Diagnosis of Malignant Melanoma using a Neural Network

Anurag Chawla
Fikret Erçal
Missouri University of Science and Technology, ercal@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_techreports
Part of the Computer Sciences Commons

Recommended Citation

Chawla, Anurag and Erçal, Fikret, "Diagnosis of Malignant Melanoma using a Neural Network" (1993). Computer Science Technical Reports. 28.
https://scholarsmine.mst.edu/comsci_techreports/28

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

DIAGNOSIS OF MALIGNANT MELANOMA USING A NEURAL NETWORK

A. Chawla* and F. Ercal CSc-93-06

Department of Computer Science
University of Missouri - Rolla
Rolla, MO 65401 (314)341-4491
*This report is substantially the M.S. thesis of the first author, completed May 1993.

Abstract

Malignant melanoma is the deadliest form of all skin cancers. Approximately 32,000 new cases of malignant melanoma were diagnosed in 1991, with approximately 80 percent of patients expected to survive five years [1]. Fortunately, if detected early, even malignant melanoma may be treated successfully. Thus, in recent years, there has been a rising interest in the automated detection and diagnosis of skin cancer, particularly malignant melanoma [2]. In this thesis, a novel neural network approach for the automated distinction of melanoma from three benign categories of tumors which exhibit melanoma-like characteristics is presented. The approach is based on devising new and discriminant features which are used as inputs to an artificial neural network for classification of tumor images as malignant or benign. Promising results have been obtained using this method on real skin cancer images.

© April 29, 1993
ANURAG CHAWLA

ALL RIGHTS RESERVED

TABLE OF CONTENTS

Page
ABSTRACT iii
LIST OF ILLUSTRATIONS. vii
LIST OF TABLES viii
SECTION
I. INTRODUCTION 1
A. Skin Cancer Characteristics 1

1. Malignant Melanoma (mel). 1
2. Dysplastic Nevi (dys nevi). 2
3. Intradermal Nevi (Idn). 3
4. Seborrheic Keratoses (sk). 3
B. Artificial Neural Networks 7
II. NEURAL NETWORKS AS PATTERN CLASSIFIERS 9
A. Broad Classification of Neural Net Classifiers 11
5. Probabilistic Classifiers. 11
6. Hyperplane Classifiers. 13
7. Kernel Classifiers. 13
8. Exemplar Classifiers. 14
B. Backpropagation Classifiers 14
C. Training and Testing 17
II. SELECTION OF FEATURES FOR DIAGNOSIS 19
A. Selection of Features for Diagnosing Melanoma 19
9. Boundary Detection. 19
a. Image Smoothing and Enhancement. 20
b. Segmentation. 20
c. Border Determination. 20
B. Feature Selection 20
10. Irregularity Index. 21
11. Percent Asymmetry. 21
12. Color Features. 22
IV. NEURAL NETWORK DESIGN AND EXPERIMENTAL RESULTS 26
A. Diagnosis of Malignant Tumors Using a Neural Network 26
B. Neural Network Implementation 26
C. Experimental Design and Test Results 28
13. Experiments 1a and 1b. 29
14. Experiments 2a and 2b. 34
15. Experiments 3a and 3b. 35
V. SIMULATION OF THE HYPERPLANE CLASSIFIER 37
VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 44
A. Conclusions from Experimental Results 44
B. Suggestions for future research 45
APPENDICES
A. LISTING OF PROGRAM SOURCE 49

Page

B. IMAGE SET WITH FEATURES
 57

BIBLIOGRAPHY 77
VITA 80

Table Page
I. Features Used For Diagnosis . 27

I. INTRODUCTION

A. Skin Cancer Characteristics

Dermatology imaging researchers believe that diagnosis of skin tumors can be automated based on certain physical features and color information that are characteristic of the different categories of skin cancer. Diagnosis of malignant melanoma is a difficult task since other skin cancers have similar physical characteristics. In many cases, dermatologists must perform a biopsy (a laboratory medical procedure) to ascertain whether a tumor is malignant or benign. Since this is a costly procedure, alternative early detection techniques are being sought to use as an adjunct for rapid inexpensive skin cancer screening. In this study, we use color images of skin tumors and an artificial neural network to distinguish melanoma from other benign pigmented tumors: dysplastic nevi, intradermal nevi and seborrheic keratoses. We first define those features that are expected to distinguish melanoma from three other skin tumors, and train an artificial neural network with these features in an attempt to classify the tumor type as melanoma or not. The characteristics of malignant melanoma and three other categories of benign tumors which are difficult to distinguish from melanoma are outlined below. These descriptions apply to only the most typical members of a diagnostic group.

1. Malignant Melanoma (mel). Malignant melanoma is named for the cell from which it presumably arises, the melanocyte. Melanocytes are the skin cells which produce the dark protective pigment called melanin, a natural sunscreen. Melanoma cells
usually continue to produce melanin, which accounts for the cancers appearing in mixed shades of tan, brown and black (variegated coloring). Melanoma has a tendency to metastasize (spread), hence early detection and treatment are essential. Friedman et al. have enumerated the mnemonic " ABCD " to describe early malignant melanoma [3]:

- Asymmetry - One half of the tumor does not match the other half.
- Border Irregularity - The edges are ragged, notched, blurred.
- Color - Pigmentation is not uniform. Shades of tan, brown and black are present.

Dashes of red, white and blue add to the mottled appearance.

- Diameter - greater than 6 mm and growing.

2. Dysplastic Nevi (dys nevi). Moles, or nevi, are tan brown spots on the skin that result from a clustering of melanocytes. Certain unusual moles called dysplastic nevi are likely to undergo changes leading to melanoma. Scientists believe that individuals with dysplastic nevi, especially those from families with multiple cases of melanoma represent one group of people who are more likely to develop melanoma. It is important to remember that, although the dysplastic nevus is the kind of mole most likely to undergo malignant changes, most dysplastic nevi do not become malignant. The National Cancer Institute [4] has outlined the following characteristics for the detection of dysplastic nevi, lesions that may occur in both familial and non-familial settings, and are associated with a higher risk of malignant melanoma:

- Color - Mixture of tan, brown, black and red/pink.
- Shape - Irregular Borders that may include notches. May fade into surrounding skin and include a flat portion level with the skin.
- Surface - Smooth, slightly scaly, or have a rough pebbly appearance.
- Size - often larger than 5 mm and sometimes larger than 10 mm .

3. Intradermal Nevi (Idn). This is a benign tumor. Idn is most common in children and young adults and may be tan, brown, flesh or pink. These are commonly called moles and may be hairy. Dermatologists agree upon the following characteristics of idn (modified from [4]):

- Color - Flesh colored, pink, may be tan or brown.
- Shape - Round or oval, may fade gradually into the surrounding skin.
- Surface - Often smooth, sometimes papillomatous, and raised. Skin markings are present when examined with a hand lens.
- Size - Usually less than 6 mm in diameter.

4. Seborrheic Keratoses (sk). This is a benign tumor found in older persons, with patients usually older than forty. It is a benign growth of the epidermis (outer layer of the skin) with the following clinical characteristics (modified from [1]):

- Color - Tan to brown, may be fleshy or pink, darker in persons with darker skin.
- Shape - Borders often oval or round but may be irregular, often sharply demarcated but in fair persons fading gradually into surrounding skin.
- Surface - Rough, verrucous, sometimes with keratin plugs. Skin markings are almost always enhanced, even if the surface is not rough. The raised surface and frequently sharp border lead to the appellation "stuck-on". The tan to yellowish color combined with the stuck-on appearance is sometimes called "tallow-drop."
- Size - $3 \mathrm{~mm}-30 \mathrm{~mm}$ or more, usually $5-15 \mathrm{~mm}$.
- Location - Seborrheic keratoses are usually located on the face, neck and trunk.

These descriptions indicate that melanoma and the above categories of benign tumors differ slightly in their physical characteristics and colors. If any automated approach is to succeed in diagnosing melanoma, a collection of these features rather than a single feature needs to be used in order to obtain a satisfactory classification of the tumor images belonging to one of these categories. Indeed, this fact is also reflected by Figure 1 and Figure 2, obtained after processing and examining 326 digital images of skin growths of the above mentioned categories. These figures show some statistical data on the distribution of percentages of tumors within each class with respect to irregularity and asymmetry. Figure 1 suggests that the irregularity index (to be explained later) alone is not sufficient in diagnosing melanoma since many benign tumors have irregularity indices which are as high as those for melanoma. Similarly, Figure 2 indicates that percent asymmetry (obtained by overlapping the two halves of a tumor along the best axis of symmetry and dividing the nonoverlapping area differences of the two halves by the total area of the tumor) also does not give a satisfactory separation between melanoma and other benign tumors.

While diagnosing skin cancer, dermatologists base their clinical diagnosis decisions on experience as well as complex inferences and extensive pathophysiological knowledge. Such experience cannot be condensed into a small set of relations, and this limits the performance of algorithmic approaches of many clinical tasks. The breadth of clinical knowledge is an obstacle to the creation of symbolic knowledge bases comprehensive enough to cope with diverse exceptions which occur in practice. Experience-based

Figure 1 Irregularity Index of 326 Tumors

Figure 2 Percent Asymmetry of 326 Tumors
learning is the property of artificial neural networks which make them ideal for diagnostic applications such as the one above. Using the indices described above, as well as color information, a neural network should be able to learn and gain experience about the malignant melanoma diagnosis problem. The ability to select pertinent features for a particular problem on their own is an edge which neural networks possess over expert systems when solving such diagnosis problems. In the following chapter, we give a brief introduction of artificial neural networks as pattern classifiers and explain the training/testing approach for classification. In Chapter 3, we describe our approach to diagnosing the melanoma tumors and the selection and derivation of the features used for this purpose.

B. Artificial Neural Networks

In recent years, neural networks have been used as pattern classifiers in medical diagnosis [5], speech [6] and pattern recognition [7], and artificial intelligence applications. This trend has even accelerated by the availability of high speed computers with large amounts of processing power and memory. There is an increasing interest in the use of neural networks to solve a variety of problems in many areas of medicine and engineering. It is a fact that adaptive non-parametric neural-net classifiers work well for many real world problems. These classifiers frequently provide reduced error rates when compared to more conventional statistical approaches and are a powerful and flexible means for mapping a fixed number of inputs into a set of discrete classes. These characteristics make artificial neural networks a strong candidate for diagnostic problems where a set of symptoms is mapped to a set of possible diagnostic classes. In our
research, we are motivated by the desire to classify skin tumors as malignant or non-malignant from color photographic slides of the tumors and to further explore how we can add learning to this diagnosis process in order to automatically classify the skin tumors correctly.

II. NEURAL NETWORKS AS PATTERN CLASSIFIERS

Computer-based medical systems are playing an increasingly important role in assisting both diagnosis and treatment. When designing such tools, certain objectives must be considered carefully. First of all, dermatologists should be able to use low-cost, user-friendly tools such as programs running on personal computers. Nevertheless, to satisfy physicians requirements, processing time should also be short.

Since any failure of such tools could prove harmful to patients, fault tolerance and reliability are the most critical characteristics. At the same time, end users must be provided with as much information as possible about how the processing is carried out.

In the effort to reach these objectives, developers of computer aids for physicians face a variety of problems originating from the complex nature of the biological data. Such data are characterized by an intrinsic variability that can occur as the result of spontaneous internal mechanisms or as a reaction to occasional external stimuli. Furthermore, most biological events result from the interaction of many systems and subsystems whose different effects are almost indistinguishable.

Clinicians are accustomed to such problems, but their skills cannot be easily incorporated in computer programs. Most clinical decisions are based on experience as well as on complex inferences and extensive pathophysiological knowledge. Such experience cannot be condensed into a small set of relations, and this limits the performance of algorithmic approaches to many clinical tasks. The breadth of clinical
knowledge is an obstacle to the creation of knowledge bases comprehensive enough to cope with the diverse exceptions that occur in practice.

Experience-based learning, fault tolerance, graceful degradation, and signal enhancement are properties of artificial neural networks that make them effective in solving the above problems. This points to a way for implementing reliable computer-based medical systems that can closely emulate a physicians expertise.

This thesis describes a neural network system for diagnosing skin cancer. The recent resurgence of interest in neural networks, machine learning, and parallel computation has led to renewed research in the area of statistical pattern classification. Early pattern classification research performed in the 60 's and 70 's focussed on asymptotic (infinite training data) properties of classifiers. The thrust of recent research has changed. More attention is being paid to practical issues as pattern classification techniques are being applied to speech, vision, robotics, and artificial intelligence applications where real time response with complex real-world data is a necessity. Much of this research is motivated by the desire to understand and build parallel neural net classifiers inspired by biological neural networks and by the need to add learning to artificial intelligence applications. This has led to an emphasis on robust, adaptive, non-parametric classifiers that can be implemented on parallel hardware.

Adaptive non-parametric neural-net classifiers work well for many real world problems. These classifiers frequently provide reduced error rates when compared to more conventional Bayesian classifiers and also provide selection of differing practical characteristics. Classifiers provide trade-offs in memory, computation, training time, and
adaption requirements. They also differ in ease of real-time implementation using custom VLSI circuitry, in the ease with which they can be programmed efficiently on specific parallel or serial computers, and in computational complexity. Generalization capabilities for specific applications and the ease with which the complexity of a classifier can be matched to the amount of training data also differ. Finally, classifiers differ in their abilities to use unsupervised training data and in their ability to determine what input features contribute to the classification performance. These issues, more than error rate, tend to drive the selection of a classifier for a particular application.

A. Broad Classification of Neural Net Classifiers

Practical differences between classifiers and internal differences in how classifiers form decision regions lead to four broad groups of classifiers (Figure 3). The uppermost group of Figure 3 takes into account the most conventional or Bayesian Classifiers, while the lower three groups contain adaptive classifiers. These adaptive classifiers can all be implemented using fine grain parallelism. Most also require simple local computations for incremental adaptation and can form arbitrary decision regions.

1. Probahilistic Classifiers. Probabilistic classifiers (see Fig. 3) assume a priori probability distributions such as Gaussian or Gaussian mixture distributions for input features. Parameters of distribution are typically estimated using supervised learning where all the training data is assumed to be available simultaneously. These classifiers provide optimal performance when the underlying distributions are accurate models of the test data and sufficient training data is available to estimate distribution parameters

Group	Computing Element	Representative Classifier
Probabilistic	Distribution Dependent	Gaussian Mixture
Hyperplane	Sigmoid	Mult-Layer Perceptron, Boltmann Machine
Receptive Fields (Kernel)	Kemel	Method of Potential Functions, CMAC
Exemplar	Euclidean Nom	K-Nearest Neighbour, LYQ

Figure 3 Four Basic Classifier Groups (from Lippman[8])
accurately. These two conditions are not often satisfied in nonstationary environments with real world data.
2. Hyperplane Classifiers. Hyperplane Classifiers form complex decision regions using nodes that form hyperplane decision boundaries in the space spanned by the inputs. Nodes typically form a weighted sum of the inputs and pass this sum through a sigmoid nonlinearity, as shown in Fig 3. Other nonlinearities, including high order polynomials of the inputs, are also used. These classifiers have low memory and computation requirements during classification but may require long training times and/or complex training algorithms. They include multi-layer perceptrons trained with back-propogation (back propogation classifiers) [8], Boltzmann machines [9], binary-tree classifiers, high order nets that form high order polynomials of inputs [10] and high order nets resulting from the use of Group Method of Data Handling (GMDH) algorithms [11].
3. Kernel Classifiers. Kernel or receptive field classifiers create complex decision regions from kernel-function nodes that form overlapping receptive fields. Kernel-function nodes use a kernel function, as shown in Fig. 3, which provides the strongest output when the input is near the nodes centroid. Some of the important properties of Kernel classifiers is that they train rapidly, can use combined supervised/unsupervised training and have intermediate memory and computation requirements. Neural net kernel classifiers include map-based approaches that use arrays of nodes which compute kernel functions, classifiers based on the Cerebral Model Articulation Controller (CMAC) [12], and classifiers that use the method of potential functions [13], often called radial basis functions.
4. Exemplar Classifiers. As the name implies the exemplar classifiers perform classification based on the identity of the training examples, or exemplars, that are nearest to the input. The nearest neighbors can be determined using exemplar nodes that are similar to the kernel-function nodes. The exemplar nodes compute the weighted Euclidean distance between inputs and node centroids. Centroids correspond to previously presented labeled training examples or to cluster centers formed during combined unsupervised/supervised training. Exemplar based classifiers train rapidly but may require large amounts of memory and computation time for classification. Exemplar classifiers include k-nearest neighbor classifiers [11], the feature map classifier [14] and Adaptive Resonance Theory (ART) classifiers [15].

B. Backpropagation Classifiers

Backpropogation classifiers have received the most attention by pattern classification researchers. This class of neural networks form nonlinear discriminant functions using single- or multi-layer perceptrons with sigmoidal nonlinearities. Backpropagation classifiers are trained with supervision, using gradient-descent training techniques which minimize the squared error between the actual outputs of the network and the desired outputs. Patterns are applied to the input nodes that have linear transfer functions. Other nodes typically have sigmoidal nonlinearities. The desired output from output nodes is low (0 or <0.1) unless that node corresponds to the current input class, in which case it is high (1.0 or >0.9). Each output node computes a nonlinear discriminant function that distinguishes between one class and all other classes. Early
interest in Backpropagation classifiers training was caused by the presupposition that it might be used in biological neural nets. Although this now seems unlikely, backpropagation classifiers have been successfully applied in many areas. Multi-layer perceptrons trained with backpropagation have been successfully used to:

- Classify speech sounds [16]
- Form test-to-phenome rules [17]
- Deduce the secondary structures of a protein from its aminoacid sequence
- Discriminate between underwater sonar returns [18]
- Learn good moves for backgammon [19]
- Perform nonlinear signal processing [20]

A number of theoretical analyses have been performed to determine the capabilities of classifiers based on multilayer perceptrons. Similar constructive proofs, developed independently [21] [22] demonstrated that two hidden layers are sufficient to form arbitrary decision regions using multilayer perceptrons with step function hard-limiting nonlinearities (node outputs of 0 or 1). This constructive proof was extended to suggest how multi-layer perceptrons with two hidden layers, linear output nodes, and sigmoidal nonlinearities approximate complex nonlinear functions [23]. More recent work demonstrated that multi-layer perceptrons with only one hidden layer could form complex disjoint and convex decision regions [24]. This work was followed by a careful mathematical proof [25], which demonstrates that continuous nonlinear mappings can be closely approximated by multi-layer perceptrons with only one hidden layer. This proof implies that arbitrary decision regions can also be approximated by
multi-layered perceptrons with only one hidden layer. This proof however is not constructive and does not indicate how many neurons are required in the hidden layer. Other recent theoretical work has demonstrated the advantages of sigmoidal nonlinearities over linear nodes for single-layer perceptrons trained with backpropagation. One major characteristic of backpropagation classifiers is long training times. Training times are typically longer when complex decision regions are required and when the networks have more hidden layers. As with other classifiers, training time is reduced and performance is improved if the size of the network is tailored to be large enough to solve a problem but not so large that too many parameters must be estimated with limited training data. Other techniques that have been effective in reducing training time with speech data are to update weights after presenting each training example instead of after cycling through all the examples, to randomize the presentation order of training examples, and to normalize components of input training vectors to have mean values of zero [26]. Other characteristics of back propagation classifiers that may be difficult to alter include difficulty in interpreting and understanding network solutions, and the frequent necessity of many nodes and connection weights. Research on developing techniques to design minimal-size backpropagation classifiers [27] and to develop analysis techniques to interpret the solutions found by backpropagation classifiers suggests approaches to these issues. Shorter training times and these other characteristics can, however, be obtained using other classifiers that can be implemented using fine-grain parallelism.

C. Training and Testing

The goal of pattern classification is to assign input patterns to one of a finite number, M, of classes. In the following section it will be assumed that input patterns consist of static input vectors x containing N elements or continuous valued real numbers denoted $x_{1}, x_{2}, \ldots ., x_{\mathrm{N}}$. Elements represent measurements of features selected to be useful for distinguishing between classes. Input patterns can be viewed as points in the multidimensional space defined by the input feature measurements. The purpose of a pattern classifier is to partition this multidimensional space into decision regions that indicate to which class any input belongs. Conventional Bayesian classifiers characterize classes by their probability density functions on the input features from these densities. Adaptive non-parametric classifiers do not estimate probability density functions directly but use discriminant functions to form decision regions.

The application of a pattern classifier first requires selection of features that must be tailored separately for each problem domain. Features should contain information required between classes, be insensitive to irrelevant variability in the input, and also be limited in number to permit efficient computation of discriminant functions and to limit the amount of training data required. Good classification performance requires selection of effective features and also selection of a classifier that can make good use of those features with limited training data, memory and computing power. Following feature selection, classifier development requires collection of training and test data, and separate training and test or use phases. During the training phase, a limited amount of training data and an a priori knowledge concerning the problem domain is used to adjust
parameters and/or learn the structure of the classifier. During the test phase, the classifier designed during the training phase is evaluated on new test data by providing classification decision on each input pattern. Classifier parameters and/or structure may then be adapted to take advantage of new training data or to compensate for nonstationary inputs, variation in internal components, or internal faults. Further evaluations require new test data.

The training/test set paradigm is used extensively in statistical studies. This paradigm, simply stated, consists of separating the data or samples into two distinct sets. One set is used for training, or during the leaming phase of the network, and the other set is used for testing the network. These two sets should be statistically independent to allow unbiased results to be obtained on the test set. In order to generate the best classification network possible, the size of the training set should be maximized, but in order to have high levels of confidence in the results as an estimate of future performance, the size of the test set should also be maximized. This dilemma leads many researchers to arbitrarily use 50 percent of the set for training and 50 percent for testing. For this research, results are reported with various sizes of training and testing sets. This method provides more complete information than would be obtained with a fixed set size and allows for observation of trends in the data.

III. SELECTION OF FEATURES FOR DIAGNOSIS

A. Selection of Features for Diacnosing Melanoma

Diagnosis applications require a selection of features that must be tailored separately for each problem domain. The features selected should contain enough information to distinguish between classes as well as being insensitive to irrelevant variability in the inputs. On the other hand, the features must be limited in number for two reasons: 1) To keep the training (learning) time within reasonable limits, and 2) to allow the network to compute the discriminant functions efficiently with a small size training set. As a result of our analysis of the diagnosis problem, we have defined 14 features that we believe to be well discriminative between images belonging to malignant melanoma and the three benign tumors of interest here. This chapter provides a description of the selected features as well as the methodology used to extract them from the color skin images.

1. Boundary Detection. Boundary detection of skin tumors is one of the first steps (low level processing) to be performed in skin cancer recognition. All of the 14 features that were identified to be useful in the diagnosis of skin cancer required detection of the border of the tumor in the color image. The algorithm used here is an enhanced version of the radial search algorithm which was proposed in an earlier study [28]. Instead of detecting individual border points, the new method detects connected tumor segments
from which border points are determined [29]. This technique eliminates most of the spurious border points due to noise. Briefly, the border finder uses the following steps:
a. Image Smoothing and Enhancement. A median filtering algorithm is applied repeatedly to smooth the image and diminish spurious effects that may be present due to noise. The advantage of median filtering is threefold: it preserves edge sharpness of tumors, diminishes flash areas and enhances tumor contrast over the background while eliminating noise.
b. Segmentation. Image pixel values are transformed into a new plane to allow easy separation of the tumor and skin pixel values and thresholding is applied to segment the image into two distinct areas; tumor and the background (skin).
c. Border Determination. First, the tumor portion is separated from the segmented image by using a region growing algorithm and masking all the unnecessary information around $i t$, then a ray probing algorithm is used to identify the boundary points. These points are connected by a cubic-spline to get a smooth outline of the border.

B. Feature Selection

After the boundary of the tumor area is determined, the next step is to compute the indices corresponding to each feature needed for diagnosis. In this section, we describe those features of interest and how to compute them.

1. Irregularity Index. Malignant melanoma is characterized by the irregularity in its tumor border. Irregularity is measured by an index (I) :

$$
\begin{equation*}
I=\frac{P^{2}}{4 \pi A} \tag{1}
\end{equation*}
$$

where, $\mathrm{P}=$ perimeter of the tumor in pixels, $\mathrm{A}=$ area of the tumor in pixels.

The irregularity index for a circle is one (perfectly regular). In our research the perimeter and area are computed in terms of pixel counts. Figure 1 shows the irregularity index for different categories of tumors. It is clear that most melanomas have a high irregularity index, i.e., they have an irregular shape. However, there is a significant percentage of other tumors with high irregularity indices. Hence, this feature alone is not sufficient enough to discriminate melanoma from other benign types of tumors.
2. Percent Asymmetry. Asymmetry is another characteristic of malignant melanoma. Asymmetry is computed by finding an axis that is closest to the axis of symmetry of the tumor (i.e. the axis around which, if the tumor is folded into half, there is maximum overlap of the two halves). Then percent asymmetry is computed by overlapping the two halves of a tumor along the best axis of symmetry and dividing the nonoverlapping area differences of the two halves by the total area of the tumor. As we observe in Figure 2, 88.4% of the melanomas in our database of images have an asymmetry percentage above 8 percent, whereas this figure is $66 \%, 50.3 \%$ and 37.7% for
the dysplastic nevi, sk and idn respectively. Again, this index alone is not powerful enough to discriminate malignant melanoma from other tumors but together with other features it is expected to play a very important role in the diagnosis of melanoma.
3. Color Features. One of the most predictive features in identification of malignant melanoma is variegated coloring(VC) [30]. Dermatologists define variegated coloring as the swirling together of tan, brown, red and black giving the tumor a varied coloring. Such variegation in color implies a high variance in red (R), green (G), and blue (B) color components. Therefore, out of 12 color features, three of them are selected to be the variances in the R, G, and B color planes. Since dysplastic nevi may also turn into melanoma they also have high variances in these planes but the other benign tumors have lower variances in the RGB planes (they do not exhibit variegated coloring). In addition to variances, relative chromaticity of tumors (in RGB planes) are also added to the feature list since these features are important in discriminating melanoma from sk and idn. The relative chromaticity is defined as the normalized value of that color in the tumor area subtracted from the normalized value for the color in the background.

For example the relative chromaticity of red is defined as:

$$
\begin{equation*}
R_{r}=\frac{R_{f g}}{R_{f g}+B_{f g}+G_{f g}}-\frac{R_{b g}}{R_{b g}+B_{b g}+G_{b g}} \tag{2}
\end{equation*}
$$

where $r_{f g}, g_{f g}$ and $b_{f g}$ denote tumor RGB components and $r_{b g}$, $g_{b g}$ and $b_{b g}$ denote background RGB components. The relative color was defined as the color difference vector, i.e. difference in the color space between tumor and the background, or normal flesh. Reasons behind the development of a relative color concept are stated in [30] as follows: 1) to equalize any variations caused by lighting, photography/printing, or digitization process, 2) to equalize variations in normal skin color between individuals, and 3) the human visual system works on a relative color system.

Previous studies in diagnosing melanoma [30] with an expert system indicate that spherical color space coordinates gave better diagnosis results than the RGB, CIE or IHS color spaces. Therefore, we also added these indices into our set of input features. The equations to transform from ($\mathrm{R}, \mathrm{G}, \mathrm{B}$) to spherical coordinates are given by [30]:

$$
\begin{equation*}
L=\sqrt{R^{2}+G^{2}+B^{2}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { AngleA }=\cos ^{-1}\left[\frac{B}{L}\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\text { Angle } B=\cos ^{-1}\left[\frac{R}{L \times \sin (A n g l e A)}\right] \tag{5}
\end{equation*}
$$

Figure 4 The Spherical Transform (from [30])

This transformation splits the color space into a two-dimensional color space, represented by two angles, Angle A and Angle B; and a one dimensional intensity (brightness) space, represented by the vector length L (see Fig. 4). To compute Length, Angle A and Angle B for each tumor image, we found Length, Angle A and Angle B for each of the pixels in the tumor and took an average of them.

From the viewpoint of color clustering, it is desired that the image be represented by color features which constitute a space possessing uniform characteristics such as the (L*, a*, b*) color coordinate system [31]. Since sk's and idn's are brighter in color (closer to white) than melanoma and dysplastic nevi, they have distinct values in this color space. Dermatology imaging researchers also believe that this space may be useful in distinguishing melanoma from dysplastic nevi due to small differences in lightness, hue and chroma between dysplastic nevi and melanoma (according to dermatologists dysplastic nevi are brighter and have less blue, i.e. more relative red components). In our research, lightness, hue and chroma are computed for each point in the tumor using the formulas given in [31] and then an average is taken for all the pixels in the tumor.

IV. NEURAL NETWORK DESIGN AND EXPERIMENTAL RESULTS

A. Diagnosis of Malignant Tumors Using a Neural Network

For the research reported here, the discriminant features explained above were extracted from 210 digital images of skin cancer. These images were obtained from the clinical collection of Dr. William Van Stoecker (see Appendix B), a resident dermatologist in Rolla, MO, and some of the images were obtained from New York University Medical School. All these images were 512×512 pixel color images with 24 bits per pixel (8 bits for each R, G and B planes). Ninety-six images were in the malignant melanoma category and there were 111 images of dysplastic nevi (dys nevi), 58 intradermal nevi (idn) and 61 seborrheic keratoses (sk).

B. Neural Network Implementation

A feedforward artificial neural network with 14 inputs (see Table I) and one output (indicating whether the tumor is malignant melanoma or not) was used and trained using the backpropagation rule. A versatile neural network development software package, NeuralWorks Professional, was used for the experiments which follow and a customized version of this Neural Network was also implemented. Details of the implementation are found in Chapter 5.

One major characteristic of backpropagation classifiers is long training times. Training times are typically longer when complex decision regions are required and when

Table I. Features Used For Diagnosis

Feature Description	Number of Inputs
Irregularity	1
Asymmetry	1
Variance in the RGB Plan	3
Relative Chromaticity	3
Spherical Transform	3
$\left(\mathrm{~L}^{*}, \mathrm{a}^{*}, \mathrm{~b}^{*}\right)$ Color space	3

networks have more hidden layers. One way of solving this problem is to use few hidden layers.

In this study, only one hidden layer was used based on the fact that it performed reasonably well among several network configurations with which we had experimented and also produced fast results. Typical training times varied between $40-60$ minutes. Another technique that we have used in reducing the training time is randomization of the presentation of the order of the training examples by using a "shuffle and deal" randomization scheme. Other techniques which are effective in reducing training time with some applications are to update weights after presenting each training example instead of after cycling through all the examples.

Training of the network was continued with several epochs of the training set until the root mean square error of the output was below 0.05 . Testing was done and the success rates for the correct diagnosis of melanoma as melanoma and non-melanoma as non-melanoma were recorded. Results were obtained for training/testing percentages of 20/80, 40/60, 60/40 and 80/20.

C. Experimental Design and Test Results

The experiments were designed to test the effectiveness f the input features in discriminating the melanoma images from the others. Three sets of experiments were conducted, each repeated twice; once with dysplastic nevi included and another time with dysplastic nevi excluded, resulting in a total of six experiments. The reason for repeating the same experiments without dysplastic nevi is the fact that dysplastic nevi are precursors of melanoma and they possess the same variegation of coloring as melanoma tumors. By eliminating dysplastic nevi, classification is expected to become easier for the network. Those experiments with dysplastic nevi included used a total of 210 images (96 melanomas, 43 dysplastic nevi, 30 idn , and 41 sk) while those with dysplastic nevi excluded used 216 images (96 melanomas, 58 idn , and 62 sk) for training plus testing.

The primary focus for training was to be able to distinguish melanoma from benign tumors. Experimentation has shown that the total number of melanomas in the training set needs to be close to 50% of the whole population in order to obtain good diagnostic results.

The reason for the varying numbers used for each class is that we tried to maximally utilize the images available in the database for training and testing while, at the same time, keeping a good balance of different types of tumor images. For both experiments, 96 melanoma images were used and the total number of non-melanoma images were kept within a margin not exceeding 56% of the whole population. When $\mathrm{X} \%$ of images was used for training, the remaining images (100-X\%) were used for testing.

Each class contributed the same percentage of their total number to the training and test sets.

Experiments differed from one another by the set of input features used. The first set of experiments was conducted with the 14 input features originally described.

The second set of experiments was designed to test the effects of the use of different film types in the diagnosis process. In these experiments, to offset the effects of the different films used, spherical color space coordinates and (L*, a*, b^{*}) color coordinates were removed from the input set leaving only those color features related to the relative color concept (color variances and the relative color). Hence, only eight input features were used in this phase.

In the third set of experiments, two new features were experimented with. The first of these was elevation and the second was area. These measures were determined in a subjective fashion by a dermatologist. The dermatologist classified tumors as having a marked elevation or no elevation. Also the dermatologist determined whether the area of the tumor was greater than 6 mm from color slides of the tumor. These features were then incorporated into the image database in the form of binary vectors.

The results of these experiments are summarized and plotted in the following paragraphs.

1. Experiments la and 1 b . Experiment la was conducted with all four classes, melanoma, idn, dys nevi, and sk, while dysplastic nevi images were removed from Experiment 1b. A total of 210 and 216 images were used altogether for training plus
testing for experiments la and 1 b , respectively, with 14 input features supplied per image. Results are plotted in Figures 5a and 5b.

In Experiment 1a, for training percentages exceeding 60\%, melanomas are diagnosed with close to 90% success rate. The sks and idn's are always above 90 percent for training percentages of 40% or above (see Fig. 5a). The dysplastic nevi are however quite inconsistent and vary between a low of 50 and a high of 85 percent. We believe this is due to the fact that dysplastic nevi are precursors of melanoma and they possess the same variegation of coloring as melanoma tumors.

In Experiment 1b, the results improve appreciably (Fig. 5b) for melanoma with successful diagnosis rate not below 92% for any case, peaking at 96%. The other two categories did not exhibit any significant changes and were diagnosed with success rates of 100% for training sizes above 60 percent, with the exception of idn showing a poor performance for the training percentages of 40% or below. This result supports the original observation that dysplastic nevi are precursors of melanoma and they possess the same variegation of coloring as melanoma tumors. Hence, elimination of the dysplastic nevi images from the training set made the classification job easier for the network and the number of false negatives were reduced considerably. As a result, the overall performance (the curve with a solid black icon) was boosted considerably (to a 98% success rate with a training set size of 80%).

$$
\begin{array}{ll}
\mp \text { mel } & \text { — dys. nevi } \rightarrow \text { idn } \\
- \text { sk } & - \text { O- Overall }
\end{array}
$$

\rightarrow idn $\quad=$ sk $\quad-z-$ melanoma $\rightarrow-$ Overall

Figure 5 a) Success Rate for Experiment la; b) Success Rate for Experiment 1b.

$$
\left\lvert\, \begin{array}{ll}
* \text { idn } & - \text { sk } \quad \text { t- dys } \\
- \text { mol } & - \text { Overall }
\end{array}\right.
$$

Experiment 2b

Figure 6 a) Success Rate for Experiment 2a; b) Success Rate for Experiment 2b.
Experiment 3 a

$$
\begin{array}{|lcc}
\rightarrow-\text { idn } & \square-\text { sk } & -\mathrm{mel} \\
\rightarrow-\text { dys. nevi }- \text { Overall } &
\end{array}
$$

| $*$ idn $\quad \square-s k$ | mel | \rightarrow Overall |
| :--- | :--- | :--- | :--- |

Figure 7 a) Success Rate for Experiment 3a; b) Success Rate for Experiment 3b.
2. Experiments 2 a and 2 b . The same procedure used for experiment 1 was repeated for this set of experiments except that 8 input features were used instead of 14. The goal was to test the effect of the types of film used. In our image database, all the melanoma and dysplastic nevi slides were Ektachrome while a majority of the sk and idn slides were Kodachrome. To offset the effect of the different film types used, absolute color components in the input, namely spherical color space coordinates and (L*, a*, b^{*}) color coordinates, were removed from the input set leaving only those color features related to the relative color concept (color variances and the relative color). Hence, only eight input features were used in this phase.

Obviously, elimination of all the absolute color information from the input is expected to cause the success rate to go down due to the degradation of the discriminant features in the input. However, we should not expect a significant change from the previous results, which would otherwise be interpreted as due to the film type. As illustrated by the plots in Figures 6 a and 6 b , the change in corresponding success rates is not large enough to raise concerns about the effect of film type on the results.

However, it was observed that the melanoma success percentages in Exp. 2b were relatively lower than those of Experiment lb (10% drop). This result can be explained due to the importance of absolute color information in the input. Absolute color information is important in the diagnostic process particularly from the viewpoint of color clustering (shades of tan, brown and black, dashes of red, white and blue are signs of malignancy) and brightness information of tumors in the form of the brightness vector in the spherical
transform domain. Hence, including as much color information about tumors as possible helps the neural network in diagnosis of the malignant and nonmalignant tumors.

3. Experiments 3 a and 3 b .

The aim of experiments 3 a and 3 b is to experiment with the inclusion of two more indices to the neural network. These are area of the tumor and elevation. Dermatologists believe that there is a weak correlation between the elevation of a tumor and nonmalignancy. This belief is inspired from the fact that few malignant tumors have a marked elevation whereas many categories of nonmalignant tumors e.g. basal cell carcinoma, sebhoerric keratoses and intradermal nevi are characterized by crust (as noted in their descriptions). Also area is important according to dermatologists. Since melanoma is an uncontrolled growth of cells, dermatologists believe that on the average melanoma tumors are likely to be larger in size than nonmalignant tumors in the same stage. A group of experiments to test the validity of these two hypotheses were performed. In one case area was added to the 14 features. However the success rates of this network were not as good as without the area index. The primary reason for the lower performance of this network is the fact that many of the malignant melanoma tumors in our database are in their incipient stages (since patients report to a dermatologist in the early existence of the tumor). Hence even though the area index may be important, our database of images does not reflect this fact and hence experiments with area index did not yield satisfactory results.

Hence Experiments 3a and 3b were performed with 14 features plus an elevation index. This index was determined by a dermatologist after examining all the tumor slides and noting if there was a marked elevation (greater than 1 mm) on the tumor or not.

The success rates for dysplastic nevi (see Fig. 7a) went up in experiment 3a. This is probably due to the fact that many of the dysplastic nevi have some elevation whereas most malignant tumors like melanoma do not. The success rates for the other categories of nonmalignant tumors, i.e., sk and idn, are almost perfect although melanoma success rates remain around 85 percent. This might be explained due to the fact that many of the melanoma tumors are in their incipient stages and hence do not have enough color variegation to distinguish them from dysplastic nevi. The other categories of nonmalignant tumors, i.e., sk and idn, are generally characterized by marked elevation and hence the elevation helps to increase their percentage of successful diagnosis.

Highest success rates for melanoma (see Fig. 7b) were achieved in Experiment 3b. This is due to a combination of the facts that dysplastic nevus are not present in this experiment and the fact that malignant tumors such as melanoma do not usually have crusts or elevation which characterize many nonmalignant tumors, i.e., sk and idn.

V. SIMULATION OF THE HYPERPLANE CLASSIFIER

In this chapter, the design of a back propagation simulator is discussed. In a (Fig. 8) backpropagation network, signals flow bidirectionally, but in only one direction at a time. During training, there are two types of signals present in the network: during the first half-cycle, modulated signals flow from input to output; during the second half cycle, error signals flow from output layer to input layer. See Figure 9 for an example of a hypothetical surface in weight space (with two weights). In the production mode only the feedforward, modulated output signal is utilized.

Several assumptions have been incorporated into the design of this simulator. First the output function on all hidden and output layer units is assumed to be the sigmoid function. In addition a momentum term is included in the weight-update calculations. These assumptions imply the need to store weight at one iteration, for use in the next iteration. Finally a bias term has been included in the calculation. In this network model, the input units are fan-out processors only. That is, the units in the input layer perform no data conversion on the network input pattern. They simply act to hold the components of the input vector within the network structure. Thus the training process begins when an extemally provided input pattern is applied to the neurons in the input layer. Forward signal propagation occurs according to the following sequence of activities:

1. Locate the first processing unit in the layer immediately above the current layer.
2. Set the current input total to zero.
3. Compute the product of the first input connection weight and the output from the transmitting unit.
4. Add the product to the cumulative total.
5. Repeat steps 3 and 4 for each input connection.
6. Compute the output value for this unit by applying the sigmoid function

$$
\begin{equation*}
f(x)=\frac{1}{1+e^{-x}} \tag{6}
\end{equation*}
$$

where $\mathrm{x}=$ input total.
7. Repeat steps 2 through 6 for each unit in the layer.
8. Repeat steps 1 through 7 for each layer in the network.

Once an output value has been calculated for every unit in the network, the values for the units in the output layer are compared to the desired output pattern, element by element. At each output unit, an error value is calculated. These error terms are then fed back to all other units in the network structure through the following sequence of steps (see Fig. 10):

1. Locate the first processing unit in the layer immediately below the output layer.
2. Set the current error total to zero.
3. Compute the product of the first output connection weight and the error provided by the unit of the upper layer.
4. Add the product to the cumulative error.
5. Repeat steps 3 and 4 for each output connection.

Figure 8 A Multilayer Perceptron

Figure $9 \quad$ Hypothetical Surface in Weight Space (Simple Example of a network with two weights)
6. Multiply the cumulative error by:

$$
\begin{equation*}
0(1-0) \tag{7}
\end{equation*}
$$

where o is the output value of the hidden layer unit produced during the feedforward operation.
7. Repeat steps 2 through 6 for each unit in this layer.
8. Repeat steps 1 through 7 for each layer.
9. Locate the first processing unit in the layer above the input layer.
10. Compute the weight change value for the first input connection to this unit by adding a fraction of the cumulative error at this unit to the input value to this unit.
11. Modify the weight changes term by term by adding a momentum term equal to a fraction of the weight change value from the previous iteration.
12. Save the new weight change value as the old weight change value for this connection.
13. Change the connection weight by adding the new weight change value to the old connection weight.
14. Repeat steps 10 through 13 for each input connection to this unit.
15. Repeat steps 10 through 14 for each unit in this layer.
16. Repeat steps 10 through 15 for each layer in the network.

Figure 10 Flowchart of the Training Algorithm

The algorithm outlined above was implemented in AT\&T C++ on a Sun Sparcstation as well as on a 486 personal computer in the Borland C++ environment. The customized software had the option of setting the number of hidden neurons, the learning rate, momentum term and the error tolerance. Training and test sets were formed in the percentages mentioned randomly so the training/test paradigm was followed. Experimentation revealed that one hidden layer with 8 hidden neurons gave the best training results in terms of time and successful diagnosis. A learning rate of 0.1 and a momentum term of 0.01 were used in all the experiments to speed up training. The root mean square error tolerance was set to 0.05. The code is listed in Appendix A.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. Conclusions from Experimental Results

A fast and effective method to separate malignant melanoma from other types of benign tumors is becoming increasingly needed due to the fact that malignant melanoma incidence has risen dramatically in recent years and early detection can save thousands of lives each year. In this study, we attempted to diagnose melanoma from color skin images using an artificial neural network. For this purpose, a set of features to distinguish melanoma from three types of benign tumors was defined and methods to measure these features from digitized color slides were described. Overall, diagnostic results were found to be very promising and as high as 97% accuracy in detecting malignant melanoma is achieved using training data sets of reasonable size (see Experiment 3b). As a result of this study, the following results are confirmed experimentally:
a) Color characteristics of tumors play a crucial role in the diagnosis process, b) tumor asymmetry and border irregularity are two important diagnostic features for distinguishing malignant melanoma from benign tumors such as seborrheic keratoses, dysplastic nevi, and intradermal nevi, c) malignant melanoma and dysplastic nevi images exhibit some similarities and therefore testing for tumor malignancy in the absence of dysplastic nevi images gives better diagnostic results. This is confirmed by the second part (b) of each experiment.

B. Sugzestions for future research

From the dermatology standpoint, most common skin tumors can be put into five major groups which exhibit different characteristics regarding the need for biopsy, malignancy and first choice Rx paths (see Figure 11). These groups are: malignant melanoma (mm), dysplastic nevi (dys), squamous cell carcinoma (scc) or basal cell carcinoma (bcc), actinic keratoses (ak), and common benign lesions (intradermal nevus (idn), compound nevus (cpdn), and seborrheic keratoses (sk)).

The studies undertaken in this thesis aimed to diagnose only malignant melanoma among four types of tumors. In future research, we plan to use a hierarchical, diagnostictree based approach to diagnose the above five classes of skin tumors (see Fig. 12). By breaking down the problem into well-defined smaller problems and, hence, limiting the number of diagnostic outcomes to only (Yes/No) type decisions, the complexity of the whole process is reduced considerably while the diagnostic power is increased proportionally. The decision at each branch of the tree can be made by a separate neural network specifically designed and trained for classifying the tumors at that particular level of the tree. The hierarchical design in Fig. 12 indicates that four different neural networks are needed for this purpose.

Note that there will be an extra development overhead due to the implementation of multiple neural networks specialized to distinguish different classes. Each will require different input feature sets to be used. So far, we have identified overall 20 features that can be useful in any diagnostic process. In addition to the 14 features listed in Table 1, elevation, texture, 2D Fourier transform coefficients, semi-translucency, ulcer, and area
are also believed to be relevant features in the diagnostic process. We plan to statistically analyze image feature sets corresponding to each class and obtain their distributions in order to find the optimum input feature set for each neural network. For example, the experiments in this thesis verify that the 14 features listed in Table 1 are crucial in diagnosing malignant melanoma. It is important to note that a neural network should not be overloaded with extra inputs (features) which do not carry any discriminative information, i.e., which do not help in classification.

Figure 11 Outcome Tree for Most Common Skin Tumors

Figure 12 Hierarchical Diagnosis of Skin Tumors Using Four Neural Networks

APPENDIX A.

LISTING OF PROGRAM SOURCE

```
#Include <stdio.h>
#Include <stdilb.h>
#include <math.h>
# Include <conio.h>
#include <ctype.h>
#include <string.h>
#Include <iostream.h>
#define ESC 27
#define ITEMS 8
// object rypes
class BaseNet ( // A basic Neural Network rype
// Includes matrix merhods
public:
    float temp,
            Eta, // default learning rate
            Alpha., // default momentum faccor
            ErrorLevel. // acceptable error level
            Error; // larest sum squared error
    char KeyboardRequest: // crue when key pressed
    1nc Errorfreg, // error reporingg frequency
            ninpucNodes, // number of input nodes
            nHidder|Nodes, // number of hidden nodes
            noutputNodes, // number of output nodes
            nIterations, // number of iterations
            nPatterns, // number of patterns
            nRuns, // number of runs (or input lines)
            H, // index nidden layer
            I, // index input layer
                            // index output layer
                                    // index pattern number
                                    // index iteration number
                                    // index run number
                            // RUN file
            *Runfile, // Rutcernfile, // source pattern input file
            *WeightsInFile, // initial weight file
            *WeightsOutFile, // final weight output file
            *Resultsfile, // results output file
            *Errorfile; // error output file
    char szResults[40]; // various filenames
    char szError|40];
    char szPattern[40];
    char szWeights[40];
    char szWeightsout[40];
// Matrix
// cypedefs and prototypes for dynamic storage of arrays
    typecief floal *FLOATPTR; // Pointer to a real
    typedef FLOATPTR VECTOR; // A Veccor: one column
    typedef FLOATPTR *MATRIX; // A Matrix: two columms
// Eypedef FLOATPTR MATRIX; // A Matrix: two columns
// Network Layers
// Arrays for inputs, outputs, deltas, welghts & target outputs
    MATRIX Out0; // input layer
    MATRIX Out1; // hidden layer
    MATRIX Deltal; // delta at hidden layer
    MATRIX Delw1; // change in welghts input:hidden
    MATRIX W1; // weights input:hidden
    MATRIX Out2; // output layer
    MATRIX Delta2; // delta at output layer
    MATRIX Delw2; // change in weights hidden:output
    MATRIX W2; // welghes hidden:output
    MATRIX TargetOutput; // target output
    VECTOR PatternID; // identifier for each stored pattern
// Memory allocation methods
    void AllocateVector(VECTOR *Vector, int nCols);
    void AllocateColumns(FLOATPTR Matrix[], int nRows, int nCols);
    void AllocateMatrix(MATRIX *pmatrix, int nRows, int ncols);
    void FreeMatrix(MATRIX Matrix, int nRows);
    BaseNet();
                            // constructor
~BaseNet()' (); // destructor
    virtual void Iterate(char Netname) {); // abstract iteration loop
```

);

```
class BackProp : public BaseNet { // Back Propagation network
public:
    BackProp() {);
    ~BackProp() (!;
    void Iterate(char Netname); // iteration loop for this network
};
// BaseNet constructor initializes default fields.
BaseNet::BaseNet() (
    Eta = 0.15, // default learning rate
    Alpha = 0.075; // default momentum factor
    ErrorFreq = 1; // error reporting frequency
    ErrorLevel = 0.04; // acceptable error level
    KeyboardRequest = 0; // true when key pressed
J;
// BaseNet methods
// Implomontation of array allocation routines
// Allocate space for a vector of float cells,
// a one dimensional dynamic vector(cols]
vold BaseNet::Allocatevector(VECTOR *Vector, int ncols)
1
    if ((*Vector = (VECTOR) calloc(nCols, sizeof(float)))== NULL)
        cout << ' Not enough memory!\n'; // If not, abort.
        exit(1):
    )
)
// Allocate space for a dynamic two dimensional matrix[rows][cols]
void BaseNet::Allocatecolumns(FLOATPTR Matrix[], int nRows, int ncols)
{
    int i;
    for (1 = 0; 1 < nRows; 1++)
        Allocatevector(&Matrix[i], nCols);
}
void BaseNet::AllocateMatrix(MATRIX *Pmatrix, int nRows, int nCols)
l
    If ((*Pmatrix = (MATRIX) calloc(nRows, sizeof(FLOATPTR))) == NULL)
        cout << 'Not enough memory!\n';
        exit(1);
    )
    AllocateColumns(*Pmatrix, nRows, nCols);
):
// Free the memory used by the Matrix
void BaseNet::FreeMatrix(MATRIX Matrix, int nRows)
{
    int i; (i) 0; i < nRows; i++)
        free{Matrix[i]);
    free(Matrix);
}
// Specific implementation of iteration loop
// for a back-propagation network
void BackProp::Iterate(char Netname) (
    for (R = 0; R < nRuns; R++)
        // Read and parse the run specification line
        // to obtain information about this network.
        fscanf(RunFile,
            %s %s %s %s %s %d %d %d %d %od %f %f%,
            szResults, // output results file
            szError, // error output file
            szPattern, // pattern input file
            szWeights, // initial weights file
```

```
szWeightsOut, // final weights output file
&nPatterns. // number of patterns to learn
&nIterations, // number of iterations through the data
&nInputNodes, // number of input nodes
&nHiddenNodes,// number of nidden nodes
&noutputNodes.// number of output nodes
&Eta, // learning race
&Alpha); // momentum factor
// Allocate dynamic storage for nodes and patterns.
    AllocateMatrix(&Out0, nPatterns, nInputNodes):
    AllocateMatrix(&Out1, nPatterns, nHiddenNodes):
    AllocateMatrix(&Out2, nPatterns, noutputNodes);
    AllocateMatrix(&Delta2, nPatterns, noutputNodes);
    AllocateMatrix(&Delw2, nOutputNodes, nHiddenNodes + 1):
    AllocateMatrix(&W2, noutputNodes, nHiddenNodes + 1
    AllocateMatrix(&Deltal, nPatterns, nHiddenNodes):
    AllocateMatrix(&Delw1, nHidadenNodes, nInputNodes + 1);
    AllocateMatrix(&W1, nH1ddenNodes, nInputNodes + 1)
    AllocateMatrix(&Targetoutput,nPatterns, noutputNodes);
    AllocateVector(&PatternID, nPatterns);
    //ifstream WeightsInFile("WEIGHT.WTS");
// Read the initial weight matrices.
    if ((WelghtsInFile = fopen(szWelghts,"r")) == NULL)
    l
        cout << 'Can't open file ln' << Netname << szWeights;
        exic(1):
    }
// read input:hidden weights
    for (H = 0; H < nHiddenNodes; H++)
        for (I = 0; I <= nInputNodes; I++)
        |
        // WeightsInFile >> Wl[H][I];
            fscanf(WeightsInFile, "%f", &Wl|H][I]);
            printf("%f\n",W1[H](I]);
            Delw1[H][I] = 0.0;
        )
// read hidden:out weights
    for (J = 0; J < noutputNodes; J++)
        for (H = 0; H <= nHiddenNodes; H++)
        lor
            fscanf(WeightsInFile, "%f', &W2[J][H]);
            printf(*&f\n',W2[J](H]);
            Delw2[J][H] = 0.0;
        )
    fclose(WeightsInFile);
// Read in all patterns to be learned.
    if ((PatternFile = fopen(szPattern, 'r')) == NULL)
    {
        cout << " Can't open file \n' << Netname << szPattern;
        exit(1);
    J
    for (P = 0; P < nPatterns; P++)
    f
        for (I = 0; I < nInputNodes; I++)
        // 1f (fscanf(PatternFile, *%f", &Outo(P][I])!= 1)
            fscanf(PatternFile,*%f",&Out0[P][I]);
                // goto AllPatternsRead;
// Read in targedt outputs for input patterns.
        for (J = 0; J < noutputNodes; J++)
        { fscanf(PatternFile, '%f", &Targetoutput[P][J]);
            printf(" %f\n',TargetOutput(P|{J]);)
// Read in identifier for each pattern.
        fscanf(PatternF1le, *f*, &PatternID|P]);
        princf("%f\n`,PatternID(P]);
    }
    AllPaccernsRead: // Then, we're done.
    fclose(PatternFile);
```

```
    if (P < nPatterns)
    {
        cout << ' Can't open file \n' << Netname << P<< nPatterns;
        nPatterns = P;
    )
// Open error output file
    if ((ErrorFile = fopen(szError, "w')) == NULL)
    l
        cout << ' Can't open file \n' << Netname << szError;
        exit(1);
    }
    fprintf(stderr, nIterations > 1 ? "Training...\n" : "Testing\n");
// Iteration loop
    for }Q=0;Q<nIterations; Q++
    l
        for (P = 0; P < nPatterns; P++)
        {
    // Hidden layer
    // Sum 1nput to hldden layer over all
    // input-weight somhinat.inns
        for (H=0; H}< = nHiddenNodes; H++
            float Sum = Wl[H][nInputNodes]; // Begin with bias
            for (I = 0; I < nInputNodes; I++)
                Sum += W1[H][I] * Outo[P][I];
            // Compute output using sigmoid function.
            Out1(P][H]=1.0/(1.0 + exp(-Sum));
        )
    // Output layer
            for (J = 0; J < noutputNodes; J ++)
            (
            float Sum = W2|J]|nHiddenNodes];
            for (H = 0; H < nHiddenNodes; H++)
                    Sum += W2[J][H] * out1[P][H];
            // Compute output using sigmoid function.
            Out2[P][J] = 1.0 / (1.0 + exp(-Sum));
        )
        // Delta output
        // Calculate deltas for each output unit for each pattern.
            for (J = 0; J < noutputNodes; J++)
            Delta2[P][J] = (TargetOutput[P][J] - Out2[P][J]) *
                                    Out2[P][J] * (1.0 - Out2(P][J]);
        // Delca hidden
            for (H = 0; H < nHiddenNodes; H++)
            float Sum = 0.0;
            for (J = 0; J < noutputNodes; J++)
                    Sum += Delta2[P][J] * W2[J][H];
            // Compute output using sigmoid function.
            Delca1[P][H] = Sum * Out1[P][H) * (1.0 - Out1[P][H]);
        }
        J
            // Adapt weights hidden:output 
            float Dw; // delta weight
            float sum = 0.0;
            // Sum of deltas for each output node for one epoch
            for ( }P=0; P<nPatterns; P++
            Sum += Del[a2[P]{J];
        // Calculate new bias weight for each output unit
        Dw = Eta * Sum + Alpha * Delw2[J][nHiddenNodes];
        W2[J)(nHiddenNodes) += Dw;
        Delw2[J][nHiddenNodes] = Dw; // delta for bias
            // Calculate new weights
```

```
        for (H = 0; H < nH1ddenNodes; H++)
        (
            float Sum = 0.0;
            for (P = 0; P < nPatterns; P++)
                    Sum += Delta2[P][J] * Out1[P][H];
            Dw = Eta * Sum + Alpha * Delw2[J][H];
            W2[J][H] += DW;
            Delw2[J][H] = DW;
        }
    l
    // Adapt weights input:hidden
    for (H = 0; H < nHiddenNodes; H++)
        float Dw; // delta welght
        float Sum = 0.0;
        for (P = 0; P < nPatterns; P++)
            Sum += Deltal|P|[H]:
        // Calculate new blas weight for each hidden unit
        DW = ELa * Sum + Alpha * Delwl|H](nInputNodes);
        W1[H][nInputNodes] t= Dw;
        DelwI[H][nInputNodes) = Dw;
        // Calculate new welghts
        for (I = 0; I < nInputNodes: I++)
        float Sum = 0.0;
        for (P = 0; P < nPatterns; P++)
            Sum += Delta1[P][H] * OutO[P][I];
        Dw = ELa * Sum + Alpha * Delwl[H][I];
        W1[H]{I] += DW;
        Delw1[H][I] = DW;
    )
        )
// Watch for keyboard requests
    if (kbhit())
            int c = getch();
            if ((c = toupper(C)) == ' E')
            KeyboardRequest++;
            else if (c == ESC)
            break; // End if ESC request
        }
// Sum Squared Error
    if (KeyboardRequest || (Q % ErrorFreq == 0))
            for (P = 0, Error = 0.0; P < nPatcerns; P++)
            {
            for (J = 0; J < nourpurNodes; J++)
            {
                                    floar Temp = Targetoutput[P][J] - Out2[P]{J];
                Error += Temp * Temp:
            )
            )
            // Average error over all patcerns
            Error /= nPatterns * noutputNodes;
            // Print iteration number and error value
            fprintf(stderr, Iteration %5d/%-5d Error %f\n*,
            Q, nIterations, Error):
            KeyboardRequest = 0;
            if (0 & ErrorFreq == 0)
            fprintf(ErrorFile, "%d %f\n", Q, Error); // to file
            // Terminate when error satisfaccory
            if (Error < ErrorLevel)
            break;
        }
    )
    // End iterate loop
    // Display error, iterations, etc.
```

```
        for (P = 0, Error = 0.0; P < nPatterns; P++)
        l
            for (J = 0; J < noutputNodes; J++)
            {
            float Temp = Targetoutput[P][J] - Out2[P][J];
            Error += Temp * Temp;
            }
        }
        // Average error over all patterns
        Error l= nPatterns *nOutputNodes;
        // Print final iteration number and error value
        fprintf(stderr, "Iteration %5d/&-5d Error &f\n', Q,
            nIterations, Error); /* to screen */
        fclose(ErrorFile);
        // Print final welghts
        if ((WelghtsoutFile = fopen(szWeightsout,"w")) == NULL)
        {
        cout << 'Can't write file\n' << Netname << szWelghtsout;
        exit(1);
        1
        for (H = 0; H < nHlddenNodes; H++)
            for (I = 0; I <= nInputNodes; I++)
            fprintf(WelghtsOutFile, "&g%c", Wl[H][I],
                I%ITEMS==ITTEMS-1 ? '\n':' ');
        for (J = 0; J < noutpurNodes; J++)
        for (H = 0; H <= nHiddenNodes; H++)
            fprintf(WeightsoutFile, *%g%C', w2[J)[H],
                            Ј%ITEMS==ITEMS-1 ? '\n':' ');
        fclose(WeightsOutFile);
        // Print final activation values
        if ((ResultsFile = fopen(szResults,'w')) == NULL)
        l
            cout << " Can't write file \n' << Netname << szResults;
        ResultsFile = stderr;
        1
        // Print final output vector
        for (P = 0; P < nPatterns; P++)
        for
    // cout << ResultsFile << P;
        for (J = 0; J < noutputNodes; J++)
            cout << Out2[P][J]<< endl;
        // temp=Out2[P][J];
        // printe(%ft,cemp);
    // cout << ResultsFile << '\n' << PatternID[P];
        // cout<<'\n'<< PatternID[P];
        )
        fclose(ResultsFile);
    // Free memory used for Matrix
        FreeMatrix(Outo, nPatterns);
        FreeMatrix(Out1, nPatterns);
        FreeMatrix(Deltal, nPatterns);
        FreeMatrix(Delwi, nHiddenNodes);
        FreeMatrix(W1, nHiddenNodes):
        FreeMatrix(Out2, nPatterns);
        FreeMatrix(Delta2, nPatterns);
        FreeMatrix(Delw2, noutputNodes);
        FreeMatrix(W2, noutputNodes);
        FreeMatrix(Targetoutput, nPatterns);
        free(PatcernID);
    )
    fclose(RunFile); // Close Run file
)
```

void main(int argc, char *argv(]) (
BackProp Bp; // Instance of a BackProp network
char *Netname = *argv; // netname is read from argument list
// Read arguments from DOS command line
for (; argc > 1; argc--)
I
char *arg = *++argv;
if (*arg != '-')
break;
switch (*++arg)
l
case 'e': sscanf(++arg, "%d", \&Bp.ErrorFreq); break;
case'd': sscanf(++arg, '\&f*', \&Bp.ErrorLevel); break;
default: break;
)
)
1f (argc < 2)
fprintf(stderr, Usage: is (-en -df) runfilename\n*, Netname);
fprintf(stderr, : -en }=>\mathrm{ (report error every n iterations\n*);
fprintf(stderr, " -df => done if sum squared error < f\n");
exit(1);
)
// Open run file for reading
1f ((Bp.RunFile = fopen(*argv, 'r")) == NULL)
cout << ' Can't open file \n' << Netname << *argv;
exit(1);
}
fscanf(Bp.RunFile, "od*, \&Bp.nRuns); // Scan for no. of runs
Bp.Iterace(*Netname); // Iterace a BackProp network.

```
J;

APPENDIX B.
IMAGE SET WITH FEATURES
```

! Image Numbers and Features
$!$ Feature Number and Feature
! 1 - Irregularity Index
! 2 - Percent Asymmetry
! 3,4,5 - Variance of Red Green Blue Planes
! 6,7,8 - Relative chromaticity
! 9,10,11 - Spherical Transform -Length, Angle A, Angle B
! 12,13,14 -Lightness, Chroma, Hue
! 15 - Elevation greater than 1 mm
! 16 - Area greater than 6 mm

```
```

!1062n.pic -sk1

```
!1062n.pic -sk1
1.031 5.733 19 10 11 0.0691178 -0.0328287 -0.0362891 164 70 19 58 42 15
1.031 5.733 19 10 11 0.0691178 -0.0328287 -0.0362891 164 70 19 58 42 15
& 110
& 110
!1069n.pic -sk 2
1.017 8.834 17 10 8 0.00135021-0.00397274 0.00262253 164 75 16 56 50 20
&110
!1070n.pic -sk 3()
1.128 10.451 1356-0.0307848 0.007237810.023547144 66 23 67 34 17
& 110
11080n.pic -sk 4 ()
1.198 19.798 17 97-0.0389408 0.000944793 0.037996 15064 25 58 30 36
& 110
!1083n.pic -sk 5()
1.206 18.050 14 86 -0.0223464-0.0023347 0.0246811 16565 26 62 29 12
& 110
11087n.pic -sk 6()
1.034 8.3219760.0440858-0.0213571-0.0227287 213 73 22 684132
& 010
!1090n.pic -sk 7()
1.0218.321 11 129 0.116759-0.0603349-0.0564245 241 74 21 71 44 31
& 1 10
!109ln.pic -sk 8
1.102 7.321 13770.0548701-0.0408009 -0.0140693 170 70 21 61 38 19
& 110
!1092ncmp.pic -sk 9
1.056 12.17413670.013108-0.0147382 0.0016301815674 15 54 50 14
& }01
!1094ncmp.pic -sk 10
\(1.0274 .90496770 .0325351-0.0129994-0.01953572236724593932\)
& 010
!2007ncmp.pic -sk 11
1.0124.12574 3 0.0960578 -0.0341857 -0.0618721 168 80 13 54 61 22
& 110
!2037ncmp.pic -sk 12
```

```
1.3525.886 1875 0.346447 -0.1944 -0.152047 85 88 3 329041
& 110
12059n.pic -sk 13
1.196 13.475 14 3 3 0.191546 -0.112665-0.0788812 38 86 13 20 62 94
& 110
!2087ncmp.pic -sk 14
1.157 8.455 13 6 7-0,00686729 -0.00569877 0.0125661 156 72 15 54 50 14
& 100
12105ncmp.pic -sk 15
1.041 9.632 12 14 8-0.115576 0.0538567 0.061719264 21 61 23 12 12
& 100
!211ncmp.pic -ak 16
1.015 4.432 1 14 120.0516641 -0.0246662 -0.0269979 819 70 34 88 32 73
& 110
12160ncmp.pic -sk 17
1.168 6.930 17 9 7-0.27037 0.134001 0.186369 22s 67 24 59 89 32
& 110
12161ncmp.pic -sk 18
1.048 2.472 1 14 12-0.29676 0.176275 0.120485 64 21 61 23 12 12
& 110
11286n.pic -sk 19
1.120 9.26543 3 0.101622-0.0475972 -0.0540251 176 78 13 56 59 21
& O 10
12189ncmp.pic -sk 20
1.855 11.250844-0.0234213 0.00143669 0.0219846 103 75 13 444912
& 110
12190ncmp.pic -sk 21
1.1018.213718 0.0616013 -0.0360363 -0.0255651 11276 114142 11
&110
!1056n.pic sk -22
1.153 11.905 11 2 3-0.0131334 0.005039080.00809427120692051 379
& 110
!1057n.pic sk -23
1.079 12.217 2079-0.0354573 0.0147691 0.0206882 175 66 22 61 38 22
& 100
11061n.pic sk -24
1.0328.3215780.0535-0.0216394-0.0318606 256 68 22 72 41 13
& 1 00
11066n.pic sk -25
1.021 10.543 22 12 8 0.0623497-0.0453598-0.0169899 179 74 21 62 41 31
& }10
!1084n.pic sk -27
1.024 8.321 16 870.0640028-0.0433885 -0.0206143 168 71 21 60 38 21
& 100
```

```
!1070n sk -33
1.128 10.541 30 12 8 0.0843952-0.0587258 -0.0256694 21 24 38 3169 38
& 100
!1071 8k -34
1.036 3.194 22 12 7 0.10456 -0.0310324 -0.0735272 17 15 39 32 57 37
& 100
11072 sk -35
1.0736.675 26 1450.168369 -0.115165 -0.0532037 20 18 37 31 60 33
& 100
11073 sk -96
1.052 6.482 21 15 6 0.155799 -0.123364 -0.032435 31 19 33 30 69 35
& 100
!1074 Bk -37
1.036 4.800 33 24 90.220329-0.163921-0.0564075 22 31 31 32 72 39
& 100
!1075 sk -38
1.253 12.523 23 14 7 0.157201 -0.121593 -0.0356081 21 94 32 31 79 41
& }10
!1076 sk -39
1.1417.038 32 15 70.199476 -0.207951 0.00847509 21 34 32 32 77 37
& 100
!1285 sk -40
1.0429.900 29 1240.230517 -0.261197 0.03068 21 31413172 34
& 110
!2185ncmp.pic -sk 41
1.1035.023623 0.1283-0.0684647-0.059835 157 82 9 5069 24
& 110
!1100n.pic sk -42
1.073 9.873 20 10 12 0.0749288 -0.0321937-0.042735 185 74 15 59 53 15
& 100
!1097ncmp.pic -idn 1
1.160 20.732 15 3 3-0.0183534 0.000698402 0.012655 153 72 1755 46 14
&000
11103n.pic -idn 2
1.174 8.5396 3 3 0.0661081-0.0302028-0.035905418975 145857 15
& 010
!1104n.pic -idn 3
1.146 10.609 6 3 4 0.0872334-0.0872876 -0.0499458 234 76 1363 64 17
& 010
!1107ncmp.pic -idn 4
1.033 4.4919740.263736 -0.131639-0.132097 133 80 15 51 52 32
& 110
11112m.pic -idn 5
1.017 2.501241490.013667-0.0223494 0.0086824 14676 20 56 41 32
&100
```

!1115n.pic -idn 6
1.1018 .016231190 .0527529 -0.0609775 0.008224631457221544331 \& 100

11119n.pic -idn 7
1.0175 .6997880 .0630696 -0.0340714-0.0289982 2137616635530 $\& 100$
|115ncmp.pic -idn 8
$1.0497 .31713740 .183424-0.0934123-0.09001151398311496433$ $\& 100$
!116n.pic -idn 9
$1.0967 .1238870 .0821575-0.0497772$-0.032s803 2217419674825 \& 010

11161n.pic -idn 10
$1.0356 .703815130 .0307125-0.0208465-0.0098662577126763538$ \& 000

11260n.pic -idn 11
$1.05711 .40410880 .0519384-0.036266$-0.0156724 1787219604418 \& 110
!1274n.pic -idn 12
$1.0838 .058511-0.06772580 .01863540 .04909051366722553410$ 8010

11277n.pic -idn 13
1.17813 .033922 -0.033558 0.003369270 .0301887987219453517 \& 010
!1278n.pic -idn 14
$1.1143 .756934-0.03007740 .009306130 .02077131206919513813$
\& 100
!1280n.pic -idn 15
$1.1205 .499945-0.0310150 .001253130 .02976191197614484916$ \& 010
!241ncmp.pic -idn 16
$1.0812 .828261570 .18071-0.0825137$-0.0981966 1558418575954 \& 010
!2019 2 idn -17
$1.0419 .6457760 .116756-0.0631656-0.05359061388312496334$ \& 000
!2020 3 idn - 18
$1.0085 .9639750 .146491-0.0794678-0.06702341338211486230$ \& 000
!2021 4 idn - 19
$1.0463 .14011640 .113997-0.0585859-0.0554113107877408240$ \& 000
!2052 65955 idn -20
$1.1149 .13211540 .108052-0.0614302-0.0466216131848457128$ $\& 000$

```
12068 22185 6 idn -21
1.065 8.227 10650.0716841 -0.0437076 -0.0279765 186 82 954 72 23
& 0 00
12071 165017 idn -22
1.0199.6398440.0932401 -0.0441357 -0.0491044130847447228
&0 00
12144449441 idn -23
1.187 12.122 1066 0.0821858-0.0388926 -0.0432432 134 77 12 49 56 16
& 0 00
127 29214 idn -24
1.040 5.59015960.131055 -0.078216 -0.0528394 154 839 50 69 29
& 0 00
!1266n.pic idn -25
1.145 5.08 21 65 0.120136 -0.0680946-0.0520415 167 76 15 56 5S 18
& 1 10
11257n.pic idn -26
1.053 4.05 20 8 8 0.0755894 -0.0377947 -0.0377947 174 75 15 57 53 16
&1 00
!1259n.pic idn -27
1.1145.468 171010 0.0939308 -0.0469654 -0.0469654187 76 14 58 57 17
& 100
11262n.pic idn -28
1.075 8.315 677 0.146951 -0.0772348-0.069716 18976 13 58 59 15
& 100
!1263n.pic idn -29
1.098 12.453 23 97 0.105208-0.0554246 -0.0497834 14775 17 54 45 22
& 100
11264n.pic idn -30
1.088 6.925 977 0.0446026 -0.0235533 -0.0210492 18775 15 5955 18
&100
!1266n.pic idn -31
1.055 7.989 9 10 11 0.105228 -0.0519599 -0.0532679 210 74 16 63 54 18
& 1 00
!1267n.pic idn -32
1.143 11.999 9 5 6 0.0905609 -0.0455797 -0.0449812 215 76 1361 61 16
& }10
!1268n.pic idn -33
1.0454.818 21760.110261-0.0593548-0.0509067 162 74 17 57 47 18
& 100
!1272n.pic idn -34
1.0114.432 11780.0464534-0.0302478 -0.0162057 195 74 16 6153 17
& 100
!1275n.pic idn -35
1.135 9.982 18 8 9 0.0890631-0.0519898-0.0370733 163 75 14 55 53 15
& 100
```

```
!2022ncmp.pic idn -36
1.032 5.321 1376 0.0503824-0.0275247 -0.0228576 132 83 12 4963 37
& 100
!207ncmp.pic idn -37
1.065 5.321 20 18 13 0.241703 -0.0891783 -0.152524 216 78 20 67 51 43
& 100
11101n.pic -38 idn
1.0216.211 17 12 12 0.0871868 -0.0509664 -0.0362205 222 72 16 64 53 18
& 100
11108n - 39 idn
1.0326.482 17 9 10 0.115745-0.0630272 -0.0527179 20274 14 605714
& 100
!1113n -40 idn
1.0427.322814120.0980796-0.0090261 -0.0050474 23870 82 70 40 28
& 100
!2016 idn - 41
1.217 6.741 10 11 10 0.163615 -0.0854795 -0.0781355 15979 11 52 63 21
&000
!133ncmp.pic -dys 1
1.0628.873 5 21 17 0.145339 -0.0506433 -0.0946962 26975 26 77 43 53
& 010
!14lncmp.pic -dys2
1.105 5.658 22 1470.170337 -0.0828349 -0.0875022 136 84 13 50 61 42
& 110
!143ncmp.pic -dys 3
1.1572.784 26 1270.214605 -0.106758 -0.107848 187 84 12 4963 40
&010
!156ncmp.pic -dys 4
1.043 4.766 10 14 9 0.160594-0.0688262-0.0917682 231 80 21 70 55 52
& 0 10
!167ncmp.pic -dys 5
1.1208.718 23 126 0.174069-0.0826856 -0.091383 15083 17 55 56 51
& 010
!158ncmp.pic -dys 6
1.132 16.294 18 118 0.204943 -0.105352 -0.0995905 180 84 10 54 73 35
& 010
!159ncmp.pic -dys 7
1.234 17.649 18 27 19 0.140179 -0.0449167 -0.0952622 234 78 25 73 4961
& 010
!160ncmp.pic -dys 8
1.227 19.758 185 1 0.277632-0.137794-0.139839 116 895409848
& 010
```

$1.14017 .8661728250 .150561-0.0567199-0.09384082387227743548$ \& 010

1219ncmp.pic -dys 10
$1.0984 .2509530 .132369-0.0712994-0.06106941628415566345$ \& 010
!220ncmp.pic -dys 11
$1.1841 .85217950 .109123-0.0722351$-0.0368875 1668215565938 \& 010
!475ncmp.pic -dys 12
$1.27225 .2902922120 .13804-0.0698198-0.06822042068121665556$ \& 000

1482ncmp.pic -dys 13
$1.0719 .600271250 .206347-0.119573-0.08677381018611427151$ \& 000

1484ncmp.pic -dys 14
$1.0318 .342252370 .0539652-0.0339897$-0.0199755 1557718564631 \& 000

1486ncmp.pic -dys 15
1.0407 .94713740 .125833 -0.0723079-0.053525 1467917554935 \& 000

1487ncmp.pic -dys 16
1.0538 .480131170 .0387884 -0.0209809-0.0178075 1297920544549 \& 000
!49ncmp.pic -dys 17
1.10211 .5102020160 .0776418 -0.0506528 -0.026989 $1097025 \quad 512730$ \& 010
!490ncmp.pic -dys 18
$1.11914 .5323000 .226667-0.173333-0.0533333239021137244$ $\& 010$

1496ncmp.pic -dys 19
$1.0479 .33861050 .273172-0.155574-0.117598838516426459$ \& 000
!497ncmp.pic-dys 20
$1.0327 .4317200 .279339-0.204959-0.074380254890239245$
\& 000
1499nemp.pic-dys 21
$1.0085 .586182418-0.008186780 .005963210 .002223571357724564159$ \& 000

1500ncmp.pic-dys 22
$1.09813 .3801015100 .158599-0.0872711-0.0713281597818574937$
\& 000
!216ncmp.pic -dys 23
$1.08612 .711101060 .126032-0.0737281-0.05230432168115636337$ \& 010

```
!502ncmp.pic-dys 24
1.012 9.872 14410.287735-0.185873-0.10286256892558747
& 010
!503ncmp.pic-dys 25
1.0128.765 10 Б 2 0.141607 -0.0763629 -0.0652446 1717925644562
&000
!504ncmp.pic-dys 26
1.032 8.3421 14 8 3 0.117862-0.0829299 -0.0349323 107 79 16 47 46 36
& 000
!506ncmp.pic-dys 27
1.082 7.821 24 13 7 0.188732-0.100218-0.0885141 135 86 13 506950
& 000
!507ncmp.pic-dys 28
1.021 6.443 25 16 10 0.141358 -0.0672615 -0.0740963 100 83 18 46 64 68
& 000
1508ncmp.pic-dys 29
1.045 8.222 16 24 210.127917 -0.0341737 -0.0937431 166 72 24 61 34 34
&000
```

!509ncmp.pic -dys 30
1.1015 .3212114100 .140047 -0.0712651-0.0687816 1147720513840
$\& 000$
1510ncmp.pic-dys 31
$1.0059 .082221380 .133109-0.0710516-0.06205771208016494937$
\& 000
!511ncmp.pic -dys 32
1.09986 .50415730 .250911 -0.148865 -0.102047 72885318347
\& 000
!513ncmp.pic-dys 33
$1.0187 .247211690 .193961-0.10456-0.08940051058514446864$
$\& 000$
!514ncMp.pic -dys 34
$1.04410 .826221570 .194506-0.109888$-0.0846171 968514436654
\& 000
!515ncmp.pic-dys 35
$1.0144 .36871260 .205376-0.106605-0.09877111058518486663$
8000
!516ncmp.pic -dys 36
$1.0953 .66215850 .195002-0.107989-0.0870182698116384443$ $\& 000$
!517ncmp.pic-dys 37
$1.11815 .775211040 .201378-0.127981-0.073396573886328149$ \& 000
!518ncmp.pic -dys 38
$1.0685 .02911850 .157976-0.0847907-0.07318491368612507147$ \& 000
!521ncmp.pic-dys 39
$1.096 \quad 10.993111060 .216075-0.123325-0.09275041468415546348$ $\& 000$
!522ncmp.pic -dys 40
$1.16311 .136221990 .205653-0.109019-0.0966339978518456264$ \& 000
!523ncmp.pic -dys 41
1.11814 .87181690 .121843 -0.0789141-0.042929312080 24544665 \& 000
!524ncmp.pic -dys 42
1.0669 .13251070 .0829462 -0.0529668 -0.0299794 1188416496452 \& 000
!526ncmp.pic-dys 43
1.0104 .3141413100 .119831 -0.0591585 -0.0606725 1468116545439 \& 0000
!527ncmp.pic -dys 44
$1.0906 .920201360 .200477-0.109688-0.090789968614436857$ \& 000
!628ncmp.pic -dys 45
$1.0217 .642131270 .0994053-0.0525721-0.04683321308317525953$ \& 000
!529ncmp.pic-dye 46
$1.20817 .27516840 .138636-0.0740909-0.0645455888713417054$ $\& 000$

1530ncmp.pic-dys 47
$1.30211 .3034750 .213229-0.132196$-0.0810335 1208214485538 \&000
!531ncmp.pic-dys 48
1.1607 .60013620 .322011 -0.210499-0.111511 58897307854
$\& 000$
I532ncmp.pic -dys 49
$1.24614 .695181070 .205027-0.105606-0.09942111078511436644$ \& 010
!533ncmp.pic-dys 50
$1.03111 .285171040 .051419-0.0373818-0.0140372807917414137$ \& 010
!534ncmp.pic-dys 51
$1.15513 .2342821110 .134924-0.0692665-0.06565771288323545467$ \& 000
!535ncmp.pic -dys 52
$1.01512 .214121260 .0594883-0.0368852$-0.0226031 968418465961 $\& 000$
!537ncmp.pic -dys 53
$1.0315 .177221360 .257882-0.131213-0.1266691008712437264$
\& 110
!538ncmp.pic-dys 54
$1.16826 .47115520 .320127-0.189237-0.18089988933510047$
\& 010!539ncmp.pic -dys 55$1.0157 .50817850 .101143-0.0586939$-0.042449968412425739
\& 001
!540ncmp.pic -dys 56
$1.02010 .072181590 .142786-0.078607-0.0641791988413426547$
$\& 010$
1541ncmp.pic-dys 57
$1.06612 .90618850 .197635-0.102055-0.09558928710997548$
$\& 000$
1542ncmp.pic-dys 58
$1.14518 .876211470 .18842-0.100308-0.0881125938615496758$
\& 100
!543ncmp.pic-dys 59
1.11414 .183111170 .123471 -0.0629612 -0.0605102 1697922624650
\& 010
1544ncmp.pic-dys 60
$1.11313 .279171270 .208518-0.147572-0.06094611088514466349$
\& 010
1545n.pic-dys 61
$1.28811 .6432228190 .0809524-0.0449735-0.03597881927035702676$
\& 010
!546n.pic -dys 62
1.0384 .37317630 .223604 -0.130697 -0.0929074 1048610426944
\& 010
!647n.pic -dys 63
$1.0855 .445211070 .18869-0.0928571-0.0958333838112384928$
\& 010
!548n.pic-dys 64
1.24018 .830171080 .179803 -0.0909438 -0.0888588 1467714535224
$\& 010$
!549n.pic -dyв 65
1.0594 .6862614100 .0660927 -0.0307781-0.0353146 1297123543125
\& 010
!550n.pic-dys 66
$1.06611 .68518940 .250476-0.134286-0.116191108613456649$
$\& 010$
1551ncmp-pic-dys 67
$1.0636 .8001413100 .18094-0.12279-0.05815021338018534944$
\& 010
!552ncmp.pic -dys 68
1.0166 .3202120130 .155285 -0.0897358 -0.0655488 1148220505256
\& 010
!553ncmp.pic-dys 69
$1.18011 .580231580 .170833-0.0902778$-0.0805556 1068517476460
\& $0 \quad 10$
|554ncmp.pic -dys 70
$1.06112 .236231150 .124734-0.0615991-0.06313531018317465050$ \& 010
!555ncmp.pic-dys 71
$1.42311 .67215630 .216049-0.123457-0.092592671885318043$
\& 010
1556ncmp.pic-dye 72
$1.04311 .5546120 .0481713-0.0448508-0.00332045817417423819$ $\& 010$

1558ncmp.pic -dys 73
$1.31325 .546161240 .288543-0.174943-0.11359965889327756$ \& 010

1558nomp.pio dys 74
$1.0518 .62311400 .198925-0.150538-0.048387166894299051$
\& 010
1561ncmp.pic -dys 75
$1.0898 .243101280 .159428-0.0718737-0.08155381038119484749$ \& 010
|562ncmp.pic -dys 76
$1.0895 .18071380 .119906-0.0702758-0.04963061428023584657$ \& 010

1498ncmp.pic dys nevi - 77
$1.0939 .01814310 .288557-0.168339-0.12021964892279045$ $\& 010$
!495ncmp.pic dys nevi -78
$1.06618 .6388830 .249353-0.165277-0.0840759618883175$ Б1 \& 010

1494ncmp.pic dys nevi - 79
$1.0033 .65191270 .2125-0.116429-0.0960714828317425655$ \& 010
!493ncmp.pic dys. nevi - 80
$1.0536 .838101060 .25-0.134615-0.115385608614346257$
\& 010
!489ncmp.pic dys. nevi - 81
$1.0315 .3881018100 .128388-0.0688155-0.05957221598225625770$
$\& 010$
!488ncmp.pic dys. nevi - 82
$1.0216 .5802319130 .10323-0.0522811-0.05094911618021595255$ \& $0 \quad 10$
!44ncmp.pic dys. nevi - 83
$1.29811 .5431019190 .142043-0.0577351$-0.0843075 1166731551945 \& 010
!40 48612 dys. nevi -84
$1.21419 .0651717170 .183959-0.0714789-0.112481336825562829$ \& 010

```
141 12468 dys. nevi -85
1.157 16.82 23 24 22 0.168384-0.074249-0.0890849 176 70 25 63 31 31
&010
1474 2147 dys. nevi -86
1.0136.624 30 20 10 0.132258 -0.0707044 -0.0615532 127 81 20534753
& 0 10
1476 2528 dys. nevi -87
1.038 7.879 15 18 14 0.10009 -0.049968 -0.0501221 222 76 196650 31
& 0 10
!478 2608 dys. nevi -88
1.146 6.119 10 18 18 0.127568 -0.0612033 -0.0663644 200 67 25 67 31 16
&010
1479 2267 dys. nevi -89
1.189 12.896 3s 20 9 0.170581 0.0844125 0.0861682 14284 17 54 6055
& 0 10
!480 6012 dys. nevi -90
1.143 7.384 23 22 13 0.180189 -0.101745 -0.0784441 181 80 19 62 52 49
& 0 10
|81 15840 dys. nevi -91
1.0825.884 20 840.181986-0.101299 -0.080687184 86 11 396445
& 010
148390 dys, nevi -92
1.106 14.673 27 17 80.0707658-0.0407852-0.0299806 185 77 21 63 45 42
& 010
!484 1970 dys. nevi -93
1.008 3.700 23 127 0.056357 -0.0390921 -0.0172649 153 77 18 56 46 30
&0 10
!485 1892 dys. nevi -94
1.066 12.019 21 14 8 0.0916667 -0.0495098 -0.0421569 146 81 17 55 52 45
& 010
!490 4509 dys. nevi -95
1.119 14.5728100.226667-0.173333-0.0533333 36 89 0 17 81 45
& 0 10
!500 1424 dys. nevi -96
1.098 13.3801015 10 0.158599 -0.0872711 -0.071328 159 78 18 57 49 37
& 010
!501ncmp.pic-dys 97
1.03212.22 24 24140.108512-0.0597078 -0.0488047 146 76 28 60 34 63
&000
!43ncmp.pic -dys 98
1.047 3.7326 }320.14157-0.06196 -0.079610195 73 23 4929 36
& 010
```

```
!303ncmp.pic -mel 1
1.002 10.314 41 24 170.021307 -0.0221893 0.000882383 149 75 22 57 37 37
& 0 1 1
1304ncmp.pic -mel 2
1.3687.887 27 135 0.128994-0.0631023 0.0658918 104 85 17 47 57 56
& 11 }
!305ncmp.pic -mel 3
1.161 6.686 11 15 10 0.167401 -0.0964374 -0.0709634 208 83 10 57 77 32
& 011
|308ncmp.pic -mel 4
1.354 22.706 19970.0622807 -0.0392756 -0.0230051 16178 165651 28
& 011
1315ncmp.pic -mel 5
1.25216.447 19 11 90.13216 -0.0693582 -0.0628019109 82 12 44 56 32
& % 11
1318ncmp.pic -mel 6
1.249 18.419104 9 0.115542-0.066803 -0.0487389 91 86 7 38 67 34
& 0 1 1
!320ncmp.pic -mel 7
1.203 21.469 20 12 7 0.133948-0.0768223-0.0571257 65 87 9 32 69 50
& 1 1 1
1324ncmp.pic -mel }
1.592 10.968 14740.222871 -0.106973 -0.11589778 85 12 38 58 44
&011
1925ncmp.pic -mel }
1.225 19.299 1865 0.140449 -0.0702247-0.0702247 129 80 14 50 51 30
& 011
1330ncmp.pic -mel 10
1.137 11.828 14 85 0.189286 -0.0988095 -0.090476295 85 11 41 64 42
& }11
!333ncmp.pic -mel 11
1.205 13.853 11 3 2 0.186992-0.097561 -0.0894309 91 80 13 42 48 27
& 011
!334ncmp.pic -mel 12
1.317 23.449 15 11 9 0.10816 -0.0528886 -0.055271 75 72 21 42 30 27
& 011
!335ncmp.pic -mel 13
1.181 26.77025 86 0.0821602 -0.0487085 -0.0334417 12183 12 47 58 35
& 011
!340n.pic -mel 14
2.34243.468 114 3 0.234465 -0.128411 -0.106054 71 85 113654 39
&011
!342ncmp.pic -mel 15
1.727 18.187 31 25 14 0.110295 -0.0599168 -0.050378 164 79 23 61 45 54
& }01
!343ncmp.pic -mel 16
```

```
1.328 18.6789950.140825-0.0858287-0.0549962 215 84 15 63 70 46
&011
1845ncmp.pic -mel 17
1.647 29.141 11 26 21 0.0911901-0.0402883-0.0509018 267 72 28 78 36 52
& 011
!350ncmp.pic -mel 18
1.157 11.195 14 7 4 0.314298-0.157367 -0.15693154 88 5 27 73 47
& 111
!352ncmp.pic -mel 19
1.809 38.3926 18 11 0.148915-0.0599619-0.0889532 107 83 20 495060
& 011
!353ncmp.pic -mel 20
1.128 14.270 10 5 0.150327-0.0782794 -0.0720474 92 79 16 44 43 34
& 011
!355ncmp.pic -mel 21
1.315 12.05 22 14 9-0.0017011-0.00908638 0.0107875 162 80 23614859
& 001
1356ncmp.pic -mel 22
1.538 13.44 26 21 15 0.126084-0.0819356-0.0441488 167 77 20594540
&&111
1357ncmp.pic -mel 23
1.39120.958 14 22 14 0.0967153 -0.0499176 -0.0467977 247 77 24 73 47 52
& 001
1358n.pic -mel 24
1.375 20.516 2916 10 0.0399772-0.0291483-0.0108289 19181 176156 42
&001
!359ncmp.pic -mel 25
1.276 14.424 23 136 0.115062-0.0531687-0.06189358 87 13 32 61 59
& 011
!361ncmp.pic -mel 26
1.172 13.544 25 18 13 0.0601316-0.0516219-0.00850976 155 80 17 56 52 38
& 111
!362ncmp.pic -mel 27
1.77217.948 29 108 0.10652-0.0461802-0.0603403 102 82 15 45 4940
& 111
!363ncmp.pic -mel 28
1.1949.6139 16 120.0644723-0.0281645-0.0363078 270 74 30 80 3866
& 011
!364n.pic -mel 29
1.086 9.513 341680.144444-0.082846-0.061598495 82 21 46 45 59
&011
!366ncmp.pic -mel 30
1.277 14.503 1974 0.194758-0.113564-0.0811934 11485 11446741
& 011
!368ncmp.pic -mel 31
1.006 2.9228 32 0.225699-0.127635-0.098064 63 88 8 326644
```

\& 111
1370ncmp.pic -mel 32 $1.0676 .82415980 .0741798-0.0569789-0.01720091638013545929$ \& 011

1373ncmp.pic -mel 33 $1.0703 .93315850 .0949664-0.0547818-0.0395846193849557733$ \& 011

1379ncmp.pic -mel 34
$1.23913 .0173118130 .0373689-0.0233889-0.013981697621604237$ \& 011
!380ncmp.pic -mel 35
$1.0257 .68013750 .0737474-0.041749$-0.0319984 2018115616134 \& 011
!990ncmp.pic -mel 36
$1.0657 .208 \quad 201290.132051$-0.0769104-0.0551402 1477819564438 \& 011
|392ncmp.pic -mel 37
$1.0172 .86814530 .0377666-0.0116249-0.0261417927815434527$ \& 111
$1393 \mathrm{ncmp} . \mathrm{pic}$-mel 38
$1.42618 .03710980 .227762-0.125936-0.101826398517225734$
\& 111
1394ncmp.pic -mel 39
$1.30317 .079331790 .0993598-0.0409916-0.05836821268321535259$
\& 011
$1396 \mathrm{nmp} . \mathrm{pic}$-mel 40
$1.1349 .216121070 .22399-0.132576-0.091414134885206749$
\& 111
1397ncmp.pic -mel 41
$1.88228 .1232216150 .0714966-0.0360047-0.03549191927320634225$ \& 011
!402ncmp.pic -mel 42
$1.93920 .821331790 .08445850 .00212445-0.0865829927815434527$
\& 011
!408ncmp.pic -mel 43
$1.73437 .6782515100 .105073-0.0489961$-0.0560769 1877625663953 \& 011
!413ncmp.pic -mel 44
$1.58820 .317191170 .0467873-0.0153064-0.03148091788213576336$ \& 011
!423ncmp.pic -mel 45
$2.51337 .156221615-0.09473130 .03628380 .05844751477819564438$ \& 011
!427ncmp.pic -mel 46
$1.92721 .9832015110 .190908-0.113154-0.07775431998410567834$ \& 111

```
!430ncmp.pic -mel 47
2.12033.625 25 850.256002-0.132912 -0.1230973 87 5 3172 39
& 011
1451ncmp.pic -mel 48
1.374 25.1296 3 1 0.236951 -0.120386 -0.116564 54 898 3075 56
& 011
!453ncmp.pic mel - 49
1.207 13.952 32 23 170.101117 -0.0636073 -0.0375097 171 76 22 61 40 42
& 111
1449ncmp.pic mel - 50
1.1016.933 19 76 0.136948 -0.0620915 -0.0738562 72 85 11 35 63 46
& 1 11
!448ncmp.pic mel - 51
1.0566.406 24940.265237-0.125843-0.139394 127 85 15 506249
& }1
!447ncmp.pic mel - }6
1.040 4.521 21 13 9 0.0698387 -0.028629 -0.0412097 100 75 26 50 30 53
& 111
1446ncmp.pic mel -53
1.423 13.723 17 11 8 0.0980696 -0.0369099-0.0611596 78 80 20 42 4051
& 011
!442ncmp.pic mel -54
1.233 11.957 31 12 8 0.0461114 -0.0233622 -0.0227492 129 82 14 49 54 35
&011
!441ncmp.pic mel -55
1.109 10.185 26 18 16 0.0140629 -0.01929420.00523188 142 78 14 51 52 27
& 011
!439ncmp.pic mel -56
1.086 11.70271913 0.18146 -0.08708 -0.09438 24179 21 71 54 50
& 011
1438ncmp.pic mel -57
1.072 10.586 25 14 10 0.10452 -0.0671013 -0.0374185 139 81 17 53 51 40
& 011
!437ncmp.pic mel -58
1.218 19.313 30 13 6 0.130694-0.0477818 -0.082912 109 82 18 48 48 48
& 011
!436ncmp.pic mel -59
1.181 21.203 15 17 11 0.191822-0.0953228-0.0964992 200 81 17 62 5942
&011
```

```
!431ncmp.pic mel -60
1.084 15.8351975 0.180102 -0.090321 -0.0897807 154 82 1252 62 31
& 0 1 1
!425ncmp.pic mel -61
1.102 11.080 30 15 11 0.164723-0.0892837 -0.0754392 114 84 12 45 61 40
& }11
!424ncmp.pic mel -62
1.105 9.108 29 127 0.105187 -0.0488049 -0.0563824 104 83 18 47 52 54
& 111
1407ncmp.pic mel -63
1.055 5.664 13 4 3 0.151061 -0.088169 -0.0628915 79 78 14 40 43 24
&% \cap11
1406ncmp.pic mel -64
1.450 29.808 20 970.129347 -0.0608645 -0.0684824 183 77 17 6051 29
& 0 1 1
!404ncmp.pic mel -65
1.214 13.546 27 20 14 0.068254 -0.0377551 -0.0304989 137 78 17 53 46 36
& 001
!401ncmp.pic mel -66
1.414 10.194 27 107 0.0600894-0.0245312 -0.0355581 108 82 14 45 53 39
& 0 1 1
!400ncmp.pic mel -67
1.387 20.848 21 16 90.221411 -0.104651 -0.11676 184 81 1861 55 46
& 011
1899ncmp.pic mel -68
1.150 10.626 29 760.239975-0.121867 -0.11810872874 30 75 39
& 1 1 1
1398ncmp.pic mel -69
1.166 12.681 34 26 16 0.105381 0.0612049 -0.0441756 190 77 25 66 41 67
& 0 1 1
```

!301 12170 mel -70
$1.70916 .0542823190 .106254-0.0577904-0.04846371647916565234$
\& 011
130223876 mel -71
$1.65842 .7218750 .156433-0.0755013-0.0809315878614416252$
$\& 011$
!306 9996 mel -72
$1.12313 .8611675-0.03009520 .01623740 .01385781148417495653$ \& 011

```
1307 18147 mel -73
1.409 19.286 25 8 6 0.170393-0.0874531-0.08294106 82 10 42 56 27
& 111
13117927 mel -74
1.081 9.456 18 15 12 -0.0812317 0.0240469 0.0571848 97 72 29 50 26 57
& 011
!312 41967 mel -75
1.164 13.365 17950.13557 -0.0738817-0.0616883 218 77 186652 35
& 011
```

$131646806 \mathrm{mel}-76$
$1.10111 .8943022140 .146527-0.0681446$-0.0783824 2077625684151
$\& 011$
132211421 mel -77
$1.77221 .9192053-0.027129-0.006186330 .0333154937816444829$
\& 011
1326102310 mel .78
$1.4209 .98717119-0.02333330 .005151520 .0181818637228402351$
\& 111
132729130 mel -79
$1.1957 .6313319110 .161313-0.0709037$-0.0904095 1807826654461
\& 111
$133830250 \mathrm{mel}-80$
$1.0836 .76516940 .114043-0.0570584-0.0569845888120454264$
\& 111
13411208 mel -81
$1.25511 .624351070 .151232-0.0747873-0.0764442125869457140$
\& 011
!346 41561 mel -82
1.2649 .217381590 .0899471 -0.0590829-0.0308642 1378116515240
\& 111
135117372 mel -83
$1.19917 .71710970 .0536682-0.0276795-0.0259887737621413237$
\& 011
1365 27534 mel -84
$2.26431 .872211280 .10447-0.0560487-0.0484211758118404347$
\& 011
!367 2846 mel -85
$1.15423 .6103016110 .147373-0.078599-0.06877411508017555038$
\& 011
!371 $6774 \mathrm{mel}-86$
$1.07710 .265251270 .123074-0.0724388$-0.0506351 1558214546038
\& 011
$13753209 \mathrm{mel}-87$
1.10612 .8133416140 .116197 -0.0688675-0.0478291 1357222543427 \& 101
$138117002 \mathrm{mel}-88$
$1.8418 .543811580 .144199-0.0766081-0.0675909152812057515 S$ \& 011
$13822427 \mathrm{mel}-89$
$1.21212 .2313016110 .0380793-0.0198452-0.01878411777818604834$ \& 011
$13847837 \mathrm{mel}-90$
1.935 18.973 291990.0746528 -0.0430556 -0.0815972 1038419475459 $\& 011$
$13875982 \mathrm{mel}-91$
1.82716 .201271180 .0776078 -0.0294927-0.0481145 1307822658949 \& 011
:318ncmp.pic -mel 92
$1.24918 .41910480 .115542-0.066803-0.048738991867886734$
\& 011

BIBLIOGRAPHY

1. R.J. Friedman, D.S. Rigel, M.K. Silverman, A. W. Kopf and K.A. Mossaert, "Malignant Melanoma in the 1990's: The Continued Importance of Early Detection and The Role of Physician Examination and Self-Examination of the Skin," Ca-A Journal for Clinicians, July/August, pp. 201-226.
2. W.V. Stoecker and R.H. Moss, "Editorial: Digital Imaging in Dermatology, Computerized Medical and Graphics, Vol. 16(3), May-June 1992, pp. 145-150.
3. R.J. Friedman, D.S. Riegel, A. W. Kopf, "Early Detection of Malignant Melanoma: The Role of Physician Examination and Self-Examination of The Skin," Ca-A Cancer Journal for Clinicians, Vol 35(3): pp. 130-151, 1985.
4. National Cancer Institute, What You Need to know about Dysplastic Nevi, NIH Publication 91-3133, Reprinted October 1990.
5. R. Poli, S Cagnoni, R. Livi, G. Coppini, G. Valli, "A Neural Network Expert System for Diagnosing and Treating Hypertension," IEEE Computer , March 1991, pp 64-71.
6. R. P. Lippman, "Review of Neural Networks for Speech Recognition," Neural Computing, Vol. 1(1), 1989, pp 1-38.
7. T. Kohonen, G. Barna, and P. Christy, "Statistical Pattem Recognition with Neural Networks: Benchmarking Studies," IEEE Annual International Conference on Neural Networks, San Diego, July 1988.
8. R. P. Lippman, "An Introduction to Computing with Neural Nets," IEEE ASSP Mag., vol 4(2), pp. 4-22, Apr. 1987.
9. D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A Learning Algorithm for Boltzmann Machines," Cognitive Science, vol. 9, pp 147-160, 1985.
10. C. L. Giles and T. Maxwell, "Leaming, Invariance and Generalization in HighOrder Networks," Applied Optics, vol. 26, pp 4,972-4,978, Dec. 1987.
11. S. Farlow, Self Organizing Methods in Modelling, Marcel Drekker, 1984.
12. F. H. Glanz and W. T. Miller, "Shape Recognition using a CMAC-Based Leaming System," SPIE Proc. Intelligent Robots and Computer Vision, Cambridge, MA, 1987.
13. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, NY: John Wiley and Sons, 1973.
14. W. M. Huang and R. P. Lippman, "Neural Net and Traditional Classifiers," Neural Info. Processing Syst., D. Anderson, ed., pp 387-396, NY: American Institute of Physics, 1988.
15. G. A. Carpenter and S. Grossberg, "ART 2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns," Applied Optics, vol 26, pp 41944930, 1987.
16. R. P. Lippman, "Review of Neural Networks for Speech Recognition," Neural Comp., vol 1 (1), pp. 1-38, 1989.
17. T.J. Sejnowski and C. M. Rosenberg, "Parallel Networks that learn to Pronounce English Text," Complex Systems, vol. 1, pp 145-168, 1987.
18. R. P. Gorman and T. J. Sejnowski, "Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets," Neural Networks, vol. 1, pp 75-89, 1988.
19. G. Tesauro and T. J. Sejnowski, "A Neural Network that Learns to Play Backgammon," Neural Information Processing Systems, D. Anderson, ed., pp 794803, American Institute of Physics, New York, 1988.
20. R.P. Lippman and P. E. Beckman, "Adaptive Neural Net Processing for Signal Detection in Non-Gaussian Noise," Advances in Neural Info. Processing Syst. 1, D. S. Touretzky, ed., San Mateo, CA: Morgan Kaufmann, 1989.
21. S. J. Hanson and D. J. Burr, "Knowledge Representation in Connectionist Networks," Tech. Rep., Bell Communications Research, Morristown, New Jersey, Feb. 1987.
22. I. D. Longstaff and J. F. Cross, "A Pattern Recognition Approach to Understanding the Multi-Layer Perceptron," Memo. 3,936, Royal Signals and Radar Establishment, July 1986.
23. A. Lapedes and R. Farber, "How Neural Nets Work," Neural Information Processing Systems, D. Anderson, ed., pp 442-456, American Institute of Physics, New York, 1988.
24. A. Wieland and R. Leighton, "Geometric Analysis of Neural Network Capabilities," IEEE 1st International Conf. on Neural Networks, San Diego, CA, pp 111-385, June 1987.
25. G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function," Mathematics of Control, Signals, and Systems, 2(4),1989.
26. D. J. Burr, "Experiments on Neural Net Recognition of Spoken and Written Text," IEEE Transactions on Acoustics, Speech and Signal Processing, 36:pp. 1162-1168, 1988.
27. S. J. Hanson and L.Y. Pratt, "Some Comparisons of Constraints for Minimal Network Construction with BackPropagation," Advances in Neural Information Processing Systems 1, D.S. Touretzky, ed., San Mateo, CA: Morgan Kaufman, 1989.
28. J. E. Golston, R.H. Moss, W. V. Stoecker, "Boundary Detection in Skin Tumor Images: An Overall Approach and a Radial Search Algorithm," Pattern Recognition, Vol. 23, no. 11, 1990, pp. 1235-1247.
29. M. Moganti, F. Ercal, W. V. Stoecker, and R. H. Moss, "Boundary Detection in Skin Tumor Images," To appear in IEEE Transactions on Medical Imaging.
30. S. E. Umbaugh, Computer Metrics in medicine: Color metrics and Image Segmentation Methods for Skin Cancer Diagnosis, Ph. D. Dissertation, Elect. Eng. Dept., University of Missouri-Rolla. UMI Dissertation Services, Ann Arbor, Michigan, 1990.
31. M. Celenk, "Color Image Segmentation by Clustering," IEE Proceedings, Vol. 138, no. 5, September 1991, pp. 368-376.
