2σ ∑
Γ

=
−

Γ 1

2)(1

i
ix µ

 = Number of samples. Γ

Using Baye’s rule, it is easy to estimate a posteriori probabilities from the data as mean

and variance are known. Fisher showed that the optimal classifier chooses the class

that maximizes the a posteriori probability that the given sample belongs to

the class; that is, belongs to class if

iA

)/(xAP i x

x iA

)/(xAP i > for all)/(xAP j ij ≠ (4.16)

The problem is that the a posteriori probability cannot be measured directly but Baye’s

rule provides the means to calculate it. The separation boundary is the point where the

two a posteriori probabilities are identical. A general method to compute the Bayesian

threshold is to substitute the likelihoods and find the value of x that gives us equal a

posteriori probabilities. Figure 4.12 explicitly shows that the class assignment is not error

free. In fact, the tail of the “Class A1 (say Orange)” likelihood extends to the right of the

intercept point, and the tail of the “Class A2 (say Apple)” likelihood extends to the left of

the decision line S. The error in the classification is given by the sum of the areas under

these tails, so the smaller the overlap the better is the classification accuracy. The

maximum a posteriori probability assignment minimizes the probability of the error and

is therefore optimal. Intuitively, one can conclude that the classification error depends on

three factors

 67

• The distance between the cluster (class) centers (mean µ) for a given cluster

variance 2σ

• The variance of each cluster distribution 2σ

• The value of the Bayesian threshold

Figure 4.12 The probability density function (pdf) of two Classes A1 and A2 with

Bayesian Threshold S.

If the distance between the cluster centers is larger for a given variance, the smaller the

misclassification (minimum overlap) and the overall classification error. Likewise, for the

same distance between the cluster means, the error is smaller if the variance of each

cluster distribution is smaller. Since the decision region is a function of the threshold

chosen, the error depends on the threshold also. It is clearly evident from the Fig. 4.12

that the error is associated with the area under the tails of the class distributions. The

Bayesian threshold quantifies the maximum error that can occur during the

misclassification. Thus it is concluded that the probability of the error depends on the

cluster mean difference, the cluster variance and the Bayesian threshold. Ideally for

pattern classification problems, it is desirable to have a minimum misclassification error

(even zero if possible). The error can be minimized in two ways:

• The distance can be increased between the cluster centers and

• The second possibility is to vary the variance around the cluster centers

 68

There is no assurance that increasing the distance between the class centers will minimize

the error. The error can be minimized only when the tails of the pdf’s (Gaussians) are

controlled in Fig. 4.12; that is, the class variance around the class mean should be as

small as possible. This implies that one can minimize the error with the Bayes rule by

selecting the threshold in such a way that the a posteriori probability is maximized.

Hence, the metric for the classification is a function of both the mean and the variance of

each class. The placement of the decision surface is determined by the class distance

normalized by the class variance. This distance is called the Mahalanobis distance

(Principe et al. 2000). The Following section briefly discusses the Mahalanobis distance

and a modified Mahalanobis distance that is formulated to support the concept of the

neural unit with QSO.

4.6 Mahalanobis Distance

The Mahalanobis distance is the exponent of the multivariate Gaussian distribution

(Principe et al. 2000), which is given by

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −Ω−
−

Ω

=
−

2
)()(exp

)2(

1)(
1

2
1

2

µµ xxxp
T

D

π

 (4.17)

where T indicates the transpose, Ω is the determinant of Ω , and 1−Ω the inverse of Ω .

Note that in the equation µ is a vector containing the data means in each dimension, i.e.

the vector has dimension equal to D.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

D

2
1

µ

µ

µ
µ

#

The covariance is a matrix of dimension D x D where D is the dimension of the input

space. The matrix is Ω

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ω

DDDD

D

D

σσσ

σσσ
σσσ

"
####

"
"

21

22221

11211

 (4.18)

 69

and its elements are the product of dispersions among sample pairs in the and

coordinates (Γ is the number of samples in the data set):

thi
thj

∑∑
Γ

=

Γ

=

−−
−Γ

=
1 1

,,))((
1

1
k m

kikiij xx ji µµσ (4.19)

The covariance measures the variance among pairs of dimensions. Notice the difference

in number of elements between the column vector m (D components) and the matrix ∑

(D² components). The Mahalanobis distance is a normalized distance from the cluster

center. The Mahalanobis distance is called M-distance for simplicity. The M-distance is

shown in Fig. 4.14. It is obvious from Fig. 4.14 that, for classification, the dispersion of

the samples around the cluster mean also affects the placement of thresholds for optimal

classification. It is therefore reasonable to normalize the Euclidean distance (distance

between cluster centers) by the sample dispersion around the mean, which is measured by

the covariance matrix. The covariance matrix for each class is formed by the sample

variance along pairs of directions in the input space. The covariance matrix measures the

density of samples of the data cluster in the radial direction from the cluster center in

each dimension of the input space. So, it quantifies the shape of the data cluster (Principe

et al. 2000).

4.7 Modified Mahalanobis Distance (MM-Distance)

The objective of this thesis is to reduce the number of adaptable weights with out

sacrificing the neural performance. The number of parameters (weights) in the covariance

matrix increases with the increase in dimensions of the input space. In order to reduce the

number of parameters, there is a need to modify the M-distance equation without

changing the concept of Mahalanobis. The structure of MM-distance is similar to the

distance formula proposed by Mahalanobis except the numbers of elements in the

formula are reduced significantly. Consider the elements of the covariance matrix Ω

given by Eqn. (4.18)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ω

DDDD

D

D

σσσ

σσσ
σσσ

"
####

"
"

21

22221

11211

 70

Figure 4.13 Mahalanobis distance (M-distance) from Class A1 and A2.

Mu1, Mu2 : Means of the two classes A1 & A2

 S : Decision surface

 Distance between S & Mu1, S & Mu2 : M- Distance

Figure 4.14 Three dimensional view of the M-distance.

 71

The covariance matrix for each class is formed by the sample variance along pairs of

directions in the input space. For two a dimensional problems; that is, Class A1 and Class

A2, the covariance matrix for each class are

222221

1211
21

×
⎥
⎦

⎤
⎢
⎣

⎡
=Ω=Ω

σσ
σσ

AA

The covariance matrix measures the density of samples of the data cluster in the radial

direction from the cluster center in each dimension of the input space. So, it quantifies the

shape of the data cluster. A careful observation to the covariance matrix reveals that the

element 12σ is same as the element 21σ . This holds good even for the D dimensions of the

elements in the input space. So, the modified covariance matrix for the two dimension

problem is given as

2222

1211

0 ×
⎥
⎦

⎤
⎢
⎣

⎡
=Ω

σ
σσ

and for D-dimensions

DDDD

D

D

×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Ω

σ

σσ
σσσ

000

0 222

11211

####
"
"

 (4.19)

The covariance matrix is always symmetric and positive definite (because of quadratic

form and inverse always exist). It is positive definite, that is, the determinant is always

greater than zero. The diagonal elements are the variance of the input data along each

dimension. The off-diagonal terms are the covariance along pairs of dimensions. It is

stated earlier that the placement of the decision region depends on three factors; that is,

the distance between the class centers, the variance of each class centers and the

threshold. The covariance matrix encapsulates the affect of covariance beautifully, but

ignores other two factors completely. Hence, it is reasonable to incorporate the threshold

term (bias) and the cluster mean to precisely determine the placement of the decision

surface. Then the MM-distance is given by the same Eqn. (4.17)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −Ω−
−

Ω

=
−

2
)()(exp

)2(

1)(
1

2
1

2

µµ xxxp
T

D

π

 72

where T indicates the transpose, Ω is the determinant of Ω , and 1−Ω the inverse of Ω

which is given by the Eqn. (4.20)

[])1()1(

222

11211

0020100

000

00
0

+×+
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Ω

DDDD

D

D

D

σ

σσ
σσσ
σσσσ

…
#%###

…
…
…

 (4.20)

The first row of the modified covariance matrix encapsulates the affect of the bias and

cluster mean. The elements of the covariance matrix are the product of dispersions among

sample pairs in the ith and jth coordinates:

∑∑
Γ

=

Γ

=

−−
−Γ

=
0

,,))((
1

1
k km

kikiij xx ji µµσ (4.21)

The covariance matrix Ω is an upper or lower triangle matrix that provides the sufficient

condition for the placement of decision surface. The modified covariance matrix

incorporates the affect of the Euclidean distance between the cluster centers, the

threshold and the dispersion of the samples around the cluster mean which affects the

placement of the thresholds for optimal classification. Hence, the structure of the

covariance matrix is critical for the placement and shape of the discriminant functions in

pattern space. Since the distance metric for classification is normalized by the covariance,

if the class means stay the same but the covariance changes, the placement and shape of

the discriminant function will change. Finally, it is concluded that the modified

covariance matrix (weight matrix of the neural unit with QSO) is associated with the

following terms

• Threshold (bias);

• Distance of the cluster means from the decision boundary (Euclidian distance);

• Covariance’s (cross-correlation) among pairs of dimensions above the diagonal

elements; and

• Variances (auto-correlation) of the input data of each dimension along the diagonal.

 73

4.8 Analysis of the Simulation Results

4.8.1 Exclusive-OR (XOR) Logic

The simulation results shown in Section 4.4 are for a particular value of an input signal

whereas the following results shown are for different values of the input signals. The

separation surface is given by the Eqn. 4.1, which yields the following equations for two

different initial conditions

0552.0890.1745.026.0242.0098.1:)(2
221

2
121 =−−−++= xxxxxxva (4.22)

0703.0061.1896.0679.0497.0947.:)(2
221

2
121 =−+−++= xxxxxxvb (4.23)

 (a) (b)

Figure 4.15 Nonlinear decision boundaries separating the patterns belonging to Class A

and Class B for the XOR logic with a single neural unit with QSO.

 74

Figure 4.15 show nonlinear decision boundaries separating the patterns belonging to

Class A and Class B for the XOR logic with a single neural unit with QSO. From the

above discussion, it was clear that the weight matrix must be symmetric and positive

definite. The final weight matrices obtained for the XOR logic with different initial

conditions are presented in Table. 4.5.

Table 4.5 XOR Data Analysis

Exclusive-OR (XOR)

 Figure 4.15 : (a) Figure 4.15 : (b)

Category Nonlinear Nonlinear

Inputs range 1,1 21 ≤≤− xx 1,1 21 ≤≤− xx

Output range []1,1, 21 +−⊆xx []1,1, 21 +−⊆xx

Initial

Weight matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−

803.000
961.0996.00

779.0397.0847.0

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

369.000
525.0793.00

748.0818.0773.0

Final

Weight matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

552.000
890.1745.00

260.0242.00981.

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

703.000
061.1896.00
679.0497.0947.0

Type Symmetric Symmetric

Determinant

of the aw 0.4515 0.5965

Characteristic

of the aw Positive definite Positive definite

 75

The two equations are quadratic in 2-D space as shown in Fig. 4.15. In these cases the

decision surface yields the smallest classification error for this problem. This may not

necessarily mean good performance but it simply means the best possible performance

with the chosen initial condition.

4.8.2 OR Logic

Figure 4.16 shows nonlinear decision boundaries separating the patterns

belonging to Class A and Class B for the OR logic with a single neural unit with QSO.

The separation surface is given by the Eqn. 4.1, which yields the following equations for

two different initial conditions. The equations are

0664.546.8336.6999.01333.0:)(2
221

2
121 =−−−+++= xxxexxxva (4.24)

and

01523.043.23453.0999.01497.1:)(2
221

2
121 =−−−−++= xxxexxxvb (4.25)

(a) (b)

Figure 4.16 Nonlinear decision boundaries separating the patterns belonging to class A

and class B for the OR logic with a single neural unit with QSO.

For the OR logic, the linear and nonlinear decision surfaces can provide the classification

as it belongs to the class of linearly separable problems. It is important to stress that the

linear discriminant is less powerful than the quadratic discriminant. A linear discriminant

primarily utilizes differences in means for classification. If the two classes have the same

mean, the linear classifier will always produce poor results. However, the quadratic

 76

discriminant does a much better job because it can utilize the differences in the

covariance. The following table summarizes the OR logic simulation using a single

neural unit with QSO.

Table 4.6 OR Data Analysis

OR Logic Circuit

 Figure 4.16 : (a) Figure 4.16 : (b)

Category Linear Linear

Inputs range 1,1 21 ≤≤− xx 1,1 21 ≤≤− xx

Output range []1,1, 21 +−⊆xx []1,1, 21 +−⊆xx

Initial

Weight

matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

369.000
525.0793.00

748.0818.0773.0

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−−

300
390
183

Final

Weight

matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−−

1523.000
43.23453.00

999.014971
e

.

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

664.500
46.8336.60

999.01333.0
e

Type Symmetric Symmetric

Determinant

of the aw 0.0787 -11.9504

Characteristic Positive definite Negative definite

 77

4.8.3 AND Logic

Figure 4.17 shows nonlinear decision boundaries separating the patterns

belonging to Class A and Class B for the AND logic with a single neural unit with QSO.

The separation surface is given by the Eqn. 4.1, which yields the following equation

08535.09860.0465.10248.10248.17965.0 2
221

2
121 =−+−++= xxxxxxv (4.26)

Figure 4.17 Nonlinear decision boundaries separating the patterns belonging to Class A

and Class B for the AND logic with a single neural unit with QSO.

This is quadratic in 2-D space as shown in Fig.4.17. Both linear and nonlinear classifiers

can provide the correct pattern classification but nonlinear classifier provides the best

possible solution. The following table summarizes the AND logic simulation using a

single neural unit with QSO.

Table 4.7 AND Data Analysis

AND Logic Circuit

 Figure 4.17

Category Linear

Inputs range 1,1 21 ≤≤− xx

 78

Output range []1,1, 21 +−⊆xx

Initial

Weight matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−

369.000
525.0793.00

748.0818.0773.0

Final

Weight matrix

aW =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

8535.000
9860.00465.10
0248.10248.17965.0

Type Symmetric

Determinant

of the aw 0.7114

Characteristic Positive definite

The analysis of the logic circuits, XOR, OR and AND, strengthened the importance of

the covariance matrix (weight matrix) as it decides the placement of the decision

boundary for the classification of patterns. The sign of the determinant of the weight

matrix determines the type of classification: good or poor classification. In the above

simulation studies, the sign of the determinant of the weight matrix was always positive

definite (PD) when the patterns were clearly separated and the determinant was negative

definite (ND) when the patterns were misclassified. This was clearly evident in the

simulation study of the OR logic circuit. In Figure 4.16 (a), the patterns belonging to

Class A and Class B are clearly separated by the decision boundary whereas in Fig. 4.16

(b), one of the patterns belonging to Class A lies on the decision boundary. Intuitively,

the next question that arises is that what happens when the determinant of the weight

matrix is zero? There are two interesting possibilities for this question

• All the elements of the weight matrix can be zero

• All the elements of the weight matrix should be zero except the first row

The first possibility is beyond discussion and the second possibility is an interesting one.

The weight matrix is a row vector; that is,

 79

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
000
020100 www

aW or []020100 www=aW (4.27)

This implies that a neural unit with LSO is required for that specific pattern classification.

The other interesting aspect of the above matrix is that the two classes are mutually

exclusive as there is no cross and auto correlation terms associated with the inputs in the

weight matrix. This boils down to another important conclusion that the choice of neural

unit for a particular problem depends on the amount and type of data that is being

processed by the neuron. Depending on these factors, one can decide before hand the type

of neuron to be employed for a particular problem. This is technically termed as

discriminant sensitivity to the size and type of data. Hence when the data is complex

(mutually dependent and large data), it is always advisable to employ HONUs (neural

unit with higher-order synaptic operations) for a better solution. This does not necessarily

mean that the neural unit with LSOs can not provide a better solution but the difficulty is

in deciding the number of neural units with LSOs that are required for obtaining the same

solution.

Important Observations Regarding Decision Surfaces for Logic Circuits

(i) The discriminant surfaces could be elliptical, parabolic and hyperbolic for separating

the patterns of the XOR logic. If the decision surface is hyperbolic, the bias cannot

exceed the numerical value 22 because this is the critical condition for which the

patterns lie on the surface as shown below. It may not be true for other logic circuits

such as OR and AND.

(ii) There can not be a circular discriminant surface of any radius for separating the

patterns of the XOR logic. If a neural unit with quadratic synaptic operation provides

a circular discriminant surface as one of the solution for the XOR logic then the

elements other than the diagonal would be zero; that is, the weight matrix would have

the elements as shown below

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

22

11

00

00
00
00

w
w

w

aW (4.28)

 80

This implies that the weight matrix is a diagonal matrix and the diagonal elements

are the eigen values of the quadratic synaptic operation but it was stated previous

that the circle cannot be a solution. Hence an eigen value does not provide the

solution for separating the patterns of the XOR logic.

Figure 4.18 Critical bias for a hyperbolic decision boundary separating the patterns

belonging to Class A and Class B

(iii) The neural unit with quadratic synaptic operation always gives better performance as

it finds the minimum in less number of iterations.

Based on these observations, it is prude to conclude the following discriminate surfaces

for separating the patterns belonging to different basic logic circuits

Table 4.8 Discriminant solutions for classifying the patterns of basic logic circuits

S. No
Different basic

logic circuits

Discriminant surfaces for separating the patterns

belonging to the basic logic circuits

1 OR Linear, Parabolic, Circular, Elliptical, and Hyperbolic

2 AND Linear, Parabolic, Circular, Elliptical, and Hyperbolic

3 XOR Parabolic, Elliptical, and Hyperbolic

 81

4.9 Function Approximation

The problem of identification is a typical example of function approximation. One

of the most significant characteristics of the neural networks is their ability to

approximate any arbitrary nonlinear function to desired degree of accuracy. Neural

networks potentially offer a general framework for modeling and control of nonlinear

systems. The problem of learning a mapping from input and output space using neural

networks is equivalent to the problem of estimating the system that transforms inputs and

outputs given a set of examples of input-output pairs. Training a neural network using

input-output data from a nonlinear dynamic system is considered as a problem of

functional approximation.

Function approximation seeks to describe the behaviour of very complicated

functions by ensembles of simpler functions. Recently, a number of researchers have

shown that multilayer static (feedforward) neural networks (MFNNs) can approximate

any continuous function to desired degree of accuracy. Either Stone-Weirstrass theorem

or Kolmogorov theorem has been employed for the theoretical development of functional

approximation capabilities of neural networks. Other important analytic tools such as

Series expansion, Trigonometric polynomials (Fourier expansion) are also widely used as

function approximators, but their computation is bit more involved. In this section, the

universal approximation capabilities of the HONNs are studied using a single neural unit

with QSO. Computer simulations are presented to demonstrate the functional

approximation capabilities of the neural unit with QSO.

4.9.1 Simulation Studies

It is demonstrated in this section, through computer simulation studies, that the

neural unit with quadratic synaptic operation as the basic computing node, can

approximate any arbitrary nonlinear function. Let be a real function of a real valued

vector that is square integrable over the real numbers The goal

of the function approximation using the neural unit with QSO is to describe the behaviour

of the function in a compact area S of the input space, by a combination of

simpler functions such that

)(xf

[T
nxxx ""21=x] .nR

),(xf

 82

ε<−)(,(ˆ))((kfkf xwx a (4.29)

where ε can be made arbitrarily small. The function is called an

approximant to The learning scheme employed for this task is shown in Fig.

4.19.

)(,(ˆ kf xwa

)).((kf x

Figure 4.19 The learning scheme for functional approximation using a HONU.

For evaluating function approximation ability of the neural unit with QSOs, four

simulation examples are discussed in this section. The task consists of learning a

representation for an unknown one variable nonlinear function Examples 1 and

2 demonstrate the neural unit with QSOs ability to approximate arbitrary nonlinear

functions as shown in Figs. 4.20 and 4.21. The simulation studies are carried out with

different type of inputs such as sinusoidal, square, sawtooth and random signals.

)).((kf x

 The nonlinear functions used in these examples were as follows:

 Example 1: and),())((kxkxf =

 Example 2:)(2)(5.0))((2 kxkxkxf +=

The mapping function obtained by a single neural unit with QSO for different type of

inputs is shown in Fig. 4.20. The error reduced to desired limit (0.001) with in 50

learning iterations. The approximation accuracy shown in Fig. 4.20 is extremely high by

 83

the neural unit with QSO. This is an evidence for the high approximation ability of the

proposed neural structure.

Figure 4.20 Function approximation of a nonlinear function () using a

neural unit with QSO for Example 1 with different inputs such as

sinusoidal, square, sawtooth and random signals.

),())((kxkxf =

In example 2, trigonometric functions were added to the desired nonlinear function to

inspect the adaptability of the proposed neural unit. The simulation studies were shown in

Fig. 4.21 for different inputs. In Examples 1 and 2, the neural unit with QSO took more

learning iterations to approximate the desired nonlinear function when the input signal is

random.

 84

Figure 4.21 Function approximation of a nonlinear function using a neural unit with

QSO for Example 2 () with a sinusoidal signal.)(2)(5.0))((2 kxkxkxf +=

In Example 3, the desired nonlinear function was changed during the learning process to

study the adaptiveness of the neural unit with QSO. The nonlinear functions used in this

example were as follows:

)250/2sin())((kkxf π= for 5000 ≤≤ k and

{ })(1

)(5.0
2 k

k

x

x

+
= for .1000500 ≤≤ k

The simulation studies for this example were shown in Fig. 4.22. The desired nonlinear

function is changed at 500th learning iteration. Figure 4.22 show the different phases of

the simulation studies.

 85

Figure 4.22 Function approximation of a nonlinear function using a neural unit with

QSO for Example 3 with change in desired function during the simulation

at 500=k

In Example 4, another peculiar nonlinear desired function was chosen as follows:

))(5sin(1.0))(2sin(3.0)())((3 kxkxkxkxf ππ ++=

where

).250/2sin()(kkx π=

The simulation studies were shown in Fig.4.23 along with learning phase during the

simulation study. It is observed from the Fig. 4.23 that the neural unit with QSO required

more number of iterations to approximate the function. This is due to the fact that the

function is associated with more nonlinearity. The above results do indicate that the

 86

neural unit with QSO can approximate arbitrary nonlinear functions to desired degree of

accuracy. It was observed during the simulation studies that the neural unit with QSO

adapted to the changes in nonlinear function during the approximation process. One thing

should be noted that the high approximation accuracy is achieved only using a single

neural unit with QSO. Better results can be achieved if a network of neural unit with

QSOs is used for function approximation.

Figure 4.23 Function approximation of a nonlinear function using a neural unit with

QSO for Example 4 with an arbitrary desired function.

4.10 Conclusions

 The concept of the neural unit with QSO appears to be promising as it can process

lower and higher-order inputs similar to the processing function of the biological neuron.

Properties such as learning and adaptation associated with neural unit with QSO were

 87

examined in great detail with examples. Different logic circuits such as OR, AND, and

Exclusive-OR (XOR) are realized using a single neural unit with QSO. The

mathematical model of the neural unit with QSO is greatly examined. The weight matrix

beautifully encapsulates the concept of the Euclidian distance, the Mahalanobis distance

and the effect of the threshold (bias) on the shape and the placement of the discriminant

surface. The approximation capabilities of the neural unit with QSO were discussed in

this chapter. The accuracy of the approximation does depend on the structure of the

neurons employed in a network. The simulation studies of the neural unit with QSO

provide enough evidence that it is a better computational node for the function

approximation problems. It is well known fact that the MFNNs were considered as

universal approximators for continuous functions. However, in author’s view that a

network of neural unit with QSOs may provide a better approximation results than the

approximation achieved by the MFNNs. Apart from this, The HONUs with higher-order

synaptic operations can be expressed using different combinations of the neural unit with

QSO. Hence, it is the most general neural unit which can deal with both linearties and

nonlinearities of the real world problems. The learning and adaptation algorithm for using

the neural unit with QSO as a state feedback controller for control problems is being

investigated in next chapter.

 88

CHAPTER 5
Applications of Higher-Order Neural Units with Higher-Order

Neural Synaptic Operations for Control Problems

5.1 Introduction: A Brief Review

Neural networks are able to implement many nonlinear functions of control

systems with higher degree of autonomy. The most commonly used neural network is the

multilayer feedforward neural network (MFNNs) where no information is fedback during

the operation. However, there is feedback information available during the training

process. Supervised learning methods, where the neural network is trained to learn

input/output patterns presented to it, are typically used. More often different versions of

the backpropagation algorithm are used to adjust the neural network weights during the

training process. This is generally a slow and very time consuming process as the

algorithm usually takes longer time to converge. The convergence of the training process

depends on the activation functions in the neural units; that is, sigmoidal, signum and

gaussian functions are typically used depending on the requirement of the problem.

One of the important applications of the MFNNs is for the identification and the

control of nonlinear dynamic systems. Such networks can generate input/output maps

which can approximate any function with a desired accuracy. One may have to use a

large number of neurons, but any desired approximation can be accomplished with a

multilayer network with one or two hidden layer of neurons. For a given task, this

network architecture is associated with large number of neurons. On the other hand,

higher-order neural networks (HONNs) require less number of neurons for achieving the

same task but they are associated with large number of parameters (weights). However,

for certain problems these weights are greatly reduced by constraining the architecture of

the network; that is, for the problems that need to be classified regardless of some

transformation groups such as translation, scaling and rotation. HONNs are also used for

identification and control of nonlinear dynamic systems, and their performance is

compared with the performance of conventional multilayer neural networks with linear

 89

synaptic operation. Computer simulation studies reveal that the HONN models are more

effective for the control of nonlinear dynamic systems (Gupta and Rao 1994).

In this chapter, applications of HONUs with higher-order synaptic operations to

control problems are discussed. Section 5.2 deals with the implementation of HONUs for

control of linear systems where the neural unit with QSO and the neural unit with CSO

are used as neuro-controllers for the satellite attitude control. Simulation studies of the

HONUs as neuro-controllers to control the linear systems are discussed in Section 5.3.

Similarly, applications of the HONUs as neuro-controllers to control the nonlinear

systems are discussed in Section 5.4. The stability analysis of nonlinear systems using the

energy approach and the lyapunvou method are presented in Section 5.5. A new damping

function is developed in Section 5.6. In Section 5.7, neural unit with CSO is implemented

as a nonlinear state feedback controller for control of unknown, varying parameter and

structure, nonlinear dynamic system. The simulation results are presented in Section 5.8

followed by the conclusion in Section 5.9.

5.2 HONUs for Control of the Linear Systems

The proposed HONUs utilize the linear and nonlinear correlation terms, and avoid

the problem of combinatorial explosion of higher-order terms. In HONUs, there is no

requirement to select the number of hidden units as in multilayer feedforward networks.

HONUs are capable of learning linear and nonlinear functions extremely quickly due to

the predefined relationships between the input nodes (Gupta and Knopf 1994). It was

shown that these neural units can learn and process both functions and their derivatives

with ease. This motivates system scientists to develop novel hierarchical and multilayer

HONUs network architectures that can be trained using standard error backpropagation

learning techniques. The following sections describe the application and implementation

of HONUs such as the neural unit with QSO and the neural unit with CSO as neuro-

controllers for control problems. They are implemented as neuro-controllers for satellite

attitude control problem.

 90

5.2.1 Neural unit with QSO as a Neuro-Controller for Satellite Control

Attitude Problem

Satellites, as shown in Fig. 5.1, usually require attitude control equipment such as

antennas, sensors, and solar panels should be properly oriented. Antennas are pointed

towards a particular location on the earth, while solar panels need to be oriented towards

the sun for maximum power generation. Consider the motion of satellite in its pitch plane.

The angle Θ that describes the satellite orientation must be measured with respect to an

inertial reference as depicted in Fig. 5.1. The control force comes from the reaction jets

that produce a moment of about the mass center. Applying the basic Newton’s law

to one dimensional rotational system, the equation of motion is written as

dFc

Θ== ��IudFc (5.1)

The output of this system, results from integrating the input torque twice and this type

of system often referred to as the double integrator plant. Since, there are two states

associated with the system; neural unit with QSO can be implemented as a neuro-

controller for satellite attitude control. The block diagram representation of the neural

unit with QSO as a controller was shown in Fig 5.2.

Θ

Figure 5.1 Schematic representation of satellite control in its pitch plane (one

dimensional view)

 91

Figure 5.2 Schematic representation of the HONU’s (the neural unit with QSO and the

neural unit with CSO) as neural-controllers for the satellite attitude control

Defining the augmented vectors of neural inputs and neural weights, the synaptic

operation for neural unit with QSO is given as

aa
T
a xWx ∑∑

= =
==

2

0

2

i ij
jiij xxwv (5.2)

 22222112

1111200210010000

xxwxxw
xxwxxwxxwxxw

+
++++=

where

 [] 1, 0210 =∈= + xxxx R x 12T
a

 1)(2*1)(2
a R W ++∈

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

22

1211

020100

00
0

w
ww
www

The neural unit with QSO can be implemented as a nonlinear controller for complex

problems such as satellite control problem and for problems in identification and inverse

dynamic adaptive control. From Figure 5.2, the governing equations for the satellite

attitude control model are given as

mm xx 21 =� (5.3)

rxxkxkux mmvmmpmmm +−−−== 2
2
112)1(� (5.4)

 92

where are position and velocity gains of the model respectively. Comparing

Eqns. (5.2, 5.4), it is clear that only a subset of neural unit with QSO is required for

control but a careful observation at the governing equation of the satellite control model

indicates that a cubic term is associated with the control signal. Since the choice of neural

controller depends on the structure and order of the system, the objective is to synthesize

a control signal, (as function of and) in an optimal fashion (Gupta, 1970).

Keeping this in mind, a HONU called the neural unit with CSO is described in detail as a

neuro-controller for linear and nonlinear systems in the following sections.

vmpm kk ,

nu 2
1nx nx2

5.2.2 Neural unit with CSO as a Neuro-Controller for Satellite Control

Attitude Problem

The neural unit with CSO can be considered as a combination of three neural

units with LSO or a neural unit with LSO and a neural unit with QSO. The structure of

the neural unit with CSO for satellite control attitude problem is shown in Fig. 5.3.

Figure 5.3 Structure of the neural unit with CSO for control applications.

 93

The synaptic operation of the neural unit with CSO is defined as follows:

kx
i ij jk

jxixijkwv ∑
=

∑
=

∑
=

=
2

0

2 2
 (5.5)

222222

221122211112111111

220022210012110011

200002100001000000

xxxw

xxxwxxxwxxxw

xxxwxxxwxxxw

xxxwxxxwxxxw

+

+++

+++

++=

where and the somatic operation is given as 10 =x

)(vyn φ= (5.6)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑
=

∑
=

∑
=

= kx
i ij jk

jxixijkw
2

0

2 2
φ

where is the output of the neural unit with CSO and ny)(⋅φ is the activation function. In

Figure 5.4, the neural unit with CSO is used as an identifier of a plant. The typical

identification process consists of three components: the system to be identified, a

postulated model (in this case either the neural unit with CSO or the neural unit with

QSO) and an adaptation algorithm which updates the model based upon an error criterion.

Since the adaptation algorithm shown in Fig. 5.4 processes the difference between the

outputs of the neural unit with CSO and the system, the structure is called as parallel

identifier. The importance of this type of identification is that it completely describes the

external behaviour of the system. Normally, the injected signal to the plant is white noise

or a signal of broad spectrum to excite all modes of the plant. If the input to the plant (and

the model-neural unit with CSO) is sufficiently general and the weights of the neural

network are adjusted for a sufficiently long time which ensures the minimum error for

any input. These types of inputs are highly desirable which assures the convergence of

the identification model to the desired set.

 The objective of the neural unit with CSO is to emulate the plant by forcing the

error to zero (within the tolerance limit) and to identify the synaptic weights equal to the

plant parameter values. The learning and adaptation algorithm was already developed in

 94

Chapter 3. In this identification process, the neural unit with CSO is considered as a static

neural unit because it does not have any feedback properties; that is, the output of the

neural unit with CSO depends only on its current inputs and the synaptic weights.

Figure 5.4 Identification of a Plant using a neural unit with CSO

Even though the neural unit with CSO is a static, it can be implemented as a neuro-

controller for complex control systems such as satellite control etc. The following section

describes the implementation of the neural unit with CSO as a dynamic neural unit.

5.2.2.1 Dynamic Cubic Neural Unit with CSO for Control Applications
In this section, neural unit with CSO is implemented as a dynamic neural unit for

control of complex systems (Satellite Attitude Control). The structure of the neural unit

with CSO reveals that it is not associated with any dynamics but the introduction of states

as feedback makes it a dynamic with several stable points. Hence, feeding back the states

of the plant to the neural unit with CSO makes the whole structure a dynamic neuro-

controller. The simplified model of the satellite system is shown in Fig. 5.5. The purpose

of this control system is to control the attitude of the space vehicle in one dimension. The

block diagram of the space vehicle system shows that two states, the position and the 1x

 95

velocity , are fedback by the position and rate sensors to form the closed loop control.

The governing equations for the block diagram are given by Eqns. (5.3, 5.4).

2x

Figure 5.5 Block diagram of space vehicle (satellite control) system with nonlinear

controller.

The control signal is associated with the cubic parameter i.e. . It was clearly

evident that the neural unit with LSO and the neural unit with QSO don’t have a cubic

term in their structures as discussed in previous sections. This implies that they require

more training passes or iteration time to control the satellite system. However, the neural

unit with CSO is inherently associated with the cubic form in its structure as . This

inherent structure helps the neural unit with CSO to adapt the plant more effectively and

efficiently.

mu mm xx 2
2
1

211 xxx

According to the Eqns. (5.3, 5.4), is equal to two because there are two states as

inputs to the neural unit with CSO such as the velocity () and the position (). Thus,

the synaptic operation of the neural unit with CSO is given as

n

2x 1x

222222

221122211112111111

220022210012110011

200002100001000000

xxxw

xxxwxxxwxxxw

xxxwxxxwxxxw

xxxwxxxwxxxw

+

+++

+++

++=

 (5.7)

 96

Only a subset of the neural unit with CSO parameters are required to control the satellite

system i.e. , and , each of which represent001w 002w 112w pk− , vk− and in sequence.

The equation for the dynamic neural unit with CSO can be rewritten as

vk

nn xx 21 =� (5.8)

nn ux =2� (5.9)

 rxxxwxxxwxxxwu nnnnnn +++= 211112200002100001 (5.10)

np xy 1= (5.11)

Figure 5.6 Adaptation of the neural unit with CSO as a nonlinear neuro-controller for

satellite attitude control system.

5.3 Simulation Results

In this section, the response of the satellite control with different neuro-controllers

such as neural unit with LSO, neural unit with QSO and the neural unit with CSO are

compared. A block diagram depicting the different neural structures as state controllers is

shown in Fig. 5.7. The control methodology shown in Fig. 5.7 is called as Model

Reference Adaptive Control (MRAC). This is the one of the most popular modern control

methods that attracted many system scientists in control design. Selection of the model is

referred to as structure estimation, where the model input-output signals and the internal

components of the model are determined. In general, the model structure is derived using

prior knowledge. In dynamic systems, the choice of the order of the model is always a

 97

nontrivial problem. It is a compromise between reducing the unmodelled dynamics and

increasing the complexity of the model which can lead to model stabilizability difficulties.

r : Input signal [Step or Square Inputs]

ny : Neural unit [neural unit with LSO, neural unit with QSO, neural

unit with CSO]

nu : Control signal for the plant

dy : Desired output

py : Output of the plant when

ax : [are the neural inputs]Txxx 210

e : Error between the desired output and the output of the plant

Figure 5.7 Block diagram depicting different neural structures as neuro-controllers for a

complex control system (satellite attitude control)

In many practical cases, it is tacitly assumed that the reference model is linear. This is

because linear systems theory is well developed and methods of choosing linear models

that have desired properties are well established. This does not necessarily mean that the

reference model cannot be a nonlinear model but an important practical consideration is

that the dynamic mapping represented by the system, containing the controller and the

plant, should approximate the reference model as tends to infinity (Miller et al. 1990). k

 98

In the model based approaches, the controller can be seen as an algorithm

operating on a model of process and optimized in order to reach the given control design

objectives (Ikonen and Najim 2002). For this study, a linear and a nonlinear model are

considered for satellite attitude control. The objective of the attitude control is to point an

antenna towards certain stellar object in its pitch plane. Therefore, inputs like step and

square wave signals are considered for simulation studies. The simulation result shows

that the neural unit with CSO can control a plant very effectively when compared with

other neural structures as neuro-controllers.

Most model validation tests are based on simply the difference between the

simulated output and the measured output. The primary concern in satellite attitude

control is the transient response of the plant. The transient response should be as fast as

possible but without the overshoot. Simulations studies show that the neural controllers

require 10 seconds to place the satellite to a desired state. Since it is a closed loop control,

the response of the satellite can be improved by increasing the gain of the neural

controllers but there is always an overshoot associated with it. This severely hinders the

flexibility of the neural controllers despite its adaptive capabilities.

5.3.1 Simulation Results for Satellite Control (Linear Model)

Consider the attitude control of satellite in its pitch plane. The governing

equations for the linear model are given as

21 xx =� (5.12)

rxkxkx vp +−−= 212� (5.13)

where 2 are position and velocity gains respectively. The simulations of the

satellite attitude control with these parameters using above differential equations are

carried out. Figures 5.8 and 5.10 illustrate the comparison between the step and square

responses of the satellite when three different neuro-controllers (neural unit with LSO,

neural unit with QSO, and neural unit with CSO) are used. It can be noticed that the time

required for the neural unit with CSO controller to drive the satellite to desired position is

shorter than that of the other two controllers. Figures 5.8 (b), 5.9 (b), and 5.10 (b) show

the convergence of the error with square and step inputs with different neural controllers.

,1=pk =vk

 99

(a). Step response of the plant with different neural controllers.

(b). The Convergence of the error with each learning iteration.

Figure 5.8 Step and error response of the satellite control with the three different neural

controllers when the model is a first order system.

 100

(a). Step response of the plant with different neural controllers.

(b). The Convergence of the error with each learning iteration.

Figure 5.9 Step and error response of the satellite control with the three different neural

controllers when the linear model is used.

 101

(a). Square input response of the plant with different neural controllers.

(b). The Convergence of the error with each learning iteration.

Figure 5.10 Square input and the error response of the satellite control with the three

different neural controllers when the linear model is used as MRAC.

 102

5.3.2 Simulation Results for Satellite Control (Nonlinear Model)

The transient response of the system can be improved by employing a nonlinear

or time varying linear controller. The governing equations for the satellite attitude control

with a nonlinear model are given as

21 xx =� (5.14)

 (5.15) rxxkxkx vp +−−−= 2
2
112)1(�

where kp=1.05, kv=1.8 are position and velocity gains respectively. The velocity gain

is a function of both position and velocity. The controller implements a nonlinear

damping which varies with position as shown in Fig. 5.11. For Large , the damping is

negative and for small , the damping is positive. The advantage of using this kind of

nonlinear damping is to improve systems transient response by making damping small for

large (or possibly negative) and large for small . The damping limits can be

increased or decreased depending on the design requirements of the system.

vk

1x

1x

1x 1x

Figure 5.11 Nonlinear damping function

 103

(a). Step input response of the plant with the three different neural controllers.

(b). The convergence of the error with each learning iteration.

Figure 5.12 Step input and the error response of the plant (satellite control) with different

controllers when the nonlinear model is used as MRAC.

 104

Figure 5.12 depicts the step response of the satellite with three different neuro-

controllers (neural unit with LSO, neural unit with QSO, and neural unit with CSO). It

can be noticed that the time required for the neural unit with CSO controller to drive the

satellite to desired position is shorter than that of the other two neuro-controllers. The

transient response is associated with overshoot and almost required sixty iterations to

settle which is not acceptable in the design of the control systems.

From the simulation studies, it is concluded that the plant response is too sensitive

to the changes in the parameters of the neural units (neural unit with LSO, neural unit

with QSO, and neural unit with CSO). This was clearly evident when the plant was

subjected to square inputs. The response of the plant was affected by the dynamics of the

model notably in the transient phase. The transient response of the plant is faster with

neural unit with CSO as a neuro-controller and an effort to improve the transient response

resulted either in overshoot or instability of the plant forcing the response to infinity.

A novel neural structure, called the neural unit with CSO, was presented as a

neuro-controller for the control of a complex system such as satellite attitude control. The

neural unit with CSO, as a dynamic neural unit with CSO, was able to control the satellite

system better than the other neural controllers. The error converged to zero in less

number of iterations with the dynamic neural unit with CSO. However, the response of

the plant was associated with overshoot and the speed of the response was damped when

the model was associated with the higher-order dynamics. This could be accounted to the

large number of parameters that are associated with the neural unit with CSO. The

solution to this problem is to find a method which reduces the overshoot without

sacrificing the speed of the transient response. The following section describes a method

to develop such type of controllers for linear and nonlinear systems. In this case, it is

mainly focused on the development of new controllers which are subset of HONUs for

control of nonlinear systems.

5.4 HONUs for Control of Nonlinear Systems

To model the input/output behaviour of a dynamical system, the neural network is

trained using input/output data and the weights of the neural network are adjusted most

often using the backpropagation algorithm. Because the typical application involves

 105

nonlinear systems, the neural network is trained for classes of inputs and initial

conditions. The underlying assumption is that the nonlinear static map generated by the

neural network can adequately represent the system’s behaviour in the ranges of interest

for a particular application. There is of course the question of how accurately a neural

network, which realizes a static map, can represent the input/output behaviour of a

dynamical system. One must provide the neural network with the information about the

history of the system – typically delayed inputs and outputs. The amount of information

needed depends on the desired accuracy but there is a trade-off between the accuracy and

the computational complexity of the training process. This is because the number of

inputs used affects the number of weights in the neural network and subsequently the

training time. One sometimes starts with as many delayed input signals as the order of the

system, and then modifies the neural network accordingly. The number of neurons in the

hidden layer(s) is typically chosen based on empirical criteria and one may iterate over a

number of networks to determine the neural network that has a reasonable number of

neurons and accomplishes the desired degree of approximation.

As seen previously, MFNN has only a linear correlation between the input vector

and the synaptic vector. Extensive research attempts have been made by Rumelhart et al.

[1986], Giles and Maxwell [1987], Softky and Kammen [1991], Xu et al [1992], Taylor

and Commbes [1993], and Homma and Gupta [2002b] to develop HONUs for different

applications. HONUs have been proved to have good computational, storage, pattern

recognition, and learning properties and are realizable in hardware (Taylor and Commbes

1993). These networks satisfy the Stone-Weierstrass theorem and hence considered to

improve the approximation and generalization capabilities of the network. In recent years,

adaptive neural control schemes have been found to be particularly useful for the control

of nonlinear systems with unknown nonlinear functions. In the literature of adaptive

neural control, neural networks (NNs) are primarily used as on-line approximators for the

unknown nonlinearities due to their inherent approximation capabilities. However, the

conventional models of neurons cannot deal with the discontinuities in the input training

data. In an effort to overcome such limitations of conventional neural unit with LSOs,

some researchers have turned their attention to HONN models (Gupta et al. 2003).

 106

In control systems theory, it is always difficult to prove typical control system

properties such as stability when HONNs are used as neuro-controllers. The main reason

is the mathematical complexity that is associated with the nonlinear systems. In the

earlier NN control schemes, optimization techniques were mainly used to derive

parameter adaptation laws, which lack for analytical results about stability and

performance. To overcome these problems, several elegant adaptive NN control

approaches have been proposed based on Lyapunov’s stability theory (Gupta Control

notes 1970’s, and Ogata 1984). One main advantage of these schemes is that the

parameter adaptation laws are derived based on Lyapunov synthesis and therefore

stability of the closed-loop system is guaranteed. However, one limitation of these

schemes is that they can only applied to nonlinear systems where certain types of

matching conditions are required to be satisfied. Recently, some progress has been made

in this area and certain important theoretical results have begun to emerge, but clearly the

overall area is still at its infancy. The encouraging news is that there are successful

applications of neural networks in control systems that work, and this certainly provides

clues and guidelines for the corresponding theoretical development. This was the

motivation to develop HONNs for nonlinear systems.

In the following section stability analysis of nonlinear systems using Energy and

Lyapunov methods are discussed. A new damping function called Universal damping

function is introduced. A neuro-controller is designed using the universal damping

function for control of unknown, varying parameter and structure, nonlinear dynamic

system.

5.5 Stability Analysis of Nonlinear Systems

Most closed loop systems become unstable as gains are increased in an attempt to

achieve higher performance. It is therefore correct to regard stability considerations as

forming a rather general upper limit to control system performance (Leigh 2004).

Stability is the most important subject in the control performance but there is no general

stability analysis technique that will always determine stability for a given nonlinear

system. A nonlinear system can have many stable points. When possible, it is always

desirable to know the location of the stable points and which initial conditions would

 107

converge to a given stable point. If the system is linear and time invariant, many stability

criteria are available. Among them are the Nyquist stability criterion, Routh’s stability

criterion, etc. If the system is nonlinear, or linear but time varying, however, then such

stability criteria do not apply. Nevertheless, there are two popular methods for analyzing

the stability of nonlinear systems (Alligood et al. 1996). They are

• Motion in a Potential Field

• Lyapunov Method

5.5.1 Energy Method: Motion in a Potential Field

Taking a cue from mechanics, consider the principle of conservation energy: In

the absence of damping or any external forces, the system neither gains nor loses energy.

Given an initial condition , the energy function E remains constant on the level

curve , for all time t :

),(00 yx

)),(,(00 yxtF

0))),(,((00 =yxtF
dt
dE

where is the flow of the solution. There is no need to know the explicit

solution of the governing equations. The governing motion in potential field

for simple pendulum (assuming no damping and no external forces) is given as (Alligood

et al. 1996)

)),(,(00 yxtF

))(),((tytx

0=
∂
∂

+
x
Px�� (5.16)

This is another way of viewing Newton’s second law of motion; that is, acceleration is

proportional to the force, which is the negative of the gradient of the potential field.

Multiplying the Eqn. (5.16) with and integrating both sides: x�

0=
∂
∂

∂
∂

+
t
x

x
Pxx���

1
2)(

2
1 ExPx =+� (5.17)

where is the constant of integration (Alligood et al. 1996). This leads to a simple

technique for drawing the phase plane solutions of motion in a potential field. For

example, the phase plane solutions of the pendulum problem are shown in Fig. 5.13. The

1E

 108

solutions move along the level curves and the equilibrium points are denoted by star

symbol. Each trajectory of the system is trapped in a potential energy well and the total

energy is constant for different trajectories.

Figure 5.13 Level curves of the energy function and the solutions move along them. The

equilibrium points are denoted by stars.

Figure 5.14 Phase plane curves from the potential. (a) Graph of a potential energy

function P(x). (b) A periodic orbit indicating absence of damping.

In Figure 5.14, a trajectory with a fixed total energy tries to climb out near or ,

the kinetic energy goes to zero, as the energy

1E 1x 2x

E converts completely into potential

energy. The function E provides a useful partition of the points in the phase plane

into individual solution trajectories. For a conservative system, the energy is conserved

),(yx

 109

but for a non conservative system, Eqn. (5.17) is no longer valid as it is associated with

the damping and periodic forces. The basic idea of using energy-like functions is to

investigate the dynamics of solutions that can be applied to more general equations rather

than Eqn. (5.16). The theory of Lyapunov functions, a generalization of potential energy

functions, gives us a global approach toward determining asymptotic behavior of

solutions. By using any one of the methods, it is possible to determine the stability of a

system without solving the state equations. There is a relationship between the Energy

method and the Lyapunov function which will be explained in the next section.

5.5.2 Lyapunov Function

 Late in the nineteenth century the Russian mathematician A.M. Lyapunov

developed an approach to stability analysis, now known as direct method of Lyapunov. It

was widely used for stability analysis of linear and nonlinear, both time-invariant and

time varying systems. Lyapunov’s theorem is limited in determining the stability in small

regions about equilibrium points. It determines stability in the small. Ideally, the

objective is to determine the stability in larger regions of the state space so that the

stability about the equilibrium point is said to be globally asymptotically stable or

asymptotically stable in large (Ogata 1984, Gupta). In many cases when Lyapunov

method was applied, it was difficult to find suitable Lyapunov functions and when using

linear approximation, it can not be decided whether nonlinear systems were stable or not

on the outside of the region where linear stability theory can be applied. Therefore, a new

stability analysis method is required to develop, which can be easily applied to nonlinear

systems. In this Section, the stability analysis based on the higher-order (second order)

derivatives of the neural unit with CSO and its application to nonlinear systems is

discussed.

Before dealing with stability of nonlinear control systems, it should be recalled

that the stability of linear systems does not depend on initial conditions, but it depends

only on the real values of the poles (Ogata 1984, Leigh 2004). In case of second order

nonlinear dynamic systems, the motion in the potential field approach can be used to

asses the stability of the nonlinear dynamic systems. Stability analysis of these systems

often involves solving the differential equations of the form,

 110

)()()()1()(2 trtxktxxktx pv =+−+ ��� where the damping is not only a variable but also a

function of position. The differential equations describing the dynamics of this type of

nonlinear systems can be expressed in a more general form as

)(
))((
))(())(),(()(tr

tx
txPtxtxftx =

∂
∂

++ ��� (5.18)

where
))((
))((

tx
txP

∂
∂ is the partial derivative of potential function and are the states

of a nonlinear system. The unity static gain in Eqn. (5.18) assures zero steady state error

and the damping assures the stability. It should be mentioned that the unity gain can be

reached either by neural unit with CSO or neural unit with QSO controller once the plant

has been identified. For dissipative second order systems, the derivative of the energy

function

)(),(txtx�

E (Alligood et al. 1996) is

)(
)(
))(()()(tx

tx
txPtxtxE �����

∂
∂

+= (5.19)

)())()((txtxtxf ��−=

The negative sign indicates that the total energy is decreasing along the orbits. Contrary

to the potential field approach, the concept of the Lyapunov function can be applied for

stability analysis of any dynamical system of any order.

Theorem [Alligood et al. 1996]:

If x is an equilibrium point of the system of state differential equations and

there exists a Lyapunov function for

)(xfx =�

x , then x is stable. If a strict Lyapunov

function exists, then the equilibrium x is asymptotically stable.

In case of nonlinear second order systems, the task simplifies as the nonlinear differential

equations describing the system can be expressed in state space representation as

[])()(),()()(
)()(

1212

21

trtxtxftxtx
txtx

+−−=
=

�
�

 (5.20)

then, the Lyapunov function can be chosen as

 2,
2
1

2
1

2
1),(2

2
2

1
1

2
21 =+== ∑

=
nxxxxxV

n

i
i (5.21)

 111

where its derivative is given as

221121),(xxxxxxV ��� ⋅+⋅= (5.22)

)),((121221 xxfxxxx −−⋅+⋅=

Exxfx �=⋅−=),(212

From Equations (5.19) and (5.21), one concludes that the derivative of Lyapunov

function (5.22) is equal to the derivative of the energy function for a second order

nonlinear system (5.18). Now, the task is to develop a new controller which satisfies the

following criteria:

• The stability of a nonlinear control system is assured if the state space region in

which the system to be controlled lies entirely within the basin of attraction and

the solution of nonlinear system should converge to the equilibrium;

• The morphological properties of the basin of attraction to the equilibrium are

related to the properties of the strict Lyapunov function;

• The larger area of existence of the strict Lyapunov function assures the larger

basin of attraction to the equilibrium; and

• Therefore, the existence of the strict Lyapunov function over large area, as

large as possible, should be achieved to assure stability of a non-linear control

loop.

5.5.3 Concept of Nullclines

The method of nullclines is a technique for determining the global behaviour of

solutions of competing species models. This method provides an effective means of

finding some trapping regions for some differential equations. The nullclines provide a

bulk picture of how things change at different points in the phase plane. The concept of

nullclines is used to identify the stability region and provides a clear picture of the

variations of the slope field. Figure 5.15 shows the flow of one stable and one unstable

solution of an autonomous system given by Eqn. (5.23)

 (5.23))()()())(1()(2
1 trtxktxtxktx pv =⋅+⋅−⋅+ ���

 112

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
Slope Field

x1

x2

Figure 5.15 The slope field, flow of two solutions, and nullclines of closed loop control

(5.18) in the phase plane.

Basin of
Attraction

Strict
Lyapunov

region

Figure 5.16 The stability region for a nonlinear PD control system (5.23), area of

decreasing energy and the nullclines.

where , and the boundary of basin of attraction is partly denoted by the

stable trajectory converging to equilibrium . Figure 5.16 shows the basin of attraction

denoted by ‘o’ and the area of existence of strict Lyapunov function (with vertical ‘+’

stripes) in state space. The curves are nullclines denoting

1=pk 34.2=vk

]0,0[

0)(=tx� . In following sections,

it will be shown that the appropriately modified subset of neural unit with CSO can

 113

extend not only the range of the stability of a nonlinear controller over

(assuming correctly identified plant) but also it can make the nonlinear controller to have

optimal performance from any initial condition for any desired value.

2],[Rxx ∈�

5.6 Neural Nonlinear Controller

This study presents a methodology for specifying a neural controller for a system

about which no a priori model information is available. The possibility of realizing

feedback controllers for nonlinear dynamical systems is explored using neural designs.

This topic has been addressed by many other researchers. Many prior studies have used

the capability of neural networks to synthesize complex nonlinear functions. One such

use is to implement state space control laws for partially known nonlinear dynamical

systems. Most of these designs use iterative off-line techniques to develop the neural

controller. These controllers are then inserted in a conventional feedback structure. The

iterative adjustment of parameters can produce effective designs. However, such methods

are computationally slow, and come equipped with no assurance of convergence. For on-

line adjustment of controller parameters, the iterative methods are too slow and, in

addition, introduce the danger of coupling with process dynamics. The design procedure

of the present study presumes no model information about the plant. However, the design

format uses minimal apriori information that is broadly applicable to control applications.

The focus here is in tracking the output trajectory. To evaluate the neural controller in

this context, it is implemented in a closed loop feedback fashion in the system. The inputs

to the neural controller are the system states. The neuro-controller accepts a job

description in the form of a goal trajectory that the system outputs are to be driven along.

It then causally determines the input signals which stimulate the system to track the

desired output trajectory. The design uses no apriori information about the reference

trajectory. While most neural network researchers draw tacit inspiration from

neurological phenomena, very few neural network designs actually reflect such origins.

However, the neural architecture has no sigmoidal activation function. Because of this, I

make no claims concerning resemblance to natural neural calculations. The use of higher-

order derivatives provides a capability to store and distinguish information from the cross

correlations and auto correlation terms of the HONU structure. Thus, from the most

 114

recent I/O values and the target trajectory values, the HONU (neural unit with CSO), can

interpolate (if necessary extrapolates) to determine the choice of the input value.

Intuitively, one might view the neural unit with CSO controller as a very fast look-up and

extrapolation device, with a subset of synaptic interconnections. The neural unit with

CSO controller consists of a new damping function called universal damping function

which provides robust tracking of the input. The following section explains the

development of new damping function.

5.6.1 Development of New Damping Function

A nonlinear damping function which improves the system transient response was

discussed in Section 5.3.2. Even though it improves the system transient response by

making damping small for large and large for small but the operating region of

remains in the range of [-1,1]. However, the required damping magnitude can be

achieved by varying the damping gain. Now, the objective is to develop a method that

determines the stability in larger regions of state space for achieving the stability in the

large. The new damping function is shown in Fig. 5.17. Figure 5.18 shows the different

phases in the development of new damping function that enlarges the operating region. In

Figure 5.18 (b), the absolute value of the function ensures positive damping. Initially, the

damping is zero at the points ‘B’,’C’ and gradually increased to the desired value as the

target approached the point ‘A’. However, the operating region still remains in the same

range i.e. [-1, 1]. Now, in order to increase the operating region, the damping function

needs to be modified. Consider the damping function with the absolute value

1x 1x 1x

)1()(2xabskxF v −= (5.24)

The above equation assures positive damping in the entire range of but the desired

damping value lies in the range of ‘zero’ and ‘one’. The damping function is again

reformulated to achieve the desired characteristics.

x

))(1()(2
dv xxabskxF −−= (5.25)

where is the desired location. Figure 5.18 (c) shows the damping function has moved

to desired target but the operating region still lies in the range of [-1,1]. Now, a new gain

dx

 115

term called the shift gain associated with the position is introduced in the damping

function

))(1()(1
2 kvxxabskxF dv −−= (5.26)

where is the gain associated in expanding the operating region. In order to achieve

faster transient response, the damping should be zero or even negative. This condition

evaluates the shift gain as

1kv

 0))(1(1
2 ≤−− kvxx d

2
0

1)(
1

dxx
kv

−
= (5.27)

The damping function with desired characteristics is shown in Fig. 5.18(d) and is given as

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
−= 2

0

2

)(
)(

1)(
d

d
v

xx
xx

abskxF (5.28)

where = Damping gain vk

 = Initial condition (Starting point) 0x

 =desired location (Target to reach) dx

Figure 5.17 Universal damping function

 116

Figure 5.18 Different phases in the development of new damping function - universal

damping function

 117

5.7 Non-Linear State Feedback Neuro-Controller for Control of

unknown, varying Parameter and Structure, Nonlinear Dynamic

System

In this section, a structure of nonlinear state feedback controller for any second

order systems with a variable damping function is introduced. A linear state feedback

controller is applied to the linear second order system which is given as

)()(tutx =�� (5.29)

then, the closed loop control equation ideally yields to a linear differential equation which

is given as

)()()()(trtxktxktu vp +−−= � (5.30)

with , as position and velocity feedback gains. Since the gains as well as are

constant, the system is constrained in velocity by which it can reach the equilibrium point.

In case of linear systems, real parts of the poles determine the stability of the closed loop

control system. However, in case of nonlinear systems, there is no general method to

determine the stability of the system. For example, a nonlinear equation given as

pk vk vk pk

 0)(),()(122112 =+== xfxxftux� (5.31)

where , has only an approximate solution. In Equation (5.31), damping is a

variable and can be a function of the states

21 , xxxx == �

1 2(,),x x the constants (weights), and the input

value. This implies that the stability of a nonlinear system depends on many factors such

as order of the nonlinearity, damping, nature of the input etc. For nonlinear systems, there

are more degrees of freedom to modify the quality of the response (faster and with no

overshoot) contrary to linear systems, where the damping is constant during the whole

control process. A new damping function developed in Section 5.6.1 is introduced in the

design of the controller as

)())()((1 21
2

1 txktrtxkf vvdamping ⋅−−⋅= (5.32)

where are the gains of the damping function. The damping gain achieves the

required magnitude of the damping and provides the variation of the damping from

the initial position to the final position (target). The absolute value in the Eqn. (5.32)

1,v vk k vk

1vk

 118

assures the stability of the nonlinear controller for . The purpose of the

nonlinear controller is to achieve a faster response by reducing the damping to a small

value (initially zero) and gradually increasing it to a positive optimum value such that the

system will not overshoot as soon as the desired position is reached. Assuming any

square-like input function, the magnitude of is determined by the initial position

2
21],[Rxx ∈

1vk

0x and the desired position that is, ;dx

0))0((1))()((1 1
2

11
2

1 =⋅−−=⋅−− vdv kxxktrtx (5.33)

where is the initial position. Therefore, the damping function is given as)0(1x

)(
))0((
))()((1 2

2

1

1 tx
xx
trtxkf
d

vdamping ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅= (5.34)

where is the initial value and)0(1x dx is the desired value. Thus the proposed structure

of nonlinear stable state feedback controller is given by Eqn. (5.35).

)()(
)0(

)()(1)(12

2

1

1 txkptx
xx
trtxktr
d

v ⋅+⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−⋅= (5.35)

Assuming the control input is represented by any step-like (or square-like) function,

Figure 5.19 depict the characteristic features of the nonlinear damping which is applied to

the modified subset of neural unit with CSO as a state controller to an unstable, second

order plant (Eqn. 5.29). The proposed state controller (Eqn. 5.35) gives almost three

times faster response without any overshoot compared with any other linear controllers.

The proposed structure of neuro-controller which uses the neural unit with CSO for

nonlinear plant identification is shown in Fig. 5.20. A modified subset of the neural unit

with CSO is depicted as a state feedback controller (i.e. controller with universal variable

damping function) in the same block diagram.

 119

065.2=ξ

3
1

=ξ

(Comparison of the proposed neural unit with CSO
controller with common linear state- feedback controller)

Figure 5.19(a) Step response of a satellite attitude control with different controllers.

Figure 5.19(b) Response to square-like input function.

Figure 5.19 Step response of a nonlinear system (Eqn. 5.29) with proposed neural

controller.

 120

First, the neural unit with CSO identifies the plant by back propagation (e.g., in case of an

unstable system, data can be acquired by measuring the position, velocity and

acceleration with different plant initial conditions). Now, the neural unit with CSO acts as

an identifier of the plant (shown in Fig. 5.20) and the identified parameters are passed to

the function which corresponds to the state space representation of the dynamic

system (Eqn. 5.20). The plant parameters that were identified by the neural unit with

CSO are fed to the neuro-controller defined by the function as (modified subset

of the neural unit with CSO shown in Fig. 5.20). Now, the system switches into control

mode.

),(wf x

controllerf

In this mode, the neural unit with CSO can perform the control and identification of

varying plant parameters with varying plant structure.

Figure 5.20 Neural unit with CSO in a dual mode, as a nonlinear neuro-controller and as

an identifier, performs state feedback control for optimal performance.

However, it should be observed that convergence of the nonlinear neuro-controller tuned

by back propagation (BP) in the above simulation is very sensitive (especially in case of

 121

higher-order nonlinear systems), thus if the neural unit with CSO is to be operated in a

dual mode, increased attention has to be paid on the accuracy of initially identified

system parameters, size of learning rate, and the quality of data for identification.

5.8 Simulation Results

The unknown plant was represented as .

Initial weights were set as [-10,-10,-10], learning rate for identification was chosen as

µ=0.01. The learning rate for neural control mode was set much lower than the learning

rate for identification (µ=0.00033) because the BP method was very sensitive. The results

shown below come from simulations conducted in two distinct operating modes. In the

first mode, the neural unit with CSO identified the plant and the structure switched into

control mode using the identified weights as constants in the subset of neural unit with

CSO. Figure. 5.21 shows that the weights were not exactly identified and the response

deviated with increase in the step size of the input

)()(5.1)(2)(1.0)(3 tutxtxtxtx =+++ ���

Figure 5.21 Nonlinear plant controlled by neural unit with CSO as state feedback

controller with constant parameters identified by the neural unit with CSO.

In the second mode, the identified weights were used for further adaptation of the

proposed neural state controller (Figs. 5.22(a), 5.22(b)) while the controller was

simultaneously performing control and continuous identification of the plant parameter

 122

values. Figure 5.22(b) manifests the capability of the controller to handle changes in

parameter values of the plant where the parameter of damping changed from a = 0.1 to a

= -0.5 at , which made the plant unstable. st 140≈

1.0
)()()()()(35.12

=
=+++

a
ttttt rxxxax ���The Plant:

Figure 5.22(a) Nonlinear plant controlled by on-line tuned neural unit with CSO (as state

feed back controller) by BP method.

Figure 5.22 (b) Nonlinear plant controlled by neural unit with CSO as nonlinear neural

state feedback controller for unknown, unstable nonlinear plant with

variable parameters

 123

5.9 Conclusions

A novel structure of a nonlinear state feedback controller which can perform

almost three times faster than common linear controllers without overshoot for any

square-like input function has been proposed. In combination with cubic neural unit, this

controller can be applied to control any unknown, linear or nonlinear, stable or unstable

second order system. The fast performance of the nonlinear controller structure has been

demonstrated on a simplified satellite control problem. The capability of the neural unit

with CSO (or the neural unit with QSO) to identify and control an unknown non-linear

second order system with varying parameters has been demonstrated on a forced Duffing

oscillator working with varying parameters including transition from stable to unstable

modes. The development of neural structures such as quadratic and cubic neural units, or

a subset of any higher-order neural unit and they are the potential tools for identification

and control of an unknown nonlinear system with varying parameters and structure of

higher-order thereby providing the scope for further research.

Moreover, the experiments with these neural structures contributes to deeper

understanding to real nonlinear dynamic systems and promises to reveal fairly novel

ways of handling complex dynamic systems such as a human cardiovascular system.

 124

CHAPTER 6
Conclusions

6.1 Concluding Remarks

Neurons are the basic building block of the central nervous system (CNS) which

is a central feature of the life. The CNS governs how we grow, respond to stress and

challenge, and regulate factors such as body temperature, blood pressure, and cholesterol

levels. The mechanisms operate at every level, from the interaction of proteins in cells to

the interaction of organisms in complex ecologies. Like wise, the mathematical models of

neurons do operate at different levels, from the interaction of robots at molecular level to

the interaction of modern machines at macro level like “Spirit Rover” operating in a

complex unpredictable environment.

Neural networks have undoubtedly been biologically inspired, but the close

correspondence between them and the real neural systems is still rather weak. Despite the

loose analogy between the mathematical models and the natural neural systems, a new

structure of the neuron called the neural unit with quadratic synaptic operation (QSO)

was developed. The architecture and mathematical model of the neural unit with QSO has

been presented. The neural unit with QSO incorporates linear as well as nonlinear

combinations of weighted neural inputs generated by the preprocessor. The performance

of the neural unit with QSO was greatly enhanced as the size of the weight matrix was

reduced from

[]nn× to ,
2

)1(
⎥⎦
⎤

⎢⎣
⎡ +× nn and)1(+= Nn

where is the number of inputs and N is the order of the neuron. This was a very

significant contribution as it improves the performance of the neuron; that is, the training

time would be reduced greatly as the number of parameters in the weight matrix was

reduced. The concept of neural unit with quadratic synaptic operation (QSO) can be

extended to develop any other higher-order neural units such as the neural unit with cubic

synaptic operation (CSO) and so on. Due to their higher-order combination of the neural

inputs, either the neural unit with QSO or the neural unit with CSO can be trained to learn

n

 125

and control the unknown nonlinear dynamic systems. A general methodology for

developing the HONUs with higher-order synaptic operations was presented using sigma

tuner and correlation operator. The proposed neural model closely resembles the structure

of the biological neuron. However, it is not claimed that the neural model in this thesis

incorporates all properties of the biological neuron.

The Human ability to find patterns in the external world is ubiquitous. It is at the

core of our ability to respond in a more systematic and reliable manner to external stimuli.

Humans do it effortlessly, but the mathematics underlying the analysis and the design of

pattern-recognition machines are still in their infancy. The neural unit with QSO is a

basic step towards the development of such efficient machines to deal with the real world

problems which are complex and unpredictable.

 In Chapter 4, different logic circuits such as OR, AND, and Exclusive-OR

(XOR) were realized using a single neural unit with QSO. The mathematical model of

the neural unit with QSO was closely examined. The weight matrix beautifully

encapsulates the concept of the Euclidian distance, the Mahalanobis distance and the

affect of the threshold (bias) on the shape and the placement of the discriminant surface.

The approximation capabilities of the neural unit with QSO were discussed in this

chapter. The accuracy of the approximation does depend on the structure of the neurons

employed in a network. The simulation studies of the neural unit with QSO provide

enough evidence that it is a better computational node for the function approximation

problems. It was well known fact that the MFNNs were considered as universal

approximators for continuous functions. However in authors view, a network of neural

units with QSOs would provide better approximation results than the results achieved by

the MFNNs. Apart from this, the HONUs with higher-order synaptic operations can be

expressed using different combinations of the neural unit with QSO. Hence, it is the most

general neural unit which can deal with both linearties and nonlinearities of the real world

problems.

 A novel structure of a nonlinear state feedback controller with universal damping

function was proposed. This controller provided almost three times faster transient

response than the common linear controllers without overshoot for any square-like input

function. In combination with cubic neural unit, this controller can be applied to control

 126

any unknown, linear or nonlinear, stable or unstable second-order system. The fast

performance of the nonlinear controller structure was demonstrated on a simplified

satellite control problem. The neural unit with CSO (or the neural unit with QSO) to

identify and control an unknown nonlinear second order system with varying parameters

was implemented on forced Duffing oscillator with varying parameters including

transition from stable to unstable modes. The development of neural structures as neuro

controllers with quadratic and cubic synaptic operations, or a subset of any higher-order

synaptic operation would provide a better performance than any other linear or nonlinear

controllers. These neural controllers are very sensitive to the learning rate and utmost

care must be taken during the training process. They can be considered as the potential

tools for identification and control of an unknown nonlinear system with varying

parameters and structure of higher-order systems thereby providing the scope for further

research. In most control systems, disturbances of one type or another exist. In this

research, only a simplified model of satellite attitude control was considered for

simulation studies. The system response to disturbance inputs, noise and parameter

sensitivity were not considered in the simulation studies. However, the simulation studies

and the experiments with these neural structures could contribute to the deeper

understanding of nonlinear dynamic systems and promise to reveal fairly novel ways of

handling complex dynamic systems such as a human cardiovascular system, robot path

planning and weather forecasting.

6.2 Contributions of the Thesis

The main contribution of this thesis was the development of higher-order neural

units with higher-order synaptic operation. Based on this concept, two neural units one

with quadratic synaptic operation and the other with cubic synaptic operation were

proposed. The mathematical model closely resembles the topology of the biological

neuron in the central nervous system (CNS). Of course, the mathematical complexity

restricts one to incorporate all features of the biological neuron. The learning and

adaptation algorithms and their implementation scheme were outlined for the proposed

neural units.

 127

In conventional control systems, first and second-order systems can adequately

represent any higher-order system and fairly reveal the characteristics of the system. Like

wise, it is presumed that the neural units with quadratic and cubic synaptic operation can

express any higher-order neural unit with higher-order synaptic operation. The major

contribution of this thesis was the reduction and representation of the parameters in the

novel weight matrix without losing the important information associated with the neural

inputs. For the neural unit with quadratic synaptic operation (QSO), the parameters are

represented in an upper triangular matrix in a quadratic form. In advanced mathematics,

quadratic representation has significance because there are many applications in which

the quadratic function appears and many functions can be approximated by them in small

neighborhoods, especially near local minimum points.

A general expression for the higher-order neural unit with higher-order synaptic

operation was given in Chapter 3. Any N-1th higher-order neuron is a subset of Nth

higher-order neuron. This assumption is valid only when the bias of the neuron is

associated with the augmented weight matrix. It is always possible to find (N-1) higher-

order neurons in any Nth higher-order neuron; that is, neural units with quadratic and

linear synaptic operations are a subset of the neural unit with cubic synaptic operations. A

close observation of the general higher-order synaptic operation reveals that the neural

units with different synaptic operations are systematically arranged from top to bottom at

different levels of the pyramid known as the neural unit with Nth order synaptic operation.

This type of structure and representation of synaptic operation may lead to different

direction of research in the field of neural networks. The structure is completely different

from the conventional representation of neural units in the following way

i. Cross and self correlations of the neural inputs are considered. These inputs

incorporate pretrained data there by reduce the training time during the learning

process.

ii. The parameters are reduced significantly without losing the important information

associated with the neural units.

 128

The performance of the neural units with quadratic and cubic synaptic operation

was compared, through simulation studies, with the conventional neural units and the

existing higher-order neural structures. In particular, the neural unit with quadratic

synaptic operation was applied to static problems such as pattern recognition and function

approximation problems. For both problems, the performance of the neural unit with

QSO was found to be better than the conventional neural units especially in realization of

the logic circuits such as XOR, OR, and AND. This is due to the fact that the

mathematical model of the neural unit encapsulates the effect of the threshold (bias), the

mean (Euclidian distance) and the auto and self correlation terms (radial distance). The

concept of Mahalanobis distance interprets the neural unit with QSO as an optimal

classifier.

The analysis of the logic circuits, XOR, OR and AND, strengthened the

importance of the weight matrix (covariance matrix) as it decides the placement of the

decision boundary for the classification problems. The sign of the determinant of the

weight matrix determines the type of classification: good or poor classification. During

the simulation studies, it was observed that the neural unit with QSO approximated the

nonlinear functions to the desired degree of accuracy. The author believes that the better

results could be achieved if a network of neural units with QSO is used for function

approximation problems.

Well known adaptive methods such as model reference adaptive control (MRAC)

methods were used to study the neural units with higher-order synaptic operation as

neuro controllers for the control of complex problems such as satellite attitude control. A

new damping function called universal damping function was implemented in the neuro

controllers which increased the speed of the transient response three times faster than the

transient response achieved by the conventional controllers. The main advantage of using

this type of damping function was that it provides the robust tracking of the input with

out any overshoot in the transient response. It was found that the neuro controllers were

too sensitive to the gain of the learning process. The author highly recommends utmost

care to be taken while choosing the learning rate for the neural units with higher-order

synaptic operation as neural controllers.

 129

The development of the neural units with higher-order synaptic operations like

quadratic synaptic operation (QSO) and cubic synaptic operation (CSO) is a basic step

towards the development of intelligent machines to deal with the real world problems

which are complex and unpredictable. Though researchers still have a long way to

provide significant breakthroughs into an understanding of the human intelligentsia-

Cognition and Perception, this work hints at the possibilities of developing the useful

biological mathematical models for engineering applications.

6.3 Future Scope of the Research

This thesis has presented the basic concept of higher-order neural units with

higher-order synaptic operation and their topology based on the structure of the biological

neuron for control and pattern recognition problems. The author does not make any

claims that the proposed structure of the neural unit has all features of the biological

neuron.

The performance of the neural units can be improved by adapting the slope of the

activation function and including the dynamic elements such as delays in the

mathematical model of the neuron but the inclusion comes at the cost of the mathematical

complexity; that is, the problem arises in developing the learning and adaptation

algorithms. Inter and Intra feedback can be associated with the structure of neuron. These

neurons are called P-N type (Positive and Negative neurons) .This type of neural

structures have potential applications in the analysis of complex problems such as image

processing, human cardiovascular system, robot path planning and weather forecasting.

From technical point of view important questions regarding the overall

performance, speed and stability of the higher-order neural units need to be addressed. It

is very difficult to find a general stability rule for nonlinear systems that would readily

address the stability of the system. Basic concepts like energy method and Lyapunov

function should be redefined and refined for achieving the desired stability. The real

challenge would be the incorporation of these learning and adaptive algorithms for

general higher-order neuron into hardware circuitry.

Recent advances in the field of fuzzy logic and the new emerging field, fuzzy

neural networks which is a marriage between the fuzzy logic and neural networks, should

 130

provide significant breakthroughs for the implementation and the realization of the

subjective phenomena such as cognition and perception for the creation of intelligent

machines. It would be interesting and challenging to integrate the principles of the

higher-order neural units and the fuzzy logic to develop completely new area of research.

 131

References

1. Alligood, K. T., Sauer, T. D., and Yorke, J. A. [1996], “Chapter 7: Differential

Equations,” in Chaos: An Introduction to Dynamical Systems, New York,

Springer-Verlog.

2. Antsaklis, P. J. [1994], “Defining Intelligent Control,” Report of the Task Force on

Intelligent Control, Chair, IEEE Control Systems Magazine, pp. 4-5 & 58-66.

3. Eric R. Kandel, James H. Schwartz, Thomas M. Jessel [2000], Principles of

Neural Science, McGraw-Hill Companies, Inc. U.S.A (Previous edition copyright

1991 –Appleton & Lange).

4. Fu, K. S. [1970], “Learning Control Systems? Review and Outlook,” IEEE

Transactions on Automatic Control, vol. AC- 15, pp. 210-221, April.

5. Fukushima, K., Miyake, S. and Ito, T. [1983], “Neocognitron: A Neural Network

Model for a Mechanism of Visual Pattern Recognition,” IEEE Trans. Systems,

Man and Cybernatics, Vol. 13, No. 5, pp. 826-834, Sept/Oct.

6. Giles, C. L. and Maxwell, T. [1987], “Learning Invariance and Generalization in

higher-order networks,” Appl. Optics, Vol.26, pp.4972-4978.

7. Grossberg, S. [1988], “Nonlinear Neural Networks: Principles, Mechanisms and

Architectures,” Neural Networks, Vol. 1, pp. 17-61

8. Gupta, M. M. [1970’s], “Notes on Some Advanced Topics in Feedback Control

System Design,” ME 441.3: Advanced topics in Linear Control System, Intelligent

Systems Research Laboratory, University of Saskatchewan, Saskatoon, Canda.

9. Gupta, M. M. [1986] Ed., “Adaptive Methods for Control System Design,” IEEE

Press, New York.

10. Gupta, M. M. and Rao, D. H. [1994], “Neuro Control Systems: A Tutorial,” in

Neuro Control Systems: Theory and Applications, Gupta, M. M. and Rao, D. H.

(eds.), IEEE Press, New York, pp. 1-46.

11. Gupta, M. M., Liang, J. and Homma, N. [2003], “Static and Dynamic Neural

Networks: From Fundamentals to Advanced Theory,” IEEE Press and Wiley-

Interscience, published by John Wiley & Sons, Inc.

 132

12. Hagan, M. T., Demuth, H. B., and Beale, M. [1999], “Neural Network Design,”

PWS Publishing Company, Boston, MA.

13. Heywood, M. and Noakes, P. [1995], “A Framework for Improved Training of

Sigma-Pi Networks,” IEEE Transaction on Neural Networks, vol.6, N: 4, pp. 893-

902.

14. Homma, N. and Gupta, M. M. [2002 b], “A general Second-Order Neural Unit,”

Bull. Coll. Med. Sci. Tohoku Univ., Vol. 11, No. 1, pp. 1-6.

15. Hopfield, J.J. [1990], “Artificial Neural Networks are Coming,” IEEE Expert, An

Interview by W. Myers, pp. 3-6.

16. Ikonen, E., and Najim, K. [2002], “Chapter 1: Introduction to Identification,”

Advanced Process Identification and Control, Marcel Decker, Inc., New York,

pp.3.

17. Kuroe, Y., Ikeda, H. and Mori, T. [1997], “Identification of Nonlinear Dynamical

Systems by Recurrent High-Order Neural Networks,” Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, vol. 1, pp. 70-75.

18. Lau, C. [1992], “Neural Networks: Theoretical Foundations and Analysis” IEEE

Press, New York.

19. Leda, V. and Francis, L. M. [1995], “Learning Capability Assessment and Feature

Space Optimization for higher-order Neural Networks,” IEEE Trans. on Neural

Networks, vol. 6, no. 1, pp. 267-272.

20. Leigh, J. R. [2004], “Chapter 7: Limits to Performance,” in Control Theory,

Second edition, IEE Control Series 64, London, UK.

21. Lilly, S. and Max B. Reid [1993], “Coarse-Coded higher-order Neural Networks

for PSRI Object Recognition,” IEEE Trans. on Neural Networks, Vol. 4, No. 2,

pp. 276-283

22. McCulloch, W. S. and Pitts, W. [1943], “A Logical Calculus of the Ideas

Immanent in Nervous Activity,” Bulletin of Mathematical Biophysics, Vol. 5, pp.

115-133

23. Miller, W. Thomas, Sutton, Richard S., and Werbos, Paul J. [1990], Neural

Networks for Control, The MIT Press, Massachusetts.

24. Minsky, M. L., and Papert, S. A. [1969], Perceptrons, MIT Press, Cambridge, MA

 133

25. Narendra, K. S. [1986], “Adaptive and Learning Systems-Theory and

Applications,” Plenum Press, New York.

26. Ogata, K. [1984], Modern Control Engineering, Easter Economy Edition,

Prentice-Hall Electrical Engineering Series, New Delhi.

27. Ortega, R. and Tang, T. [1989] “Robustness of Adaptive Controller-A Survey,”

Automatica, vol.25, no.5, pp. 651-677.

28. Panel discussion on "Machine Learning in a Dynamic World," Proc. of the 3rd

IEEE Intern. Symposium on Intelligent Control, Arlington, VA, August 24-26,

1988.

29. Pavlidis, T. [1977], “Structural Pattern Recognition,” Springer Series in

Electrophyscics, Vol. 1, pp. 1-10

30. Peek, M.D. and Antsaklis, P.J. [1990], "Pararmeter Learning for Performance,"

IEEE Control Systems Magazine, December, pp. 3- 11.

31. Principe, J. C., Euliano, N. R., and Lefebvre, W. C. [2000], “Neural and Adaptive

Systems: Fundamentals through Simulations” John Wiley & Sons, Inc.

32. Rao, D. H. [1994], “Development of Dynamic Neural Structures with Control

Applications,” Ph.D thesis, University of Saskatchewan, Saskatoon, SK, Canada.

S7N 5A9.

33. Roger L. K, Aric B. L, Samuel H. R, and Donna S. R., “The Biological Basis of

the Immune System as a Model for Intelligent Agents,” MSU/NSF Engineering

Research Center for Computational Field Simulation, Mississippi State, MS

39762-9627, U.S.A.

34. Rosenblatt, F. [1959], “The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain,” Psychological Review, Vol. 65, pp. 386-

408

35. Rumelhart, D. E. and McClelland, J. L. [1986], “Parallel Distributed Processing:

Explorations in the Microstructure of Cognition,” The MIT Press, Cambridge,

MA.

36. Rumelhart, D. E., Hinton, G. E. and Williams R. J. [1986], “Learning Internal

Representations by Error Propagation,” in Parallel Distributed Processing, vol. 1,

 134

D.E. Rumelhart and J.L. McCleand, Eds. Cambridge, MA: MIT Press, pp. 318-

362.

37. Russ B. Altman [2001], “Perspectives- Challenges for Intelligent Systems in

Biology,” IEEE Intelligent Systems.

38. Shin, Y. and Ghosh, J. [1991], “The Pi-Sigma Network: An Efficient higher-order

Network for Pattem Classification and Function Approximation,” Proc. Int.Joint

Conference on Neural Networks IJCNN, Seattle, vol. I, pp. 13-18.

39. Sklansky, J. [1996] "Learning Systems for Automatic Control," IEEE Transactions

on Automatic Control, vol. AC-11, pp. 6-19.

40. Softky, R. W. and Kammmen, D. M. [1991], “Correlations in High Dimensional

or Asymmetrical data Sets: Hebbian Neuronal Processing,” Neural Networks, Vol.

4, No.3, pp. 337-347.

41. Song, Y [2001], “Development of Dynamic Neural Units with Control

Applications,” Masters Thesis, University of Saskatchewan, Saskatoon, SK,

Canada. S7N 5A9.

42. Specht, D. F. [1967], “Vectorcardiographic Diagnosis using the Polynomial

Discriminant Method of Pattern Recognition,” IEEE Trans. Biomed. Eng., Vol.

BME-14, pp. 90-95.

43. Stevans, C. F. [1968],” Synaptic Physiology,” proc. IEEE, vol.79, no.9, pp916-

930.

44. Taylor, J. G. and Commbes, S. [1993], “Learning higher-order Correlations,”

Neural Networks, Vol. 6, No. 3, pp. 423-428.

45. Tsypkin, Y. [1968], "Self-Learning: What Is It?," IEEE Transactions on Automatic

Control, vol. AC-13, pp. 608612, December.

46. Widrow, B. and Michael, A. Lehr [1992], “30 years of Adaptive Neural

Networks: Perceptron, Madaline, and Back-propagation,” in Neural Networks:

Theoretical Foundations and Analysis, edited by Clifford Lau, IEEE Press, pp.

27

47. Xu, X., Oja, E., and Suen, C. Y. [1992], “Modified Hebbian Learning for Curve

and Surface Fitting,” Neural Networks, Vol. 5, No. 3, pp. 441-457.

 135

48. Zhengquan, H. and Siyal, M. Y. [1998], “Modification on higher-order Neural

Networks,” Proceedings of the Artificial Networks in Engineering Conference,

Vol. 8, pp. 31-36.

