1,098 research outputs found

    A New Heuristic for Feature Selection by Consistent Biclustering

    Full text link
    Given a set of data, biclustering aims at finding simultaneous partitions in biclusters of its samples and of the features which are used for representing the samples. Consistent biclusterings allow to obtain correct classifications of the samples from the known classification of the features, and vice versa, and they are very useful for performing supervised classifications. The problem of finding consistent biclusterings can be seen as a feature selection problem, where the features that are not relevant for classification purposes are removed from the set of data, while the total number of features is maximized in order to preserve information. This feature selection problem can be formulated as a linear fractional 0-1 optimization problem. We propose a reformulation of this problem as a bilevel optimization problem, and we present a heuristic algorithm for an efficient solution of the reformulated problem. Computational experiments show that the presented algorithm is able to find better solutions with respect to the ones obtained by employing previously presented heuristic algorithms

    A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs

    Get PDF
    International audienceBilevel optimization problems are very challenging optimization models arising in many important practical contexts, including pricing mechanisms in the energy sector, airline and telecommunication industry, transportation networks, critical infrastructure defense, and machine learning. In this paper, we consider bilevel programs with continuous and discrete variables at both levels, with linear objectives and constraints (continuous upper level variables, if any, must not appear in the lower level problem). We propose a general-purpose branch-and-cut exact solution method based on several new classes of valid inequalities, which also exploits a very effective bilevel-specific preprocessing procedure. An extensive computational study is presented to evaluate the performance of various solution methods on a common testbed of more than 800 instances from the literature and 60 randomly generated instances. Our new algorithm consistently outperforms (often by a large margin) alternative state-of-the-art methods from the literature, including methods exploiting problem-specific information for special instance classes. In particular, it solves to optimality more than 300 previously unsolved instances from the literature. To foster research on this challenging topic, our solver is made publicly available online

    Inverse Optimization with Noisy Data

    Full text link
    Inverse optimization refers to the inference of unknown parameters of an optimization problem based on knowledge of its optimal solutions. This paper considers inverse optimization in the setting where measurements of the optimal solutions of a convex optimization problem are corrupted by noise. We first provide a formulation for inverse optimization and prove it to be NP-hard. In contrast to existing methods, we show that the parameter estimates produced by our formulation are statistically consistent. Our approach involves combining a new duality-based reformulation for bilevel programs with a regularization scheme that smooths discontinuities in the formulation. Using epi-convergence theory, we show the regularization parameter can be adjusted to approximate the original inverse optimization problem to arbitrary accuracy, which we use to prove our consistency results. Next, we propose two solution algorithms based on our duality-based formulation. The first is an enumeration algorithm that is applicable to settings where the dimensionality of the parameter space is modest, and the second is a semiparametric approach that combines nonparametric statistics with a modified version of our formulation. These numerical algorithms are shown to maintain the statistical consistency of the underlying formulation. Lastly, using both synthetic and real data, we demonstrate that our approach performs competitively when compared with existing heuristics

    Exact Algorithms for Mixed-Integer Multilevel Programming Problems

    Get PDF
    We examine multistage optimization problems, in which one or more decision makers solve a sequence of interdependent optimization problems. In each stage the corresponding decision maker determines values for a set of variables, which in turn parameterizes the subsequent problem by modifying its constraints and objective function. The optimization literature has covered multistage optimization problems in the form of bilevel programs, interdiction problems, robust optimization, and two-stage stochastic programming. One of the main differences among these research areas lies in the relationship between the decision makers. We analyze the case in which the decision makers are self-interested agents seeking to optimize their own objective function (bilevel programming), the case in which the decision makers are opponents working against each other, playing a zero-sum game (interdiction), and the case in which the decision makers are cooperative agents working towards a common goal (two-stage stochastic programming). Traditional exact approaches for solving multistage optimization problems often rely on strong duality either for the purpose of achieving single-level reformulations of the original multistage problems, or for the development of cutting-plane approaches similar to Benders\u27 decomposition. As a result, existing solution approaches usually assume that the last-stage problems are linear or convex, and fail to solve problems for which the last-stage is nonconvex (e.g., because of the presence of discrete variables). We contribute exact finite algorithms for bilevel mixed-integer programs, three-stage defender-attacker-defender problems, and two-stage stochastic programs. Moreover, we do not assume linearity or convexity for the last-stage problem and allow the existence of discrete variables. We demonstrate how our proposed algorithms significantly outperform existing state-of-the-art algorithms. Additionally, we solve for the first time a class of interdiction and fortification problems in which the third-stage problem is NP-hard, opening a venue for new research and applications in the field of (network) interdiction

    A New General-Purpose Algorithm for Mixed-Integer Bilevel Linear Programs

    Get PDF
    Bilevel optimization problems are very challenging optimization models arising in many important practical contexts, including pricing mechanisms in the energy sector, airline and telecommunication industry, transportation networks, critical infrastructure defense, and machine learning. In this paper, we consider bilevel programs with continuous and discrete variables at both levels, with linear objectives and constraints (continuous upper level variables, if any, must not appear in the lower level problem). We propose a general-purpose branch-and-cut exact solution method based on several new classes of valid inequalities, which also exploits a very effective bilevel-specific preprocessing procedure. An extensive computational study is presented to evaluate the performance of various solution methods on a common testbed of more than 800 instances from the literature and 60 randomly generated instances. Our new algorithm consistently outperforms (often by a large margin) alternative state-of-the-art methods from the literature, including methods exploiting problem-specific information for special instance classes. In particular, it solves to optimality more than 300 previously unsolved instances from the literature. To foster research on this challenging topic, our solver is made publicly available online
    • …
    corecore