8 research outputs found

    Multilayer Feedforward Neural Network for Internet Traffic Classification

    Get PDF
    Recently, the efficient internet traffic classification has gained attention in order to improve service quality in IP networks. But the problem with the existing solutions is to handle the imbalanced dataset which has high uneven distribution of flows between the classes. In this paper, we propose a multilayer feedforward neural network architecture to handle the high imbalanced dataset. In the proposed model, we used a variation of multilayer perceptron with 4 hidden layers (called as mountain mirror networks) which does the feature transformation effectively. To check the efficacy of the proposed model, we used Cambridge dataset which consists of 248 features spread across 10 classes. Experimentation is carried out for two variants of the same dataset which is a standard one and a derived subset. The proposed model achieved an accuracy of 99.08% for highly imbalanced dataset (standard)

    Algorithmic trading with cryptocurrencies - does twitter sentiment impact short-term price fluctuations in bitcoin

    Get PDF
    Since its inception in 2009, Bitcoin has gained popularity and importance in financial markets. The Bitcoin price is highly volatile entailing high risk and chances of high returns for traders. This work is part of a work project, which performs a holistic approach to build an intra day Bitcoin trading algorithm based on predictive analysis of Machine Learning models. This part performs a Sentiment Analysis on Twitter data, showing a Granger causal relationship between the extracted Sentiment and the Bitcoin price

    Application of advanced machine learning techniques to early network traffic classification

    Get PDF
    The fast-paced evolution of the Internet is drawing a complex context which imposes demanding requirements to assure end-to-end Quality of Service. The development of advanced intelligent approaches in networking is envisioning features that include autonomous resource allocation, fast reaction against unexpected network events and so on. Internet Network Traffic Classification constitutes a crucial source of information for Network Management, being decisive in assisting the emerging network control paradigms. Monitoring traffic flowing through network devices support tasks such as: network orchestration, traffic prioritization, network arbitration and cyberthreats detection, amongst others. The traditional traffic classifiers became obsolete owing to the rapid Internet evolution. Port-based classifiers suffer from significant accuracy losses due to port masking, meanwhile Deep Packet Inspection approaches have severe user-privacy limitations. The advent of Machine Learning has propelled the application of advanced algorithms in diverse research areas, and some learning approaches have proved as an interesting alternative to the classic traffic classification approaches. Addressing Network Traffic Classification from a Machine Learning perspective implies numerous challenges demanding research efforts to achieve feasible classifiers. In this dissertation, we endeavor to formulate and solve important research questions in Machine-Learning-based Network Traffic Classification. As a result of numerous experiments, the knowledge provided in this research constitutes an engaging case of study in which network traffic data from two different environments are successfully collected, processed and modeled. Firstly, we approached the Feature Extraction and Selection processes providing our own contributions. A Feature Extractor was designed to create Machine-Learning ready datasets from real traffic data, and a Feature Selection Filter based on fast correlation is proposed and tested in several classification datasets. Then, the original Network Traffic Classification datasets are reduced using our Selection Filter to provide efficient classification models. Many classification models based on CART Decision Trees were analyzed exhibiting excellent outcomes in identifying various Internet applications. The experiments presented in this research comprise a comparison amongst ensemble learning schemes, an exploratory study on Class Imbalance and solutions; and an analysis of IP-header predictors for early traffic classification. This thesis is presented in the form of compendium of JCR-indexed scientific manuscripts and, furthermore, one conference paper is included. In the present work we study a wide number of learning approaches employing the most advance methodology in Machine Learning. As a result, we identify the strengths and weaknesses of these algorithms, providing our own solutions to overcome the observed limitations. Shortly, this thesis proves that Machine Learning offers interesting advanced techniques that open prominent prospects in Internet Network Traffic Classification.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods

    Get PDF
    Over the last five years there has been an increase in the frequency and diversity of network attacks. This holds true, as more and more organisations admit compromises on a daily basis. Many misuse and anomaly based Intrusion Detection Systems (IDSs) that rely on either signatures, supervised or statistical methods have been proposed in the literature, but their trustworthiness is debatable. Moreover, as this work uncovers, the current IDSs are based on obsolete attack classes that do not reflect the current attack trends. For these reasons, this paper provides a comprehensive overview of unsupervised and hybrid methods for intrusion detection, discussing their potential in the domain. We also present and highlight the importance of feature engineering techniques that have been proposed for intrusion detection. Furthermore, we discuss that current IDSs should evolve from simple detection to correlation and attribution. We descant how IDS data could be used to reconstruct and correlate attacks to identify attackers, with the use of advanced data analytics techniques. Finally, we argue how the present IDS attack classes can be extended to match the modern attacks and propose three new classes regarding the outgoing network communicatio

    Algorithmic trading with cryptocurrencies

    Get PDF
    Since its inception in 2009, Bitcoin has gained popularity and importance in financial markets. The Bitcoin price is highly volatile entailing high risk and chances of high returns for traders. We define a holistic approach to build an intraday Bitcoin trading algorithm based on predictive analysis of ML models. The results show that our trading algorithm generates positive returns and to outperform its benchmark strategies after considerations for feasibility and profitability

    Towards the Deployment of Machine Learning Solutions in Network Traffic Classification: A Systematic Survey

    Get PDF
    International audienceTraffic analysis is a compound of strategies intended to find relationships, patterns, anomalies, and misconfigurations, among others things, in Internet traffic. In particular, traffic classification is a subgroup of strategies in this field that aims at identifying the application's name or type of Internet traffic. Nowadays, traffic classification has become a challenging task due to the rise of new technologies, such as traffic encryption and encapsulation, which decrease the performance of classical traffic classification strategies. Machine Learning gains interest as a new direction in this field, showing signs of future success, such as knowledge extraction from encrypted traffic, and more accurate Quality of Service management. Machine Learning is fast becoming a key tool to build traffic classification solutions in real network traffic scenarios; in this sense, the purpose of this investigation is to explore the elements that allow this technique to work in the traffic classification field. Therefore, a systematic review is introduced based on the steps to achieve traffic classification by using Machine Learning techniques. The main aim is to understand and to identify the procedures followed by the existing works to achieve their goals. As a result, this survey paper finds a set of trends derived from the analysis performed on this domain; in this manner, the authors expect to outline future directions for Machine Learning based traffic classification
    corecore