10 research outputs found

    A fully integrated low-power SiGe power amplifier for biomedical applications

    Get PDF
    In this work, a full-integrated very-low power SiGe Power Amplifier (PA) is realized using the IHP (Innovations for High Performance), 0.25μm-SiGe process. The behaviour of the amplifiers has been optimized for the 2.1-2.4 GHz frequency band for a higher 1-dB compression point and high efficiency at a lower supply voltage. The PA delivers an output power of 3.75 mW and 1.25 mW for 2V and 1V, respectively. The PA measurements yielded the following parameters; gain of 13 dB, 1-dB compression point of 5.7 dBm, and Power-Added-Efficiency of 30% for 2V supply voltage. The PA circuit can go down to 1V of supply voltage with a gain of 10 dB, 1-dB compression point of 1 dBm, and Power-Added-Efficiency of 20%. For both supply voltages, the input and the output of the circuit give good reflection performance. With this performance, the PA circuit may be used for low-power biomedical implanted transceiver systems

    Fully integrated low-power SiGe power amplifier for biomedical applications

    Get PDF
    A full-integrated very low-power SiGe power amplifier (PA) is realised using the innovations for high performance, 0.25 mu m SiGe process. The behaviour of the amplifiers has been optimised for the 2.1-2.4 GHz frequency band for a higher 1 dB compression point and high efficiency at a lower supply voltage. The PA delivers an output power of 3.75 and 1.25 mW for 2 and 1 V, respectively. The PA measurements yielded the following parameters: gain of 13 dB, 1 dB compression point of 5.7 dBm, and power added efficiency of 30% for 2 V supply voltage. The PA circuit can go down to 1 V of supply voltage with a gain of 10 dB, 1 dB compression point of 1 dBm, and power added efficiency of 20%. For both supply voltages, the input and the output of the circuit give good reflection performance. With this performance, the PA circuit may be used for low-power biomedical implanted transceiver systems

    17 GHz RF Front-Ends for Low-Power Wireless Sensor Networks

    Full text link

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    System-on-Package Low-Power Telemetry and Signal Conditioning unit for Biomedical Applications

    Get PDF
    Recent advancements in healthcare monitoring equipments and wireless communication technologies have led to the integration of specialized medical technology with the pervasive wireless networks. Intensive research has been focused on the development of medical wireless networks (MWN) for telemedicine and smart home care services. Wireless technology also shows potential promises in surgical applications. Unlike conventional surgery, an expert surgeon can perform the surgery from a remote location using robot manipulators and monitor the status of the real surgery through wireless communication link. To provide this service each surgical tool must be facilitated with smart electronics to accrue data and transmit the data successfully to the monitoring unit through wireless network. To avoid unwieldy wires between the smart surgical tool and monitoring units and to reap the benefit of excellent features of wireless technology, each smart surgical tool must incorporate a low-power wireless transmitter. Low-power transmitter with high efficiency is essential for short range wireless communication. Unlike conventional transmitters used for cellular communication, injection-locked transmitter shows greater promises in short range wireless communication. The core block of an injection-locked transmitter is an injection-locked oscillator. Therefore, this research work is directed towards the development of a low-voltage low-power injection-locked oscillator which will facilitate the development of a low-power injection-locked transmitter for MWN applications. Structure of oscillator and types of injection are two crucial design criteria for low-power injection-locked oscillator design. Compared to other injection structures, body-level injection offers low-voltage and low-power operation. Again, conventional NMOS/PMOS-only cross-coupled LC oscillator can work with low supply voltage but the power consumption is relatively high. To overcome this problem, a self-cascode LC oscillator structure has been used which provides both low-voltage and low-power operation. Body terminal coupling is used with this structure to achieve injection-locking. Simulation results show that the self-cascode structure consumes much less power compared to that of the conventional structure for the same output swing while exhibiting better phase noise performance. Usage of PMOS devices and body bias control not only reduces the flicker noise and power consumption but also eliminates the requirements of expensive fabrication process for body terminal access

    Ultra-low power, low-voltage transmitter at ISM band for short range transceivers

    Get PDF
    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir.The increasing demand for technology to be used in every aspect of our lives has led the way to many new applications and communication standards. WSN and BAN are some of the new examples that utilize electronic circuit design in the form of very small sensors to perform their applications. They consist of small sensor nodes and have applications ranging from entertainment to medicine. Requirements such as decreasing the area and the power consumption help to have longer-lasting batteries and smaller devices. The standard paves the way for the devices from different vendors to communicate with each other, and that motivates us to make designs as compatible with the standard as it can be. In this thesis, an ultra-low power high efficient transmitter with a small area working at 2.4 GHz have been designed for BAN applications. A study on the system-view perspective is important in optimizing the area and power since the transmitter architecture can change the circuit design. From a circuit design perspective, seeking to decrease power consumption means thinking of new techniques to implement the same function or a new system. Inspired by new trends, this research presents a design solution to the previously mentioned problem and hopefully, after fabrication, the measured results will match the simulated results to prove the validity of the design.Declaration of Authorship ii Abstract iv Öz v Acknowledgments vii List of Figures x List of Tables xiii Abbreviations xiv 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Communication Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2.1 Digital Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Unwanted Power Limitations . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Multiple Access Techniques . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Transmitter System Level Specifications . . . . . . . . . . . . . . . . . . . 4 1.3.1 Low Power Wireless Standards . . . . . . . . . . . . . . . . . . . . 4 1.4 Low-Power Wireless Transceiver systems . . . . . . . . . . . . . . . . . . . 6 1.4.1 Survey of the previous work . . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 The Designed Transmitter System . . . . . . . . . . . . . . . . . . 8 1.5 Ultra-Low Power Transmitters Performance Metrics . . . . . . . . . . . . 9 1.6 Thesis Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . 10 2 Circuit Design for The Transmitter 11 2.1 Technology Characterization and Modeling for Low-Power Designs . . . 11 2.1.1 Passive Components modeling . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Active Components Modeling . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 MOS Transistor Sub-threshold Modeling . . . . . . . . . . . . . . 13 2.1.4 MOS Transistor Simulation-Based Modeling . . . . . . . . . . . . . 14 2.2 Low-Voltage Low-Power Analog and RF Design Principles . . . . . . . . . 17 2.2.1 Separate Gate Biasing of The Inverter . . . . . . . . . . . . . . . . 17 2.2.2 Body Biasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Low-Voltage Analog Mixed Biasing Circuit Designs . . . . . . . . . . . . . 18 2.3.1 DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 Operational Amplifier Design . . . . . . . . . . . . . . . . . . . . . 19 2.4 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 The MEMS Crystal . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.2 Crystal Oscillator Topologies . . . . . . . . . . . . . . . . . . . . . 23 2.4.3 Design of The CMOS Crystal Oscillator . . . . . . . . . . . . . . . 26 2.5 Pre-Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 OOK Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 BPSK Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Digital Control of the Modulators . . . . . . . . . . . . . . . . . . . . . . . 35 2.9 Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.9.1 ULP PA Topologies Survey . . . . . . . . . . . . . . . . . . . . . . 38 2.9.2 The Push-Pull PA Design Methodology . . . . . . . . . . . . . . . 41 2.10 Transmit/Receive (T/R) Switch . . . . . . . . . . . . . . . . . . . . . . . 43 2.10.1 T/R Switch Topologies . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.10.2 Suggested Low-Area Low-Voltage RF Switch . . . . . . . . . . . . 46 3 Transmitter Integration and Final Results 48 3.1 Transmitter Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Transmitter Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 Results Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Conclusions 59 4.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 A Bond Wire Parasitic Modeling 61 B Crystal Oscillator With Parasitic Effects 67 B.1 Simulation of FBAR with Parasitic Effects . . . . . . . . . . . . . . . . . 67 B.2 Root Locus Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Bibliography 7

    A TRANSCEIVER DESIGN FOR IMPLANTABLE MEDICAL DEVICES

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Architecture for ultra-low power multi-channel transmitters for Body Area Networks using RF resonators

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-103).Body Area Networks (BANs) are gaining prominence for their use in medical and sports monitoring. This thesis develops the specifications of a ultra-low power 2.4GHz transmitter for use in a Body Area Networks, taking advantage of the asymmetric energy constraints on the sensor node and the basestation. The specifications include low transmit output powers, around -10dBm, low startup time, simple modulation schemes of OOK, FSK and BPSK and high datarates of 1Mbps. An architecture that is suited for the unique requirements of transmitters in these BANs is developed. RF Resonators, and in particular Film Bulk Acoustic Wave Resonators (FBARs) are explored as carrier frequency generators since they provide stable frequencies without the need for PLLs. The frequency of oscillation is directly modulated to generate FSK. Since these oscillators have low tuning range, the architecture uses multiple resonators to define the center frequencies of the multiple channels. A scalable scheme that uses a resonant buffer is developed to multiplex the oscillators' outputs to the Power Amplifier (PA). The buffer is also capable of generating BPSK signals. Finally a PA optimized for efficiently delivering the low output powers required in BANs is developed. A tunable matching network in the PA also enables pulse-shaping for spectrally efficient modulation. A prototype transmitter supporting 3 FBAR-oscillator channels in the 2.4GHz ISM band was designed in a 65nm CMOS process. It operates from a 0.7V supply for the RF portion and 1V for the digital section. The transmitter achieves 1Mbps FSK, up to 10Mbps for OOK and BPSK without pulse shaping and 1Mbps for OOK and BPSK with pulse shaping. The power amplifier has an efficiency of up to 43% and outputs between -15dBm and -7.5dBm onto a 50Q antenna. Overall, the transmitter achieves an efficiency of upto 26% and energy per bit of 483pJ/bit at 1Mbps.by Arun Paidimarri.S.M

    Low-Power High Data-Rate Wireless Transmitter For Medical Implantable Devices

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) sont les circuits de communication les plus communs pour établir des interfaces home-machine dédiées aux dispositifs médicaux implantables. Par exemple, la surveillance continue de paramètres de santé des patients souffrant d'épilepsie nécessite un étage de communication sans-fil capable de garantir un transfert de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un faible volume. La consommation de puissance des dispositifs implantables implique une durée de vie limitée de la batterie qui nécessite alors une chirurgie pour son remplacement, a moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un émetteur RF à faible puissance et haut-débit de données opérant à 902-928 MHz de la bande fréquentielle industrielle-scientifique-médicale (ISM) d’Amérique du Nord. Cet émetteur fait partie d'un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et mettables et bénéficie d’une nouvelle approche de modulation par déplacement de fréquence (FSK). Les différentes étapes de conception et d’implémentation de l'architecture proposée pour l'émetteur sont discutées et analysées dans cette thèse. Les blocs de circuits sont réalisés suivant les équations dérivées de la modulation FSK proposée et qui mènera à l'amélioration du débit de données et de la consommation d'énergie. Chaque bloc est implémenté de manière à ce que la consommation d'énergie et la surface de silicium nécessaires soient réduites. L’étage de modulation et le circuit mélangeur ne nécessitent aucun courant continu grâce à leur structure passive.Parmi les circuits originaux, un oscillateur en quadrature contrôlé-en-tension (QVCO) de faible puissance est réalisé pour générer des signaux différentiels en quadrature, rail-à-rail avec deux gammes de fréquences principales de 0.3 à 11.5 MHz et de 3 à 40 MHz. L'étage de sortie énergivore est également amélioré et optimisé pour atteindre une efficacité de puissance de ~ 37%. L'émetteur proposé a été implémenté et fabriqué à la suite de simulations post-layout approfondies.----------ABSTRACT Wireless radio frequency (RF) transceivers are the most common communication front-ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of body behaviour of patients suffering from Epilepsy, for example, requires a wireless communication front-end capable of maintaining a fast, real-time and low-power data communication while implemented in small size. Power budget limitation of the implantable and wearable medical devices obliges engineers to replace or recharge the battery cell through frequent medial surgeries or other power transfer techniques. In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the wireless interface of implantable and wearable medical devices and benefits from a new efficient Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages of the proposed transmitter architecture are discussed and analyzed in this thesis. The building blocks are realized according to the equations derived from the proposed FSK modulation, which results in improvement in data-rate and power consumption. Each block is implemented such that the power consumption and needed chip area are lowered while the modulation block and the mixer circuit require no DC current due to their passive structure. Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated following deep characterisation by post-layout simulation. Both simulation and measurement results are discussed and compared with state-of-the-art transmitters showing the contribution of this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm2
    corecore