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ABSTRACT

Malignant melanoma is the deadliest form of all skin cancers. Approximately 32,000 new 

cases of malignant melanoma were diagnosed in 1991, with approximately 80 percent of 

patients expected to survive five years [1], Fortunately, if detected early, even malignant 

melanoma may be treated successfully. Thus, in recent years, there has been a rising 

interest in the automated detection and diagnosis of skin cancer, particularly malignant 

melanoma [2]. In this thesis, a novel neural network approach for the automated 

distinction of melanoma from three benign categories of tumors which exhibit 

melanoma-like characteristics is presented. The approach is based on devising new and 

discriminant features which are used as inputs to an artificial neural network for 

classification of tumor images as malignant or benign. Promising results have been 

obtained using this method on real skin cancer images.
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I. INTRODUCTION

A. Skin Cancer Characteristics

Dermatology imaging researchers believe that diagnosis of skin tumors can be 

automated based on certain physical features and color information that are characteristic 

of the different categories of skin cancer. Diagnosis of malignant melanoma is a difficult 

task since other skin cancers have similar physical characteristics. In many cases, 

dermatologists must perform a biopsy (a laboratory medical procedure) to ascertain 

whether a tumor is malignant or benign. Since this is a costly procedure, alternative early 

detection techniques are being sought to use as an adjunct for rapid inexpensive skin 

cancer screening. In this study, we use color images of skin tumors and an artificial 

neural network to distinguish melanoma from other benign pigmented tumors: dysplastic 

nevi, intradermal nevi and seborrheic keratoses. We first define those features that are 

expected to distinguish melanoma from three other skin tumors, and train an artificial 

neural network with these features in an attempt to classify the tumor type as melanoma 

or not. The characteristics of malignant melanoma and three other categories of benign 

tumors which are difficult to distinguish from melanoma are outlined below. These 

descriptions apply to only the most typical members of a diagnostic group.

1. Malignant Melanoma (mel). Malignant melanoma is named for the cell from 

which it presumably arises, the melanocyte. Melanocytes are the skin cells which 

produce the dark protective pigment called melanin, a natural sunscreen. Melanoma cells
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usually continue to produce melanin, which accounts for the cancers appearing in mixed 

shades of tan, brown and black (variegated coloring). Melanoma has a tendency to 

metastasize (spread), hence early detection and treatment are essential. Friedman et al. 

have enumerated the mnemonic "ABCD" to describe early malignant melanoma [3]:

• Asymmetry - One half of the tumor does not match the other half.

• Border Irregularity - The edges are ragged, notched, blurred.

• Color - Pigmentation is not uniform. Shades of tan, brown and black are present. 

Dashes of red, white and blue add to the mottled appearance.

• Diameter - greater than 6 mm and growing.

2. Dysplastic Nevi (dvs nevi). Moles, or nevi, are tan brown spots on the skin 

that result from a clustering of melanocytes. Certain unusual moles called dysplastic nevi 

are likely to undergo changes leading to melanoma. Scientists believe that individuals 

with dysplastic nevi, especially those from families with multiple cases of melanoma 

represent one group of people who are more likely to develop melanoma. It is important 

to remember that, although the dysplastic nevus is the kind of mole most likely to 

undergo malignant changes, most dysplastic nevi do not become malignant. The National 

Cancer Institute [4] has outlined the following characteristics for the detection of 

dysplastic nevi, lesions that may occur in both familial and non-familial settings, and are 

associated with a higher risk of malignant melanoma:

• Color - Mixture of tan, brown, black and red/pink.

• Shape - Irregular Borders that may include notches. May fade into surrounding skin 

and include a flat portion level with the skin.
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• Surface - Smooth, slightly scaly, or have a rough pebbly appearance.

• Size - often larger than 5mm and sometimes larger than 10mm.

3. Intradermal Nevi (Idn). This is a benign tumor. Idn is most common in 

children and young adults and may be tan, brown, flesh or pink. These are commonly 

called moles and may be hairy. Dermatologists agree upon the following characteristics 

of idn (modified from [4]):

• Color - Flesh colored, pink, may be tan or brown.

• Shape - Round or oval, may fade gradually into the surrounding skin.

• Surface - Often smooth, sometimes papillomatous, and raised. Skin markings are 

present when examined with a hand lens.

• Size - Usually less than 6mm in diameter.

4. Seborrheic Keratoses (sk). This is a benign tumor found in older persons, 

with patients usually older than forty. It is a benign growth of the epidermis (outer layer 

of the skin) with the following clinical characteristics (modified from [1]):

• Color - Tan to brown, may be fleshy or pink, darker in persons with darker skin.

• Shape - Borders often oval or round but may be irregular, often sharply demarcated 

but in fair persons fading gradually into surrounding skin.

• Surface - Rough, verrucous, sometimes with keratin plugs. Skin markings are almost 

always enhanced, even if the surface is not rough. The raised surface and frequently 

sharp border lead to the appellation "stuck-on". The tan to yellowish color combined 

with the stuck-on appearance is sometimes called "tallow-drop."
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• Size - 3mm - 30mm or more, usually 5-15 mm.

• Location - Seborrheic keratoses are usually located on the face, neck and trunk.

These descriptions indicate that melanoma and the above categories of benign 

tumors differ slightly in their physical characteristics and colors. If any automated 

approach is to succeed in diagnosing melanoma, a collection of these features rather than 

a single feature needs to be used in order to obtain a satisfactory classification of the 

tumor images belonging to one of these categories. Indeed, this fact is also reflected by 

Figure 1 and Figure 2, obtained after processing and examining 326 digital images of skin 

growths of the above mentioned categories. These figures show some statistical data on 

the distribution of percentages of tumors within each class with respect to irregularity 

and asymmetry. Figure 1 suggests that the irregularity index (to be explained later) alone 

is not sufficient in diagnosing melanoma since many benign tumors have irregularity 

indices which are as high as those for melanoma. Similarly, Figure 2 indicates that 

percent asymmetry (obtained by overlapping the two halves of a tumor along the best axis 

of symmetry and dividing the nonoverlapping area differences of the two halves by the 

total area of the tumor) also does not give a satisfactory separation between melanoma 

and other benign tumors.

While diagnosing skin cancer, dermatologists base their clinical diagnosis decisions 

on experience as well as complex inferences and extensive pathophysiological knowledge. 

Such experience cannot be condensed into a small set of relations, and this limits the 

performance of algorithmic approaches of many clinical tasks. The breadth of clinical 

knowledge is an obstacle to the creation of symbolic knowledge bases comprehensive 

enough to cope with diverse exceptions which occur in practice. Experience-based
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learning is the property of artificial neural networks which make them ideal for diagnostic 

applications such as the one above. Using the indices described above, as well as color 

information, a neural network should be able to leam and gain experience about the 

malignant melanoma diagnosis problem. The ability to select pertinent features for a 

particular problem on their own is an edge which neural networks possess over expert 

systems when solving such diagnosis problems. In the following chapter, we give a brief 

introduction of artificial neural networks as pattern classifiers and explain the 

training/testing approach for classification. In Chapter 3, we describe our approach to 

diagnosing the melanoma tumors and the selection and derivation of the features used for 

this purpose.

B. Artificial Neural Networks

In recent years, neural networks have been used as pattern classifiers in medical 

diagnosis [5], speech [6] and pattern recognition [7], and artificial intelligence 

applications. This trend has even accelerated by the availability of high speed computers 

with large amounts of processing power and memory. There is an increasing interest in 

the use of neural networks to solve a variety of problems in many areas of medicine and 

engineering. It is a fact that adaptive non-parametric neural-net classifiers work well for 

many real world problems. These classifiers frequently provide reduced error rates when 

compared to more conventional statistical approaches and are a powerful and flexible 

means for mapping a fixed number of inputs into a set of discrete classes. These 

characteristics make artificial neural networks a strong candidate for diagnostic problems 

where a set of symptoms is mapped to a set of possible diagnostic classes. In our
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research, we are motivated by the desire to classify skin tumors as malignant or 

non-malignant from color photographic slides of the tumors and to further explore how 

we can add learning to this diagnosis process in order to automatically classify the skin 

tumors correctly.
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II. NEURAL NETWORKS AS PATTERN CLASSIFIERS

Computer-based medical systems are playing an increasingly important role in 

assisting both diagnosis and treatment. When designing such tools, certain objectives must 

be considered carefully. First of all, dermatologists should be able to use low-cost, 

user-friendly tools such as programs running on personal computers. Nevertheless, to 

satisfy physicians requirements, processing time should also be short.

Since any failure of such tools could prove harmful to patients, fault tolerance and 

reliability are the most critical characteristics. At the same time, end users must be 

provided with as much information as possible about how the processing is carried out.

In the effort to reach these objectives, developers of computer aids for physicians 

face a variety of problems originating from the complex nature of the biological data. 

Such data are characterized by an intrinsic variability that can occur as the result of 

spontaneous internal mechanisms or as a reaction to occasional external stimuli. 

Furthermore, most biological events result from the interaction of many systems and 

subsystems whose different effects are almost indistinguishable.

Clinicians are accustomed to such problems, but their skills cannot be easily 

incorporated in computer programs. Most clinical decisions are based on experience as 

well as on complex inferences and extensive pathophysiological knowledge. Such 

experience cannot be condensed into a small set of relations, and this limits the 

performance of algorithmic approaches to many clinical tasks. The breadth of clinical
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knowledge is an obstacle to the creation of knowledge bases comprehensive enough to 

cope with the diverse exceptions that occur in practice.

Experience-based learning, fault tolerance, graceful degradation, and signal 

enhancement are properties of artificial neural networks that make them effective in 

solving the above problems. This points to a way for implementing reliable 

computer-based medical systems that can closely emulate a physicians expertise.

This thesis describes a neural network system for diagnosing skin cancer. The 

recent resurgence of interest in neural networks, machine learning, and parallel 

computation has led to renewed research in the area of statistical pattern classification. 

Early pattern classification research performed in the 60’s and 70’s focussed on 

asymptotic (infinite training data) properties of classifiers. The thrust of recent research 

has changed. More attention is being paid to practical issues as pattern classification 

techniques are being applied to speech, vision, robotics, and artificial intelligence 

applications where real time response with complex real-world data is a necessity. Much 

of this research is motivated by the desire to understand and build parallel neural net 

classifiers inspired by biological neural networks and by the need to add learning to 

artificial intelligence applications. This has led to an emphasis on robust, adaptive, 

non-parametric classifiers that can be implemented on parallel hardware.

Adaptive non-parametric neural-net classifiers work well for many real world 

problems. These classifiers frequently provide reduced error rates when compared to more 

conventional Bayesian classifiers and also provide selection of differing practical 

characteristics. Classifiers provide trade-offs in memory, computation, training time, and
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adaption requirements. They also differ in ease of real-time implementation using custom 

VLSI circuitry, in the ease with which they can be programmed efficiently on specific 

parallel or serial computers, and in computational complexity. Generalization capabilities 

for specific applications and the ease with which the complexity of a classifier can be 

matched to the amount of training data also differ. Finally, classifiers differ in their 

abilities to use unsupervised training data and in their ability to determine what input 

features contribute to the classification performance. These issues, more than error rate, 

tend to drive the selection of a classifier for a particular application.

A. Broad Classification of Neural Net Classifiers

Practical differences between classifiers and internal differences in how classifiers 

form decision regions lead to four broad groups of classifiers (Figure 3). The uppermost 

group of Figure 3 takes into account the most conventional or Bayesian Classifiers, while 

the lower three groups contain adaptive classifiers. These adaptive classifiers can all be 

implemented using fine grain parallelism. Most also require simple local computations for 

incremental adaptation and can form arbitrary decision regions.

1. Probabilistic Classifiers. Probabilistic classifiers (see Fig. 3) assume a priori 

probability distributions such as Gaussian or Gaussian mixture distributions for input 

features. Parameters of distribution are typically estimated using supervised learning 

where all the training data is assumed to be available simultaneously. These classifiers 

provide optimal performance when the underlying distributions are accurate models of the 

test data and sufficient training data is available to estimate distribution parameters
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Figure 3 Four Basic Classifier Groups (from Lippman[8])
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accurately. These two conditions are not often satisfied in nonstationary environments 

with real world data.

2. Hypemlane Classifiers. Hyperplane Classifiers form complex decision regions 

using nodes that form hyperplane decision boundaries in the space spanned by the inputs. 

Nodes typically form a weighted sum of the inputs and pass this sum through a sigmoid 

nonlinearity, as shown in Fig 3. Other nonlinearities, including high order polynomials 

of the inputs, are also used. These classifiers have low memory and computation 

requirements during classification but may require long training times and/or complex 

training algorithms. They include multi-layer perceptrons trained with back-propogation 

(back propogation classifiers) [8], Boltzmann machines [9], binary-tree classifiers, high 

order nets that form high order polynomials of inputs [10] and high order nets resulting 

from the use of Group Method of Data Handling (GMDH) algorithms [11].

3. Kernel Classifiers. Kernel or receptive field classifiers create complex decision 

regions from kernel-function nodes that form overlapping receptive fields. Kernel-function 

nodes use a kernel function, as shown in Fig. 3, which provides the strongest output 

when the input is near the nodes centroid. Some of the important properties of Kernel 

classifiers is that they train rapidly, can use combined supervised/unsupervised training 

and have intermediate memory and computation requirements. Neural net kernel 

classifiers include map-based approaches that use arrays of nodes which compute kernel 

functions, classifiers based on the Cerebral Model Articulation Controller (CMAC) 

[12], and classifiers that use the method of potential functions [13], often called

radial basis functions.
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4. Exemplar Classifiers. As the name implies the exemplar classifiers perform 

classification based on the identity of the training examples, or exemplars, that are nearest 

to the input. The nearest neighbors can be determined using exemplar nodes that are 

similar to the kernel-function nodes. The exemplar nodes compute the weighted Euclidean 

distance between inputs and node centroids. Centroids correspond to previously presented 

labeled training examples or to cluster centers formed during combined 

unsupervised/supervised training. Exemplar based classifiers train rapidly but may require 

large amounts of memory and computation time for classification. Exemplar classifiers 

include k-nearest neighbor classifiers [11], the feature map classifier [14] and Adaptive 

Resonance Theory (ART) classifiers [15].

B. Back propagation Classifiers

Backpropogation classifiers have received the most attention by pattern 

classification researchers. This class of neural networks form nonlinear discriminant 

functions using single- or multi-layer perceptrons with sigmoidal nonlinearities. 

Backpropagation classifiers are trained with supervision, using gradient-descent training 

techniques which minimize the squared error between the actual outputs of the network 

and the desired outputs. Patterns are applied to the input nodes that have linear transfer 

functions. Other nodes typically have sigmoidal nonlinearities. The desired output from 

output nodes is low (0 or < 0.1) unless that node corresponds to the current input class, 

in which case it is high ( 1.0 or > 0.9). Each output node computes a nonlinear 

discriminant function that distinguishes between one class and all other classes. Early
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interest in Backpropagation classifiers training was caused by the presupposition that it 

might be used in biological neural nets. Although this now seems unlikely, 

backpropagation classifiers have been successfully applied in many areas. Multi-layer 

perceptrons trained with backpropagation have been successfully used to:

• Classify speech sounds [16]

• Form test-to-phenome rules [17]

• Deduce the secondary structures of a protein from its aminoacid sequence

• Discriminate between underwater sonar returns [18]

• Learn good moves for backgammon [19]

• Perform nonlinear signal processing [20]

A number of theoretical analyses have been performed to determine the 

capabilities of classifiers based on multilayer perceptrons. Similar constructive proofs, 

developed independently [21] [22] demonstrated that two hidden layers are sufficient 

to form arbitrary decision regions using multilayer perceptrons with step function 

hard-limiting nonlinearities (node outputs of 0 or 1). This constructive proof was extended 

to suggest how multi-layer perceptrons with two hidden layers, linear output nodes, and 

sigmoidal nonlinearities approximate complex nonlinear functions [23]. More recent 

work demonstrated that multi-layer perceptrons with only one hidden layer could form 

complex disjoint and convex decision regions [24]. This work was followed by a 

careful mathematical proof [25], which demonstrates that continuous nonlinear 

mappings can be closely approximated by multi-layer perceptrons with only one hidden 

layer. This proof implies that arbitrary decision regions can also be approximated by
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multi-layered perceptrons with only one hidden layer. This proof however is not 

constructive and does not indicate how many neurons are required in the hidden layer. 

Other recent theoretical work has demonstrated the advantages of sigmoidal nonlinearities 

over linear nodes for single-layer perceptrons trained with backpropagation. One major 

characteristic of backpropagation classifiers is long training times. Training times are 

typically longer when complex decision regions are required and when the networks have 

more hidden layers. As with other classifiers, training time is reduced and performance 

is improved if the size of the network is tailored to be large enough to solve a problem 

but not so large that too many parameters must be estimated with limited training data. 

Other techniques that have been effective in reducing training time with speech data are 

to update weights after presenting each training example instead of after cycling through 

all the examples, to randomize the presentation order of training examples, and to 

normalize components of input training vectors to have mean values of zero [26]. Other 

characteristics of back propagation classifiers that may be difficult to alter include 

difficulty in interpreting and understanding network solutions, and the frequent necessity 

of many nodes and connection weights. Research on developing techniques to design 

minimal-size backpropagation classifiers [27] and to develop analysis techniques to 

interpret the solutions found by backpropagation classifiers suggests approaches to these 

issues. Shorter training times and these other characteristics can, however, be obtained 

using other classifiers that can be implemented using fine-grain parallelism.
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C. Training and Testing

The goal of pattern classification is to assign input patterns to one of a finite 

number, M, of classes. In the following section it will be assumed that input patterns 

consist of static input vectors x containing N elements or continuous valued real numbers 

denoted xu x^,...., xN. Elements represent measurements of features selected to be useful 

for distinguishing between classes. Input patterns can be viewed as points in the 

multidimensional space defined by the input feature measurements. The purpose of a 

pattern classifier is to partition this multidimensional space into decision regions that 

indicate to which class any input belongs. Conventional Bayesian classifiers characterize 

classes by their probability density functions on the input features from these densities. 

Adaptive non-parametric classifiers do not estimate probability density functions directly 

but use discriminant functions to form decision regions.

The application of a pattern classifier first requires selection of features that must 

be tailored separately for each problem domain. Features should contain information 

required between classes, be insensitive to irrelevant variability in the input, and also be 

limited in number to permit efficient computation of discriminant functions and to limit 

the amount of training data required. Good classification performance requires selection 

of effective features and also selection of a classifier that can make good use of those 

features with limited training data, memory and computing power. Following feature 

selection, classifier development requires collection of training and test data, and separate 

training and test or use phases. During the training phase, a limited amount of training 

data and an a priori knowledge concerning the problem domain is used to adjust
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parameters and/or learn the structure of the classifier. During the test phase, the classifier 

designed during the training phase is evaluated on new test data by providing 

classification decision on each input pattern. Classifier parameters and/or structure may 

then be adapted to take advantage of new training data or to compensate for nonstationary 

inputs, variation in internal components, or internal faults. Further evaluations require new 

test data.

The training/test set paradigm is used extensively in statistical studies. This 

paradigm, simply stated, consists of separating the data or samples into two distinct sets. 

One set is used for training, or during the learning phase of the network, and the other 

set is used for testing the network. These two sets should be statistically independent to 

allow unbiased results to be obtained on the test set. In order to generate the best 

classification network possible, the size of the training set should be maximized, but in 

order to have high levels of confidence in the results as an estimate of future 

performance, the size of the test set should also be maximized. This dilemma leads many 

researchers to arbitrarily use 50 percent of the set for training and 50 percent for testing. 

For this research, results are reported with various sizes of training and testing sets. This 

method provides more complete information than would be obtained with a fixed set size

and allows for observation of trends in the data.
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IH. SELECTION OF FEATURES FOR DIAGNOSIS

A. Selection of Features for Diagnosing Melanoma

Diagnosis applications require a selection of features that must be tailored 

separately for each problem domain. The features selected should contain enough 

information to distinguish between classes as well as being insensitive to irrelevant 

variability in the inputs. On the other hand, the features must be limited in number for 

two reasons: 1) To keep the training (learning) time within reasonable limits, and 2) to 

allow the network to compute the discriminant functions efficiently with a small size 

training set. As a result of our analysis of the diagnosis problem, we have defined 14 

features that we believe to be well discriminative between images belonging to malignant 

melanoma and the three benign tumors of interest here. This chapter provides a 

description of the selected features as well as the methodology used to extract them from 

the color skin images.

1. Boundary Detection. Boundary detection of skin tumors is one of the first steps 

(low level processing) to be performed in skin cancer recognition. All of the 14 features 

that were identified to be useful in the diagnosis of skin cancer required detection of the 

border of the tumor in the color image. The algorithm used here is an enhanced version 

of the radial search algorithm which was proposed in an earlier study [28]. Instead of 

detecting individual border points, the new method detects connected tumor segments
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from which border points are determined [29]. This technique eliminates most of the 

spurious border points due to noise. Briefly, the border finder uses the following steps:

a. Image Smoothing and Enhancement. A median filtering algorithm is applied 

repeatedly to smooth the image and diminish spurious effects that may be present due to 

noise. The advantage of median filtering is threefold: it preserves edge sharpness of 

tumors, diminishes flash areas and enhances tumor contrast over the background while 

eliminating noise.

b. Segmentation. Image pixel values are transformed into a new plane to allow 

easy separation of the tumor and skin pixel values and thresholding is applied to segment 

the image into two distinct areas; tumor and the background (skin).

c. Border Determination. First, the tumor portion is separated from the segmented 

image by using a region growing algorithm and masking all the unnecessary information 

around it, then a ray probing algorithm is used to identify the boundary points. These 

points are connected by a cubic-spline to get a smooth outline of the border.

B. Feature Selection

After the boundary of the tumor area is determined, the next step is to compute 

the indices corresponding to each feature needed for diagnosis. In this section, we 

describe those features of interest and how to compute them.
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1. Irregularity Index. Malignant melanoma is characterized by the irregularity in 

its tumor border. Irregularity is measured by an index (I) :

AtzA

where, P = perimeter of the tumor in pixels, A = area of the tumor in pixels.

The irregularity index for a circle is one (perfectly regular). In our research the 

perimeter and area are computed in terms of pixel counts. Figure 1 shows the irregularity 

index for different categories of tumors. It is clear that most melanomas have a high 

irregularity index, i.e., they have an irregular shape. However, there is a significant 

percentage of other tumors with high irregularity indices. Hence, this feature alone is not 

sufficient enough to discriminate melanoma from other benign types of tumors.

2. Percent Asymmetry. Asymmetry is another characteristic of malignant 

melanoma. Asymmetry is computed by finding an axis that is closest to the axis of 

symmetry of the tumor (i.e. the axis around which, if the tumor is folded into half, there 

is maximum overlap of the two halves). Then percent asymmetry is computed by 

overlapping the two halves of a tumor along the best axis of symmetry and dividing the 

nonoverlapping area differences of the two halves by the total area of the tumor. As we 

observe in Figure 2, 88.4% of the melanomas in our database of images have an 

asymmetry percentage above 8 percent, whereas this figure is 66%, 50.3% and 37.7% for
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the dysplastic nevi, sk and idn respectively. Again, this index alone is not powerful 

enough to discriminate malignant melanoma from other tumors but together with other 

features it is expected to play a very important role in the diagnosis of melanoma.

3. Color Features. One of the most predictive features in identification of 

malignant melanoma is variegated coloring(VC) [30]. Dermatologists define variegated 

coloring as the swirling together of tan, brown, red and black giving the tumor a varied 

coloring. Such variegation in color implies a high variance in red (R), green (G), and blue 

(B) color components. Therefore, out of 12 color features, three of them are selected to 

be the variances in the R, G, and B color planes. Since dysplastic nevi may also turn into 

melanoma they also have high variances in these planes but the other benign tumors have 

lower variances in the RGB planes (they do not exhibit variegated coloring). In addition 

to variances, relative chromaticity of tumors (in RGB planes) are also added to the feature 

list since these features are important in discriminating melanoma from sk and idn. The 

relative chromaticity is defined as the normalized value of that color in the tumor area 

subtracted from the normalized value for the color in the background.

For example the relative chromaticity of red is defined as:

R/b k i .
R=--------- &--------------S -----

R,+Br+Gr  /J. +B. +G.Jg Jg Jg Dg Dg Dg

(2)
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where rfg, gfg and bfg denote tumor RGB components and rbg, gbg and bbg denote 

background RGB components. The relative color was defined as the color difference 

vector, i.e. difference in the color space between tumor and the background, or normal 

flesh. Reasons behind the development of a relative color concept are stated in [30] as 

follows: 1) to equalize any variations caused by lighting, photography/printing, or 

digitization process, 2) to equalize variations in normal skin color between individuals, 

and 3) the human visual system works on a relative color system.

Previous studies in diagnosing melanoma [30] with an expert system indicate that 

spherical color space coordinates gave better diagnosis results than the RGB, CIE or IHS 

color spaces. Therefore, we also added these indices into our set of input features. The 

equations to transform from (R, G, B) to spherical coordinates are given by [30]:

l = /r2+g 2+b 2 (3)

(4)

AngleB =cos~l R (5)
Lxsin(AngleA)
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BLUE

Figure 4 The Spherical Transform (from [30])
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This transformation splits the color space into a two-dimensional color space, 

represented by two angles, Angle A and Angle B; and a one dimensional intensity 

(brightness) space, represented by the vector length L (see Fig. 4). To compute Length, 

Angle A and Angle B for each tumor image, we found Length, Angle A and Angle B for 

each of the pixels in the tumor and took an average of them.

From the viewpoint of color clustering, it is desired that the image be represented 

by color features which constitute a space possessing uniform characteristics such as the 

(L*, a*, b*) color coordinate system [31]. Since sk’s and idn’s are brighter in color 

(closer to white) than melanoma and dysplastic nevi, they have distinct values in this 

color space. Dermatology imaging researchers also believe that this space may be useful 

in distinguishing melanoma from dysplastic nevi due to small differences in lightness, hue 

and chroma between dysplastic nevi and melanoma (according to dermatologists 

dysplastic nevi are brighter and have less blue, i.e. more relative red components). In our 

research, lightness, hue and chroma are computed for each point in the tumor using the 

formulas given in [31] and then an average is taken for all the pixels in the tumor.
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IV. NEURAL NETWORK DESIGN AND EXPERIMENTAL RESULTS

A. Diagnosis of Malignant Tumors Using a Neural Network

For the research reported here, the discriminant features explained above were 

extracted from 210 digital images of skin cancer. These images were obtained from the 

clinical collection of Dr. William Van Stoecker (see Appendix B), a resident 

dermatologist in Rolla, MO, and some of the images were obtained from New York 

University Medical School. All these images were 512 x 512 pixel color images with 24 

bits per pixel (8 bits for each R, G and B planes). Ninety-six images were in the 

malignant melanoma category and there were 111 images of dysplastic nevi (dys nevi), 

58 intradermal nevi (idn) and 61 seborrheic keratoses (sk).

B. Neural Network Implementation

A feedforward artificial neural network with 14 inputs (see Table I) and one output 

(indicating whether the tumor is malignant melanoma or not) was used and trained using 

the backpropagation rule. A versatile neural network development software package, 

NeuralWorks Professional, was used for the experiments which follow and a customized 

version of this Neural Network was also implemented. Details of the implementation are 

found in Chapter 5.

One major characteristic of backpropagation classifiers is long training times. 

Training times are typically longer when complex decision regions are required and when
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Table I. Features Used For Diagnosis

Feature Description
Irregularity
Asymmetry
Variance in the RGB Plan 
Relative Chromaticity 
Spherical Transform 
(L*, a*, b*) Color space

Number of Inputs
1
1
3
3
3
3

networks have more hidden layers. One way of solving this problem is to use few hidden 

layers.

In this study, only one hidden layer was used based on the fact that it performed 

reasonably well among several network configurations with which we had experimented 

and also produced fast results. Typical training times varied between 40-60 minutes. 

Another technique that we have used in reducing the training time is randomization of 

the presentation of the order of the training examples by using a “ shuffle and deal” 

randomization scheme. Other techniques which are effective in reducing training time 

with some applications are to update weights after presenting each training example 

instead of after cycling through all the examples.

Training of the network was continued with several epochs of the training set until 

the root mean square error of the output was below 0.05. Testing was done and the 

success rates for the correct diagnosis of melanoma as melanoma and non-melanoma as 

non-melanoma were recorded. Results were obtained for training/testing percentages of

20/80, 40/60, 60/40 and 80/20.



28

C. Experimental Design and Test Results

The experiments were designed to test the effectiveness f the input features in 

discriminating the melanoma images from the others. Three sets of experiments were 

conducted, each repeated twice; once with dysplastic nevi included and another time with 

dysplastic nevi excluded, resulting in a total of six experiments. The reason for repeating 

the same experiments without dysplastic nevi is the fact that dysplastic nevi are precursors 

of melanoma and they possess the same variegation of coloring as melanoma tumors. By 

eliminating dysplastic nevi, classification is expected to become easier for the network. 

Those experiments with dysplastic nevi included used a total of 210 images (96 

melanomas, 43 dysplastic nevi, 30 idn, and 41 sk) while those with dysplastic nevi 

excluded used 216 images (96 melanomas, 58 idn, and 62 sk) for training plus testing.

The primary focus for training was to be able to distinguish melanoma from 

benign tumors. Experimentation has shown that the total number of melanomas in the 

training set needs to be close to 50% of the whole population in order to obtain good 

diagnostic results.

The reason for the varying numbers used for each class is that we tried to 

maximally utilize the images available in the database for training and testing while, at 

the same time, keeping a good balance of different types of tumor images. For both 

experiments, 96 melanoma images were used and the total number of non-melanoma 

images were kept within a margin not exceeding 56% of the whole population. When X% 

of images was used for training, the remaining images (100-X%) were used for testing.
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Each class contributed the same percentage of their total number to the training and test 

sets.

Experiments differed from one another by the set of input features used. The first 

set of experiments was conducted with the 14 input features originally described.

The second set of experiments was designed to test the effects of the use of 

different film types in the diagnosis process. In these experiments, to offset the effects of 

the different films used, spherical color space coordinates and (L*, a*, b*) color 

coordinates were removed from the input set leaving only those color features related to 

the relative color concept (color variances and the relative color). Hence, only eight input 

features were used in this phase.

In the third set of experiments, two new features were experimented with. The first 

of these was elevation and the second was area. These measures were determined in a 

subjective fashion by a dermatologist. The dermatologist classified tumors as having a 

marked elevation or no elevation. Also the dermatologist determined whether the area of 

the tumor was greater than 6mm from color slides of the tumor. These features were then 

incorporated into the image database in the form of binary vectors.

The results of these experiments are summarized and plotted in the following 

paragraphs.

1. Experiments la and lb. Experiment la was conducted with all four classes, 

melanoma, idn, dys nevi, and sk, while dysplastic nevi images were removed from 

Experiment lb. A total of 210 and 216 images were used altogether for training plus
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testing for experiments la and lb, respectively, with 14 input features supplied per image. 

Results are plotted in Figures 5a and 5b.

In Experiment la, for training percentages exceeding 60%, melanomas are 

diagnosed with close to 90% success rate. The sks and idn’s are always above 90 percent 

for training percentages of 40%or above (see Fig. 5a). The dysplastic nevi are however 

quite inconsistent and vary between a low of 50 and a high of 85 percent. We believe this 

is due to the fact that dysplastic nevi are precursors of melanoma and they possess the 

same variegation of coloring as melanoma tumors.

In Experiment lb, the results improve appreciably (Fig. 5b) for melanoma with 

successful diagnosis rate not below 92% for any case, peaking at 96%. The other two 

categories did not exhibit any significant changes and were diagnosed with success rates 

of 100% for training sizes above 60 percent, with the exception of idn showing a poor 

performance for the training percentages of 40% or below. This result supports the 

original observation that dysplastic nevi are precursors of melanoma and they possess the 

same variegation of coloring as melanoma tumors. Hence, elimination of the dysplastic 

nevi images from the training set made the classification job easier for the network and 

the number of false negatives were reduced considerably. As a result, the overall 

performance (the curve with a solid black icon) was boosted considerably (to a 98% 

success rate with a training set size of 80%).
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Experiment 1a

mel —i— dys. nevi - * *— idn
- s — sk »  ■ Overall

Experiment 1 b

idn — sk e— melanoma —■— Overall

Figure 5 a) Success Rate for Experiment la; b) Success Rate for Experiment 
lb.
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Experiment 2a

idn - a -  sk —( dys

mel Overall

Experiment 2b

idn —s — sk melanoma Overall

Figure 6 a) Success Rate for Experiment 2a; b) Success Rate for Experiment
2b.
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Experiment 3a

- a -  sk ■"H ■ mel

—»— dys. nevi -  m~ Overall

Experiment 3b

idn sk —s -  mel Overall

Figure 7 a) Success Rate for Experiment 3a; b) Success Rate for Experiment
3b.
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2. Experiments 2a and 2b. The same procedure used for experiment 1 was 

repeated for this set of experiments except that 8 input features were used instead of 14. 

The goal was to test the effect of the types of film used. In our image database, all the 

melanoma and dysplastic nevi slides were Ektachrome while a majority of the sk and idn 

slides were Kodachrome. To offset the effect of the different film types used, absolute 

color components in the input, namely spherical color space coordinates and (L*, a*, b*) 

color coordinates, were removed from the input set leaving only those color features 

related to the relative color concept (color variances and the relative color). Hence, only 

eight input features were used in this phase.

Obviously, elimination of all the absolute color information from the input is 

expected to cause the success rate to go down due to the degradation of the discriminant 

features in the input. However, we should not expect a significant change from the 

previous results, which would otherwise be interpreted as due to the film type. As 

illustrated by the plots in Figures 6a and 6b, the change in corresponding success rates 

is not large enough to raise concerns about the effect of film type on the results.

However, it was observed that the melanoma success percentages in Exp. 2b were 

relatively lower than those of Experiment lb (10% drop). This result can be explained due 

to the importance of absolute color information in the input Absolute color information 

is important in the diagnostic process particularly from the viewpoint of color clustering 

(shades of tan, brown and black, dashes of red, white and blue are signs of malignancy) 

and brightness information of tumors in the form of the brightness vector in the spherical
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transform domain. Hence, including as much color information about tumors as possible 

helps the neural network in diagnosis of the malignant and nonmalignant tumors.

3. Experiments 3a and 3h.

The aim of experiments 3a and 3b is to experiment with the inclusion of two more 

indices to the neural network. These are area of the tumor and elevation. Dermatologists 

believe that there is a weak correlation between the elevation of a tumor and 

nonmalignancy. This belief is inspired from the fact that few malignant tumors have a 

marked elevation whereas many categories of nonmalignant tumors e.g. basal cell 

carcinoma, sebhoerric keratoses and intradermal nevi are characterized by crust (as noted 

in their descriptions). Also area is important according to dermatologists. Since melanoma 

is an uncontrolled growth of cells, dermatologists believe that on the average melanoma 

tumors are likely to be larger in size than nonmalignant tumors in the same stage. A 

group of experiments to test the validity of these two hypotheses were performed. In one 

case area was added to the 14 features. However the success rates of this network were 

not as good as without the area index. The primary reason for the lower performance of 

this network is the fact that many of the malignant melanoma tumors in our database are 

in their incipient stages (since patients report to a dermatologist in the early existence of 

the tumor). Hence even though the area index may be important, our database of images 

does not reflect this fact and hence experiments with area index did not yield satisfactory

results.
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Hence Experiments 3a and 3b were performed with 14 features plus an elevation 

index. This index was determined by a dermatologist after examining all the tumor slides 

and noting if there was a marked elevation (greater than 1mm) on the tumor or not.

The success rates for dysplastic nevi (see Fig. 7a) went up in experiment 3a. This 

is probably due to the fact that many of the dysplastic nevi have some elevation whereas 

most malignant tumors like melanoma do not. The success rates for the other categories 

of nonmalignant tumors, i.e., sk and idn, are almost perfect although melanoma success 

rates remain around 85 percent. This might be explained due to the fact that many of the 

melanoma tumors are in their incipient stages and hence do not have enough color 

variegation to distinguish them from dysplastic nevi. The other categories of nonmalignant 

tumors, i.e., sk and idn, are generally characterized by marked elevation and hence the 

elevation helps to increase their percentage of successful diagnosis.

Highest success rates for melanoma (see Fig. 7 b) were achieved in Experiment 3b. 

This is due to a combination of the facts that dysplastic nevus are not present in this 

experiment and the fact that malignant tumors such as melanoma do not usually have 

crusts or elevation which characterize many nonmalignant tumors, i.e., sk and idn.
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V. SIMULATION OF THE HYPERPLANE CLASSIFIER

In this chapter, the design of a back propagation simulator is discussed. In a (Fig. 

8) backpropagation network, signals flow bidirectionally, but in only one direction at a 

time. During training, there are two types of signals present in the network: during the 

first half-cycle, modulated signals flow from input to output; during the second half cycle, 

error signals flow from output layer to input layer. See Figure 9 for an example of a 

hypothetical surface in weight space (with two weights). In the production mode only the 

feedforward, modulated output signal is utilized.

Several assumptions have been incorporated into the design of this simulator. First 

the output function on all hidden and output layer units is assumed to be the sigmoid 

function. In addition a momentum term is included in the weight-update calculations. 

These assumptions imply the need to store weight at one iteration, for use in the next 

iteration. Finally a bias term has been included in the calculation. In this network model, 

the input units are fan-out processors only. That is, the units in the input layer perform 

no data conversion on the network input pattern. They simply act to hold the components 

of the input vector within the network structure. Thus the training process begins when 

an externally provided input pattern is applied to the neurons in the input layer. Forward 

signal propagation occurs according to the following sequence of activities:

1. Locate the first processing unit in the layer immediately above the current layer.

2. Set the current input total to zero.

3. Compute the product of the first input connection weight and the output from the

transmitting unit
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4. Add the product to the cumulative total.

5. Repeat steps 3 and 4 for each input connection.

6. Compute the output value for this unit by applying the sigmoid function

Ax) = — (6) 
l+e~*

where x = input total.

7. Repeat steps 2 through 6 for each unit in the layer.

8. Repeat steps 1 through 7 for each layer in the network.

Once an output value has been calculated for every unit in the network, the values 

for the units in the output layer are compared to the desired output pattern, element by 

element. At each output unit, an error value is calculated. These error terms are then fed 

back to all other units in the network structure through the following sequence of steps 

(see Fig. 10):

1. Locate the first processing unit in the layer immediately below the output layer.

2. Set the current error total to zero.

3. Compute the product of the first output connection weight and the error provided by 

the unit of the upper layer.

4. Add the product to the cumulative error.

5. Repeat steps 3 and 4 for each output connection.



Figure 8 A Multilayer Perceptron

u>vo



Figure 9 Hypothetical Surface in Weight Space (Simple Example of a network with two weights)

o
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6. Multiply the cumulative error by:

o (l-o ) (7)

where o is the output value of the hidden layer unit produced during the feedforward 

operation.

7. Repeat steps 2 through 6 for each unit in this layer.

8. Repeat steps 1 through 7 for each layer.

9. Locate the first processing unit in the layer above the input layer.

10. Compute the weight change value for the first input connection to this unit by adding 

a fraction of the cumulative error at this unit to the input value to this unit.

11. Modify the weight changes term by term by adding a momentum term equal to a 

fraction of the weight change value from the previous iteration.

12. Save the new weight change value as the old weight change value for this connection.

13. Change the connection weight by adding the new weight change value to the old 

connection weight

14. Repeat steps 10 through 13 for each input connection to this unit.

15. Repeat steps 10 through 14 for each unit in this layer.

16. Repeat steps 10 through 15 for each layer in the network.



Apply the input vector X to the 
Input Neurons for pattern

t
Calculate the net-input values 
to the hidden layer units

l  - -  -
Calculate the outputs from the 
hidden layer

i
Move to the output layer. 
Calculate the net-input 
values to each unit_______

____ y__________

-------------- 1

Calculate the outputs

Calculate the error terms for 
the output units

*
Calculate the error terms for 
the hidden units

t
Update weights on the output 
layer

t
Update weights on the hidden 
layer

________ i __________
Calculate the error term for 
this pattern

Stop Training

Figure 10 Flowchart of the Training Algorithm
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The algorithm outlined above was implemented in AT&T C++ on a Sun 

Sparcstation as well as on a 486 personal computer in the Borland C++ environment. The 

customized software had the option of setting the number of hidden neurons, the learning 

rate, momentum term and the error tolerance. Training and test sets were formed in the 

percentages mentioned randomly so the training/test paradigm was followed. 

Experimentation revealed that one hidden layer with 8 hidden neurons gave the best 

training results in terms of time and successful diagnosis. A learning rate of 0.1 and a 

momentum term of 0.01 were used in all the experiments to speed up training. The root 

mean square error tolerance was set to 0.05. The code is listed in Appendix A.
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VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. Conclusions from Experimental Results

A fast and effective method to separate malignant melanoma from other types of 

benign tumors is becoming increasingly needed due to the fact that malignant melanoma 

incidence has risen dramatically in recent years and early detection can save thousands 

of lives each year. In this study, we attempted to diagnose melanoma from color skin 

images using an artificial neural network. For this purpose, a set of features to distinguish 

melanoma from three types of benign tumors was defined and methods to measure these 

features from digitized color slides were described. Overall, diagnostic results were found 

to be very promising and as high as 97% accuracy in detecting malignant melanoma is 

achieved using training data sets of reasonable size (see Experiment 3b). As a result of 

this study, the following results are confirmed experimentally:

a) Color characteristics of tumors play a crucial role in the diagnosis process, b) tumor 

asymmetry and border irregularity are two important diagnostic features for 

distinguishing malignant melanoma from benign tumors such as seborrheic keratoses, 

dysplastic nevi, and intradermal nevi, c) malignant melanoma and dysplastic nevi images 

exhibit some similarities and therefore testing for tumor malignancy in the absence of 

dysplastic nevi images gives better diagnostic results. This is confirmed by the second 

part (b) of each experiment
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B. Suggestions for future research

From the dermatology standpoint, most common skin tumors can be put into five 

major groups which exhibit different characteristics regarding the need for biopsy, 

malignancy and first choice Rx paths (see Figure 11). These groups are: malignant 

melanoma (mm), dysplastic nevi (dys), squamous cell carcinoma (see) or basal cell 

carcinoma (bee), actinic keratoses (ak), and common benign lesions (intradermal nevus 

(idn), compound nevus (cpdn), and seborrheic keratoses (sk)).

The studies undertaken in this thesis aimed to diagnose only malignant melanoma 

among four types of tumors. In future research, we plan to use a hierarchical, diagnostic- 

tree based approach to diagnose the above five classes of skin tumors (see Fig. 12). By 

breaking down the problem into well-defined smaller problems and, hence, limiting the 

number of diagnostic outcomes to only (Yes/No) type decisions, the complexity of the 

whole process is reduced considerably while the diagnostic power is increased 

proportionally. The decision at each branch of the tree can be made by a separate neural 

network specifically designed and trained for classifying the tumors at that particular level 

of the tree. The hierarchical design in Fig. 12 indicates that four different neural networks 

are needed for this purpose.

Note that there will be an extra development overhead due to the implementation 

of multiple neural networks specialized to distinguish different classes. Each will require 

different input feature sets to be used. So far, we have identified overall 20 features that 

can be useful in any diagnostic process. In addition to the 14 features listed in Table 1, 

elevation, texture, 2D Fourier transform coefficients, semi-translucency, ulcer, and area
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are also believed to be relevant features in the diagnostic process. We plan to statistically 

analyze image feature sets corresponding to each class and obtain their distributions in 

order to find the optimum input feature set for each neural network. For example, the 

experiments in this thesis verify that the 14 features listed in Table 1 are crucial in 

diagnosing malignant melanoma. It is important to note that a neural network should not 

be overloaded with extra inputs (features) which do not carry any discriminative 

information, i.e., which do not help in classification.



Figure 11 Outcome Tree for Most Common Skin Tumors

4^
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Figure 12 Hierarchical Diagnosis of Skin Tumors Using Four Neural Networks



APPENDIX A.

LISTING OF PROGRAM SOURCE



#include 
#include 
#include 
#include 
#include #include 
#include

<stdio.h> 
<stdlib.h> 
<math.h> 
<conio.h> 
<ctype.h> 
<string.h> 
<iostream.h>

#define ESC 27 
#define ITEMS 8
// object types 
class BaseNet {
public:

float temp, 
Eta,

// A basic Neural Network type 
// Includes matrix methods

charInt

// default learning rate
// default momentum factor 
if acceptable error level 
if latest sum squared error value

Alpha,
ErrorLevel,
Error;
KeyboardReguest; if true when key pressed

FILE

char
char
char
char
char

ErrorFreq 
nlnputNodes, //nHiddenNodes, //
nOutputNodes, //
nlterations, if
nPatterns, //
nRuns, //
H, //
I, //
J ,  / /
P, If
Q, //R; //*RunFile,
*Pa tternFile, 
*WeightsInFile, 
*WeightsOutFile, 
*ResultsFile, 
*ErrorFile; szResults[40]; 
szError[40]; 
szPattern[40]; 
szWeights[40]; 
szWeightsOut[40]

// error reporting frequency
number of input nodes 
number of hidden nodes 
number of output nodes 
number of iterations 
number of patterns 
number of runs (or input lines) 
index hidden layer 
index input layer 
index output layer 
index pattern number 
index iteration number 
index run number 
// RUN file
// source pattern input file 
// initial weight file 
// final weight output file 
// results output file 
// error output file 
// various filenames

// Matrix
// typedefs and prototypes for dynamic storage of arrays 

typedef float *FLOATPTR; // Pointer to a real 
typedef FLOATPTR VECTOR; // A Vector: one column
typedef FLOATPTR *MATHIX; / / A  Matrix: two columns 

If typedef FLOATPTR MATRIX; / / A  Matrix: two columns
// Network Layers
If Arrays for inputs, outputs, deltas, weights & target outputs

MATRIX OutO ; // input layer
MATRIX OUtl; // hidden layer
MATRIX Deltal; // delta at hidden layer
MATRIX Delwl; // change in weights input .-hidden
MATRIX Wl; // weights input:hidden
MATRIX Out2; // output layer
MATRIX Delta2; // delta at output layer
MATRIX Delw2; // change in weights hidden:output
MATRIX W2; // weights hidden:output
MATRIX TargetOutputi; // target output
VECTOR PatternID; // identifier for each stored pattern

// Memory allocation methods
void AllocateVector(VECTOR ^Vector, int nCols); 
void A11ocateColumns(FLOATPTR Matrix[], int nRows, int nCols) 
void AllocateMatrix(MATRIX *pmatrix, int nRows, int nCols); 
void FreeMatrix(MATRIX Matrix, int nRows);
BaseNet(); // constructor

-BaseNet() {); // destructor
virtual void Iterate(char Netname) {}; // abstract iteration
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// for any network
) ;
class BackProp : public BaseNet { // Back Propagation network
public:

BackProp() {};
-BackProp() {};
void Iterate(char Netname); // iteration loop for this network

II BaseNet constructor initializes default fields.
BaseNet::BaseNet() {

Eta = 0.15,
Alpha = 0.075;
ErrorFreq = 1; 
ErrorLevel = 0.04; 
KeyboardRequest = 0; 

J ;

// default learning rate 
// default momentum factor 

// error reporting frequency 
// acceptable error level 
II true when key pressed

// BaseNet methods
// Implementation of array allocation routines 
II Allocate space for a vector of float cells,
II a one dimensional dynamic vector[cols]
void BaseNet::AllocateVector(VECTOR *Vector, int nCols)
{ if ((^Vector = (VECTOR) calloc(nCols, sizeof(float))) == NULL)

{ cout «  ■ Not enough memory!\n"; // If not, abort, 
exit(1);

))
II Allocate space for a dynamic two dimensional matrix[rows][cols] 
void BaseNet::AllocateColumns{FLOATPTR Matrix[], int nRows, int nCols) 
{ int i;

for (i = 0; i < nRows; i++)
AllocateVector(̂ Matrix[i], nCols);

)
void BaseNet::AllocateMatrix(MATRIX *Pmatrix, int nRows, int nCols)
{

if ((*Pmatrix = (MATRIX) calloc(nRows, sizeof(FLOATPTR)}) == NULL)
{ cout «  "Not enough memory!\n"; 

exit(1);
)AllocateColumns(*Pmatrix, nRows, nCols);

) ;
// Free the memory used by the Matrix
void BaseNet::FreeMatrix(MATRIX Matrix, int nRows)
{

int i ;
for (i = 0; i < nRows; i++) 

free(Matrix[i]); 
free(Matrix);

)
// Specific implementation of iteration loop 
// for a back-propagation network
void BackProp::Iterate(char Netname) { 

for (R = 0; R < nRuns; R++)
{

// Read and parse the run specification line 
// to obtain information about this network, 
fscanf(RunFile,

"%s %s %s %s %s %d %d %d %d %d %f %f", 
szResults, // output results file
szError, // error output file
szPattern, // pattern input file
szWeights, // initial weights file
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szWeightsOut, // 
APatterns, // 
Alterations, // 
AlnputNodes, // 
AHiddenNodes, // AOutputNodes, // 
&Eta, // 
&Alpha); //

final weights output file
number of patterns to learn
number of iterations through the data
number of input nodes
number of hidden nodes
number of output nodes
learning rate
momentum factor

// Allocate dynamic storage for nodes and patterns.
AllocateMatrix(&OutO, nPatterns,
AllocateMatrix(&Outl, nPatterns,
AllocateMatrix{&0ut2, nPatterns,
AllocateMatrix(&Delta2, nPatterns,
AllocateMatrix(&Delw2, nOutputNodes,
AllocateMatrix(&W2, nOutputNodes,
AllocateMatrix(ficDeltal, nPatterns,
AllocateMatrix(&Delwl, nHiddenNodes,
AllocateMatrix(&W1, nHiddenNodes,
AllocateMatrix(kTargetOutput,nPatterns, 
AllocateVector(tPatternID, nPatterns);

nlnputNodes); 
nHiddenNodes); 
nOutputNodes); 
nOutputNodes); 
nHiddenNodes + 1); 
nHiddenNodes + 1); 
nHiddenNodes); 
nlnputNodes + 1) ; 
nlnputNodes + 1); 
nOutputNodes)?

//ifstream WeightsInFile('WEIGHT.WTS*);
// Read the initial weight matrices.

if ((WeightsInFile = fopen(szWeights,"r")) == NULL)
{ cout << " Can't open file \n" << Netname «  szWeights; 

exit (1) ,*

// read inputrhidden weights
for (H = 0; H < nHiddenNodes; H++)

for ( 1 = 0 ;  I <= nlnputNodes; I++)
{

// WeightsInFile »  W1[H][I];
fscanf (WeightsInFile, “%f, &W1[H][I]); 
printf(’%f\n“,W1[H][I]);
Delwl[H][I) = 0.0;

)
// read hidden rout weights

for (J = 0; J < nOutputNodes; J++) 
for (H = 0; H <= nHiddenNodes; H++)
C fscanf(WeightsInFile, "%fB, &W2[J][H]); 

printf{■%f\n‘,W2[J][H]);
Delw2[J][H] = 0.0;

)fclose(WeightsInFile);
// Read in all patterns to be learned.

if ((PatternFile = fopen(szPattern, "r1)) == NULL)
{ cout «  " Can't open file \n■ «  Netname «  szPattern; 

exit(1);
)
for (P = 0; P < nPatterns; P++)
{ for (I = 0; I < nlnputNodes; I++)
// if (fscanf(PatternFile,"%f*, &OutO[P][I])!= 1)

fscanf(PatternFile,*%f",&OutO[P][I]);
// goto AllPatternsRead;

// Read in targedt outputs for input patterns, 
for (J = 0; J < nOutputNodes; J++)

{ fscanf (PatternFile, “%f*, &.TargetOutput (P] [ J ) ) ; 
printf(" %f\n’,TargetOutput(P](J]);)

// Read in identifier for each pattern.
fscanf(PatternFile, “%fB, &PatternID[P]); 
printf(■%f\n",PatternID(P]);

}AllPatternsRead: 
fclose(PatternFile);

// Then, we're done.



if (P < nPatterns)
{ cout << " Can't open file \n* «  Netname «  P «  nPatterns; 

nPatterns = P;
)

// open error output file
if ((ErrorFile = fopen(szError, "w")) == NULL)
{ cout << ■ Can't open file \n‘ «  Netname << szError; 

exit{1);
)fprintf(stderr, nlterations > 1 ? 'Training...\n’ : ’Testing\n“)

// Iteration loop
for (Q =0; Q < nlterations; Q++)
{ for {P = 0; P < nPatterns; P++)

{
// Hidden layer
// Sum input to hidden layer over all 
// input-weight combinations

for (H = 0; H < nHiddenNodes; H++)
{ float Sum = W1[H][nlnputNodes]; // Begin with bias

for ( 1 = 0 ;  I < nlnputNodes; I++)
Sum += Wl[H][I] * OutO[P][I];

// Compute output using sigmoid function.
Out1[P][H] = 1.0 / (1.0 + exp(-Sum));

)
// Output layer

for (J = 0; J < nOutputNodes; J++)
{ float Sum = W2[J][nHiddenNodes]; 

for (H = 0; H < nHiddenNodes; H++)
Sum += W2 [ J] [H] * Outl [ P] [H] ;

// Compute output using sigmoid function.
0ut2[P)[J ] = 1.0 / (1.0 + exp(-Sum));

)
// Delta output
// Calculate deltas for each output unit for each pattern, 

for (J = 0; J < nOutputNodes; J++)
Delta2[P](J] = {TargetOutput[P)[J] - 0ut2[P][J]) *

0ut2[P][J] * (1.0 - 0ut2[P ][J]);
II Delta hidden

for (H = 0; H < nHiddenNodes; H++)
{ float Sum = 0.0;for (J = 0; J < nOutputNodes; J++)

Sum += Delta2[P][J) * W2[J][H];
// Compute output using sigmoid function.
Deltal[P][H] = Sum * Outl[P)[H] * (1.0 - Outl[P][H]);

]

// Adapt weights hidden;output 
for (J = 0; J < nOutputNodes; J++)

{ float Dw; // delta weight
float Sum = 0.0;
// Sum of deltas for each output node for one epoch 
for (P = 0; P < nPatterns; P++)

Sum += Delta2[P][J];
// Calculate new bias weight for each output unit 
Dw = Eta * Sum + Alpha * Delw2[J][nHiddenNodesj; 
W2[J][nHiddenNodes) + = Dw;
Delw2[J][nHiddenNodes] = Dw; // delta for bias
// Calculate new weights



for {H =0; H < nHiddenNodes; H++)
{ float Sum = 0.0;

for (P = 0; P < nPatterns; P++)
Sum += Delta2(P][J] * Outl[P][H];

Dw = Eta * Sum + Alpha * Delw2[J][H];
W2[J][H] += Dw;
Delw2 [ J] [H] = Dw;

}

// Adapt weights input:hidden 
for (H = 0; H < nHiddenNodes; H++)
{ float Dw; // delta weight

float Sum = 0.0;
for (P = 0; P < nPatterns; P++)

Sum += Deltal[P][H];
// Calculate new bias weight for each hidden unit 
Dw = Eta * Sum + Alpha * Delwl[H](nlnputNodes]? 
W1[H][nlnputNodes] += Dw;
Delwl[H][nlnputNodes] = Dw;
// Calculate new weights
for ( 1 = 0 ;  I < nlnputNodes; I++)
{ float Sum = 0.0;

for (P = 0; P < nPatterns; P++)
Sum += Deltal[P][H] * Out0[P][I];

Dw = Eta * Sum + Alpha * Delwl[H][I];
W1[H][I] += Dw;
Delwl[H][I] = Dw;

)

// Watch for keyboard requests 
if (kbhit())
{

int c = getch();
if ((c = toupper(c)) == 'E')

KeyboardReguest++; 
else if (c == ESC)

break; // End if ESC request
}

// Sum Squared Error
if (KeyboardReguest I I (Q % ErrorFreq == 0))
{ for (P = 0, Error = 0.0; P < nPatterns; P++)

{ for (J = 0; J < nOutputNodes; J++)
{ float Temp = TargetOutput[P] fJ) - Out2[P][J] 

Error += Temp * Temp;
)
// Average error over all patterns 
Error /= nPatterns * nOutputNodes;
// Print iteration number and error value 
fprintf(stderr,"Iteration %5d/%-5d Error %f\n",

Q, nlterations, Error);
KeyboardRequest = 0;
if (Q % ErrorFreq == 0)

fprintf(ErrorFile, "%d %f\n’, Q, Error); // to file 
// Terminate when error satisfactory 
if (Error < ErrorLevel) 

break;
)

)// End iterate loop
// Display error, iterations, etc.
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for (P = 0, Error = 0.0; P < nPatterns; P++)
{ for (J = 0; J < nOutputNodes; J++)

{ float Temp = TargetOutput[P][J] - 0ut2{P][J];
Error += Temp * Temp ?

)
}
// Average error over all patterns 
Error /= nPatterns *nOutputNodes;
// Print final iteration number and error value 
fprintf(stderr, "Iteration %5d/%-5d Error %f\n", Q, 

nlterations, Error); /* to screen */ 
fclose(ErrorFile);
// Print final weights
if ((WeightsOutFile = fopen(szWeightsOut,"w“)) == NULL)
{ cout «  " Can't write file\n" «  Netname «  szWeightsOut; 

exit(1);
I
for (H = 0; H < nHiddenNodes; H++) 

for ( 1 = 0 ;  I <= nlnputNodes; I++)
fprintf(WeightsOutFile, "%g%cp, W1[H][I],

1%ITEMS==ITEMS-1 ? '\n':' ');
for (J = 0; J < nOutputNodes; J++) 

for (H = 0; H <= nHiddenNodes; H++)
fprintf(WeightsOutFile, "%g%c", W2[J][H],

J%ITEMS==ITEMS-1 ? '\n':' ');
fclose(WeightsOutFile);
// Print final activation values
if ((ResultsFile = fopen(szResults,"w")) == NULL)
{ cout «  " Can't write file \n" «  Netname «  szResults; 

ResultsFile = stderr;
)
// Print final output vector 
for (P =0; P < nPatterns; P++)
{// cout «  ResultsFile «  P;

for (J = 0; J < nOutputNodes; J++) 
cout «  Out2[P][J]«  endl;

// temp=Out2[P][J];
// printf("%f",temp);
// cout«0ut2 [P] [ J] ;

// cout «  ResultsFile «  "\n“ «  PatternID[P];
// cout«"\n"« PatternID[P] ;
)fclose(ResultsFile);

// Free memory used for Matrix 
FreeMatrix(OutO, nPatterns);
FreeMatrix(Outl, nPatterns);
FreeMatrix(Deltal, nPatterns);
FreeMatrix(Delwl, nHiddenNodes);
FreeMatrix(Wl, nHiddenNodes);
FreeMatrix(0ut2, nPatterns);
FreeMatrix(Delta2, nPatterns);
FreeMatrix(Delw2, nOutputNodes);
FreeMatrix(W2, nOutputNodes);
FreeMatrix(TargetOutput, nPatterns); 
free(PatternID);

)
fclose(RunFile); // Close Run file

// Main program : creates and runs a BackProp Network



BackProp Bp; // Instance of a BackProp network
char *Netname = *argv; // netname is read from argument list

// Read arguments from DOS command line 
for (; argc > 1; argc--)
{ char *arg = *++argv; 

if (*arg != '-')
break;

switch (*++arg)
( case ' e' : sscanf(++arg, “%dB, &Bp.ErrorFreq); break;
case 'd': sscanf(++arg, “%f", &Bp.ErrorLevel); break;
default: break;

))if (argc < 2)
{ fprintf[stderr, ’Usage: %s {-en -df) runfilename\n“, Netname); 

fprintf(stderr, ■ -en => report error every n iterationsNn");
fprintf(stderr, ’ -df => done if sum squared error < f\np);
exit(1);

)
// Open run file for reading
if ((Bp.RunFile = fopen(*argv, arB)) == NULL)
{ cout «  ■ Can't open file \nB «  Netname «  *argv; 
exit{1);

}

void main(int argc, char *argv(]) {

fscanf(Bp.RunFile, B%dB, &Bp.nRuns); // Scan for no. of runs
Bp.Iterate(*Netname); // Iterate a BackProp network.



APPENDIX B.

IMAGE SET WITH FEATURES



! Image Numbers and Features 
! Feature Number and Feature 
! 1 - Irregularity Index 
! 2 - Percent Asymmetry 
! 3,4,5 • Variance of Red Green Blue Planes 
! 6,7,8 - Relative chromaticity
! 9,10,11 - Spherical Transform  -Length, Angle A, Angle B 
! 12,13,14 -Lightness, Chroma, Hue 
! 15 - Elevation greater than 1mm 
! 16 - Area greater than 6mm

!1062n.pic -ski
1.031 5.733 19 10 11 0.0691178 -0.0328287 -0.0362891 164 70 19 58 42 15 
& 1 1 0

! 1069n.pic -sk 2
1.017 8.834 17 10 8 0.00135021 -0.00397274 0.00262253 164 75 16 66 50 20 
& 1 10

!1070n.pic -sk 3 ()
1.128 10.451 13 5 6 -0.0307848 0.00723781 0.023547 144 66 23 57 34 17 
& 1 10

!1080n.pic -sk 4 ()
1.193 19.798 17 9 7 -0.0389408 0.000944793 0.037996 150 64 25 58 30 36 
& 1 10

!1083n.pic -sk 6 ( )
1.206 18.050 14 8 6 -0.0223464 -0.0023347 0.0246811 165 65 26 62 29 12 
& 1 1 0
!1087n.pic -sk 6 ()
1.034 8.321 9 7 6 0.0440858 -0.0213571 -0.0227287 213 73 22 68 41 32 
& 0  1 0

! 1090n.pic -sk 7 ()
1.02 1 8.321 11 12 9 0.116759 -0.0603349 -0.0564245 241 74 21 71 44 31 
& 1 1 0
!1091n.pic -sk 8
1.102 7.321 13 7 7 0.0548701 -0.0408009 -0.0140693 170 70 21 61 38 19 
& 1 1 0

!1092ncmp.pic -sk 9
1.056 12.174 13 6 7 0.013108 -0.0147382 0.00163018 156 74 15 54 50 14 
&  0 10

!l094ncmp.pic -sk 10
1.027 4.9049 6 7 7 0.0325351 -0.0129994 -0.0195357 223 67 24 59 39 32 
& 0 1 0
!2007ncmp.pic -sk 11
1.012 4.125 7 4 3 0.0960578 -0.0341857 -0.0618721 168 80 13 54 61 22
& 1 1 0

!2037ncmp.pic -sk 12
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1.352 5.886 18 7 5 0.346447 -0.1944 -0.152047 85 88 3 32 90 41 
& 1 10

12059n.pic -sk IS
1.136 13.475 14 3 3 0.191546 -0.112665 -0.0788812 38 86 13 20 62 34 
& 1 1 0
!2087ncmp.pic -sk 14
1.157 8.455 13 6 7 -0.00686729 -0.00569877 0.0125661 156 72 15 54 50 14 
& 1 0 0

I2105ncmp.pic -sk 15
1.041 9.632 12 14 8 -0.115576 0.0538567 0.0617192 64 21 61 23 12 12 
& 1 0 0
!211ncmp.pic -sk 16
1.015 4.432 1 14 12 0.0516641 -0.0246662 -0.0269979 319 70 34 88 32 73 
& 1 1 0
I2160ncmp.pic -sk 17
1.168 6.930 17 9 7 -0.27037 0.134001 0.136369 223 67 24 59 39 32 
& 1 1 0
I2161ncmp.pic -sk 18
1.048 2.472 1 14 12 -0.29676 0.176275 0.120485 64 21 61 23 12 12 
& 1 1 0
11286n.pic -sk 19
1.120 9.265 4 3 3 0.101622 -0.0475972 -0.0540251 176 78 13 56 59 21 
&0  10

!2189ncmp.pic -sk 20
1.355 11.250 8 4 4 -0.0234213 0.00143669 0.0219846 103 75 13 44 49 12 
& 1 1 0
12190n.cmp.pic -sk 21
1.101 8.213 7 1 8 0.0616013 -0.0360363 -0.0255651 112 76 11 41 42 11 
& 1 1 0

!1056n.pic sk -22
1.153 11.905 11 2 3 -0.0131334 0.00503908 0.00809427 120 69 20 51 37 9 
& 1 1 0
!1057n.pic sk -23
1.079 12.217 20 7 9 -0.0354573 0.0147691 0.0206882 175 66 22 61 38 22 
& 1 0 0

! 106 In.pic sk -24
1.032 8.321 5 7 8 0.0535 -0.0216394 -0.0318606 256 68 22 72 41 13 
& 1 0 0

!1066n.pic sk -25
1.021 10.543 22 12 8 0.0623497 -0.0453598 -0.0169899 179 74 21 62 41 31 
& 1 0 0

! 1084n.pic sk -27
1.024 8.321 16 8 7 0.0640028 -0.0433885 -0.0206143 168 71 21 60 38 21
& 1 0 0
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! 1070n sk -33
1.128 10.541 30 12 8 0.0843952 -0.0587258 -0.0256694 21 24 38 31 69 38 
& 1 0 0

11071 s k -34
1.036 3.194 22 12 7 0.10456 -0.0310324 -0.0735272 17 15 39 32 57 37 
& 1 0 0

11072 sk -35
1.073 6.675 26 14 5 0.168369 -0.115165 -0.0532037 20 18 37 31 60 33 
& 1 0 0

11073 sk -36
1.052 6.482 21 15 6 0.155799 -0.123364 -0.032435 31 19 33 30 69 35 
& 1 00

11074 8k -37
1.036 4.800 33 24 9 0.220329 -0.163921 -0.0564075 22 31 31 32 72 39 
& 1 0 0

11075 sk -38
1.253 12.523 23 14 7 0.157201 -0.121593 -0.0356081 21 34 32 31 79 41 
& 1 0 0

11076 sk -39
1.141 7.038 32 15 7 0.199476 -0.207951 0.00847509 21 34 32 32 77 37 
& 1 0 0

11285 sk -40
1.042 9.900 29 12 4 0.230517 -0.261197 0.03068 21 31 41 31 72 34 
& 1 1 0

!2185ncmp.pic -sk 41
1.103 5.023 6 2 3 0.1283 -0.0684647 -0.059835 157 82 9 50 69 24 
& 1 10

!1100n.pic sk -42
1.073 9.873 20 10 12 0.0749288 -0.0321937 -0.042735 185 74 15 59 53 15 
& 1 0 0

!1097ncmp.pic -idn 1
1.160 20.732 15 3 3 -0.0133534 0.000698402 0.012655 153 72 17 55 46 14 
& 0 0 0

!1103n.pic -idn 2
1.174 8.539 6 3 3 0.0661081 -0.0302028 -0.0359054 189 75 14 58 57 15 
&0  10

!1104n.pic -idn 3
1.146 10.609 6 3 4 0.0872334 -0.0372876 -0.0499458 234 76 13 63 64 17 
&0  10

!1107ncmp.pic -idn 4
1.033 4.491 9 7 4 0.263736 -0.131639 -0.132097 133 80 15 51 52 32 
& 1 10

!lll2 n .p ic  -idn 5
1.017 2.501 24 14 9 0.013667 -0.0223494 0.0086824 146 76 20 56 41 32
& 1 0 0
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!1115n.pic -idn 6
1.101 8.016 23 11 9 0.0527529 -0.0609775 0.00822463 145 72 21 54 43 31 
& 1 0 0

!lll9n .pic -idn 7
1.017 5.699 7 8 8 0.0630696 -0.0340714 -0.0289982 213 76 16 63 55 30 
& 1 0 0
IllBncmp.pic -idn 8
1.049 7.317 13 7 4 0.183424 -0.0934123 -0.0900115 139 83 11 49 64 33 
& 1 0 0
!116n.pic -idn 9
1.096 7.123 8 8 7 0.0821575 -0.0497772 -0.0323803 221 74 19 67 48 25 
& 0  1 0

!1161n.pic -idn 10
1.035 6.703 8 15 13 0.0307125 -0.0208465 -0.009866 257 71 26 76 35 38 
& 0 0 0
11260n.pic -idn 11
1.057 11.404 10 8 8 0.0519384 -0.036266 -0.0156724 178 72 19 60 44 18 
& 1 10

!1274n.pic -idn 12
1.083 8.058 5 1 1 -0.0677258 0.0186354 0.0490905 136 67 22 55 34 10 
&0  10

11277n.pic -idn 13
1.178 13.033 9 2 2 -0.033558 0.00336927 0.0301887 93 72 19 45 35 17 
& 0  1 0

!1278n.pic -idn 14
1.114 3.756 9 3 4 -0.0300774 0.00930613 0.0207713 120 69 19 51 38 13 
& 1 0 0

! 1280n.pic -idn 15
1.120 5.499 9 4 5 -0.031015 0.00125313 0.0297619 119 76 14 48 49 16 
& 0  1 0

!241ncmp.pic -idn 16
1.081 2.828 26 15 7 0.18071 -0.0825137 -0.0981966 155 84 18 57 59 54 
& 0 1 0

12019 2 idn -17
1.041 9.645 7 7 6 0.116756 -0.0631656 -0.0535906 138 83 12 49 63 34 
& 0 0 0
12020 3 idn -18
1.008 5.963 9 7 5 0.146491 -0.0794678 -0.0670234 133 82 11 48 62 30 
& 0 0 0
12021 4 idn -19
1.046 3.140 11 6 4 0.113997 -0.0585859 -0.0554113 107 87 7 40 82 40 
& 0 00
12052 6595 5 idn -20
1.114 9.132 11 5 4 0.108052 -0.0614302 -0.0466216 131 84 8 45 71 28 
& 0 0 0
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12068 22186 6 idn -21
1.065 8.227 10 6 5 0.0716841 -0.0437076 -0.0279765 186 82 9 54 72 23 
&0  00
12071 16501 7 idn -22
1.019 9.639 8 4 4 0.0932401 -0.0441357 -0.0491044 130 84 7 44 72 28 
& 0 00
12144 49941 idn -23
1.187 12.122 10 6 6 0.0821358 -0.0388926 -0.0432432 134 77 12 49 56 16 
&0  00
127 29214 idn -24
1.040 5.590 15 9 6 0.131056 -0.078216 -0.0528394 154 83 9 50 69 29 
&0  00

! 1256n.pic idn -25
1.145 5.08 21 6 5 0.120136 -0.0680946 -0.0520415 167 76 15 56 53 18 
& 1 1 0
! 1257n.pic idn -26
1.053 4.05 20 8 8 0.0755894 -0.0377947 -0.0377947 174 75 15 57 63 16 
&1 0 0
!l259n.pic idn -27
1.114 5.468 17 10 10 0.0939308 -0.0469654 -0.0469654 187 76 14 58 67 17 
& 1 0 0

!1262n.pic idn -28
1.075 8.315 6 7 7 0.146951 -0.0772348 -0.069716 189 76 13 58 69 16 
& 1 0 0

! 1263n.pic idn -29
1.098 12.453 23 9 7 0.105208 -0.0554246 -0.0497834 147 75 17 54 45 22 
& 1 0 0

11264n.pic idn -30
1.088 6.925 9 7 7 0.0446026 -0.0235633 -0.0210492 187 75 16 59 55 18 
& 1 0 0
!1266n.pic idn -31
1.055 7.989 9 10 11 0.105228 -0.0519599 -0.0532679 210 74 16 63 54 18 
& 1 0 0
!1267n.pic idn -32
1.143 11.999 9 5 6 0.0905609 -0.0455797 -0.0449812 215 76 13 61 61 16 
& 1 0 0
!1268n.pic idn -33
1.045 4.818 21 7 6 0.110261 -0.0593543 -0.0509067 162 74 17 57 47 18 
& 1 00
!1272n.pic idn -34
1.011 4.432 11 7 8 0.0464534 -0.0302478 -0.0162057 195 74 16 61 53 17 
& 1 0 0
!1275n.pic idn -35
1.135 9.982 18 8 9 0.0890631 -0.0519898 -0.0370733 163 75 14 55 53 15 
& 1 0 0
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!2022ncmp.pic idn -36
1.032 5.321 13 7 6 0.0503824 -0.0276247 -0.0228576 132 83 12 49 63 37 
& 1 0 0

!207ncmp.pic idn -37
1.065 5.321 20 18 13 0.241703 -0.0891783 -0.152524 216 78 20 67 61 43 
& 1 0 0

IllOln.pic -38 idn
1.021 6.211 17 12 12 0.0871868 -0.0509664 -0.0362205 222 72 16 64 53 13 
& 1 0 0

U108n -39 idn
1.032 6.432 17 9 10 0.115745 -0.0630272 -0.0527179 202 74 14 60 57 14 
& 1 0 0

!lll3 n  -40 idn
1.042 7.322 8 14 12 0.0986730 -0.00302G1 -0.0050474 238 70 22 70 40 28 
& 1 0 0

12016 idn - 41
1.217 6.741 10 11 10 0.163615 -0.0854795 -0.0781355 159 79 11 52 63 21 
& 0 0 0

!133ncmp.pic -dys 1
1.062 8.873 6 21 17 0.145339 -0.0506433 -0.0946962 269 76 26 77 43 53 
&0  10
!141ncmp.pic -dys2
1.105 6.668 22 14 7 0.170337 -0.0828349 -0.0875022 136 84 13 50 61 42 
& 1 1 0
!l43ncmp.pic-dys 3
1.157 2.784 26 12 7 0.214605 -0.106758 -0.107848 137 84 12 49 63 40 
&0  10

!156ncmp.pic -dys 4
1.043 4.766 10 14 9 0.160594 -0.0688262 -0.0917682 231 80 21 70 55 52 
&0  10

!l57ncmp.pic -dys 6
1.120 8.718 23 12 6 0.174069 -0.0826866 -0.091383 150 83 17 65 56 51 
& 0  1 0

!158ncmp.pic -dys 6
1.132 16.294 18 11 8 0.204943 -0.105352 -0.0995905 180 84 10 64 73 35 
& 0 10

!159ncmp.pic -dys 7
1.234 17.649 18 27 19 0.140179 -0.0449167 -0.0962622 234 78 25 73 49 61 
& 0 1 0
!160ncmp.pic -dys 8
1.227 19.758 18 5 1 0.277632 -0.137794 -0.139839 116 89 5 40 98 48
&0 10

!218ncmp.pic -dys 9
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1.140 17.866 17 28 26 0.150561 -0.0567199 -0.0938408 238 72 27 74 35 48 
& 0 1 0

I219ncmp.pic -dys 10
1.098 4.250 9 5 3 0.132369 -0.0712994 -0.0610694 162 64 15 56 63 45 
& 0  1 0

!220ncmp.pic -dys 11
1.184 1.852 17 9 5 0.109123 -0.0722351 -0.0368875 166 82 15 56 59 38 
& 0 1 0
!475ncmp.pic -dys 12
1.272 25.290 29 22 12 0.13804 -0.0698198 -0.0682204 206 81 21 66 55 56 
& 0 0 0
I482ncmp.pic -dys 13
1.071 9.600 27 12 5 0.206347 -0.119573 -0.0867738 101 86 11 42 71 51 
& 0 0 0

I484ncmp.pic -dys 14
1.031 8.342 25 13 7 0.0539652 -0.0339897 -0.0199755 155 77 18 56 46 31 
&0 0 0
!486ncmp.pic -dys 15
1.040 7.947 13 7 4 0.125833 -0.0723079 -0.053525 146 79 17 55 49 35 
& 0 0 0
I487ncmp.pic -dys 16
1.053 8.480 13 11 7 0.0387884 -0.0209809 -0.0178075 129 79 20 54 45 49 
& 0 0 0
!49ncmp.pic -dys 17
1.102 11.510 20 20 16 0.0776418 -0.0506528 -0.026989 109 70 25 51 27 30 
& 0  10
!490ncmp.pic -dys 18
1.119 14.532 3 0 0 0.226667 -0.173333 -0.0533333 23 90 21 13 72 44 
& 0  10

!496ncmp.pic -dys 19
1.047 9.338 6 10 5 0.273172 -0.155574 -0.117598 83 85 16 42 64 59 
& 0 0 0
!497ncmp.pic-dys 20
1.032 7.431 7 2 0 0.279339 -0.204959 -0.0743802 54 89 0 23 92 45 
& 0 0 0
I499ncmp.pic-dys 21
1.008 5.586 18 24 18 -0.00818678 0.00596321 0.00222357 135 77 24 56 41 59 
& 0 0 0
!500ncmp.pic-dys 22
1.098 13.380 10 15 10 0.158599 -0.0872711 -0.071328 159 78 18 57 49 37 
& 0 0 0

!216ncmp.pic -dys 23
1.086 12.711 10 10 6 0.126032 -0.0737281 -0.0523043 216 81 15 63 63 37
& 0 1 0
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!502ncmp.pic-dys 24
1.012 9.872 14 4 1 0.287735 -0.185373 -0.102362 56 89 2 25 87 47 
& 0 1 0
!503ncmp.pic-dys 25
1.012 8.765 10 5 2 0.141607 -0.0763629 -0.0652446 171 79 25 64 45 62 
& 0 0 0
!504ncmp.pic-dys 26
1.032 8.3421 14 8 3 0.117862 -0.0829299 -0.0349323 107 79 16 47 46 36 
& 0 0 0
!506ncmp.pic-dys 27
1.032 7.321 24 13 7 0.188732 -0.100218 -0.0885141 135 86 13 50 69 50 
& 0 0 0
!507ncmp.pic-dye 28
1.021 6.443 26 16 10 0.141358 -0.0672615 -0.0740963 100 83 18 46 54 58 
& 0 0 0
IS08ncmp.pic-dys 29
1.046 8.222 16 24 21 0.127917 -0.0341737 -0.0937431 166 72 24 61 34 34 
& 0  00

!509ncmp.pic -dys 30
1.101 5.321 21 14 10 0.140047 -0.0712651 -0.0687816 114 77 20 61 38 40 
& 0 0 0
!510ncmp.pic-dys 31
1.005 9.082 22 13 8 0.133109 -0.0710516 -0.0620577 120 80 16 49 49 37 
& 0 0 0
IBllncmp.pic -dys 32
1.0998 6.504 15 7 3 0.250911 -0.148865 -0.102047 72 88 5 31 83 47 
& 0  00
!513ncmp.pic-dys 33
1.018 7.247 21 16 9 0.193961 -0.10456 -0.0894005 106 86 14 44 68 54 
& 0 0 0
!514ncMp.pic -dys 34
1.044 10.826 22 15 7 0.194506 -0.109888 -0.0846171 96 85 14 43 66 54 
& 0 0 0
!515ncmp.pic-dys 35
1.014 4.368 7 12 6 0.205376 -0.106605 -0.0987711 105 85 18 48 66 63 
&0  00
!616ncmp.pic -dys 36
1.095 3.662 15 8 5 0.195002 -0.107989 -0.0870132 69 81 16 38 44 43 
& 0 0 0
!517ncmp.pic-dys 37
1.118 15.775 21 10 4 0.201378 -0.127981 -0.0733965 73 88 6 32 81 49 
& 0 0 0
!518ncmp.pic -dy6 38
1.068 5.029 11 8 5 0.157976 -0.0847907 -0.0731849 136 86 12 50 71 47
& 0 0 0
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)522ncmp.pic -dys 40
1.163 11.136 22 19 9 0.205653 -0.109019 -0.0966339 97 85 18 45 62 64 
& 0 0 0
!523ncmp.pic -dys 41
1.118 14.871 8 16 9 0.121843 -0.0789141 -0.0429293 120 80 24 54 46 65 
& 0 0 0
!524ncmp.pic -dys 42
1.066 9.132 5 10 7 0.0829462 -0.0529668 -0.0299794 118 84 16 49 64 52 
& 0 0 0
!526ncmp.pic-dys 43
1.010 4.314 14 13 10 0.119831 -0.0591585 -0.0606725 146 81 16 54 54 39
& 0 0 0
!527ncmp.pic -dys 44
1.090 6.920 20 13 6 0.200477 -0.109688 -0.090789 96 86 14 43 68 57 
& 0 0 0
!528ncmp.pic -dys 45
1.021 7.642 13 12 7 0.0994053 -0.0525721 -0.0468332 130 83 17 52 59 53 
& 0 0 0

!521ncmp.pic-dys 39
1.096 10.993 11 10 6 0.216075 -0.123325 -0.0927504 146 84 15 54 63 48
&000

!529ncmp.pic-dys 46
1.208 17.275 16 8 4 0.138636 -0.0740909 -0.0645455 88 87 13 4 1 70 54 
& 0  00
I530ncmp.pic-dys 47
1.302 11.303 4 7 5 0.213229 -0.132196 -0.0810335 120 82 14 48 55 38 
&0 0 0

!531ncmp.pic-dys 48
1.160 7.600 13 6 2 0.322011 -0.210499 -0.111511 58 89 7 30 78 54 
&0 0 0
!532ncmp.pic -dys 49
1.246 14.695 18 10 7 0.205027 -0.105606 -0.0994211 107 85 11 43 66 44 
& 0 1 0
!533ncmp.pic-dys 50
1.031 11.285 17 10 4 0.051419 -0.0373818 -0.0140372 80 79 17 4 1 4 1 37 
& 0  10

!534ncmp.pic-dys 51
1.155 13.234 28 21 11 0.134924 -0.0692665 -0.0656577 128 83 23 54 54 67 
& 0  00
!535ncmp.pic -dys 52
1.015 12.214 12 12 6 0.0594883 -0.0368852 -0.0226031 96 84 18 46 59 61 
& 0 0 0
!537ncmp.pic -dys 53
1.031 5.177 22 13 6 0.257882 -0.131213 -0.126669 100 87 12 43 72 54
& 1 1 0

!538ncmp.pic-dys 54
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1.168 26.471 15 5 2 0.320127 -0.189237 -0.13089 98 89 3 35 100 47 
& 0  1 0

!539ncmp.pic -dys 55
1.015 7.508 17 8 5 0.101143 -0.0586939 -0.042449 96 84 12 42 57 39 
& 0 0 1

!540ncmp.pic -dys 56
1.020 10.072 18 15 9 0.142786 -0.078607 -0.0641791 98 84 13 42 65 47 
& 0 1 0

I641ncmp.pic-dys 57
1.066 12.906 18 8 5 0.197635 -0.102055 -0.09558 92 87 10 39 75 48 
& 0 0 0

1542ncmp.pic-dys 58
1.145 18.876 21 14 7 0.18842 -0.100308 -0.0881125 93 86 15 43 67 58 
& 1 0 0

!543ncmp.pic-dys 59
1.114 14.183 11 11 7 0.123471 -0.0629612 -0.0605102 169 79 22 62 46 50 
& 0  1 0

!544ncmp.pic-dys 60
1.113 13.279 17 12 7 0.208518 -0.147572 -0.0609461 108 85 14 46 63 49 
&0 1 0
!545n.pic-dys 61
1.288 11.643 22 28 19 0.0809524 -0.0449735 -0.0359788 192 70 35 70 26 76 
& 0 1 0

!546n.pic -dys 62
1.038 4.373 17 6 3 0.223604 -0.130697 -0.0929074 104 86 10 42 69 44 
& 0 1 0

!547n.pic -dys 63
1.085 5.445 21 10 7 0.18869 -0.0928571 -0.0958333 83 81 12 38 49 28 
& 0  10

!548n.pic-dys 64
1.240 18.830 17 10 8 0.179803 -0.0909438 -0.0888588 146 77 14 53 52 24 
&0  10

!549n.pic -dys 65
1.059 4.686 26 14 10 0.0660927 -0.0307781 -0.0353146 129 71 23 54 31 25 
& 0  10

!550n.pic-dys 66
1.066 11.685 18 9 4 0.250476 -0.134286 -0.11619 110 86 13 45 66 49 
&0  10

!551ncmp.pic-dys 67
1.063 6.800 14 13 10 0.18094 -0.12279 -0.0581502 133 80 18 53 49 44 
&0  10
!552ncmp.pic -dys 68
1.016 6.320 21 20 13 0.155285 -0.0897358 -0.0655488 114 82 20 50 52 56 
& 0 1 0

!553ncmp.pic-dys 69
1.180 11.580 23 15 8 0.170833 -0.0902778 -0.0805556 106 85 17 47 64 60
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& 0 10

!656ncmp.pic-dys 71
1.423 11.672 15 6 3 0.216049 -0.123457 -0.0925926 71 88 5 31 80 43 

&0 10

!556ncmp.pic-dys 72
1.043 11.554 6 1 2 0.0481713 -0.0448508 -0.00332045 81 74 17 42 38 19 
& 0 1 0

I658ncmp.pic -dys 73
1.313 25.546 16 12 4 0.288543 -0.174943 -0.113599 66 88 9 32 77 56 
& 0 10

l659nomp.pio dys 74
1.051 8.623 114 0 0.198926 -0.150538 -0.0483871 66 89 4 29 90 61 
& 0  1 0

!561ncmp.pic -dys 75
1.089 8.243 10 12 8 0.153428 -0.0718737 -0.0816538 103 81 19 48 47 49 
&0  10

!562ncmp.pic -dys 76
1.089 5.180 7 13 8 0.119906 -0.0702758 -0.0496306 142 80 23 58 46 57 

& 010

!498ncmp.pic dys nevi - 77
1.093 9.018 14 3 1 0.288557 -0.168339 -0.120219 64 89 2 27 90 45 
&0  1 0

!495ncmp.pic dys nevi -78
1.066 18.638 8 8 3 0.249353 -0.165277 -0.0840759 61 88 8 31 75 51 
& 0  10

!494ncmp.pic dys nevi - 79
1.003 3.651 9 12 7 0.2125 -0.116429 -0.0960714 82 83 17 42 56 66 
& 0 1 0

!493ncmp.pic dys. nevi - 80
1.053 6.838 10 10 6 0.25 -0.134615 -0.115385 60 86 14 34 62 57 
& 0 1 0

!489ncmp.pic dys. nevi - 81
1.031 5.388 10 18 10 0.128388 -0.0688155 -0.0595722 159 82 25 62 57 70 
&0 1 0

!488ncmp.pic dys. nevi - 82
1.021 6.580 23 19 13 0.10323 -0.0522811 -0.0509491 161 80 21 59 52 55 
&0  1 0

!44ncmp.pic dys. nevi - 83
1.298 11.543 10 19 19 0.142043 -0.0577351 -0.0843075 116 67 31 65 19 45 
& 0 1 0

!40 48612 dys. nevi -84
1.214 19.065 17 17 17 0.183959 -0.0714789 -0.11248 133 68 25 56 28 29 
&0  1 0

!554ncmp.pic -dys 70
1.061 12.236 23 11 5 0.124734 -0.0616991 -0.0631363 101 83 17 46 60 50

& 0 1 0
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141 12468 dys. nevi -86
1.167 16.32 23 24 22 0.163334 -0.074249 -0.0890849 176 70 25 63 31 31 
& 0  1 0

1474 2147 dys. nevi -86
1.013 6.624 30 20 10 0.132268 -0.0707044 -0.0615532 127 81 20 53 47 53 
& 0 10

!476 2528 dys. nevi -87
1.038 7.879 15 18 14 0.10009 -0.049968 -0.0501221 222 76 19 66 50 31 
& 0  1 0

!478 2608 dys. nevi -88
1.146 6.119 10 18 18 0.127568 -0.0612033 -0.0663644 200 67 25 67 31 16 
&0  10

1479 2267 dys. nevi -89
1.189 12.896 33 20 9 0.170581 -0.0844125 -0.0861682 142 84 17 54 60 55 
& 0  10

!480 6012 dys. nevi -90
1.143 7.384 23 22 13 0.180189 -0.101745 -0.0784441 181 80 19 62 52 49 
&0  10

!481 15840 dys. nevi -91
1.082 5.884 20 8 4 0.181986 -0.101299 -0.0806871 84 86 11 39 64 45 
& 0 1 0
1483 90 dys. nevi -92
1.106 14.673 27 17 8 0.0707658 -0.0407862 -0.0299806 185 77 21 63 45 42 
&0  1 0

!484 1970 dys. nevi -93
1.008 3.700 23 12 7 0.056357 -0.0390921 -0.0172649 163 77 18 56 46 30 
& 0  10

!485 1892 dys. nevi -94
1.066 12.019 21 14 8 0.0916667 -0.0495098 -0.0421569 146 81 17 55 52 45 
& 0 1 0
!490 4509 dys. nevi -95
1.119 14.572 8 1 0 0.226667 -0.173333 -0.0533333 36 89 0 17 81 45 
&0  10

!500 1424 dys. nevi -96
1.098 13.380 10 15 10 0.158599 -0.0872711 -0.071328 159 78 18 57 49 37 
& 0  1 0

!501ncmp.pic-dys 97
1.032 12.22 24 24 14 0.108512 -0.0597078 -0.0488047 146 76 28 60 34 63 
& 0 0 0

!43ncmp.pic -dys 98
1.047 3.732 6 3 2 0.14157 -0.06196 -0.0796101 95 73 23 49 29 36
& 0  1 0
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!304ncmp.pic -mel 2
1.368 7.887 27 13 5 0.128994 -0.0631023 -0.0658918 104 85 17 47 57 56 
& 1 1 1
!305ncmp.pic -mel 3
1.161 6.686 11 15 10 0.167401 -0.0964374 -0.0709634 208 83 10 57 77 32 
& 0 1 1

I308ncmp.pic -mel 4
1.354 22.706 19 9 7 0.0622807 -0.0392756 -0.0230051 16 1 78 16 56 5 1 28 
& 0 1 1

!315ncmp.pic -mel 5
1.252 16.447 19 11 9 0.13216 -0.0693582 -0.0628019 109 82 12 a  56 32 
& 0 1 1

t318ncmp.pic -mel 6
1.249 18.419 10 4 3 0.115542 -0.066803 -0.0487389 91 86 7 38 67 34 
& 0 1 1

!320ncmp.pic -mel 7
1.203 21.469 20 12 7 0.133948 -0.0768223 -0.0571257 65 87 9 32 69 50 
& 1 1 1
!324ncmp.pic -mel 8
1.592 10.968 14 7 4 0.222871 -0.106973 -0.115897 78 85 12 38 58 44 
& 0 1 1
!325ncmp.pic -mel 9
1.225 19.299 18 6 5 0.140449 -0.0702247 -0.0702247 129 80 14 50 51 30 
& 0 1 1

!330ncmp.pic -mel 10
1.137 11.828 14 8 5 0.189286 -0.0988095 -0.0904762 95 85 11 41 64 42 
& 1 1 1
!333ncmp.pic -mel 11
1.205 13.853 11 3 2 0.186992 -0.097561 -0.0894309 91 80 13 42 48 27 
& 0 1 1

!334ncmp.pic -mel 12
1.317 23.449 15 11 9 0.10816 -0.0528886 -0.05527 1 75 72 21 42 30 27 
& 0 1 1

!335ncmp.pic -mel 13
1.131 26.770 25 8 6 0.0821502 -0.0487085 -0.0334417 121 83 12 47 58 35 
& 0 1 1
!340n.pic -mel 14
2.342 43.468 11 4 3 0.234465 -0.128411 -0.106064 71 85 11 36 54 39 
& 0 1 1

!303ncmp.pic -mel 1
1.002 10.314 41 24 17 0.021307 -0.0221893 0.000882383 149 75 22 57 37 37
& 0 1 1

!342ncmp.pic -mel 15
1,727 18.187 31 25 14 0.110295 -0.0599168 -0.050378 164 79 23 61 45 54
& 0  1 1

!343ncmp.pic -mel 16
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1.328 18.678 9 9 5 0,140825 -0.0858287 -0.0549962 215 84 15 63 70 46 
& 0 1 1

!345ncmp.pic -mel 17
1.647 29.141 11 26 21 0.0911901 -0.0402883 -0.0509018 267 72 28 78 36 52 
& 0 1 1

!350ncmp.pic -mel 18
1.157 11.195 14 7 4 0,314298 -0.157367 -0.156931 54 88 5 27 73 47 
& 1 1 1
!352ncmp.pic -mel 19
1.809 38.39 26 18 11 0.148915 -0.0599619 -0.0889532 107 83 20 49 50 60 
& 0 1 1

!353ncmp.pic -mel 20
1.128 14.27 0 10 5 0.150327 -0.0782794 -0.0720474 92 79 16 44 43 34 
& 0 1 1

!355ncmp.pic -mel 21
1.315 12.05 22 14 9 -0.0017011 -0.00908638 0.0107875 162 80 23 61 48 59 
& 0 0 1

I356ncmp.pic -mel 22
1.538 13.44 26 21 15 0.126084 -0.0819356 -0.0441488 167 77 20 59 45 40 
& 1 1 1
!357ncmp.pic -mel 23
1.391 20.958 14 22 14 0.0967153 -0.0499176 -0.0467977 247 77 24 73 47 52 
& 0 0 1
!358n.pie -mel 24
1.375 20.516 29 16 10 0.0399772 -0.0291483 -0.0108289 191 81 17 61 56 42 
& 0 0 1
!359ncmp.pic -mel 25
1.276 14.424 23 13 6 0.115062 -0.0531687 -0.061893 58 87 13 32 61 59 
& 0 1 1

!361ncmp.pic -mel 26
1.172 13.544 25 18 13 0.0601316 -0.0516219 -0.00850976 155 80 17 56 52 38 
& 1 1 1
!362ncmp.pic -mel 27
1.772 17.948 29 10 8 0.10652 -0.0461802 -0.0603403 102 82 15 45 49 40 
& 1 1 1
!363ncmp.pic -mel 28
1.194 9.613 9 16 12 0.0644723 -0.0281645 -0.0363078 270 74 30 80 38 66 
& 0 1 1

!364n.pic -mel 29
1.086 9.513 34 16 8 0.144444 -0.082846 -0.0615984 95 82 21 46 45 59 
& 0 1 1

!366ncmp.pic -mel 30
1.277 14.503 19 7 4 0.194758 -0.113564 -0.0811934 114 85 11 44 67 41 
& 0 1 1

!368ncmp.pic -mel 31
1.006 2.922 8 3 2 0.225699 -0.127635 -0.098064 63 88 8 32 66 44
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& l 11

!373ncmp.pic -mel 33
1.070 3.933 15 8 5 0.0943664 -0.0547818 -0.0395846 193 84 9 55 77 33 
& 0 1 1
!379ncmp.pic -mel 34
1.239 13.017 31 18 13 0.0373689 -0.0233889 -0.01398 169 76 21 60 42 37 
& 0 1 1
!380ncmp.pic -mel 35
1.025 7.680 13 7 5 0.0737474 -0.041749 -0.0319984 201 81 15 61 61 34 
& 0 11

!390ncmp.pic -mel 36
1.065 7.208 20 12 9 0.132051 -0.0769104 -0.0551402 147 78 19 56 44 38 
& 0 1 1
I392ncmp.pic -mel 37
1.017 2.868 14 5 3 0.0377666 -0.0116249 -0.0261417 92 78 15 43 45 27 
& 1 1 1
I393ncmp.pic -mel 38
1.426 18.037 10 9 8 0.227762 -0.125936 -0.101826 39 86 17 22 57 34 
& 1 1 1
I394ncmp.pic -mel 39
1.303 17.079 33 17 9 0.0993598 -0.0409916 -0.0583682 126 83 21 53 52 59 
& 0 1 1

1396nmp.pic -mel 40
1.134 9.216 12 10 7 0.22399 -0.132576 -0.0914141 34 88 5 20 67 49 
& 1 11
!397ncmp.pic -mel 41
1.882 28.123 22 16 15 0.0714966 -0.0360047 -0.0354919 192 73 20 63 42 25 
& 0 1 1

!402ncmp.pic -mel 42
1.939 20.821 33 17 9 0.0844585 0.00212446 -0.0865829 92 78 15 43 46 27 
& 0 1 1
!408ncmp.pic -mel 43
1.734 37.678 25 15 10 0.105073 -0.0489961 -0.0560769 187 76 25 66 39 53 
& 0 1 1

!413ncmp.pic -mel 44
1.588 20.317 19 11 7 0.0467873 -0.0153064 -0.0314809 178 82 13 57 63 36 
& 0 1 1
!423ncmp.pic -mel 45
2.513 37.156 22 16 15 -0.0947313 0.0362838 0.0584475 147 78 19 56 44 38 
& 0 1 1

I370ncmp.pic -mel 32
1.067 6.824 15 9 8 0.0741798 -0.0569789 -0.0172009 163 80 13 54 59 29
& 0 1 1

!427ncmp.pic -mel 46
1.927 21.983 20 15 11 0.190908 -0.113154 -0.0777543 199 84 10 56 78 34
& 1 1 1
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I451ncmp.pic -mel 48
1.374 25.129 6 3 1 0.236951 -0.120386 -0.116564 54 89 8 30 75 56 
&0 1 1

!430ncmp.pic -mel 47
2.120 33.625 25 8 5 0.256002 -0.132912 -0.12309 73 87 5 31 72 39
& 0 1 1

!453ncmp.pic mel • 49
1.207 13.952 32 23 17 0.101117 -0.0636073 -0.0375097 171 76 22 61 40 42 
& 1 1 1
I449ncmp.pic mel - 50
1.101 6.933 19 7 6 0.135948 -0.0620915 -0.0738562 72 85 11 35 63 46 
& 1 1 1

!448ncmp.pic mel - 51
1.056 6.406 24 9 4 0.265237 -0.125843 -0.139394 127 85 15 60 62 49 
&0 1 1
!447ncmp.pic mel - 52
1.040 4.521 21 13 9 0.0698387 -0.028629 -0.0412097 100 75 26 50 30 63 
& 1 1 1
!446ncmp.pic mel -53
1.423 13.723 17 11 8 0.0980695 -0.0369099 -0.0611696 78 80 20 42 40 51 
& 0 1 1

!442ncmp.pic mel -54
1.233 11.957 31 12 8 0.0461114 -0.0233622 -0.0227492 129 82 14 49 64 35 
&0 1 1

!441ncmp.pic mel -55
1.109 10.185 26 18 16 0.0140629 -0.0192942 0.00523138 142 78 14 51 52 27 
& 0 1 1

!439ncmp.pic mel -56
1.086 11.702 7 19 13 0.18146 -0.08708 -0.09438 241 79 21 71 54 50 
&0 1 1

!438ncmp.pic mel -57
1.072 10.586 25 14 10 0.10462 -0.0671013 -0.0374185 139 8117 53 61 40 
&0 1 1

!437ncmp.pic mel -58
1.218 19.313 30 13 6 0.130694 -0.0477818 -0.082912 109 82 18 48 48 48 
&0 1 1

!436ncmp.pic mel -59
1.181 21.203 16 17 11 0.191822 -0.0953228 -0.0964992 200 81 17 62 59 42
& 0  1 1
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!431ncmp.pic mel -60
1.084 15.836 19 7 6 0.180102 -0.090321 -0.0897807 154 82 12 52 62 31
&0 1 1

!425ncmp.pic mel -61
1.102 11.080 30 15 11 0.164723 -0.0892837 -0.0754392 114 84 12 45 61 40 
& 1 1 1

!424ncmp.pic mel -62
1.105 9.108 29 12 7 0.105187 -0.0488049 -0.0563824 104 83 18 47 52 54 
& 1 1 1

!407ncmp.pic mel -63
1.055 5.664 13 4 3 0.151061 -0.088169 -0.0628915 79 78 14 40 43 24
fr.O 1 1

I406ncmp.pic mel -64
1.450 29.808 20 9 7 0.129347 -0.0608645 -0.0684824 183 77 17 60 51 29 
&0 1 1

!404ncmp.pic mel -65
1.214 13.546 27 20 14 0.068254 41.0377551 -0.0304989 137 78 17 53 46 36 
&0 0 1

!401ncmp.pic mel -66
1.414 10.134 27 10 7 0.0600894 -0.0245312 -0.0355581 108 82 14 45 53 39 
& 0 1 1

!400ncmp.pic mel -67
1.387 20.848 21 16 9 0.221411 -0.104651 -0.11676 184 81 18 61 55 46 
&0 1 1

!399ncmp.pic mel -68
1.150 10.626 29 7 6 0.239975 -0.121867 -0.118108 72 87 4 30 75 39 
& 1 1 1

!398ncmp.pic mel -69
1.166 12.681 34 26 16 0.105381 -0.0612049 -0.0441756 190 77 25 66 41 57 
&0 1 1

1301 12170 mel -70
1.709 16.054 28 23 19 0.106254 -0.0577904 -0.0484637 164 79 16 56 52 34 
& 0 1 1
1302 23876 mel -71
1.658 42.72 18 7 5 0.156433 -0.0755013 -0.0809315 87 86 14 41 62 52 
& 0 1 1
!306 9996 mel -72
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1.123 13.861 16 7 5 -0.0300952 0.0162374 0.0138578 114 84 17 49 56 53 
&0 1 1
1307 18147 mel -73
1.409 19.286 25 8 6 0.170393 -0.0874531 -0.08294 106 82 10 42 66 27 
& 1 1 1
!311 7927 mel -74
1.081 9.466 18 15 12 -0.0812317 0.0240469 0.0571848 97 72 29 50 26 57 
&0 1 1
!312 41967 mel -75
1.164 13.366 17 9 5 0.13557 -0.0738817 -0.0616883 218 77 18 66 62 35 
& 0 1 1
1316 46806 mel -76
1.101 11.894 30 22 14 0.146627 -0.0681446 -0.0783824 207 76 25 68 41 51 
& 0 1 1

1322 11421 mel -77
1.772 21.919 20 5 3 -0.027129 -0.00618633 0.0333164 93 78 16 44 43 29 
&0 1 1

1326 102310 mel -78
1.420 9.987 17 11 9 -0.0233333 0.00515152 0.0181818 63 72 28 40 23 51 
& 1 1 1
1327 29130 mel -79
1.196 7.631 33 19 11 0.161313 -0.0709037 -0.0904095 180 78 26 65 44 61 
& 1 1 1
1338 30250 mel -80
1.083 6.765 16 9 4 0.114043 -0.0570584 -0.0569845 88 81 20 45 42 54 
& 1 1 1
1341 1208 mel -81
1.265 11.624 36 10 7 0.151232 -0.0747873 -0.0764442 125 86 9 45 71 40 
& 0 1 1
1346 41561 mel -82
1.264 9.217 38 15 9 0.0899471 -0.0690829 -0.0308642 137 81 16 51 52 40 
& 1 1 1
1351 17372 mel -83
1.199 17.717 10 9 7 0.0536682 -0.0276796 -0.0259887 73 76 21 41 32 37 
& 0 1 1
1365 27634 mel -84
2.264 31.872 21 12 8 0.10447 -0.0560487 -0.0484211 75 81 18 40 43 47 
&0 1 1
!367 2846 mel -85
1.154 23.610 30 16 11 0.147373 -0.078599 -0.0687741 150 80 17 55 50 38 
& 0 1 1

1371 6774 mel -86
1.077 10.265 25 12 7 0.123074 -0.0724388 -0.0506351 155 82 14 54 60 38 
& 0 1 1
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1376 3209 mel >87
1.106 12.313 34 16 14 0.116197 -0.0688675 -0.0473291 136 72 22 64 84 27
& 1 0 1

1381 17002 mel -88
1.341 8.643 31 16 8 0.144199 -0.0766081 -0.0676909 162 81 20 57 51 63 
&0 1 1
1382 2427 mel -89
1.212 12.231 30 16 11 0.0380793 -0.0193452 -0.0187341 177 78 18 60 48 34 
& 0 1 1
1384 7837 mel -90
1.336 18.973 29 19 9 0.0746528 -0.0430656 -0.0315972 103 84 19 47 54 59 
& 0 11

1387 5932 mel -91
1.327 16.201 27 11 8 0.0776073 -0.0294927 -0.0481145 130 78 22 55 39 49 
&0 1 1
!318ncmp.pic -mel 92
1.249 18.419 10 4 3 0.115542 -0.066803 -0.0487389 91 86 7 38 67 34 
&0 11
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