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Abstract

The nonlinear activation functions applied by each neuron in a neural network are essential

for making neural networks powerful representational models. If these are omitted, even

deep neural networks reduce to simple linear regression due to the fact that a linear combi-

nation of linear combinations is still a linear combination. In much of the existing literature

on neural networks, just one or two activation functions are selected for the entire network,

even though the use of heterogenous activation functions has been shown to produce su-

perior results in some cases. Even less often employed are activation functions that can

adapt their nonlinearities as network parameters along with standard weights and biases.

This dissertation presents a collection of papers that advance the state of heterogenous and

parameterized activation functions. Contributions of this dissertation include

• three novel parametric activation functions and applications of each,

• a study evaluating the utility of the parameters in parametric activation functions,

• an aggregated activation approach to modeling time-series data as an alternative to

recurrent neural networks, and

• an improvement upon existing work that aggregates neuron inputs using product in-

stead of sum.
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Chapter 1

Deep Neural Networks

An artificial neural network is a machine learning model that simulates, to the best of our

knowledge, how the brain processes electrical signals. In this abstraction, neural networks

are made up of neurons (also called nodes) and synapses (also called connections) that link

neurons together. A neuron’s output is computed by aggregating its inputs (i.e. as a weighted

sum) and activating the result by applying an activation function such as tanh. One widely

used class of neural networks is multi-layer perceptrons, in which neurons are arranged in

layers, with the outputs of one layer being used as inputs to the next. It has been shown

that such a neural network with only a single hidden layer (that is, one layer between the

input and the output) can serve as a universal function approximator [76]. Neural networks

with many hidden layers are called deep neural networks, and depths can range from only

six layers [26] to more than 100 [78].

There is a vast body of work involving deep neural networks. Many optimization tech-

niques have been studied [70, 157, 95], much work has considered various topologies [118, 148],

and several general approaches have been proposed, such as recurrent LSTM networks

[75, 49], convolutional networks [102], and reservoir networks [81]. Activation functions,

which provide neural networks with the crucial nonlinearities necessary to generalize well,

have also been well-studied [33, 93]. Some of the most popular activation functions are tanh

and rectified linear.

Neural networks are powerful adaptive models with applications in many disciplines.

With the backpropagation algorithm, neural networks can be trained in a straightforward

manner by gradient-based optimization techniques like stochastic gradient descent and RM-

SProp [157]. Several variations of these models are particularly good at certain tasks, such

as convolutional neural networks for image classification [102] and LSTM for time-series

2



analysis [75]. In every neural network, the topology, connections, and nonlinearities play a

crucial role to learning.

3



Chapter 2

Activation Functions

The nonlinear activation functions applied by each neuron in a neural network are critically

important for effective learning. In fact, if these are omitted, even deep neural networks

reduce to simple linear regression. This is due to the fact that a linear combination of linear

combinations is still a linear combination. Thus, activation functions are essential for making

neural networks powerful representational models.

For years, sigmoidal activation functions such as tanh have been popular choices [91].

More recently, rectified linear units (ReLUs) have been shown to possess desirable properties

[125, 174], as well as a number of variations including leaky ReLUs [115], randomized ReLUs

[165], parametric ReLUs [67], and more. Other widely used activations include exponential

linear units (ELUs) [27] and scaled ELUs (SELUs) [96].

While these functions perform well empirically, little theoretical basis has been found

to justify their extensive use over many other potential functions. In much of the existing

literature on neural networks, just one or two activation functions are selected for the entire

network, even though the use of heterogenous activation functions has been shown to produce

superior results in some cases [159]. Indeed, although using a different activation function

for each layer is common, little work has explored mixing multiple activation functions side-

by-side within each layer.

Even less often employed are activation functions that can adapt their nonlinearities as

network parameters along with standard weights and biases. An adaptable activation func-

tion similar to rectified linear but with an arbitrary number of bends was recently proposed

and found to achieve state-of-the-art performance on the CIFAR-10 and CIFAR-100 datasets

over standard rectified linear networks at the time of its proposal [2]. Parameterized acti-

vation functions are not yet widely used, but interest in the topic appears to be building as
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more research reveals their effectiveness [134, 136].
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Chapter 3

Statement and Summary of Contributions

The aggregation of heterogenous activation functions and the parameterization of activa-

tion functions can enable neural networks to model data more quickly and more accurately.

Heterogenous activation functions are well-suited for modeling data sampled from the compo-

sition of heterogenous signals, while parametric activation functions can be used to promote

simpler models to reduce overfitting and generalize more effectively.

Contributions of this dissertation include

• three novel parametric activation functions and applications of each:

– Soft Exponential (SoftExp), which interpolates between logarithm, linear, and

exponential functions,

– the first adaptive transfer function that learns fuzzy logic operations by gradient

descent, and

– Bendable Linear Unit (BLU), which synthesizes properties from parametric rec-

tified linear units (PReLUs), exponential linear units (ELUs), and scaled expo-

nential linear units (SELUs) and enables implicit residual connections in deep

networks,

• a study evaluating the utility of the parameters in parametric activation functions, in

which we find the following:

– parametric activations achieve (marginally) higher accuracy than their non-parametric

counterparts,

– parametric activations tend to converge more quickly than non-parametric acti-

vations, and
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– parametric activations that can approximate the identity function are more robust

than non-parametric activations when removing residual connections,

• an aggregated activation approach to modeling time-series data as an alternative to

recurrent neural networks, which

– empirically shows why the Fourier transform provides a poor initialization point

for generalization and how neural network weights must be tuned to properly

decompose a signal into its constituent parts,

– demonstrates the necessity of an augmentation function in Fourier and Fourier-

like neural networks and shows that components must be adjustable during the

training process, observing the relationships between weight initialization, input

preprocessing, and regularization in this context, and

– unifies these insights to describe a method for time-series forecasting and demon-

strates that this method is effective at generalizing for some real-world datasets,

• an improvement upon existing work that aggregates neuron inputs using product in-

stead of sum, demonstating that

– gradient-based optimization can be used effectively with windowed product units,

– windowed product is as effective as traditional nonlinearities like rectified linear

units (ReLU),

– windowed product unit neural networks can generalize gated units in recurrent

neural networks, and

– our method solves the major problems associated with training product unit neu-

ral networks.
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3.1 Dissertation Organization

Chapters 4 through 6 of this dissertation consist of three works that have been published as

a result of this dissertation, and Chapters 7 through 8 consist of two works that are currently

under consideration for publication. The references for the three published works are listed

here, and are ordered according to the chapter in which they appear in this dissertation:

• Luke B Godfrey and Michael S Gashler. A continuum among logarithmic, linear, and

exponential functions, and its potential to improve generalization in neural networks.

In Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K),

2015 7th International Joint Conference on, volume 1, pages 481–486. IEEE, 2015

• Luke B Godfrey and Michael S Gashler. A parameterized activation function for learn-

ing fuzzy logic operations in deep neural networks. In Systems, Man, and Cybernetics

(SMC), 2017 IEEE International Conference on. IEEE, 2017

• Luke B Godfrey and Michael S Gashler. Neural decomposition of time-series data for

effective generalization. IEEE transactions on neural networks and learning systems,

2017

It should also be noted that the publication in Chapter 6 builds upon the author’s

Masters’ thesis (2015), but is made up of substantially new content not included in that

thesis.
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Chapter 4

A Continuum Among Logarithmic, Linear, and Exponential Functions, and Its

Potential to Improve Generalization in Neural Networks

Abstract: We present the soft exponential activation function for artificial neural networks

that continuously interpolates between logarithmic, linear, and exponential functions. This

activation function is simple, differentiable, and parameterized so that it can be trained as

the rest of the network is trained. We hypothesize that soft exponential has the potential

to improve neural network learning, as it can exactly calculate many natural operations

that typical neural networks can only approximate, including addition, multiplication, inner

product, distance, polynomials, and sinusoids.

4.1 Introduction

Each neuron in an artificial neural network applies a non-linear activation function to a

weighted sum of its inputs. The activation function serves the important role of enabling the

neural network to fit to non-linear curves and surfaces. If omitted, even deep multi-layered

neural networks reduce to be functionally equivalent to simple linear regression. Hence, the

activation function endows the neural network with its representational power.

One might ask, which activation function is best for neural networks? For years, the

logistic and tanh functions have been popular choices [91]. More recently, rectified linear

units have been shown to possess desirable properties [125, 174]. While these functions

perform well empirically, little theoretical basis has been found to justify their extensive

use over many other potential functions. We present the soft exponential function, a novel

activation function with many desirable theoretical properties. It continuously interpolates

between logarithmic, linear, and exponential activation functions. It enables neural networks

to exactly compute many natural mathematical structures that can only be approximated by
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neural networks that use traditional activation functions, including addition, multiplication,

exponentiation, dot product, Euclidean and L-norm distance, polynomials, Gaussian radial

basis functions, and Fourier neural networks.

The next section derives soft exponential and the remainder of the chapter discusses its

desirable properties.

4.2 Derivation

It is well known that multiplication can be implemented by means of addition in logarithmic

space. That is,

p ∗ q = e(loge p)+(loge q). (4.1)

This property can enable neural networks that use a mixture of logarithmic, linear, and

exponential activation functions to exactly perform the basic mathematical operation of

multiplication. However, using a mixture of different activation functions in a single neural

network adds a significant component of complexity. Specifically, it leaves the user to deter-

mine which activation function should be used with each neuron in the network. If a func-

tion can be found that continuously generalizes between logarithmic, linear, and exponential

functions, then a neural network with a single activation function would be empowered to

autonomously learn to add, multiply, exponentiate, and compute the logarithms as needed

to accomplish arbitrary tasks. Because these mathematical operations have proven to have

significant value in nearly all other areas of science, it is natural to suppose that neural

networks should be given the ability to perform the same operations when they attempt to

autonomously model various phenomena.

A simple equation that continuously interpolates between linear and exponential func-

tions is
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g(α, x) =
eαx − 1

α
+ α. (4.2)

Note that limα→0 g(α, x) = x, and g(1, x) = ex. This function does not become a log-

arithmic function (i.e. when α = −1), so it does not provide a complete solution to our

objective. However, we can invert g with respect to x to obtain a function that interpolates

between logarithmic and linear functions:

g−1(α, x) =
loge(1 + α(x− α))

α
. (4.3)

Since g and g−1 are equivalent when α = 0, we can mathematically piece them together

along that edge without breaking continuity. We negate α in the case of the inverse function

and obtain the following continuous piecewise function:

f(α, x) =


− loge(1−α(x+α))

α
for α < 0

x for α = 0

eαx−1
α

+ α for α > 0.

(4.4)

Equation 4.4 interpolates between logarithmic, linear, and exponential functions. Al-

though it is spliced together, it is continuous both with respect to α and with respect to

x, and has a number of properties that render it particularly useful as a neural network

activation function. We call f the soft exponential activation function.

We can now address the challenge of creating a continuum of operations between ad-

dition and multiplication. By substituting f into Equation 4.1, we obtain a continuous

generalization between these two operations:

h(β, p, q) = f (β, f(−β, p) + f(−β, q)) . (4.5)

If β = 0, this function adds p and q. If β = 1, it multiplies p and q. Figure 4.1 illustrates

this continuum between addition and multiplication with the arbitrary values p = 3 and
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Figure 4.1: A plot of h(β, 3, 7). When β = 0, it correctly calculates 3+7 = 10. When β = 1,
it correctly calculates 3 ∗ 7 = 21.

q = 7. At β = 0, it correctly calculates 3 + 7 = 10, and at β = 1, it correctly calculates

3 ∗ 7 = 21.

4.3 Analysis

Some of the nice properties of soft exponential include:

• f(−1, x) = loge(x)

• f(0, x) = x

• f(1, x) = ex

• For other values of α, f(α, x) does something continuous and reasonable.

• The equation is simple, and can be implemented in code with very few operations.

• It appears reasonably smooth when plotted. (See Figures 4.2 and 4.3.)

• Negating α inverts the function, such that f−1(α, x) = f(−α, x).
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• For any constant value of α, f(α, x) is monotonic.

• It is continuously differentiable with respect to x,

∂f

∂x
=


1

1−α(α+x) for α < 0

eαx for α ≥ 0

(4.6)

because

lim
α→0+

∂f

∂x
≡ lim

α→0−

∂f

∂x
≡ 1.

• And it is continuously differentiable with respect to α,

∂f

∂α
=



loge(1−(α2+αx))− 2α2+αx

α2+αx−1

α2 for α < 0

x2

2
+ 1 for α = 0

α2+(αx−1)eαx+1
α2 for α > 0

(4.7)

because

lim
α→0+

∂f

∂α
≡ lim

α→0−

∂f

∂α
≡ x2

2
+ 1.

• Because it is differentiable, it is possible to train a neural network with soft exponential

using gradient descent. The alpha parameter of the activation function is updated in

the same manner as the weights, by stepping in the gradient direction that reduces

some objective function.

4.4 Inner product

One operation we might want to generalize is inner product. The inner product is typically

implemented as, p · q = p0q0 + p1q1 + p2q2 + . . .. Inner product could be implemented using

a 3-layer neural network as depicted in Figure 4.4. This network uses soft exponential for

the activation function in each of its units. The first layer computes the logarithm of all

the elements in p and q. (All the units in this layer use α = −1.) The second layer adds
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Figure 4.2: A plot of f(α, x) for α = {−1,−0.9,−0.8, · · · , 0.8, 0.9, 1.0} from red to purple.
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Figure 4.3: A plot of f(α, x) for x = {−5,−4.5,−4, · · · , 4, 4.5, 5} from red to purple.

corresponding elements of p and q, and exponentiates the result. (All the units in this layer

use α = 1.) The third layer sums all the pair-wise products together. (The unit in this layer

uses α = 0.)

One possible use for this generalization of inner product is to implement a neural network

version of matrix factorization, a useful algorithm for recommender systems [98] and missing

value imputation for sparse matrix completion [12]. Matrix factorization has also proved to

be effective for document clustering [166], text mining and spectral data analysis [7], and

molecular pattern discovery [11]. A neural network with our activation function can exactly
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Figure 4.4: A neural network implementation of inner product using soft exponential as an
activation function. All of the weights represented with lines in this figure have a value of
1. All other weights have a value of 0.

compute inner product and matrix factorization, and thus it should be able to achieve

accuracy at least as good as approaches that do not use neural networks. Because of the

flexibility of this generalized approach, it has the potential to outperform direct matrix

factorization. For example, in a recommender system, our approach facilitates augmenting

user and item profile vectors with static profile vectors for addressing the cold-start problem

[98].

4.5 Distance

Suppose we want to compute the distance between two vectors, p and q. This could also

be done with a neural network that uses soft exponential for its activation functions. To do

this, we will use the property,

ab = eb loge(a).

Figure 4.6 shows a neural network that computes the squared distance between two vectors.

(If you want to take the square root, to make it Euclidean distance, just change the unit in

layer 3 to use α = −1, and add a layer 4 with one unit. This unit would use α = 1, and its

incoming weight would be set to 0.5.)
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Figure 4.5: A neural network implementation of a polynomial, y = a + bx + cx2 + dx3 . . .,
using soft exponential as an activation function.
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Figure 4.6: A neural network implementation of squared distance using soft exponential as
an activation function. To compute Euclidean distance (the square root of this), only one
additional network unit would be required.

4.6 Polynomials

Figure 4.5 shows a neural network that exactly computes an arbitrary polynomial. Mul-

tivariate polynomials could also be implemented by simply adding additional units on the

input end.
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4.7 Radial basis function networks

A gaussian radial basis kernel uses the formula,

e−rs,

where r is a weight that controls the squared radius of the kernel, and s is either the squared

distance between the input vector and the center of the kernel, or the inner product with

the input vector. This function is important to a number of classification models, including

support vector machines that use a radial basis function and radial basis function networks

[138, 18, 130]. This could be implemented in a network using only f as an activation function

by simply adding a single unit with α = 1 to the neural networks in Figures 4.4 or 4.6. The

weight feeding into this unit would be −r. If we added a layer to combine several of these,

we would have a radial basis function network without using any specialized units.

Although it is already well-known that neural networks are universal function approx-

imators [29], it is worth noting that soft exponential enables common architectures to be

exactly implemented using a neural network with minimal architectural overhead. If a simple

model sufficiently models a set of data, it is generally preferable and yields better predictions

than an unnecessarily complex one. If these architectures were implemented using a network

with a sigmoidal activation function, for example, the resulting models would be very large

networks that would probably take more training data to train it to generalize well.

4.8 Fourier networks

Fourier neural networks use a sinusoidal activation function to transform a signal from the

time or space domain to the frequency domain in a process similar to the Fourier transform

[141, 154, 182]. If α is allowed to have a complex value, soft exponential can be used as the

activation function in a Fourier neural network. Let αr be the real component of α, and αi

be the imaginary component of α, such that α = αr + iαi. For simplicity, we assume that x
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Figure 4.7: A plot of the real component of soft exponential over a range of values for αi.

is real, and αr = 0. Then the equation for f becomes

f(αi, x) =
sin(αix)

αi
+ i

(
αi −

cos(αix) + 1

αi

)
. (4.8)

Without these assumptions, the resulting equation contains several additional terms.

Figures 4.7 and 4.8 show the real and imaginary components respectively of f over a range of

values for αi. It can be seen in these figures that the imaginary component of α determines

the frequency of the sinusoidal wave. (Although it also affects the amplitude, this is not

significant because the outgoing weight can compensate to achieve any desired amplitude).

We have shown that Fourier networks are effective for extrapolating real-world time-series

data [44]. Because soft exponential can be logarithmic, exponential, linear, or sinusoidal

when α is allowed to be complex, we can create a Fourier network with only this activation

function and achieve the same level of accuracy for generalization and extrapolation.

4.9 Proposed architecture

We conclude our discussion by describing a deep neural network architecture that could

potentially use this novel activation function to autonomously achieve all of these represen-
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tational capabilities as needed to address a wide range of challenges. Because complex values

for α cause each unit to output two values, instead of one, it may not be immediately clear

how to apply such a network to arbitrary problems. However, if the α parameter values in

the output layer are constrained to take only real values, then this network will behave like

traditional neural networks, mapping from any number of input values to any number of

output values. Allowing hidden units to take on complex values for α should not present

any problems because the additional values may simply be fed into the next layer as if the

preceding layer were twice as big. Hence it should be reasonable to use f as the activation

function for every unit in a deep neural network.

The α parameter for each unit could be initialized to 0 + 0i. This has the very desirable

property of initially causing the entire network to behave like linear regression. As training

proceeds, it will take on non-linearities only as necessary to fit the data. All of the weights

would be initialized with random values drawn from a normal distribution, then normalized

such that the primary eigenvalue is 1. Since all of the activation functions are initially the

identity function, the problem of vanishing gradients is initially mitigated, enabling very deep

networks to be trained efficiently. This activation function does not impose any particular

topology on the rest of the network, so the layers could fully-connected or arranged with

sparse connections, such as in convolutional layers.

Likewise, the differentiability of soft exponential facilitates optimization with batch gra-

dient descent, stochastic gradient descent, or many other optimization techniques. α can be

updated along with the weights in the manner of steepest descent. L1 regularization should

be applied to promote sparsity. It can be observed that the various common architectures

that we can demonstrated with this activation function use sparse connections. It follows,

therefore, that L1 regularization may be expected to work particularly well with this acti-

vation function. Note that L1 regularization can be applied to the α parameter as well as

the weights of the network. When α is pulled toward zero, the network approaches linear

regression. Hence, regularizing the α parameter has the desirable effect of causing the surface
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Figure 4.8: A plot of the imaginary component of soft exponential over a range of values for
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represented by the neural network to straighten out.

4.10 Conclusion

We presented a novel activation function, soft exponential, that continuously generalizes

among logarithmic, linear, and exponential functions. This function exhibits many desirable

theoretical properties that make it well-suited for use as an activation function with neural

networks. Empirical validation of these theoretical properties still needs to be performed as

future work. Because of the significant potential that this activation function has to impact

the effectiveness of deep neural networks, we are anxious to share these ideas with the broader

research community now, instead of waiting for our attempts at achieving validation, so that

the community may participate in the process of discovering its potential and limitations.
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Chapter 5

A Parameterized Activation Function for Learning Fuzzy Logic Operations in

Deep Neural Networks

Abstract: We present a deep learning architecture for learning fuzzy logic expressions. Our

model uses an innovative, parameterized, differentiable activation function that can learn a

number of logical operations by gradient descent. This activation function allows a neural

network to determine the relationships between its input variables and provides insight into

the logical significance of learned network parameters. We provide a theoretical basis for

this parameterization and demonstrate its effectiveness and utility by successfully applying

our model to five classification problems from the UCI Machine Learning Repository.

5.1 Introduction

Neural networks are powerful adaptive models with applications in many disciplines. With

the backpropagation algorithm, neural networks can be trained in a straightforward manner

by gradient-based optimization techniques like stochastic gradient descent and RMSProp

[157]. Some of these models, such as convolutional neural networks, learn parameters that

can be visualized, interpreted, and understood in some cases [173]. Most neural networks,

however, are considered black boxes [92, 144] and it is difficult to determine the semantic

meanings behind learned weights.

Fuzzy inference systems, built on fuzzy logic, are also powerful models. Unlike neural

networks, fuzzy inference systems are straightforward to interpret and often use linguistic

values [170]. In fact, these systems are functionally equivalent to a subset of neural networks

[84]. Fuzzy inference systems are less general than neural networks, however, and many

neural network techniques are not easily translated into the domain of fuzzy logic.

For these reasons, there is great interest in combining neural networks with fuzzy logic and
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fuzzy inference systems. Adaptive fuzzy systems have been studied for decades [85, 83, 111],

and neural fuzzy modeling continues to be an active topic of research [20, 17, 94]. One

purpose of combining these techniques is to produce a model with the flexibility and accuracy

of black-box neural networks and the interpretability of fuzzy systems.

Although neural fuzzy systems are well-studied, existing approaches primarily focus on

combining specific logical operations in a predefined manner, the most common being an or

of ands [85, 83, 104]. Models that restrict themselves to particular kinds of expressions are

limited in the insights they can offer about given datasets. A system that can adaptively

choose from a larger set of logical operations, on the other hand, would be able to provide

us with more knowledge about the relationships between its various inputs.

We present a deep learning architecture for learning fuzzy logic expressions by using a

novel adaptive transfer function. Our model uses an innovative, parameterized, differen-

tiable activation function that can learn a number of logical operations by gradient descent.

Parameters learned by our model can be interpreted as fuzzy rules and combined to form

complex logic expressions, allowing a glimpse into the knowledge gleaned during the training

process. In Section 5.6, we report the results of applying our model to five classification

problems taken from the UCI Machine Learning Repository [5]. We find that our model is

able to learn complex logical expressions and to achieve accuracy comparable to a standard

deep neural network with tanh activation functions.

5.2 Related Work

Fuzzy logic [97] extends boolean logic into a continuous domain. Typically, false is repre-

sented as 0, true is represented as 1, and values in between indicate a corresponding “fuzzy”

degree of uncertainty. A typical set of fuzzy operators that generalize the behavior of boolean

logic are:
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identity(x) = x

not(x) = 1− x

or(x, y) = 1− (1− x) · (1− y)

xor(x, y) = x+ y − 2 · x · y

and(x, y) = x · y

nor(x, y) = (1− x) · (1− y)

nxor(x, y) = 1− (x+ y − 2 · x · y)

nand(x, y) = 1− x · y

One of the most common applications of fuzzy logic is to control systems [105] using

a fuzzy inference system [171]. A typical fuzzy logic controller uses Gaussian membership

functions to “fuzzify” inputs (which may be linguistic [170]), a set of (fuzzy) logical IF-THEN

rules to apply to the fuzzified inputs, and a function that aggregates and “defuzzifies” the

result to a crisp value that determines the system’s action [84]. For example, a fuzzy inference

system for an autonomous car might have this inference rule: IF speed limit IS low OR traffic

IS dense THEN speed = slow. In this example, low, dense, and slow are linguistic values that

correspond to functions that map raw sensor inputs to real numbers in the range [0..1] where

0 indicates definitely not in the given set, 1 indicates definitely in the set, and anything else

represents how typical the input is for the given set. 100 km/h might be 0.5 in the moderate

speed set and 0.8 in the fast speed set.

The combination of fuzzy logic with neural networks has been termed “fuzzy modeling”

[85], “neural fuzzy systems” [111], and “adaptive fuzzy systems” [83]. These systems were

extensively studied in the 1990s [99, 21, 65, 14, 181, 86], and one of the primary reasons

was that the weights and parameters of a neural fuzzy system could be interpreted more

meaningfully than in a traditional neural network [28]. More recently, fuzzy neural networks

have been applied to tracking control [17] and other nonlinear dynamics [94].

One kind of neural fuzzy system is any neural network that directly models a fuzzy

inference system [109, 110, 21]. These models generally have five layers: 1) an input layer,
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2) a membership layer to fuzzify input, 3) a rules layer that computes products of the second

layers outputs, 4) a normalization layer to defuzzify signals, and 5) a summation layer to

produce the output. Inputs and outputs to this kind of system are crisp, and the fuzzy logic

takes place in the hidden layers of the network. In 1993, Jang and Sun showed that these

neural networks are functionally equivalent to fuzzy inference systems [84]. The learning

that occurs in this kind of neural fuzzy system tunes the member functions, adjusting means

and standard deviations, in addition to the combination weights in the output layer. The

rules layer in these models is implemented as a product-of-inputs [85], which is a logical and.

The summation layer performs the logical or, and so most of these models result in a logical

or of ands (or a max of mins [104]).

Another type of neural fuzzy system is any system that uses both fuzzy logic and neural

networks as parts of a whole. Chen et. al recently applied this kind of model to solar

radiation forecasting, in which the authors used a fuzzy inference system to combine the

predictions three separate neural networks like a weighted ensemble [20]. Other models

combine fuzzy systems with genetic algorithms [160] or with a Kalman filter [85]. Still

others allow inputs, weights, and outputs to be fuzzy [103]. Kwan and Cai proposed the use

of “fuzzy neurons” that combine an aggregation function and an activation function with

some number of membership functions [104].

5.3 Approach

We take an approach similar to the common five-layer neural fuzzy system [83], although we

use a deeper network. Our model is unique not in its topology in the interpretability of its

weights, however, but in the adaptive activation function we use that is able to learn several

logical operations. Our activation function is parameterized, continuous, and differentiable,

and can therefore be tuned by gradient descent. This has an advantage over existing neural

fuzzy systems because it can model more than just an or of ands, and it has an advantage

over other fuzzy neuron approaches because it can be trained by gradient descent instead of
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set by hand.

The fuzzy logic operators listed in Section 5.2 are elegant because they are simple and

continuous. However, the symmetry in these equations is difficult to see because our values

are not centered about the origin. If we linearly remap these operations by defining false

to be -1 instead of 0, they become:

identity(x) = x

not(x) = −x

or(x, y) = − (x−1)(y−1)
2

+ 1

xor(x, y) = −x · y

and(x, y) = (x+1)(y+1)
2

− 1

nor(x, y) = (x−1)(y−1)
2

− 1

nxor(x, y) = x · y

nand(x, y) = − (x+1)(y+1)
2

+ 1

Then, if we rewrite them in a consistent form, we obtain:

identity(x) = +
(

(x+0)(1+0)
1

− 0
)

not(x) = +
(

(x+0)(−1+0)
1

− 0
)

or(x, y) = −
(

(x−1)(y−1)
2

− 1
)

xor(x, y) = −
(

(x+0)(y+0)
1

− 0
)

and(x, y) = +
(

(x+1)(y+1)
2

− 1
)

nor(x, y) = +
(

(x−1)(y−1)
2

− 1
)

nxor(x, y) = +
(

(x+0)(y+0)
1

− 0
)

nand(x, y) = −
(

(x+1)(y+1)
2

− 1
)

In this form, it is much more apparent that there is symmetry that can be leveraged

to unify these operations into a single more general operation. There are many possible

functions that perfectly express all of these fuzzy logic operations. Three representative

solutions are given in Equations 5.1, 5.2, and 5.3.
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x α©y =
(x+ α)(y + α)

α2 + 1
− α2 (5.1)

x α©y =
(x+ α)(y + α)

|α|+ 1
− |α| (5.2)

x α©y = t
|t|

√
|t| − |α|

where t = (x+ α)(y + α)
(5.3)

We can plug any of these functions into our table of logical operations to obtain:

identity(x) = x = true 0©x

not(x) = −x = false 0©x

or(x, y) =not(x -1©y) = false 0©(x -1©y)

xor(x, y) =not(x 0©y) = false 0©(x 0©y)

and(x, y) = x 1©y

nor(x, y) = x -1©y

nxor(x, y) = x 0©y

nand(x, y) =not(x 1©y) = false 0©(x 1©y)

Figure 5.3 shows a plot of Equation 5.2 with 5 values for α.

Figure 5.1: Equation 5.2 continuously interpolates among three fuzzy logic operations: nor,
nxor, and and. By allowing biases (true and false) and weights (in particular, a weight of
-1), this equation can also compute identity, not, or, xor, and nand.
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5.4 Learning Simple Logic Operations

Since Equations 5.1, 5.2, and 5.3 are continuous and differentiable, gradient-based optimiza-

tion techniques could potentially be used with them to find the values for α that approximate

the logic represented in a set of training examples.

An important and consideration in using gradient descent with fuzzy logic that does not

typically occur in more traditional applications for gradient descent is that each training

example only provides information about a subset of the parameter space. For example,

suppose α is initialized to a random value between −1 and 1, and suppose the training

pattern 1 α©1 = 1 is presented for optimizing the value of α by gradient descent. This

training pattern suggests that α should not be less than 0, because (1 nor 1) 6= 1. However,

this training pattern does not suggest anything about what specific value α should take ≥ 0,

because (1 nxor 1) = 1 and (1 and 1) = 1 are both equally true.

Figure 5.4 shows a comparison of Equations 5.1, 5.2, and 5.3 for the case of computing

1 α©1. If α has a value less than 0, then gradient-based optimization methods will adjust α

by moving it closer to 0 no matter which of these three equations is used. As long as the

curve in this region is monotonic, the precise shape is not important because these values

are not defined in boolean logic. However, if Equation 5.1 is used, and α has a value greater

than 0, then gradient-based optimization methods will move α closer to 0 or 1, whichever is

closer to the current value of α. This is incorrect behavior because this training pattern does

not provide any information about whether the logical operation should be more like nxor

or more like and. Since both of these operations are consistent with the training pattern, it

would be arbitrary to bias the model in favor of one over the other. Arbitrary parameter

adjustments are likely to fight against subsequent training pattern presentations that may

convey valid information for that region of the parameter space, resulting in the model

getting stuck in a local optimum. Equations 5.2 and 5.3 correctly adjust α in all regions of

the parameter space with this training pattern.
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Figure 5.2: A comparison of Equations 5.1, 5.2, and 5.3 when computing true α©true.
Equation 5.1 is smoother, but Equation 5.2 is better suited for use with gradient-based
optimization.
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Figure 5.3: A comparison of Equations 5.1, 5.2, and 5.3 when computing true α©false. Only
Equation 5.2 is well-suited for use with gradient-based optimization.

As another representative case, consider the training pattern 1 α©−1 = 1. Perhaps coun-

terintuitively, this pattern provides no information about any region of the parameter space,

because 1nor−1, 1nxor−1, and 1and−1 all evaluate to −1. Correct behavior, therefore,

should not adjust the value of α, regardless of its current value. Figure 5.4 shows that only

Equation 5.2 exhibits the correct behavior for this case. (This does not imply that such pat-

terns should be discarded because in a network containing many fuzzy logic units, different

input values would reach each of the units depending on the current α values.)

The remaining two cases are both mirror images of these cases, so the same analy-

sis applies. It follows that Equation 5.2 can be expected to yield correct behavior with
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gradient-based optimization in all cases when training with pure boolean logic. Consistent

with this intuition, we found experimentally that Equation 5.2 was always able to learning

simple boolean logical expressions, while the other equations sometimes became stuck in

local optima. Therefore, we used Equation 5.2 to implement x α©y with the remainder of our

experiments.

At this point, we must note a potential problem with our approach: Equation 5.2 is not

a t-norm. A t-norm must be commutative, monotonic, and associative, and the value 1 must

be the identity element [61]. Although our equation is commmutative and monotonic, it is

not associative and the value 1 is not neutral for all α. Our work is, therefore, not t-norm

fuzzy logic but belongs instead to a broader class of fuzzy logic. For the purpose of this

chapter, we use a relaxed definition of fuzzy logic as being any logic with continuous values

between true and false.

5.5 Learning Complex Logic Expressions

We refer to a layer of network units that implement Equation 5.2 as a Fuzzy layer. Thus,

Equation 5.2 is used as a sort of adaptive transfer function. The only parameters to train

in a fuzzy layer are one α value per each unit. Equations 5.4, 5.5, and 5.6 give the partial

derivatives of Equation 5.2, which are necessary to train such layers with gradient-based

optimization methods.

∂ α©
∂x

=
y + α

|α|+ 1
(5.4)

∂ α©
∂y

=
x+ α

|α|+ 1
(5.5)

∂ α©
∂α

=
|a|(x+ y)− a(xy + 1)

|a|(|a|+ 1)2
(5.6)

Most gradient-based optimization methods can be implemented in three steps: (1) A for-
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ward propagation step that computes predictions with current values, (2) a backpropagation

step that computes “blame” terms for each layer in the model, and (3) an update step that

refines the parameters of the model. Equation 5.2 is used in the forward propagation step.

Equations 5.4 and 5.5 are used in the backpropagation step to assign blame to preceding

layers. Equation 5.6 is used in the update step to refine the α values.

Because Equation 5.6 is not continuous at α = 0, special care must be taken in the

implementation of Fuzzy layers to ensure that they do not become stuck at this point. We

addressed this problem in our implementation by adding the statement “if α < ε then

α ← −α” to our update step. This small addition enables α to cross over the value 0 in

cases where it would otherwise become stuck. As long as ε is a small value, this will have

negligible impact on training precision. We used the value ε = 0.001.

Another challenge that arises in learning fuzzy logic is that Equation 5.2 only accepts two

input values, x and y. One possible solution is to try to generalize the equations in a manner

that can support vectors of arbitrary dimensionality. Equation 5.3 can be generalized in this

manner, as given in Equation 5.7.

f(−→x , α) = t
|t| |t|

1/n − |α|

where t =
∏n

i (xi + α)

(5.7)

(In Equation 5.7, f is the fuzzy operator, and n refers to the number of elements in

−→x .) In higher dimensions, or becomes any, and becomes all, and xor becomes parity.

Unfortunately, Equation 5.3 resists gradient-based optimization, so its generalized version is

unlikely to do any better, and Equation 5.2 cannot be generalized in this manner. Further,

in applications with many variables, it is often unlikely that all variables will simultane-

ously take the same value, which renders the any and all operations to have very limited

utility. Therefore, a good solution should provide a mechanism to select which values feed

into each logical operation. This is also consistent with most real-world uses of boolean

logical expressions, and logical expressions involving only two variables at a time are more
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likely to be easily comprehensible to humans than logic involving many values. Our solu-

tion to this challenge introduces two additional layer types, which we call AllPairings, and

FeatureSelector.

An AllPairings layer accepts n inputs, and outputs all n(n − 1)/2 possible unordered

pairings of its input values. In order to facilitate the identity and not operations, we addi-

tionally pair each input value with the bias values true and false, which increases the total

number of unordered output pairs to n(n−1)/2+2n. This layer type contains no parameters

to train, so it is straightforward to use in a deep network. During the backpropagation step,

the blame term assigned to each input unit is simply the sum of the blame terms for all

affect output units.

A FeatureSelector layer is identical to a traditional fully-connected linear layer, except

with four minor modifications: (1) No bias weights are used, (2) The weights are initialized

with uniform values instead of random values, (3) The weights that feed into each unit are

constrained to have values between -1 and 1, and (4) L1 regularization is applied to the

weights in this layer to gently promote sparse connections in this layer. As it is closely

related to a fully-connected layer, it produces a weighted sum of its inputs. This allows the

network to learn an interpolation between logical expressions learned in the Fuzzy layers.

The outputs of a FeatureSelector layer can be re-mapped between -1 and 1 (i.e. through a

membership function) before they are used as input to other layers.

Our topology, given the definitions of these two layer types, is as follows. Given n

continuous input values, we first normalize them between -1 and 1; this can be thought of as

a single linear membership function (where 1 is “high” and -1 is “low”). Next, we feed the

normalized values into an AllPairings layer. We then feed all combinations of value pairings

into a Fuzzy layer, which learns an optimal logical operation for each pair of values. The

output of the Fuzzy layer is fed into a FeatureSelector layer to manage dimensionality and to

produce the desired number of output values. If a deeper topology is desired, we can feed the

output of the FeatureSelector layer into another normalizing layer (i.e. a single membership
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Table 5.1: Average errors of a deep neural network (DNN), an ensemble of ANFIS fuzzy
classifiers (EFC), our model, and the expressions obtained from “snapping” the weights in
our network (Snapped) on the validation data for five classification problems. Best results
are bolded.

Dataset DNN EFC Our Model Snapped
Breast Cancer 3.26% 6.42% 2.77% 2.84%
Diabetes 29.68% 24.51% 22.79% 35.06%
Vehicle 18.01% 50.58% 28.71% 67.84%
Waveform 14.95% - 15.27% 68.43%
Yeast 46.12% 67.37% 49.77% 82.94%

function for each output) and repeat the sequence of AllPairings, Fuzzy, and FeatureSelector

layers to an arbitrary depth. If no further depth is needed, we can feed the output of the

final FeatureSelector layer into any kind of output layer; we use a max layer for classification.

In our validation, we fix the depth of logic layer to two, resulting in the following final 10-

layer deep topology: (1) the input layer (identity), (2) a normalization layer (a single linear

membership function), (3) an AllPairings layer, (4) a Fuzzy layer, (5) a FeatureSelector

layer, (6) a tanh layer (a single nonlinear membership function with a new input space), (7)

another AllPairings layer, (8) another Fuzzy layer, (9) another FeatureSelector layer, and

(10) a max layer for classification.

5.6 Validation

Our goal in this work is not to surpass the accuracy of existing results or to claim any

novelty in learning fuzzy logic rules, but to demonstrate an alternative approach to fuzzy

learning using a novel adaptive transfer function. We apply our model to five classification

problems taken from the UCI Machine Learning Repository [5], comparing it with a regular

deep neural network (DNN) with tanh activation functions as well as with ensemble of fuzzy

classifiers (EFC) proposed by Canul-Reich et. al in 2007 [13]. Our results demonstrate that

our model meets our goal, adaptively learning complex logic expressions by gradient descent

while yielding accuracies comparable to existing methods and learning fuzzy logic rules.
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The five classification problems we used were breast cancer, diabetes, vehicle, waveform,

and yeast. Errors yielded by four models are compared in Table 5.1. Across all five problems,

we fixed our models parameters to demonstrate robustness. In particular, we set the learning

rate to 0.01 and the regularization term to 0.0001. We use a DNN topology with a depth

and number of weights similar to our model, but with each layer being fully connected and

all activation functions set to tanh.

We also include the results reported by Canul-Reich et. al [13] rather than re-evaluating

their method ourselves (which is why there is no result for their model on the waveform

problem). Their model is an ANFIS-based ensemble of fuzzy classifiers (labeled EFC in

Table 5.1). One of the important observations made by Canul-Reich et. al was that their

model performed poorly on datasets with more than six input features (vehicle and yeast).

All of the datasets we use have continuous inputs and discrete class outputs. Breast

cancer has 9 inputs and 2-class outputs. Our model outperforms both DNN and EFC in

terms of accuracy. Diabetes (Pima) has 8 inputs and 2-class outputs. Again, our model

achieves higher accuracy than the compared models.

Vehicle has 18 inputs and 4-class outputs. This is an interesting problem because it has a

high number of inputs and more than a binary output. The DNN has significantly lower error

than our model, likely due to the difficulties fuzzy systems typically have with larger input

spaces. However, our model makes more accurate predictions than EFC, demonstrating that

although our model is susceptible to problems with large input spaces, it is more robust than

some other fuzzy-based approaches.

Waveform has 40 inputs and 3-class outputs. This is a very large input space, so it is

an interesting test for a fuzzy-based system like ours. Our model performed well on this

problem, yielding test errors only marginally higher than the DNN. (Canul-Reich et. al did

not report results on this problem for EFC).

Yeast has 8 inputs and 10-class outputs. Out of the five datasets we used, this had the

highest number of output classes, so the results of this test demonstrate how our model
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Table 5.2: Logical expressions learned by our model for three of the datasets. These expres-
sions were formed by “snapping” all parameters of the network to the nearest whole value.
Expressions for the other two datasets were omitted for the sake of brevity.

Dataset Expression
Breast Cancer c0 = (0 | 3) + (1 | 5)

c1 = ((1 | 3) + (3 | 7)) | ((2 | 8) + (3 | 4) + (5 | 6))
Diabetes c0 = (¬(2 | 4) + 7 + ¬(2 | 6)) | (¬(2 & 6) + ¬0)

c1 = (¬(2 + ¬(1 & 5) + 1) & (2 | 6))

Vehicle
c0 = ¬((0 & 4) | ((6 & 10) + (4 & 16) + (7 & 13)))

+ (¬(2 | 16) & ((4 & 9) + (5 & 6)))
c1 = (4 & 9) + (5 & 6) + ¬(((0 & 4)) ⊕ (8 & 16))
c2 = ¬(((3 & 5) + (0 & 4) + (3 & 13)) & (0 & 4))
c3 = ¬((5 & 15) & (0 & 4))

handles many classes. Our model performed nearly as well as the DNN and significantly

better than the EFC, demonstrating that it is able to model data with many partitions.

Our model’s weights can be interpreted as complex logical expressions that describe the

relationships learned between various inputs. We form these expressions by “snapping” the

α parameters to the nearest whole value (i.e. α = −0.2 snaps to 0 to become nxor) and

“snapping” the weights on the FeatureSelector layer to the nearest whole value (effectively

negating expressions with weights near -1 and dropping expressions with weights near 0).

We use n to denote that input n is “high”, ¬ for not, & for and, | for or, and ⊕ for xor.

ci is the output for class i, where the i with maximum ci is the predicted class. Addition

has no equivalent logical operation, so we leave it as a sum indicating the interpolation

between operands. (In the network, the sum is fed through a tanh function to map the

result back into our logical space; this step is omitted in the snapped expressions). The

resulting expressions for three of the problems (breast cancer, diabetes, and vehicle) are

shown in Table 5.2; expressions for waveform and yeast are omitted from this chapter for

brevity. Accuracies of the formed expressions applied to the validation data are reported in

the “Snapped” column of Table 5.1.
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5.7 Conclusion

We presented a deep learning architecture for learning fuzzy logic expressions. The pri-

mary component of this architecture is an innovative, parameterized, differentiable activation

function that can learn a number of logical operations by gradient descent. This activation

function is unique to our approach and unifies fuzzy logic with deep learning in a new way

that leverages the advantages of both domains. We provided both a theoretical basis for our

activation function and testing results on five classification problems from the UCI Machine

Learning Repository. Not only was our model a reasonably strong classifier for these prob-

lems, but also the parameters of our model were interpretable as logical expressions that

summarized what it had learned. Our primary contribution is neither a better classifier nor

the first model whose weights can be interpreted as fuzzy logic rules, however, but the adap-

tive transfer function that learns logical operations by gradient descent. We believe that this

is a promising new approach to combining fuzzy logic with deep learning that potentially

opens the way for future work in both domains.
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Chapter 6

Neural Decomposition of Time-Series Data

Abstract: We present a neural network technique for the analysis and extrapolation of time-

series data called Neural Decomposition (ND). Units with a sinusoidal activation function

are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids,

augmented by units with nonperiodic activation functions to capture linear trends and other

nonperiodic components. We show how careful weight initialization can be combined with

regularization to form a simple model that generalizes well. Our method generalizes effec-

tively on the Mackey-Glass series, a dataset of unemployment rates as reported by the U.S.

Department of Labor Statistics, a time-series of monthly international airline passengers, the

monthly ozone concentration in downtown Los Angeles, and an unevenly sampled time-series

of oxygen isotope measurements from a cave in north India. We find that ND outperforms

popular time-series forecasting techniques including LSTM, echo state networks, ARIMA,

SARIMA, SVR with a radial basis function, and Gashler and Ashmore’s model.

6.1 Introduction

The analysis and forecasting of time-series is a challenging problem that continues to be an

active area of research. Predictive techniques have been presented for an array of problems,

including weather [45], traffic flow [112], seizures [37], sales [23], and others [155, 80, 19, 156].

Because research in this area can be so widely applied, there is great interest in discovering

more accurate methods for time-series forecasting.

One approach for analyzing time-series data is to interpret it as a signal and apply the

Fourier transform to decompose the data into a sum of sinusoids [8]. Unfortunately, de-

spite the well-established utility of the Fourier transform, it cannot be applied directly to

time-series forecasting. The Fourier transform uses a predetermined set of sinusoid frequen-
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cies rather than learning the frequencies that are actually expressed in the training data.

Although the signal produced by the Fourier transform perfectly reproduces the training

samples, it also predicts that the same pattern of samples will repeat indefinitely. As a

result, the Fourier transform is effective at interpolation but is unable to extrapolate future

values. Another limitation of the Fourier transform is that it only uses periodic components,

and thus cannot accurately model the nonperiodic aspects of a signal, such as a linear trend

or nonlinear abnormality.

Another approach is regression and extrapolation using a model such as a neural network.

Regular feedforward neural networks with standard sigmoidal activation functions do not

tend to perform well at this task because they cannot account for periodic components in

the training data. Fourier neural networks have been proposed, in which feedforward neural

networks are given sinusoidal activation functions and are initialized to compute the Fourier

transform. Unfortunately, these models have proven to be difficult to train [45].

Recurrent neural networks, as opposed to feedforward neural networks, have been suc-

cessfully applied to time-series prediction [46, 49]. However, these kinds of networks make

up a different class of forecasting techniques. Recurrent neural networks also have difficulty

handling unevenly sampled time-series. Further discussion about recurrent neural networks

and other classes of forecasting techniques is provided in Section 6.2.

We claim that effective generalization can be achieved by regression and extrapolation

using a model with two essential properties: (1) it must combine both periodic and nonpe-

riodic components, and (2) it must be able to tune its components as well as the weights

used to combine them. We present a neural network technique called Neural Decomposition

(ND) that demonstrates this claim. Like the Fourier transform, it decomposes a signal into

a sum of constituent parts. Unlike the Fourier transform, however, ND is able to reconstruct

a signal that is useful for extrapolating beyond the training samples. ND trains the compo-

nents into which it decomposes the signal represented by training samples. This enables it to

find a simpler set of constituent signals. In contrast to the fast Fourier transform, ND does
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not require the number of samples to be a power of two, nor does it require that samples

be measured at regular intervals. Additionally, ND facilitates the inclusion of nonperiodic

components, such as linear or sigmoidal components, to account for trends and nonlinear

irregularities in a signal.

In Section 6.5, we demonstrate that the simple innovations of ND work together to

produce significantly improved generalizing accuracy with several problems. We tested with

the chaotic Mackey-Glass series, a dataset of unemployment rates as reported by the U.S.

Department of Labor Statistics, a time-series of monthly international airline passengers,

the monthly ozone concentration in downtown Los Angeles, and an unevenly sampled time-

series of oxygen isotope measurements from a cave in north India. We compared against long

short-term memory networks (LSTM), echo state networks, autoregressive integrated moving

average (ARIMA) models, seasonal ARIMA (SARIMA) models, support vector regression

with a radial basis function (SVR), and a model recently proposed by Gashler and Ashmore

[45]. In all but one case, ND made better predictions than each of the other prediction

techniques evaluated; in the excepted case, LSTM and echo state networks performed slightly

better than ND.

This chapter is outlined as follows. Section 6.2 provides a background and reviews re-

lated works. Section 6.3 gives an intuitive-level overview of ND. Section 6.4 provides finer

implementation-level details. Section 6.5 shows results that validate our work. Finally,

Section 6.6 discusses the contributions of this chapter and future work.

6.2 Related Work

6.2.1 Models for Time-Series Prediction

Many works have diligently surveyed the existing literature regarding techniques for forecast-

ing time-series data [31, 90, 176, 15, 42, 175, 30]. Some popular statistical models include

Gaussian process [10] and hidden Markov models [116].

Autoregressive integrated moving average (ARIMA) models [177, 164] are among the
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Figure 6.1: Three broad classes of models for time-series forecasting: (A) prediction using a
sliding window, (B) recurrent models, and (C) regression-based extrapolation.

most popular approaches. The notation for this model is ARIMA(p, d, q), where p is the

number of terms in the autoregressive model, d is the number of differences required to take

to make the time-series stationary, and q is the number of terms in the moving average

model. In other words, ARIMA models compute the dth difference of x(t) as a function of

xt−1, xt−2, ..., xt−p and the previous q error terms.

Out of all the ARIMA variations that have been proposed, seasonal ARIMA (SARIMA)

[9] is considered to be the state of the art “classical” time-series approach [112]. Notation

for SARIMA is ARIMA(p, d, q)(P,D,Q)[S], where p, d, q are identical to the normal ARIMA

model, P,D,Q are analogous seasonal values, and S is the seasonal parameter. For example,

an ARIMA(1,0,1)(0,1,1)[12] uses an autoregressive model with one term, a moving average

model with one term, one seasonal difference (that is, x′t = xt − xt−12), and a seasonal

moving average with one term. This seasonal variation of ARIMA exploits seasonality in

data by correlating xt not only with recent observations like xt−1, but also with seasonally

recent observations like xt−S. For example, when the data is a monthly time-series, S = 12

correlates observations made in the same month of different years, and when the data is a

daily time-series, S = 7 correlates observations made on the same day of different weeks.

In the field of machine learning, three high-level classes of techniques (illustrated in

Figure 6.1) are commonly used to forecast time-series data [45]. Perhaps the most common

approach, (A), is to train a model to directly forecast future samples based on a sliding

window of recently collected samples [42]. This approach is popular because it is simple to
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implement and can work with arbitrary supervised learning techniques.

A more sophisticated approach, (B), is to train a recurrent neural network [89, 126].

Several recurrent models, such as LSTM networks [46, 49], have reported very good results for

forecasting time-series. In an LSTM network, each neuron in the hidden layer has a memory

cell protected by a set of gates that control the flow of formation through time[49]. Echo state

networks (ESNs) have also performed particularly well at this task [106, 82, 140]. An ESN

is a randomly connected, recurrent reservoir network with three primary meta-parameters:

input scaling, spectral radius, and leaking rate [114]. Although they are powerful, these

recurrent models are only able to handle time-series that are sampled at a fixed interval, and

thus cannot be directly applied to unevenly sampled time-series.

Our model falls into the third category of machine learning techniques, (C): regression-

based extrapolation. Models of this type fit a curve to the training data, then use the

trained curve to anticipate future samples. One advantage of this approach over recurrent

neural networks is that it can make continuous predictions, instead of predicting only at

regular intervals, and can therefore be directly applied to irregularly spaced time-series. A

popular method in this category is support vector regression (SVR) [150, 32]. Many models

in this category decompose a signal into constituent parts, providing a useful mechanism

for analyzing the signal. Our model is more closely related to a subclass of methods in

this category, called Fourier neural networks (see Section 6.2.3), due to its use of sinusoidal

activation functions. Models in the first two categories, (A) and (B), have already been

well-studied, whereas extrapolation with sinusoidal neural networks remains a relatively

unexplored area.

6.2.2 Harmonic Analysis

The harmonic analysis of a signal transforms a set of samples from the time domain to the

frequency domain. This is useful in time-series prediction because the resulting frequencies

can be used to reconstruct the original signal (interpolation) and to forecast values beyond
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the sampled time window (extrapolation). Harmonic analysis, also known as spectral analysis

or spectral density estimation, has been well-studied for decades [149, 131, 39, 128].

Perhaps the most popular method of harmonic analysis is the distrete Fourier transform

(DFT). The DFT maps a series of N complex numbers in the time domain to the frequency

domain. The inverse DFT (iDFT) can be applied these new values to map them back to the

time domain. More interestingly, the iDFT can be used as a continuous representation of

the originally discrete input. The transforms are generally written as a sum of N complex

exponentials, which can be rewritten in terms of sines and cosines by Euler’s formula.

The DFT and the iDFT are effectively the same transform with two key differences.

First, in terms of sinusoids, the DFT uses negative multiples of 2π/N as frequencies and

the iDFT uses positive multiples of 2π/N as frequencies. Second, the iDFT contains the

normalization term 1/N applied to each sum.

In general, the iDFT requires all N complex values from the frequency domain to re-

construct the input series. For real-valued input, however, only the first N/2 + 1 complex

values are necessary (N/2 frequencies and one bias). The remaining complex numbers are

the conjugates of the first half of the values, so they only contain redundant information.

Furthermore, in the real-valued case, the imaginary component of the iDFT output can be

discarded to simplify the equation, as we do in Equation 6.1. This particular form of the

iDFT (reconstructing a series of real samples) can therefore be written as a real sum of sines

and cosines.

The iDFT is as follows. Let Rk and Ik represent the real and imaginary components

respectively of the kth complex number returned by the DFT. Let 2πk/N be the frequency

of the kth term. The first frequency yields the bias, because cos(0) = 1 and sin(0) = 0. The

second frequency is a single wave, the third frequency is two waves, the fourth frequency is

three waves, and so on. The cosine with the kth frequency is scaled by Rk, and the sine

with the kth frequency is scaled by Ik. Thus, the iDFT is sufficiently described as a sum

of N/2 + 1 terms, with a sin(t) and a cos(t) in each term and a complex number from the
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Figure 6.2: The predictive model generated by the iDFT for a toy problem with both periodic
and nonperiodic components. Blue dots represent training samples, red dots represent testing
samples, and the green line represents the iDFT. Two significant problems limit its ability
to generalize: (1) The model repeats, ignoring the linear trend, and (2) The extrapolated
predictions misalign with the phase of the continuing nonlinear trend.

DFT corresponding to each term:

x(t) =

N/2∑
k=0

Rk · cos(
2πk

N
t)− Ik · sin(

2πk

N
t) (6.1)

Equation 6.1 is useful as a continuous representation of the real-valued discrete input.

Because it perfectly passes through the input samples, one might naively expect this function

to be a good basis for generalization. In order to choose appropriate frequencies, however,

the iDFT assumes that the underlying function always has a period equal to the size of

the samples that represent it, that is, x(t + N) = x(t) for all t. Typically, in cases where

generalization is desirable, the period of the underlying function is not known. The iDFT

cannot effectively model the nonperiodic components of a signal, nor can it form a simple

model for series that are not periodic at N , even if the series is perfectly periodic.
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Figure 6.2 illustrates the problems encountered when using the iDFT for time-series

forecasting. Although the model generated by the iDFT perfectly fits the training samples,

it only has periodic components and so is only able to predict that these samples will repeat

to infinity, without taking nonperiodicity into account. Our approach mimics the iDFT for

modeling periodic data, but is also able to account for nonperiodic components in a signal

(Figure 6.4).

Because of these limitations of the DFT, other approaches to the harmonic analysis of

time-series have been proposed. Some of these other approaches perform sinusoidal regression

to determine frequencies that better represent the periodicity of the sampled signal [162, 168].

Our approach similarly uses regression to find better frequencies.

6.2.3 Fourier Neural Networks

Use of the Fourier transform in neural networks has already been explored in various contexts

[69, 182]. The term Fourier neural network has been used to refer to neural networks that

use a Fourier-like neuron [142], that use the Fourier transform of some data as input [123],

or that use the Fourier transform of some data as weights [45]. Our work is not technically

a Fourier neural network, but of these three types, our approach most closely resembles the

third.

Silvescu provided a model for a Fourier-like activation function for neurons in neural

networks [142]. His model utilizes every unit to form DFT-like output for its inputs. He

notes that by using gradient descent to train sinusoid frequencies, the network is able to

learn “exact frequency information” as opposed to the “statistical information” provided by

the DFT. Our approach also trains the frequencies of neurons with a sinusoidal activation

function.

Gashler and Ashmore presented a technique that used the fast Fourier transform (FFT)

to approximate the DFT, then used the obtained values to initialize the sinusoid weights of a

neural network that mixed sinusoidal, linear, and softplus activation functions [45]. Because
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this initialization used sinusoid units to model nonperiodic components of the data, their

model was designed to heavily regularize sinusoid weights so that as the network was trained,

it gave preference to weights associated with nonperiodic units and shifted the weights from

the sinusoid units to the linear and softplus units. Use of the FFT required their input size to

be a power of two, and their trained models were slightly out of phase with their validation

data. However, they were able to generalize well for certain problems. Our approach is

similar, except that we do not use the Fourier transform to initialize any weights (further

discussion on why we do not use the Fourier transform can be found in Section 6.3.3).

6.3 High Level Approach

In this section, we describe Neural Decomposition (ND), a neural network technique for

the analysis and extrapolation of time-series data. This section focuses on an intuitive-level

overview of our method; implementation details can be found in Section 6.4.

6.3.1 Algorithm Description

We use an iDFT-like model with two simple but important innovations. First, we allow

sinusoid frequencies to be trained. Second, we augment the sinusoids with a nonperiodic

function to model nonperiodic components. The iDFT-like use of sinusoids allows our model

to fit to periodic data, the ability to train the frequencies allows our model to learn the true

period of a signal, and the augmentation function enables our model to forecast time-series

that are made up of both periodic and nonperiodic components.

Our model is defined as follows. Let each ak represent an amplitude, each wk represent

a frequency, and each φk represent a phase shift. Let t refer to time, and let g(t) be an

augmentation function that represents the nonperiodic components of the signal. Our model

is defined as

x(t) =
N∑
k=1

(
ak · sin(wkt+ φk)

)
+ g(t). (6.2)
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Note that in our model, compared to the iDFT, two indexing changes have been made:

1) the lower index of the sum has changed from k = 0 to k = 1, and 2) the upper index of

the sum has changed from N/2 to N . The lower index has changed because ND can account

for bias in the augmentation function g(t), so the 0 frequency is not necessary. The upper

index has changed to simplify the equation as a sum of N sines rather than a sum of N/2

sines and cosines.

If the phase shifts are set so that sin(t + φ) is transformed into cos(t) and −sin(t),

the frequencies are set to the appropriate multiples of 2π, the amplitudes are set to the

output values of the DFT, and g(t) is set to a constant (the bias), then ND is identical to

the iDFT. However, by choosing a g(t) better suited to generalization and by learning the

amplitudes and tuning the frequencies using backpropagation, our method is more effective

at generalization than the iDFT. g(t) may be as simple as a linear equation or as complex

as a combination of linear and nonlinear equations. A discussion on the selection of g(t) can

be found in Section 6.4.

We use a feedforward artificial neural network with a single hidden layer to compute

our function (see Figure 6.3). The hidden layer is composed of N units with a sinusoid

activation function and an arbitrary number of units with other activation functions to

calculate g(t). The output layer is a single linear unit, so that the neural network outputs a

linear combination of the units in the hidden layer.

We initialize the frequencies and phase shifts in the same way as the inverse DFT as

described above. Rather than use the actual values provided by the DFT as sinusoid ampli-

tudes, however, we initialize them to small random values (see Section 6.3.3 for a discussion

on why). Weights in the hidden layer associated with g(t) are initialized to approximate

identity, and weights in the output layer associated with g(t) are randomly perturbed from

zero.

We train our model using stochastic gradient descent with backpropagation. This training

process allows our model to learn better frequencies and phase shifts so that the sinusoid units
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Figure 6.3: A diagram of the neural network model used by Neural Decomposition. For
each of the k sinusoid units, wi are frequencies, φi are phase shifts, and ai are amplitudes,
where i ∈ {1 . . . k}. The augmentation function g(t) is shown as a single unit, but it may be
composed of one or more units with one or more activation functions.

more accurately represent the periodic components of the time-series. Because frequencies

and phase shifts are allowed to change, our model can learn the true period of the underlying

function rather than assuming the period is N . Training also tunes the weights of the

augmentation function.

ND uses regularization throughout the training process to distribute weights in a manner

consistent with our goal of generalization. In particular, we use L1 regularization on the

output layer of the network to promote sparsity by driving nonessential weights to zero.

Thus, ND produces a simpler model by using the fewest number of units that still fit the

training data well.

By pre-initializing the frequencies and phase shifts to mimic the inverse DFT and setting

all other parameters to small values, we reduce time-series prediction to a simple regression

problem. Artificial neural networks are particularly well-suited to this kind of problem, and

using stochastic gradient descent with backpropagation to train it should yield a precise and

accurate model.

The neural network model and training approach we use is similar to those used by

Gashler and Ashmore in a previous work on time-series analysis [45]. Our work builds on
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Figure 6.4: A comparison of Neural Decomposition with two algorithmic variations showing
the importance of certain algorithm details. The data used here is the same data used in
Figure 6.2. The full ND model, shown in green, fits very closely to the data that was withheld
during training. The cyan curve shows predictions made when the basis functions, including
sinusoidal frequencies, were frozen during training. Note that the predictions are out-of-
phase, indicating that training these components is essential for effective generalization.
The orange curve shows predictions made without including any nonperiodic components
among the basis functions, that is, setting the augmentation function g(t) = 0. Although
the predictions exhibit the correct phase, they fail to fit with the nonperiodic trend. This
shows the importance of using heterogeneous basis functions.

theirs and contributes a number of improvements, both theoretically and practically. First,

we do not initialize the weights of the network using the Fourier transform. This proved

to be problematic in their work as it used periodic components to model linear and other

nonperiodic parts of the training data. By starting with weights near zero and learning

weights for both periodic and nonperiodic units simultaneously, our model does not have to

unlearn extraneous weights. Second, their model required heavy regularization that favored

using linear units rather than the initialized sinusoid units. Our training process makes no

assumptions about which units are more important and instead allows gradient descent to
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determine which components are necessary to model the data. Third, their training process

required a small learning rate (on the order of 10−7) and their network was one layer deeper

than ours. As a result, their frequencies were never tuned, their results were generally out

of phase with the testing data, and their training times were very long. Because our method

facilitates the training of each frequency and allows a larger learning rate (10−3 in our

experiments), our method yields a function that is more precisely in phase with the testing

data in a much shorter amount of time. Thus, our method has simplified the complexity

of the model’s training algorithm, minimized its training time, and improved its overall

effectiveness at time-series prediction. The superiority of our method is demonstrated in

Section 6.5 and visualized in Figure 6.8.

6.3.2 Toy Problem for Justification

Figure 6.4 demonstrates that flexible frequencies and an appropriate choice for g(t) are

essential for effective generalization. We compare three ND models using the equation x(t) =

sin(4.25πt) + sin(8.5πt) + 5t to generate time-series data. This is a sufficiently interesting

toy problem because it is composed of periodic and nonperiodic functions and its period is

not exactly N (otherwise, the frequencies would have been multiples of 2π). We generate

128 values for 0 ≤ t < 1.0 as input and 256 values for 1.0 ≤ t < 3.0 as a validation set.

Powers of two are not required, but we used powers of two in order to compare our approach

with using the inverse DFT (approximated by the inverse FFT).

One of the compared ND models freezes the frequencies so that the model is unable to

adjust them. Although it is able to find the linear trend in the signal, it is unable to learn

the true period of the data and, as a result, makes predictions that are out of phase with

the actual signal. This demonstrates that the ability to adjust the constituent parts of the

output signal is necessary for effective generalization.

Another of the compared ND models has flexible frequencies, but uses no augmentation

function (that is, g(t) = 0). This model can learn the periodic components of the signal, but
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Figure 6.5: (Top) Frequencies of the basis functions of Neural Decomposition over time.
(Bottom) Basis weights (amplitudes) over time on the same problem. Note that ND first
tunes the frequencies (Top), then finishes adjusting the corresponding amplitudes for those
sinusoids (Bottom) (wA corresponds to φA and wB corresponds to φB). In most cases, the
amplitudes are driven to zero to form a sparse representation. After the amplitudes reach
zero, the frequencies are no longer modified.

not its nonperiodic trend. It tunes the frequencies of the sinusoid units to more accurately

reflect the input samples, so that it is more in phase than the second model. However,

because it cannot explain the nonperiodic trend of the signal, it also uses more sinusoid units

than the true underlying function requires, resulting in predictions that are not perfectly in

phase. This model shows the necessity of an appropriate augmentation function for handling

nonperiodicity.

The final ND model compared in Figure 6.4 is ND with flexible frequencies and augmen-

tation function g(t) = wt+b. As expected, it learns both the true period and the nonperiodic
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Figure 6.6: Frequency domain representations of the toy problem (amplitude vs frequency).
(Top) Frequencies used by the iDFT. (Bottom) Frequencies used by ND.

trend of the signal. We therefore conclude that an appropriate augmentation function and

the ability to tune components are essential in order for ND to generalize well.

6.3.3 Toy Problem Analysis

In Figure 6.5, we plot the weights over time of our g(t) = wt + b model being trained on

the toy problem. Weights in Figure 6.5(a) are the frequencies of a few of the sinusoids in

the model, initialized based on the iDFT, but tuned over time to learn more appropriate

frequencies for the input samples, and weights in Figure 6.5(b) are their corresponding

amplitudes. The training process tunes frequencies wA and wB to more accurately reflect

the period of the underlying function and adjusts the corresponding amplitudes φA and φB

so that only the sinusoids associated with these amplitudes are used in the trained model

51



0

0.
2

0.
4

0.
6

0.
8 1

1.
2

1.
4

1.
6

1.
8 2

2.
2

2.
4

2.
6

2.
8 3

0

0.5

1

1.5

2

Time

Training Samples Testing Samples
Va

lu
e

Figure 6.7: Neural Decomposition on the Mackey-Glass series. Although it does not capture
all the high-frequency fluctuations in the data, our model predicts the location and height
of each peak and valley in the series with a high degree of accuracy.

and all other amplitudes are driven to zero. This demonstrates that ND tunes frequencies it

needs and learns amplitudes as we hypothesized. It is also worth noting that after the first

2500 training epochs, no further adjustments are made to the weights. This suggests that

ND is robust against overfitting, at least in some cases, as the “extra” training epochs did

not result in a worse prediction.

Gashler and Ashmore utilized the FFT to initialize the sinusoid amplitudes so that the

neural network immediately resembled the iDFT [45]. Using the DFT in this way yields an

unnecessarily complex model in which nearly every sinusoid unit has a nonzero amplitude,

either because it uses periodic functions to model the nonperiodic signal or because it has

fixed frequencies and so uses a range of frequencies to model the actual frequencies in the

signal [142]. Consequently, the training process required heavy regularization of the sinusoid

amplitudes in order to shift the weight to the simpler units (see Section 6.2.3). Training

from this initial point often fell into local optima, as such a model was not always able to

unlearn superfluous sinusoid amplitudes.
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Figure 6.8: A comparison of the four best predictive models on the monthly unemployment
rate in the US. Blue points represent training samples from January 1948 to June 1969 and
red points represent testing samples from July 1969 to December 1977. SARIMA, shown
in magenta, correctly predicted a rise in unemployment but underestimated its magnitude,
and did not predict the shape of the data well. ESN, shown in cyan, predicted a reasonable
mean, but did not capture the dynamics of the data. LSTM, shown in orange, predicted the
first peak in the data, but leveled off to predict only the mean. Only ND, shown in green,
successfully predicted both the depth and approximate shape of the surge in unemployment,
followed by another surge in unemployment that followed.

Figure 6.6 demonstrates why using amplitudes provided by the Fourier transform is a

poor initialization point. The actual underlying function only requires two sinusoid units

(found by ND), but the Fourier transform uses every sinusoid unit available to model the

linear trend in the toy problem. Instead of tuning two amplitudes, a model initialized with

the Fourier transform has to tune every amplitude and is therefore far more likely to fall

into local optima.

ND, by contrast, does not use the FFT. Sinusoid amplitudes (the weights feeding into the

output layer) and all output-layer weights associated with g(t) are initialized to small random

values. This allows the neural network to learn the periodic and nonperiodic components of
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the signal simultaneously. Not only does this avoid unnecessary “unlearning” of the extra

weights used by the DFT, but also avoids getting stuck in the local optima represented by

the DFT weights. Without the hindrance of having to unlearn part of the DFT, the training

process is able to find more optimal values for these weights. Figure 6.6 shows a comparison

of our trained model with the frequencies used by the iDFT, omitting the linear component

learned by ND.

6.3.4 Chaotic Series

In addition to the toy problem, we applied ND to the Mackey-Glass series as a proof-of-

concept. This series is known to be chaotic rather than periodic, so it is an interesting test

for our approach that decomposes the signal as a combination of sinusoids. Results with this

data are shown in Figure 6.7. The blue points on the left represent the training sequence,

and the red points on the right half represent the testing sequence. All testing samples were

withheld from the model, and are only shown here to illustrate the effectiveness of the model

in anticipating future samples. The green curve represents the predictions of the trained

model. The series predicted by Neural Decomposition exhibits shapes similar to those in the

test data, and has an RMSE of 0.086. Interestingly, neither the shapes in the test data nor

those exhibited within the model are strictly repeating. This occurs because the frequencies

of the sinusoidal basis functions that ND uses to represent its model may be tuned to have

frequencies with no small common multiple, thus creating a signal that does not repeat for

a very long time. Our model does not capture all the high-frequency fluctuations, but it is

able to approximate the general shape and some of the dynamics of the chaotic series.

To determine whether Neural Decomposition merely predicts a periodic function, we tried

our experiment again but set g(t) = 0 rather than using nonlinear, nonperiodic components

for g(t). We found that with these changes, our model was unable to capture the subtle

dynamics of the Mackey-Glass series. As in the toy problem, omitting g(t) resulted in

poorer predictions, and the resulting predictions had an RMSE of 0.14 (a 63% increase in
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Figure 6.9: A comparison of the four best predictive models on monthly totals of international
airline passengers from January 1949 to December 1960 [16]. Blue points represent the 72
training samples from January 1949 to December 1954 and red points represent the 72 testing
samples from January 1955 to December 1960. SARIMA, shown in magenta, learns the trend
and general shape of the data. ESN, shown in cyan, predicts a mean but does not capture
the dynamics of the actual data. LSTM, shown in orange, predicts a valley and a peak that
did not actually occur, followed by a poor estimation of the mean that suggests that it was
unable to learn the seasonality of the data. ND, shown in green, learns the trend, shape,
and growth better than the other compared models.

error). This indicates that ND does more than predict a strictly periodic function, and is

able to capture at least some of the nonlinear dynamics in some chaotic systems.

Although preliminary tests on the toy problem and the Mackey-Glass series were favorable

to Neural Decomposition, not all of our tests were as successful. In particular, we applied

ND to another chaotic series: samples from the Lorenz-63 model. We found that ND was

unable to effectively model the dynamics of this chaotic system. This seems to indicate that

although ND does well with some problems, it should not be expected to anticipate all the

subtle variations that occur in chaotic systems.
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Figure 6.10: A comparison of the four best predictive models on monthly ozone concentration
in downtown Los Angeles from January 1955 to August 1967 [73]. Blue points represent the
152 training samples from January 1955 to December 1963 and red points represent the 44
testing samples from January 1964 to August 1967. The compared models include SARIMA,
ESN, LSTM, and ND. All four of these models perform well on this problem. Both LSTM
(shown in orange) and ESN (shown in cyan) predict with slightly higher accuracy compared
to ND. ND, shown in green, has slightly higher accuracy compared to SARIMA (shown in
magenta). ARIMA, SVR, and Gashler and Ashmore’s model all performed poorly on this
problem; rather than include them in this graph, their errors have been reported in Table 6.1
and Table 6.2.

6.4 Implementation Details

In this section, we provide a more detailed explanation of our approach. A high level de-

scription of Neural Decomposition can be found in Section 6.3. For convenience, an im-

plementation of Neural Decomposition is included in the Waffles machine learning toolkit

[43].
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6.4.1 Topology

We use a feedforward artificial neural network as the basis of our model. For an input of size

N , the neural network is initialized with two layers: 1→ m and m→ 1, where m = N+|g(t)|

and |g(t)| denotes the number of nodes required by g(t). The first N nodes in the hidden

layer have the sinusoid activation function, sin(t), and the rest of the nodes in the hidden

layer have other activation functions to compute g(t).

The augmentation function g(t) can be made up of any number of nodes with one or

more activation functions. For example, it could be made up of linear units for learning

trends and sigmoidal units to fit nonperiodic, nonlinear irregularities. Gashler and Ashmore

have suggested that softplus units may yield better generalizing predictions compared to

standard sigmoidal units [45]. In our experiments, we used a combination of linear, softplus,

and sigmoidal nodes for g(t). The network tended to only use a single linear node, which

may suggest that the primary benefit of the augmentation function is that it can model linear

trends in the data. Softplus and sigmoidal units tended to be used very little or not at all

by the network in the problems we tested, but intuitively it seems that nonlinear activation

functions could be useful in some cases.

6.4.2 Weight Initialization

The weights of the neural network are initialized as follows. Let each of the N sinusoid nodes

in the hidden layer, indexed as k for 0 ≤ k < N , have a weight wk and bias φk. Let each wk

represent a frequency and be initialized to 2πbk/2c. Let each φk represent a phase shift. For

each even value of k, let φk be set to π/2 to transform sin(t + φk) to cos(t). For each odd

value of k, let φk be set to π to transform sin(t + φk) to −sin(t). A careful comparison of

these initialized weights with Equation 6.1 shows that these are identical to the frequencies

and phase shifts used by the iDFT, except for a missing 1/N term in each frequency, which

is absorbed in the input preprocessing step (see Subsection 6.4.3).

All weights feeding into the output unit are set to small random values. At the beginning

57



of training, therefore, the model will predict something like a flat line centered at zero. As

training progresses, the neural network will learn how to combine the hidden layer units to

fit the training data.

Weights in the hidden layer associated with the augmentation function are initialized to

approximate the identity function. For example, in g(t) = wt+ b, w is randomly perturbed

from 1 and b is randomly perturbed near 0. Because the output layer will learn how to use

each unit in the hidden layer, it is important that each unit be initialized in this way.

6.4.3 Input Preprocessing

Before training begins, we preprocess the input data to facilitate learning and prevent the

model from falling into a local optimum. First, we normalize the time associated with each

sample so that the training data lies between 0 (inclusive) and 1 (exclusive) on the time

axis. If there is no explicit time, equally spaced values between 0 and 1 are assigned to each

sample in order. Predicted data points will have a time value greater than or equal to 1 by

this new scale. Second, we normalize the values of each input sample so that all training

data is between 0 and 10 on the y axis.

This preprocessing step serves two purposes. First, it absorbs the 1/N term in the

frequencies by transforming t into t/N , which is why we were able to omit the 1/N term

from our frequencies in the weight initialization step. Second, and more importantly, it

ensures that the data is appropriately scaled so that the neural network can learn efficiently.

If the data is scaled too large on either axis, training will be slow and susceptible to local

optima. If the data is scaled too small, on the other hand, the learning rate of the machine

will cause training to diverge and only use linear units and low frequency sinusoids.

In some cases, it is appropriate to pass the input data through a filter. For example, finan-

cial time-series data is commonly passed through a logarithmic filter before being presented

for training, and outputs from the model can then be exponentiated to obtain predictions.

We use this input preprocessing method in two of our experiments where we observe an
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underlying exponential growth in the training data.

6.4.4 Regularization

Regularization is essential to the training process. Prior to each sample presentation, we

apply regularization on the output layer of the neural network. Even though we do not

initialize sinusoid amplitudes using the DFT, the network is quickly able to learn how to use

the initialized frequencies to perfectly fit the input samples. Without regularizing the output

layer, training halts as soon as the model fits the input samples, because the measurable error

is near zero. By relaxing the learned weights, regularization allows our model to redistribute

its weight over time. We find that regularization amount is especially important; too much

prevented our model from learning, but too little caused our model to fall into local optima.

In our experiments, setting the regularization term to 10−2 avoided both of these potential

pitfalls.

Another important function of regularization in ND is to promote sparsity in the network,

so that the redistribution of weight produces as simple a model as the input samples allow.

We use L1 regularization for this reason. Usually, the trained model does not require all

N sinusoid nodes in order to generalize well, and this type of regularization enables the

network to automatically discard unnecessary nodes by driving their amplitudes to zero. L2

regularization is not an acceptable substitute in this case, as it would distribute the weights

evenly throughout the network and could, like the DFT, try to use several sinusoid nodes

to model what would more appropriately be modeled by a single node with a nonperiodic

activation function.

It is worth noting that we only apply regularization to the output layer of the neural

network. Any regularization that might occur in the hidden layer would adjust sinusoid

frequencies before the output layer could learn sinusoid amplitudes. By allowing weights in

the hidden layer to change without regularization, the network has the capacity to adjust

frequencies but is not required to do so.
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Figure 6.11: A comparison of two predictive models on a series of oxygen isotope readings in
speleothems in India from 1489 AD to 1839 AD [143]. Blue points represent the 250 training
samples from July 1489 to April 1744 and red points represent the 132 testing samples from
August 1744 to December 1839. Because this time-series is irregularly sampled (the time
step between samples is not constant), only SVR and ND could be applied to it. SVR,
shown in orange, does not perform well, but predicts a steep drop in value that does not
actually occur in the testing data, followed by a flat line. ND, shown in green, performs well,
capturing the general shape of the testing samples.

Backpropagation with stochastic gradient descent tunes the weights of the network and

accomplishes the redistribution of weights that regularization makes possible. In our exper-

iments, we use a learning rate of 10−3.

6.5 Validation

In this section, we report results that validate the effectiveness of Neural Decomposition. In

each of these experiments, we used an ND model with an augmentation function made up

of ten linear units, ten softplus units, and ten sigmoidal units. It is worth noting that g(t) is

under no constraint to consist only of these units; it could include other activation functions
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or only contain a single linear node to capture trend information. We use a regularization

term of 10−2 and a learning rate of 10−3 in every experiment to demonstrate the robustness

of our approach; we did not tune these meta-parameters for each experiment.

In our experiments, we compare ND with LSTM, ESN, ARIMA, SARIMA, SVR, Gashler

and Ashmore’s model [45]. We used PyBrain’s implementation of LSTM networks [137] with

one input neuron, one output neuron, and one hidden layer. We implemented a grid-search to

find the best hidden layer size for the LSTM network for each problem and used PyBrain’s

RPROP- algorithm to train the network. We used Lukoševičius’ implementation of ESN

[114] and implemented a grid-search to find the best parameters for each problem. We used

the R language implementation for ARIMA, SARIMA, and SVR [132]. For the ARIMA

models, we used a variation of the auto.arima method that performs a grid-search to find

the best parameters for each problem. For SVR, we used the tune.svm method, which also

performs a grid-search for each problem. Although these methods select the best models

based on the amount of error calculated using the training samples, the grid-search is a very

slow process. Gashler and Ashmore’s model did not require a grid-search for parameters

because it has a default set of parameters that are automatically tuned during the training

process. With ND, no problem-specific parameter tuning was performed.

In each figure, the blue points in the shaded region represent training samples and the red

points represent withheld testing samples. The curves on the graph represent the predictions

made by the four models that made the most accurate predictions (only two models are shown

in the fourth experiment because only two models could be applied to an irregularly sampled

time-series). The actual error for each model’s prediction is reported for all experiments and

all models in Table 6.1 and Table 6.2.

The LSTM network tended to fall into local optima, and was thus extremely sensitive

to the random seed. Running the same experiment with LSTM using a different random

seed yielded very different results. In each experiment, therefore, we tried the LSTM model

100 times for each different topology tested in our grid-search and selected the result with
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the highest accuracy to present for comparison with ND. Conversely, ND consistently made

approximately identical predictions when run multiple times, regardless of the random seed.

In our first experiment, we demonstrated the effectiveness of ND on real-world data

compared to widely used techniques in time-series analysis and forecasting. We trained our

model on the unemployment rate from 1948 to 1969 as reported by the U.S. Bureau of La-

bor Statistics, and predicted the unemployment rate from 1969 to 1977. These results are

shown in Figure 6.8. Blue points on the left represent the 258 training samples from January

1948 to June 1969, and red points on the right represent the 96 testing samples from July

1969 to December 1977. The four curves represent predictions made by ND (green), LSTM

(orange), ESN (cyan), and SARIMA (magenta); ARIMA, SVR, and Gashler and Ashmore’s

model yielded poorer predictions and are therefore omitted from the figure. Grid-search

found ARIMA(3,1,2) and ARIMA(1,1,2)(1,0,1)[12] for the ARIMA and SARIMA models,

respectively. ARIMA, not shown, did not predict the significant rise in unemployment.

SARIMA, shown in magenta, did correctly predict a rise in unemployment, but underes-

timated its magnitude, and did not predict the shape of the data well. SVR, not shown,

correctly predicted that unemployment would rise, then fall again. However, it also under-

estimated the magnitude. ESN, shown in cyan, predicted a reasonable mean value for the

general increase in unemployment, but failed to capture the dynamics of the actual data.

The best LSTM network topology, found by grid-search, had a hidden layer with 16 neurons.

LSTM, shown in orange, predicted the first peak in the data, but leveled off to predict only

the mean. Gashler and Ashmore’s model, not shown, predicted the rise and fall in unemploy-

ment, but underestimated its magnitude and the model’s predictions significantly diverge

from the subsequent testing samples. It is also worth noting that Gashler and Ashmore’s

model took about 200 seconds to train compared to ND, which took about 30 seconds to

train.

Results with Neural Decomposition (ND) are shown in green. ND successfully predicted

both the depth and approximate shape of the surge in unemployment. Furthermore, it
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correctly anticipated another surge in unemployment that followed. ND did a visibly better

job of predicting the nonlinear trend much farther into the future.

Our second experiment demonstrates the versatility of Neural Decomposition by applying

to another real-world dataset: monthly totals of international airline passengers as reported

by Chatfield [16]. We use the first six years of data (72 samples) from January 1949 to

December 1954 as training data, and the remaining six years of data (72 samples) from

January 1955 to December 1960 as testing data. The training data is preprocessed through

a log(x) filter and the outputs are exponentiated to obtain the final predictions. As in the

first experiment, we compare our model with LSTM, ESN, ARIMA, SARIMA, SVR, and the

model proposed by Gashler and Ashmore. The predictions of the four most accurate models

(ND, LSTM, ESN, and SARIMA) are shown in Figure 6.9; ARIMA, SVR, and Gashler and

Ashmore’s model yielded poorer predictions and are therefore omitted from the figure. SVR,

not shown, predicts a flat line after the first few time steps and generalizes the worst out

of the four predictive models. The ARIMA model found by grid-search was ARIMA(2,1,3).

ARIMA, not shown, was able to learn the trend, but failed to capture any of the dynamics

of the signal. Grid-search found ARIMA(1,0,0)(1,1,0)[12] for the SARIMA model. Both

SARIMA (shown in magenta) and ND (shown in green) are able to accurately predict the

shape of the future signal, but ND performs better. Unlike SARIMA, ND learns that the

periodic component gets bigger over time. Gashler and Ashmore’s model makes meaningful

predictions for a few time steps, but appears to diverge after the first predicted season. ESN,

shown in cyan, performs similarly to the ARIMA model, only predicting the trend and failing

to capture seasonal variations. The LSTM network, with a hidden layer of size 64 found

by grid-search, failed to capture any meaningful seasonality in the training data. Instead,

LSTM immediately predicted a valley and a peak that did not actually occur, followed by a

poor estimation of the mean.

The third experiment uses the monthly ozone concentration in downtown Los Angeles

as reported by Hipel [73]. Nine years of monthly ozone concentrations (152 samples) from
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January 1955 to December 1963 are used as training samples, and the remaining three years

and eight months (44 samples) from January 1964 to August 1967 are used as testing samples.

The training data, as in the second experiment, is preprocessed through a log(x) filter and

output is exponentiated to obtain the final predictions. Figure 6.10 compares the SARIMA,

ESN, LSTM, and ND models on this problem; ARIMA, SVR, and Gashler and Ashmore’s

model yielded poorer predictions and are therefore omitted from the figure. The ARIMA

and SARIMA models found by grid-search were ARIMA(2,1,2) and ARIMA(1,1,1)(1,0,1)[12],

respectively. ARIMA and SVR resulted in flat-line predictions with a high amount of error,

and Gashler and Ashmore’s model diverged in training and yielded unstable predictions.

SARIMA (shown in magenta), ESN (shown in cyan), LSTM (shown in orange), and ND

(shown in green), on the other hand, all forecast future samples well. LSTM and ESN

yielded the most accurate predictions, but SARIMA and ND yielded good results as well.

Our fourth experiment demonstrates that ND can be used on irregularly sampled time-

series. We use a series of oxygen isotope readings in speleothems in a cave in India from

1489 AD to 1839 AD as reported by Sinha et. al [143]. Because the time intervals between

adjacent samples is not constant (the interval is about 1.5 years on average, but fluctuates

between 0.5 and 2.0 years), only ND and SVR models can be applied. ARIMA, SARIMA,

Gashler and Ashmore’s model, ESN, and LSTM cannot be applied to irregular time-series

because they assume a constant time interval between adjacent samples; these five models

are therefore not included in this experiment. Figure 6.11 shows the predictions of ND and

SVR. Blue points on the left represent the 250 training samples from July 1489 to April

1744, and red points on the right represent the 132 testing samples from August 1744 to

December 1839. SVR, shown in orange, predicts a steep drop in value that does not exist in

the testing data. ND, shown in green, accurately predicts the general shape of the testing

data.

Table 6.1 presents an empirical evaluation of each model for the four real-world experi-

ments. We use the mean absolute percent error (MAPE) as our error metric for comparisons
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Table 6.1: Mean absolute percent error (MAPE) on the validation problems for ARIMA,
SARIMA, SVR, Gashler and Ashmore, ESN, LSTM, and ND. Best result (smallest error)
for each problem is shown in bold.

Model Labor Airline Ozone Speleothem
ARIMA 39.42% 12.34% 39.50% N/A
SARIMA 29.69% 13.33% 22.71% N/A
SVR 25.14% 47.04% 49.53% 8.50%
Gashler/Ashmore 34.38% 19.89% 77.19% N/A
ESN 15.73% 12.05% 16.15% N/A
LSTM 14.63% 18.95% 16.52% N/A
ND 10.89% 9.52% 21.59% 1.89%

[112]. MAPE for a set of predictions is defined by the following function, where xt is the

actual signal value (i.e. it is an element of the set of testing samples) and x(t) is the predicted

value:

MAPE =
1

n

n∑
t=1

∣∣∣∣xt − x(t)

xt

∣∣∣∣ (6.3)

Using MAPE, we compare Neural Decomposition to ARIMA, SARIMA, SVR with a

radial basis function, Gashler and Ashmore’s model, ESN, and LSTM. We found that on the

unemployment rate problem (Figure 6.8), ND yielded the best model, followed by LSTM

and ESN. On the airline problem (Figure 6.9), ND performed significantly better than all

of the other approaches. On the ozone problem (Figure 6.10), LSTM and ESN were the

best models, but ND and SARIMA also performed well. On the oxygen isotope problem

(Figure 6.11), ND outperformed SVR, which was the only other model that could be applied

to the irregular time-series. Table 6.1 presents the results of our experiments, and Table 6.2

presents the same data using the root mean square error (RMSE) metric instead of MAPE.

In each problem, the accuracy of the best algorithm is shown in bold.

6.6 Conclusion

In this chapter, we presented Neural Decomposition, a neural network technique for time-

series forecasting. Our method decomposes a set of training samples into a sum of sinusoids,
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Table 6.2: Root mean square error (RMSE) on the validation problems for ARIMA,
SARIMA, SVR, Gashler and Ashmore, ESN, LSTM, and ND. Best result (smallest error)
for each problem is shown in bold.

Model Labor Airline Ozone Speleothem
ARIMA 2.97 75.32 1.33 N/A
SARIMA 2.41 67.54 1.06 N/A
SVR 2.18 209.57 1.83 1.078
Gashler/Ashmore 2.81 94.47 3.71 N/A
ESN 1.09 63.50 0.705 N/A
LSTM 1.14 93.61 0.667 N/A
ND 1.09 45.03 0.99 0.214

inspired by the Fourier transform, augmented with additional components to enable our

model to generalize and extrapolate beyond the input set. Each component of the resulting

signal is trained, so that it can find a simpler set of constituent signals. ND uses careful

initialization, input preprocessing, and regularization to facilitate the training process. A

toy problem was presented to demonstrate the necessity of each component of ND. We

applied ND to the Mackey-Glass series and was found to generalize well. Finally, we showed

results that demonstrate that our approach is superior to popular techniques LSTM, ESN,

ARIMA, SARIMA, SVR, and Gashler and Ashmore’s model in some cases, including the

US unemployment rate, monthly airline passengers, and an unevenly sampled time-series of

oxygen isotope measurements from a cave in north India. We also showed that in some cases,

our approach is at least comparible to these other techniques, as in the monthly time-series

of ozone concentration in Los Angeles. We predict that ND will similarly perform well on a

number of other problems.

This work makes the following contributions to the current knowledge:

• It empirically shows why the Fourier transform provides a poor initialization point for

generalization and how neural network weights must be tuned to properly decompose

a signal into its constituent parts.

• It demonstrates the necessity of an augmentation function in Fourier and Fourier-like

neural networks and shows that components must be adjustable during the training
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process, observing the relationships between weight initialization, input preprocessing,

and regularization in this context.

• It unifies these insights to describe a method for time-series forecasting and demon-

strates that this method is effective at generalizing for some real-world datasets.

The primary area of future work is to apply ND to new problems. The preliminary

findings on the datasets in this chapter show that ND can generalize well for some problems,

but the breadth of applications for ND not yet known. Some interesting areas to explore are

traffic flow [112], sales [23], financial [155], and economic [90].
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Chapter 7

Leveraging Product as an Activation Function

Abstract: Product unit neural networks (PUNNs) are powerful representational models

with a strong theoretical basis, but have proven to be difficult to train with gradient-based op-

timizers. We present windowed product unit neural networks (WPUNNs), a simple method

of leveraging product as a nonlinearity in a neural network. Windowing the product tames

the complex gradient surface and enables WPUNNs to learn effectively, solving the problems

faced by PUNNs. WPUNNs use product layers between traditional sum layers, capturing

the representational power of product units and using the product itself as a nonlinearity.

We find the result that this method works as well as traditional nonlinearities like ReLU

on the MNIST dataset. We demonstrate that WPUNNs can also generalize gated units in

recurrent neural networks, yielding results comparable to LSTM networks.

7.1 Introduction

Nodes in an artificial neural network traditionally apply a nonlinearity to a weighted sum of

its inputs. Previous work suggests that using a product rather than a sum should increase

the representational power of a neural network, but these product unit neural networks

(PUNNs) have proven difficult to train using gradient-based optimizers [38]. Given an input

of N elements, a product unit multiplies together all N elements raised to arbitrary powers

(where each exponent is a learned parameter). It is not surprising, then, that gradient

descent has difficulty training networks of product units; the derivative of an N element

product with respect to one of its elements is an N − 1 element product. Thus, the error

surface of a PUNN is particularly chaotic and contains many poor local optima.

We present windowed product unit neural networks (WPUNNs), a simple method of

leveraging product as a nonlinearity in a neural network. Windowing the product tames the
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complex gradient surface and enables WPUNNs to learn effectively, solving the problems

faced by PUNNs. A windowed product unit takes the product not of all N inputs, but on a

small portion of the inputs (a window), significantly reducing gradient complexity. WPUNNs

use layers of these windowed product units between traditional sum layers, capturing the

representational power of product units and using the product itself as a nonlinearity. In

this chapter, we make three discoveries related to WPUNNs:

• gradient-based optimization can be used effectively with windowed units,

• windowed product is as effective as traditional nonlinearities like rectified linear units

(ReLU), and

• WPUNNs can generalize gated units in recurrent neural networks.

The rest of this chapter is laid out as follows. Related work is briefly discussed in

Section 7.2. In Section 7.3, we present the formulation of WPUNNs. Section 7.4 lays out a

couple of theoretical applications of WPUNNs. We present our findings in Section 7.5 and

offer some concluding thoughts in Section 7.6.

7.2 Related Work

7.2.1 Product Unit Neural Networks

Product unit neural networks (PUNNs) were introduced in the late 1980s as computationally

powerful alternatives to traditional summation unit networks [36]. In a PUNN, weights are

used as exponents rather than as coefficients, giving a single product layer followed by

a sum enough representational power to represent arbitrary polynomials. The standard

forumulation of a PUNN unit is

y = ΠN
i=1x

θi
i , (7.1)
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where y is the output, N is the number of inputs, xi is the ith input, and θi is the

ith weight. The use of product instead of sum increases a network’s information capacity

[87, 163] and enables higher-order combinations of inputs [38]. The two drawbacks to this

approach are the overhead of computing so many exponents and logarithms [87] and the

difficulty of training a PUNN with gradient-based optimization methods [38]. This second

problem has proven to be particularly challenging, so most of the work on PUNNs focus

on alternative, non-gradient-based techniques such as genetic and evolutionary algorithms

[87, 38, 79, 71, 72, 119] and particle swarm optimizers [38, 79, 161]. Despite the difficulty in

training them, PUNNs have been applied to a number of problems, including classification

of Listeria growth [119], massive missing data reconstruction [35], and time series forecasting

[41]. More recent work has focused on hybridizing PUNNs with sigmoid and RBF networks

[62, 64, 63, 133], and developing improved evolutionary algorithms for training PUNNs [152,

153, 60]. Our work discovers a way to capture the representational power of a PUNN without

losing the ability to train the network using standard gradient-based optimization algorithms.

7.2.2 Gated Units

Recurrent neural networks often make use of a product to implement gates that control

the flow of information in a sequence. Long short term memory (LSTM) [75, 48] and gated

recurrent unit (GRU) [22, 25] networks use a combination of sigmoids and products to “gate”

information. Gated units use the input and recurrent connections to compute several gate

values (in the range [0..1]) and a memory value. Some gated units use one of the gate

values as an input gate, controlling how much of the input is used when calculating the new

memory value. Some have a forget gate, controlling how much of the previous memory value

is used when calculating the new memory value. Still others have an output gate, controlling

how much of the memory value is actually used as output. Gates and outputs are generally

computed using a standard feedforward approach (a nonlinearity applied to a weighted sum

of inputs), then multiplied in a pre-defined way depending on which model is used (for
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example, LSTM or GRU). LSTM networks, in particular, have proven to be particularly

powerful models for speech recognition [58], language modeling [47], text-to-speech synthesis

[40], and handwriting recognition and generation [59, 57]. Our approach is related to gated

units by the use of multiplication and can be used as a generalization of gated units.

7.2.3 Sum-Product Networks

The use of the product operation has been shown to be effective in graphical inference models.

In 2011, Poon et. al proposed a deep architecture for graphical inference models called Sum-

Product Networks (SPN). This architecture not only has a strong mathematical basis, but

also yields compelling results, surpassing state-of-the-art deep neural networks at the image

completion task [129]. A SPN is arranged into layers, as in a multilayer perceptron. Inputs

to a SPN are binary (either 0 or 1), and layers alternate between weighted sums and weighted

products (where the weights used in sums are in [0..1] and the weights used in products are

either 0 or 1). SPNs have been successfully used for classifying videos of various activities

[3, 4], bandwidth extension of speech signals [127], image classification for autonomous flight

[139], and more [107, 100, 120]. Our work borrows the idea of alternating sum and product

as used in SPN graphical models. Although neural networks have much in common with

graphical models, they are better-suited for learning in domains where little is known a priori

about the relations among available attributes.

7.3 Approach

In our approach, we use a specialized kind of product unit in a neural network. Our method

has two key differences from the standard product unit used in PUNNs. First, our product

is weightless; we do not use weights as exponents in the product. Second, our product

is windowed; rather than having each unit take a product of all elements in the input

vector, each unit takes a product of a small window of the inputs. WPUNNs have two

hyperparameters: the window size w, 1 ≤ w ≤ N , and stride length s, 1 ≤ s ≤ w. Given
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a vector of input values, we slide a window of size w using a stride of s and multiply all

elements in the window to yield an output value. In the simplest case, where w = 2 and

s = 2, every odd input is multiplied by its adjacent even input and the input vector is

reduced by a factor of 2. Formally, for an input vector x of size N , the output is a vector y

of size M = (N − w + s− 1)/s+ 1 as defined by the following equation, for 1 ≤ i ≤M :

yi = Πw−1
j=0 xsi+j. (7.2)

Note that changing the product to the max aggregation function changes the operation

into max pooling, which is commonly used in convolutional neural networks [102].

By inserting a layer of these windowed product units between each fully-connected layer

in a neural network, we build a windowed product unit neural network (WPUNN). We make

the following observations about a WPUNN unit:

• It is differentiable; dyi
dxj

= yi/xj.

• It is a generalization of PUNN units with respect to window size; a WPUNN unit with

w = N is equivalent to a PUNN unit.

• It is a specialization of PUNN units with respect to weights; a PUNN unit where all

weights are 1 is a WPUNN unit.

• Its derivative is less chaotic than the derivative of a PUNN unit; all exponents are 1,

and (generally) w < N .

• It is nonlinear with respect to each input, because it is multiplied by a variable and

not a scalar.

These observations yield a number of corollaries. First, because WPUNN derivitives

are less chaotic than PUNN derivatives, WPUNNs are able to learn effectively without

any other explicit nonlinearity (such as rectified linear or sigmoidal units). With a small
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Figure 7.1: Test set misclassifications over time of a WPUNN on the MNIST dataset, fixing
s = 1 but varying w. The inverse relationship between accuracy and window size demon-
strates that WPUNNs are sensitive to the hyperparameter w (window size). Reducing win-
dow size solves the major problems associated with training PUNNs, which validates our
primary contribution.

enough window size, such a network should not experience the same training problems as

experienced in training PUNNs, which should enable it to learn using standard gradient-

based optimization techniques rather than resorting to evolutionary algorithms. Second,

because WPUNN layers are weightless, the forward and backward propagation steps are more

efficient than in PUNNs. Third, because a WPUNN with a high w is more like a PUNN,

WPUNNs are sensitive to this hyperparameter and will favor lower values of w. Fourth,

because a fully-connected layer preceeds all WPUNN units, WPUNNs are not sensitive to

the stride length hyperparameter s. With a single fully-connected layer, a neural network

can weight, rearrange, and duplicate inputs. Thus, a WPUNN layer after a sufficiently wide

fully-connected layer does not need stride to overlap window, and a WPUNN should be as

effective with s = 1 as with s = w.
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7.4 Applications

7.4.1 Representing Polynomials

A WPUNN can exactly represent arbitrary polynomials. Although this appears to be a

simple problem, neural networks with standard nonlinearities such as tanh and ReLU can

only, at best, approximate these values. Representing polynomials is particularly useful when

modeling dynamical systems, which are often derived from polynomial equations [88].

WPUNNs can model any monomial, xd, as a network with a one input and one hidden

layer. The input is simply x. The hidden layer is a fully-connected layer of width d, with

all weights set to 1 and all biases set to 0. This effectively duplicates the input d times.

Finally, the output layer is a WPUNN layer with window size w = d (i.e. a single product).

To extend this to polynomials, we can design a network that repeats this construction for

each monomial in the polynomial, using a window size corresponding to the monomial with

the highest degree and a stride of the same size.

WPUNNs are not unique in their ability to represent polynomials. In fact, PUNNs

can exactly represent arbitrary polynomials in a single unit rather than in two layers, as

weights in PUNNs are exponents. However, PUNNs have proven to be difficult to train with

traditional gradient-based techniques, while WPUNNs do not have this problem.

7.4.2 Generalizing Gated Units

WPUNNs can generalize gated units. Gated units depend on the multiplication of inputs,

outputs, and hidden states (“cell value” in LSTM) with their corresponding gate values.

Because these values are computed as dot products, the gating operation is equivalent to

a WPUNN layer with w = s = 2. Thus, we can design a WPUNN-based gated unit

architecture that similarly controls the flow of information.

One possible architecture for gated units using WPUNNs is the following 3-layer block,

where N is the number of outputs. The first layer is a fully-connected layer that takes xt (the
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Figure 7.2: A comparison of two neural networks for modeling polynomials. The vertical
axis is error (lower is better) and the horizontal axis is polynomial degree. The green curve is
the error rate from a WPUNN and the orange curve is the error rate from a ReLU network.
As expected, the WPUNN consistently yields a lower error rate than the ReLU model. The
noticable increase in loss in the WPUNN for d = 9 and d = 10 can be attributed to the
depth of the network being less than log(d).

current input) and yt−1 (the output at the previous time step) as inputs and produces 2N

values. This allows the network to rearrange the inputs as needed; if we assume that existing

RNN units are optimal, this will interleave elements of xt with “input gate values” and the

elements of yt−1 with “output gate values”. The second layer is a sigmoid that flattens

the output from the first layer into the range [0..1]. Rather than using one nonlinearity

for squashing the input and output and another for squashing the gates, we use the same

nonlinearity for both. The final layer is a windowed product layer with w = s = 2. This

layer effectively gates the odd-indexed units by the even-indexed units (or vice versa) and

reduces the 2N values from the first two layers to N values, which is the target number

of outputs. We present a comparison of this proposed architecture with long short term

memory (LSTM) networks in Section 7.5.
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7.5 Results

In our first two tests, we use the MNIST dataset to evaluate our claims that WPUNNs

are insensitive to the hyperparameter s (stride length) and that they are sensitive to the

hyperparameter w (window size). In both tests, we use a WPUNN with the following 6-

layer topology: 1) a fully-connected layer to 300, 2) a WPUNN layer (parameters s and w

vary), 3) a fully-connected layer to 100, 4) a WPUNN layer (parameters s and w vary), 5) a

fully-connected layer to 10, and 6) a log soft max layer. The network is trained to minimize

negative log loss using the Adam optimizer with a learning rate of 1e−4.

For the first experiment, to test our claim that WPUNNs are insensitive to the hyperpa-

rameter s (stride length), we try varing the hyperparameters while training on MNIST. For

this test, we fix w = 4 and vary s from 1 to 4. If WPUNNs are not sensitive to the choice of

s, we would expect to see a similar learning curve for these four models. All four models we

tested performed with near-identical success, with an average test set misclassification rate

of 3.56% and a variance of 0.29. This supports our theory that WPUNNs are not sensitive

to the hyperparameter s.

For the second experiment, to test our claim that WPUNNs are sensitive to the hyper-

parameter w (window size), we fix s = 1 and vary w from 2 to 8. If WPUNNs are sensitive

to w, we would expect to see a higher learning accuracy on the models near w = 2 and a

lower learning accuracy on the models near w = 8. Figure 7.3 shows a plot of the test set

error over time for these models. As expected, there is an inverse correlation between w and

the accuracy, degrading dramatically when w > 4. This supports our theory that WPUNNs

are sensitive to w, and w = 2 yields higher accuracy. Thus, reducing window size solves the

major problems associated with training PUNNs, which validates our primary contribution.

As explained in Section 7.3, fixing w = s = 2 does not significantly affect the representa-

tional power of a WPUNN that is sufficiently deep (logarithmic with respect to degree) and

wide (at most quadratic with respect to the number of inputs).
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Figure 7.3: Forecasts made by two models on a time-series of Mauna Loa CO2 readings.
Blue points represent training data, red points represent withheld testing data, the green
curve represents the forecast by a WPUNN, and the orange curve represents the forecast
by a LSTM network. Although the LSTM network yields a more accurate prediction, the
WPUNN model is faster and uses a simpler architecture.

In our third experiment, we test how well a WPUNN can represent polynomials by

generating a random polynomial, sampling training data from that polynomial, then testing

how accurately a trained WPUNN can calculate the polynomial value given a new set of

values for the variables. We generate a polynomial with two variables, x and y, and one

term for each monomial of degree d or less (varying d in our experiments). The coefficients

on the terms are drawn from a uniform distribution in [−1, 1]. We then generate 1000

training samples by selecting values for x and y also drawn from a uniform distribution in

[−1, 1], using the values of x and y as features and the computed values of the polynomial

as labels. We repeat this generation to obtain 1000 testing samples that are withheld from

the model. We compare two models with similar topologies. The first model is a WPUNN

with the following topology: 1) a fully-connected layer to 50, 2) a WPUNN layer, 3) a fully-

connected layer to 50, 4) a WPUNN layer, 5) a fully-connected layer to 50, 6) a WPUNN
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layer, and 7) a fully-connected layer to 1. The second model is identical except that, instead

of WPUNN, we use a leaky ReLU activation with parameter ` = 0.1. With this construction,

the WPUNN model has 2776 parameters while the ReLU model has 5301 parameters, and

the WPUNN trains approximately twice as fast as the ReLU network. The networks are

trained to minimize mean squared error using the Adam optimizer with a learning rate of

1e−3. We repeat the experiment varying the degree of the polynomial from d = 1 to d = 10

and plot to results in Figure 7.4.2. As expected, the WPUNN consistently yields a lower

error rate than the ReLU model. The noticable increase in loss in the WPUNN for d = 9

and d = 10 can be attributed to the depth of the network being less than log(d).

In our fourth experiment, we test how well the gated unit construction proposed in

Section 7.4.2 works. We compare a WPUNN with a LSTM network on the Mauna Loa CO2

ppm time series [74]. The WPUNN uses the following topology: 1) a fully-connected layer

to 100, 2) a sigmoid activation, 3) a WPUNN layer with a recurrent connection to layer 1, 4)

a fully-connected layer to 100, 5) a sigmoid activation, 6) a WPUNN layer with a recurrent

connection to layer 4, 7) a fully-connected layer to 1. The LSTM network uses the following

topology: 1) a LSTM layer to 100, 2) a LSTM layer to 100, 3) a fully-connected layer to 1.

Despite the difference in depth (7-layer WPUNN as opposed to a 3-layer LSTM network),

the WPUNN has 9026 parameters while the LSTM network has 27401 parameters, and the

WPUNN trains approximately three times as fast as the LSTM network. We withhold the

last 25% of the CO2 time-series data for testing and train both models on the first 75%.

The networks are trained to minimize mean squared error using the Adam optimizer with

a learning rate of 1e−2. A plot of the forecasts from each model is shown in Figure 7.5.

The blue points represent the training data. The red points represent the withheld testing

data. The green curve is the forecast from the WPUNN, and the orange curve is the forecast

from the LSTM network. The mean squared error for the WPUNN forecast is 0.12, while

the mean squared error for the LSTM forecast is 0.085. The LSTM network outperforms

the WPUNN model, but the WPUNN model performs notably well despite using only a
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third of the weights and a significantly simpler architecture. It is worth noting that because

WPUNN generalizes LSTM, if we used a more complex WPUNN architecture, the WPUNN

predictions would be as accurate as the LSTM predictions.

7.6 Conclusion

The results presented in Section 7.5 demonstrate that WPUNNs are effective machine learn-

ing models. We make two primary contributions: 1) we give a construction of PUNNs that

can be trained by gradient-based optimizers, and 2) we provide empirical results demonstrat-

ing the utility of using product as a nonlinearity in a neural network. Without any other

nonlinearity, WPUNNs work as well as traditional neural networks using fewer weights.

WPUNNs can be used to construct gated units in recurrent neural networks to model time-

series data as effectively as LSTM networks.
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Chapter 8

An Evaluation of Parameterized Activation Functions for Deep Learning

Abstract: Parametric activation functions, such as PReLU and PELU, are a relatively new

subdomain of neural network nonlinearities. In this chapter, we present a full comparison of

these methods across several topologies. We find that parameterizing activation functions in

neural networks do not tend to overfit and tend to converge more quickly than non-parametric

activations. We also introduce the Bendable Linear Unit (BLU), which synthesizes many

useful properties of other activations, including PReLU, ELU, and SELU. Our experiments

indicate that parametric activations that can approximate the identity function are more

robust against losing residual connections in deep networks. On the CIFAR-10 task, BLU

outperforms other activations when using a topology without residual connections.

8.1 Introduction

Nonlinear activation functions enable neural networks to fit complex data in high dimensional

space. For decades, sigmoidal nonlinearities were the most prevalent activation functions [91].

More recently, rectified linear units (ReLUs) [125] have risen in popularity, helping to solve

the long-standing problem of vanishing gradients. A number of variations of ReLUs have

been proposed, including leaky ReLUs [115], randomized ReLUs [165], and more. Param-

eterized or parametric activation functions, such as parametric ReLU [67], are a relatively

new subdomain of neural network nonlinearities. In some cases, neural networks that em-

ploy these newer activation functions tend to have greater representational power, converge

faster, and yield higher accuracies than traditional sigmoidal neural networks [52, 67, 158].

Although earlier activations included fixed hyperparameters (such as the “leak” in leaky

ReLUs or the negative asymptote in exponential linear units [27]), parameterized activation

functions are unique in that their parameters are learned as network weights during training.
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This kind of nonlinearity is more flexible and can be fine-tuned to produce a more accurate

model than networks using non-parametric activations. In 2015, parametric ReLUs were

demonstrated to outperform traditional ReLUs on the ImageNet task [67], and in 2017,

parametric ELUs were similarly demonstrated to be superior to non-parametric ELUs on

the MNIST, CIFAR-10/100, and ImageNet tasks [158].

Despite promising initial results, little work has been done to determine whether these

parametrizations offer any significant advantage over their non-parametric counterparts. Out

of the few papers that compare PReLU with ReLU, some have demonstrated that PReLU

performs better [67, 169], while others have found PReLU to yield results that are about

the same [165, 180]. Other paramtric activations have almost no work comparing them to

standard nonlinearities. Thus, it is not yet known whether the parameters introduced by

such functions carry any more representational value than other network parameters.

In this chapter, we address the topic of parametric activation functions and seek to

answer the question, is the parameterization of activation functions beneficial in terms of

increased accuracy or lower training times? To answer this question, we compare a number of

parametric and non-parametric activations and observe the relationship between a network’s

nonlinearity, width, depth, and final predictive accuracy. We also introduce a new parametric

activation function, the Bendable Linear Unit (BLU), providing a theoretical basis and

compelling empirical results. Our experiments demonstrate that

• parametric activations achieve (marginally) higher accuracy than their non-parametric

counterparts,

• parametric activations tend to converge more quickly than non-parametric activations,

and

• parametric activations that can approximate the identity function are more robust

than non-parametric activations when removing residual connections.

Thus, parameterizing activation functions is generally beneficial, enhancing the represen-
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tational power of the network without a great risk of overfitting and speeding up convergence.

The remainder of this chapter is split into four sections. Section 8.2 discusses related work

on parameterized activation functions. Section 8.3 introduces BLU a provides a theoretical

basis for its use. Section 8.4 presents our experimental setup and results, and in Section 8.5

we make some conclusing remarks.

8.2 Related Work

8.2.1 Adaptive Transfer Functions

Adaptive transfer functions, another term for parametric activation functions, were proposed

as early as 2001 [34]. They were initially framed as enabling smaller networks to be more

precise by means of flexible decision borders. Proposed earlier than ReLUs, these early

parametric methods included adaptive step functions, sigmoidal functions, radial basis func-

tions, Gaussian functions, and more. At the time, however, they served as little more than

theoretical curiosities, and were not applied to any tasks.

8.2.2 Adaptive Piecewise Linear Units

In 2014, a parametric activation function called adaptive piecewise linear unit (APLU) was

proposed [2]. An APLU network seeks to mimic the highly successful maxout network

[55, 6, 124] without as many extra parameters. Compared to a network using a standard

non-parametric activation function, a maxout network increases layer widths by a constant

factor, resulting in an increase in weights that is quadratic in the number of hidden units in

the network. The parameter increase for APLU networks, on the other hand, is linear in the

number of hidden units. An APLU is a piecewise function made up of S linear components,

where S is a pre-selected hyperparameter. Each component has a slope, ai, and a bias bi.

The biases also control the “hinges” of an APLU, determining where the pieces connect.

Thus, a layer of APLUs add 2SN parameters to the network where N is the number of units

in the layer. The output of a single APLU is
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h(x) = max(0, x) +
S∑
i=1

aimax(0, x+ bi). (8.1)

APLU networks achieved state-of-the-art accuracy on the CIFAR-10 and CIFAR-100

datasets [101] at the time they were introduced. It is noteworthy that APLUs were able to

improve accuracy over maxout networks despite the fact that APLUs use only a fraction of

the parameters used by a maxout network.

8.2.3 Parametric Rectified Linear Units

A traditional ReLU is a simple piecewise function: if the input, x, is negative, the output is

0; if x is positive, the output is x itself [125]. Thus, a ReLU has a gradient of 1 for positive

inputs and 0 for negative inputs. This has the undesirable consequence of causing training

to slow or halt for units that receive mostly negative inputs. Weights feeding into units

with a 0 gradient stop training, so portions of the network effectively “die” during training.

Leaky ReLUs (LReLUs) avoid this problem by multiplying negative inputs by a small value

(the “leak”) rather than thresholding them to 0. This small change improves accuracy over

standard ReLUs [115] by preventing units from having a 0 gradient.

Parametric ReLUs (PReLUs) were introduced in 2015 as a dynamic version of Leaky

ReLUs (LReLUs) [67]. PReLUs allow specialization in the network by adaptively learning the

“leak” parameter for each unit during training. For the ImageNet task [135], networks using

PReLU as their nonlinearity have been shown to yield better results than ReLU and LReLU

networks [67]. However, for the CIFAR-10 and CIFAR-100 [101] tasks, PReLU was shown to

be susceptible to overfitting problems to the extent that, for those two tasks, nonparametric

LReLU produced higher classification accuracy [165]. A PReLU is simpler than the earlier-

proposed APLU, but it has received more attention and has produced superior results.

83



8.2.4 Parametric Exponential Linear Units

Exponential linear units (ELUs) were proposed in 2015 as an enhancement to ReLUs [27].

ELUs are similar to LReLUs, with an important difference: rather than using a linear

component for negative values, an exponential term, ex− 1 is used. The major effect of this

adjustment is that the range of the activation is changed from [− inf, inf] to [−1, inf], such

that networks using this activation have a self-regularizing tendency to prefer values that

are either positive or have a small magnitude. As a result, ELUs tend to outperform ReLUs,

with or without the addition of explicit regularization methods such as Dropout [145] and

Batch Normalization [78]. ELUs have a fixed hyperparameter, α, which controls the negative

asymptote such that the range of an ELU is [−α, inf], although the authors recommended

using a fixed value of α = 1.

Just as PReLUs generalize LReLUs, Parametric Exponential Linear Units (PELUs) gen-

eralize ELUs by allowing the parameter, α, to be learned dynamically during the training

process [158]. PeLUs actually have two learnable parameters: α, the negative asymptote,

and β, which adjusts the slope of the positive side of the output. The output of a PELU is

characterized by the following piecewise equation:


α
β
h x ≥ 0

α(e
h
β − 1) x < 0.

Both α and β are learned as network parameters in a PELU network. PELUs have been

shown to outperform ELUs on the CIFAR-10, CIFAR-100, and ImageNet tasks [158]. In

addition to having a better final accuracy, PELUs were reported to yield a more stable error

curve throughout the training process compared to non-parameterized ELUs.
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Figure 8.1: A visualization of Bendable Linear Units, varying α, with β fixed at 0.9. The
closer α is to 0, the more it is like LReLU [115], and the closer α is to 1, the more it is like
SoftPlus [51].

8.3 Bendable Linear Units

In this section, the Bendable Linear Unit (BLUs), a new parametric activation function, is

introduced. BLUs have two parameters: α and β, where 0 ≤ α, β ≤ 1. The output of a BLU

is

f(α, β, x) = β
(√

x2 + α2 + ε− α
)

+ x. (8.2)

α controls the sharpness of the function, interpolating between something like LReLU

and SoftPlus [51]. When α is 0, BLU is sharp, like LReLU. When 0 < α ≤ 1, BLU is smooth,

like SoftPlus; higher values produce a smoother curve. By adding a small value inside the

square root, ε, we avoid the discontinuity in the derivative when x = α = 0. Figure 8.3

visualizes the effect of α on BLU.

β controls the shape of the function, interpolating between the identity function and

a rectifier. When β is 0, BLU is exactly the identity function. When 0 < β ≤ 1, the
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Figure 8.2: A visualization of Bendable Linear Units, with α fixed at 0.5. The closer β is to
0, the more it is like the identity function, and the closer β is to 1, the steeper the bend.

function produces a nonlinear bend; higher values produce a steeper bend. The effect of the

β parameter is shown in Figure 8.3.

The derivatives of BLU with respect to its input and parameters are

∂f

∂x
=

βx√
x2 + α2 + ε

+ 1,

∂f

∂α
= β

(
α√

x2 + α2 + ε
− 1

)
, and

∂f

∂β
=
√
x2 + α2 + ε− α.

In a convolutional layer, the parameters of a BLU are shared so that there is only one

of each per kernel, thus adding only 2 parameters per kernel to the network. In a fully

connected layer, each unit has its own α and β. In Section 8.4, we also consider versions of

BLU with one or both of its parameters fixed as constants, which further reduces the number

of parameters required by BLU. We observe the following useful properties of BLUs.
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First, it contains the identity function. This is one of the most important advantages

of a BLU. Neural networks that use activation functions with this property can learn more

effectively in deep networks than those that do not, for two reasons: 1) the gradient can

neither explode nor vanish through the identity function, and 2) layers that are not needed to

represent training data in a very deep network can be “skipped” using the identity function.

These two reasons are precisely why residual connections have proven to be so useful in

deep networks. Unintuitively, networks without access to the identity function tend to

perform worse as they become deeper [147, 146, 66, 68]. Activation functions that can learn

to become identity, like residual connections that use the identity function, enable deep

networks to at least retain the same accuracy, if not improve accuracy in deeper networks.

Because BLU contains identity, it can be utilized by deep networks to construct implicit

residual connections. Thus, explicit residual connections are not required in networks using

BLU as an activation (although residual connections are still useful in BLU networks; see

Section 8.4). BLU has the particularly useful property of being identity when the parameters

are zero, such that regularization of the parameters toward zero encourages the activation

toward identity, which may help to prevent overfitting in deep networks (as is the case with

APLUs [2] and residual connections [68]).

Second, it is a non-saturating nonlinearity. Perhaps the greatest disadvantage of

saturating nonlinearities like hyperbolic tangent is that their derivatives asymptotically ap-

proach 0, with the result that training can slow down or even halt as the gradient approaches

0. Non-saturating nonlinearities, like BLU and ReLU, cannot get stuck in these regions of

slow learning and are thus able to learn more quickly than saturating activation functions

[50, 102, 115]. Except in the case where β = 1, the derivative of a BLU is non-zero for both

positive and negative inputs, like LReLU, as opposed to vanilla ReLU, ELU, and PELU, the

derivatives of which have regions of saturation for negative inputs. Although recent work

has suggested that a good activation function should be saturating for negative values in

order to dampen variance if it grows to large [96], we claim that in some cases it is useful
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to have an activation that does not saturate at all, as we demonstrate in Section 8.4. This

claim is consistent with related works that use leaky or parametric ReLUs [115, 56, 67].

Furthermore, BLU has the adaptability to choose between saturating and non-saturating for

negative inputs, synthesizing the benefits of PReLU, ELU, and scaled ELU (SELU) activa-

tions [96]. When the parameters of BLU do cause saturation, BLU captures the benefit of

dampening variance as in ELU, thus avoiding exploding gradients in deep networks.

Third, it can have a slope greater than 1 for positive inputs. BLU can model the

identity function, but it also has the capacity for growth for positive inputs; when β is 1,

the positive-side slope of BLU is 2. The importance of this property has been discussed in

previous work [96]. A slope greater than 1 for positive inputs avoids a vanishing gradient in

deep networks. Combined with the capacity to saturate for negative inputs, this property

enables BLU to avoid both exploding and vanishing gradients, leading to stabler training.

Fourth, it is C∞ continuous. Every order of derivative is well-defined and smooth,

in contrast with piecewise activations like ReLU and ELU and related functions. This

is particularly useful in the first derivative, which yields a smoother error surface than

nonlinearities that are not C∞ continuous. Prior to the success of ReLUs, it was commonly

held that activation functions must be infinitely differentiable [121, 179, 108, 151], which is

also a common assumption made when dealing with extreme learning machines [77, 122].

Although this property is no longer commonly assumed or required for deep learning, the

smoothness of C∞ continuous activation functions can theoretically be exploited to speed

up optimization [117, 167, 178].

8.4 Experiments

In this section, we present our experimental approach and the results of three experiments

comparing parametric and non-parametric activation functions. All of our experiments use

the CIFAR-10 dataset [101] and a Wide Residual Network (WRN) topology [172]. We se-

lected WRNs as they have hyperparameters d and k to easily control the depth and width of
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the topology, respectively, so that we were able to test the effect of different activations for

different network sizes. See Table 8.1 for a description of a WRN-d-k topology. For experi-

ments with BLUs, we initialize α and β parameters to using a random uniform distribution.

We used the Keras deep learning library [24] with the TensorFlow backend [1] for all tests. In

our first experiment, we compare nine activation functions across five topologies in order to

investigate the potential accuracy gains of parameterizing activation functions. In our second

experiment, we compare nine activation functions using the WRN-16-4 topology trained for

a short amount of time to test how quickly networks with each activation converge. In our

third experiment, we evaluate the claim that parametric activations that can approximate

the identity function are more robust when removing residual connections in deep networks.

In all of our experiments, we use the CIFAR-10 task to compare three groups of activation

functions:

1. piecewise linear units: ReLU, PReLU, and APLU,

2. exponential units: ELU and PELU, and

3. four variations of BLU:

• BLU-αβ (learned α and β),

• BLU-α (learned α, fixed β = 0.5),

• BLU-β (learned β, fixed α = 0.5), and

• BLU-const (fixed α = 0.5 and β = 0.5).

Although some of these have been compared before (i.e. ReLU and PReLU, ELU and

PELU), a full comparison of these methods across several topologies has not been done until

now. The code that produced the reported results is available at the following URL:

https://github.com/thelukester92/2018-blu/.

In our first experiment, we train 45 models using the nine activation functions across

five WRN topologies: WRN-40-1, WRN-40-2, WRN-40-4, WRN-16-4, and WRN-16-8. The
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Table 8.1: The wide residual network (WRN) topology [172] used in some of our experiments.
A WRN has two hyperparameters: d (which controls depth) and k (which controls width).
n, used in the table, is defined as d−4

6
. The final column, Number, is how many copies of the

layer are used in succession.
Layer Stride Number

conv 16 x 3 x 3 (1, 1) 1
[conv 16k x 3 x 3] (1, 1) n
conv 32 x 3 x 3 (2, 2) 1

[conv 32k x 3 x 3] (1, 1) n− 1
conv 64 x 3 x 3 (2, 2) 1

[conv 64k x 3 x 3] (1, 1) n− 1
global max pool - 1

fully connected 10 - 1
softmax - 1

goal of this experiment is to compare final training accuracies of each activation, and to

note how the accuracies are affected by network width and depth. Weights are initialized

with LSUV initialization [124]. We train each model using stochastic gradient descent with

a momentum term of 0.9, a weight decay of 5e−4, and a mini-batch size of 128. For the

learning rate, we use cosine annealing [113] starting from 1e−2 and decaying to 1e−6 over the

course of training (without restarting). Training runs for 300 epochs for each model. The

results of this experiment are recorded in Table 8.2.

We find that in all but one case (WRN-40-1), PReLU outperforms ReLU at least marginally.

Similarly, PELU achieves about the same or slightly better accuracy compared with ELU.

Although the accuracy gained by the parameterized activations are marginal at best, it is

clear that the additional parameters are in no significant way increasing the risk of overfit-

ting. The results on the four variations of BLU are interesting. The most parameterized

version, BLU-αβ, does not tend to perform as well as the other variations. This may be due

to additional local optima introduced by both parameters, and the relationship between α

and β. In the deep topologies (40 depth), BLU-β yields higher accuracies than the other ver-

sions of BLU. Aside from the very narrow WRN-40-1 topology, BLU-β outperforms all other

compared activations. We argue that this is related to the fact that BLU-β, unlike BLU-α

90



Table 8.2: The final CIFAR-10 test set accuracy for each activation/topology pair tested in
our first experiment. The best activation for each topology is shown in bold. Parametric
activations tend to achieve higher accuracy than their non-parametric counterparts, although
not always by a significant margin.

Activation WRN-40-1 WRN-40-2 WRN-40-4 WRN-16-4 WRN-16-8
ReLU 92.30% 93.73% 94.29% 93.61% 93.21%
PReLU 92.16% 94.37% 95.05% 94.18% 94.71%
APLU 92.18% 93.88% 94.27% 94.43% 94.54%
ELU 93.76% 94.68% 95.20% 94.86% 95.25%
PELU 93.50% 94.68% 95.36% 95.04% 95.14%
BLU-αβ 93.30% 94.40% 95.09% 94.62% 94.86%
BLU-α 93.42% 94.86% 94.69% 94.66% 94.78%
BLU-β 93.51% 95.02% 94.54% 94.44% 94.71%
BLU-const 93.48% 94.83% 94.59% 94.60% 93.84%

and BLU-const, can model identity and thus can be used by the network to add something

resembling residual connections. In fact, upon examination of the learned parameters of β,

we find that many of the parameters indeed went to 0 to model identity, particularly in the

lower layers. Figure 8.4 shows one of the β values in the lowest layer over time; the network

learns to tune it from its starting point (about 0.2) to near 0. For the final two experiments,

we exclusively use BLU-β as the preferred parameterization of BLU.

In our second experiment, we compare the effect of limited training time on each of the

nine activation functions. We use the WRN-16-4 topology and the same initialization and

training method as in our first experiment, but we limit the number of epochs from 300 to

100. The training curves of five of the activations (PELU, ELU, ReLU, PReLU, and BLU)

are given in Figure 8.4. The final accuracies for all nine activations are given in Table 8.3.

We note that the parametric activation functions, BLU, PELU, and PReLU, all learn more

quickly than the non-parametric functions.

In our third experiment, we consider the effect of residual connections on parametric and

non-parametric activations. We compare the top five activations from our first experiment:

ReLU, PReLU, ELU, PELU, and BLU. For each activation, we use the WRN-40-4 topology

with the residual connections removed. No changes were made to our training method from
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Figure 8.3: One of the β values from the lowest layer of the WRN-16-4 network using the
BLU-β activation. The initial value, which is about 0.2, is selected from a uniform random
distribution. During the course of training, the network tunes this value to almost 0, forming
a kind of learned residual connection.

Table 8.3: The final CIFAR-10 test set accuracy for each activation using a WRN-16-4
topology in our second experiment, limiting training time to 100 epochs. The parametric
activations learn faster than the non-parametric activations. The best result is shown in
bold.

Activation Accuracy
ReLU 91.19%
PReLU 92.26%
APLU 91.27%
ELU 93.47%
PELU 93.49%
BLU-αβ 92.90%
BLU-α 92.34%
BLU-β 93.19%
BLU-const 92.72%

the first experiment, except that residual conenctions had been removed from the topology.

The final accuracy of these models is provided in Table 8.4. BLU performs the best, achieving

89.4% accuracy on the CIFAR-10 test set without residual connections and experiencing
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Figure 8.4: Selected training curves of test set accuaracy on the CIFAR-10 task from our first
experiment. We include curves for BLU, ELU (in orange), PELU (in red), ReLU (in green),
and PReLU (in yellow). BLU learns the fastest, but does not converge to as good a final
accuracy as PELU and ELU. PELU and ELU achieve approximately the same final result,
but PELU converges faster. PReLU, on the other hand, yields significantly better results
than ReLU. Thus, for both PELU and PReLU, we observe a benefit to the parameterization.

only 5.14% absolute loss of accuracy. PELU completely diverged during training, even for

different random seeds. ELU performed the second best by a narrow margin, suggesting

that it is robust against residual connections by some other mechanism than the identity

function. In terms of absolute loss compared with the first experiment, ELU experienced

more loss than BLU did, with an absolute percent difference of 6.30%. As expected, PReLU

vastly outperforms ReLU, achieving 236% relative improvement and nearly 50% absolute

improvement over ReLU.

The good performance of ELU on this third experiment strengthens the claim that it

is indeed useful to have an activation that saturates on one side, as has been previously

suggested [96]. On the other hand, the massive improvement of PReLU over ReLU backs

up the idea that it is useful to have an activation that can approximate the identity function
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Table 8.4: The final CIFAR-10 test set accuracy for each activation tested in our third
experiment (using WRN-40-4 with no residual connections). The difference in accuracy
compared with WRN-40-4 with residual connections is reported in the last column. BLU
performed the best in this experiment, both in terms of accuracy and difference in loss.
PELU, marked with “x”, diverged during training for several random seeds. ELU achieved
good results, despite not being able to approximate the identity function. Though not as
good as ELU or BLU, PReLU vastly outperforms ReLU. The best result (highest accuracy
and lowest difference in accuracy) is shown in bold.

Activation Accuracy Difference
ReLU 35.30% 58.99%
PReLU 83.66% 11.39%
ELU 88.90% 6.30%
PELU x x
BLU 89.40% 5.14%

and is thus non-saturating on both sides [115, 56, 67]. The improvement of BLU over PReLU

demonstrates that a slope greater than 1 (on the right side) is useful in an activation function

[96]. The only activation function that synthesizes all three of these observations is BLU.

It has the capacity to saturate on the left side or it can approximate identity, adaptively

learning which one better fits the data. At the same time, BLU can learn to have linear

growth on the right side or superlinear growth (quadratic). All of these properties come

together in this third experiment to yield the highest accuracy without residual connections.

8.5 Conclusion

In this chapter, we considered the topic of parametric activation functions. We found that

parameterizing activation functions in neural networks do not tend to overfit and tend to

converge more quickly than non-parametric activations. We introduced the Bendable Linear

Unit (BLU), which synthesizes many useful properties of other activations, including PReLU,

ELU, and SELU. BLU was shown to outperform other activations when using a topology

without residual connections. As deep learning advances, we desire to see further exploration

of this subdomain of neural network nonlinearities as a method of constructing faster, more

powerful models.
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Part III

CONCLUSION
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Chapter 9

Summary

In this dissertation, a number of neural network methods were presented which use the aggre-

gation and parameterization of activation functions. We advance the state of heterogenous

and parameterized activation functions, continuing in work started by previous researchers

as well as exploring novel methods and applications in this subdomain of deep learning.

We claim and demonstrate that the aggregation of heterogenous activation functions and

the parameterization of activation functions can enable neural networks to model data more

quickly and more accurately. Heterogenous activation functions are shown to be well-suited

for modeling data sampled from the composition of heterogenous signals, and parametric

activation functions are shown to promote simpler models, reduce overfitting, and generalize

more effectively.

Three novel parametric activation functions were introduced in this work, including Soft

Exponential (SoftExp), a fuzzy logic activation, and Bendable Linear Units (BLUs). Sof-

tExp is a mathematically elegant interpolation between logarithm, linear, and exponential

functions, and can be used in a neural network to exactly compute a number of common

mathematical operations such as addition, multiplication, inner product, distance, polyno-

mials, and sinusoids. The fuzzy logic activation function is the first activation to adaptively

learn fuzzy logic operations by gradient-based optimization, and is a step toward neural net-

work transparency. BLU synthesizes the beneficial properties of PReLU (it can become the

identity function), ELU (it can saturate one side of the input space), and SELU (it can grow

with magnitude greater than 1); BLU is shown to be more robust than other activations

when removing residual connections in deep networks.

An evaluation of parametric activation functions and the utility of the parameterization is

presented in this dissertation. Such a comparison had not previously been conducted at the
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level of activation functions. Our experiments demonstrate that parametric activations offer

a representational capacity beyond non-parametric activations, achieving higher accuracy,

converging more quickly, and being more robust against the loss of residual connections.

We continued exiting work with aggregating activation functions for time-series analysis

using Neural Decomposition (ND). It is demonstated that parameters for sinusoidal activa-

tions can only effectively be learned by gradient descent by the addition of an augmentation

function that captures linear and non-periodic, nonlinear components of a decomposable

signal. Careful attention is made to the training process in this mixed model, noting that

some activations are more sensitive to intialization, regularization, and input preprocessing.

ND is shown to outperform other methods, including the widely used LSTM network, for

some real-world datasets.

Finally, we built upon previous work that aggregates neuron inputs using product in-

stead of sum in product unit neural networks (PUNNs). An approach is presented that

applies a window to the product operation, creating windowed product unit neural networks

(WPUNNs). WPUNNs solve the major problems associated with training PUNNs. This

new method is demonstrated to be effective without traditional nonlinearities. Furthermore,

WPUNNs can be used as a generalization of gated units in recurrent neural networks.

The works represented in this dissertation form a significant body of information that ad-

vances current knowledge regarding activation functions in neural networks. The aggregation

of heterogenous activation functions is useful for signal decomposition, and the parameteri-

zation of activation functions has a variety of applications. Parametric activations can also

be used to accelerate network convergence, speeding up learning and reducing training time.

The combination of the presented methods can produce simpler, faster, and more accurate

neural networks.
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Chapter 10

Future Work

Activation functions play a critical role in deep learning, enabling neural networks to fit

complex data in high dimensional space. In just the last decade, there has been considerable

work dedicated to research in this field, particularly since the introduction of ReLU in 2010

[125]. The nonlinearities these works have explored range from adaptations of ReLU [115,

165, 67] to novel parametric activation functions [52, 158, 54]. Considering this trajectory

and the research contained in this dissertation, we expect future work in this domain to

further explore parametric activation functions. The increased representational capacity,

model simplification, and acceleration of learning afforded by these parameterizations has

the potential to lead to smaller, faster models that achieve the same accuracy as larger, slower

models. This also has the potential to make deep learning more accessible, overcoming the

high financial cost and time commitment required for training many existing models.

Some parametric activations generalize well enough that explicit aggregation may not be

necessary; Soft Exponential, for example, can theoretically be used as the only activation

function in an implementation of Neural Decomposition. Because of this, we expect a greater

focus on parameterization than on aggregation, and existing work supporting aggregation

also implicitly supports parameterization.
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