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Summary 

In recent years, implantable devices and wearable devices are extensively applied in clinic 

to assist patients either to substitute the missing function of a damaged organ or to alleviate 

and remedy the disease progression of a malfunctioning part in the body. It has become 

one of the hottest topic in the intersection of electronic and medical. A number of products 

and applications such as brain pacemakers, retinal implants, wearable blood pressure 

monitors and blood glucose detectors have been released into healthcare markets. They are 

often used with operational software applets installed on smart phones/ tablets in order to 

monitor or assist the therapy of epilepsy, amblyopia, and even heart diseases. One of the 

key challenges of developing these devices is to reduce both the device size and power 

consumption while improving data rate and power efficiency. These two requirements are 

difficult to be simultaneously achieved because increasing data transfer rate normally 

increases the power consumption and enlarges the device size. 

In this research, we propose a transceiver design for an implantable medical device that 

utilizes inductive coupling coils for data and power transmission. A Class E power 

amplifier was employed to amplify and transfer power from the transceiver side (external 

device) to the receiver side (internal implant). And then with a Load Shift Keying (LSK) 

demodulator --- a particular scheme of Amplitude Shift Keying (ASK) which has a higher 

data recovery efficiency compared to Frequency Shift Keying (FSK) structure for digital 

signal transmission --- the biological data captured by the implant were transmitted back 

to the transceiver. The LSK demodulation technique allowed power and data to be 

transferred simultaneously through one single inductive link. It could work under a variety 
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of modulation indexes and different coding/decoding protocols. Furthermore, it enables us 

to reduce both the power consumption and the device size of the transceiver. The circuits 

were fabricated in 180nm CMOS process technology and a prototype was designed to 

demonstrate the performance of the proposed demodulator. Measurement results indicated 

that the circuit could support the power carrier signal of different frequencies and data rates.  

The core area of the chip was 750µm x 800µm and the achievable minimum modulation 

index of the prototype was 5%, whereas the supported data rate was 1 Mbps. With a 1.65V 

power supply the total current consumption was 3.6 mA.   
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Chapter 1 Introduction 

1.1 Introduction 

With the development of science and engineering, IT (information technology) is changing 

the modern lifestyle. In particular, wireless communication technology has revolutionized 

the way people communicate and acquire knowledge. It is ubiquitously employed in 

personal mobile products, and it is also gradually applied in healthcare appliances and 

services. Implementations of wireless technologies in wearable and portable healthcare 

devices have become some of the hottest topics in the intersection of electronic and medical. 

A vast array of products and applications such as wireless step monitors, wearable blood 

oxygen saturation monitors and heart rate detectors, etc., which often accompanied by 

some applets on smart phones/tablets have been employed to diagnose the epilepsy, muscle 

problems, heart diseases, etc. With these healthcare devices, both patients and hospitals 

may significantly reduce their expenses, for example, the United States saved around 1.9 

trillion USD every year which might otherwise be spent on chronic diseases and their 

management in the past half-decade [1]. This huge potential of resource saving is attracting 

more and more researchers to work on this area. Among all the applications in this area, 

implantable medical device is one of the most promising outcome. Implantable medical 

device is normally implanted and operated within human body in order to diagnose diseases 

or process treatments, and it can be more focused on the trauma of a patient.  

In the past half century, one of the most widely used implantable medical devices is 

microelectronic biosensor. It has a large amount of applications such as measurement 
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devices on heart-rate, ECG, EEG, temperature, oxygen saturation of blood and neuro-

signal [2], etc.; also, some therapy devices, for example, with a bi-directional telemetry 

developed by NASA [3], Siemens-Pacesetter Inc., Sylmar, California implemented a 

Synchrony pacemaker and obtained approval from Food and Drug Administration (FDA) 

for general marketing in August 1989. Around a decade later, a deep-brain stimulator [4] 

was developed to send electrical impulses to specific brain nuclei for the treatment of 

movement and affective disorders. Now, with the advancements of science and technology, 

clinical markets require the implantable medical devices to have higher efficiencies and 

smaller form factors. Two things, therefore, become critical under such a demand: one is 

to achieve a high speed wireless data transmission channel between implants (in-body 

devices) and transceivers (off-body devices) with a high accuracy; the other one is to create 

a high efficiency wireless power recharging channel between implants and transceivers.   

In this thesis, we propose a transceiver design of an implantable medical device utilizing 

inductive coupling coils for power and data transmission. A Class E power amplifier is 

employed to amplify and transfer power from the transceiver to the internal implanted 

device. And then by designing a Load Shift Keying (LSK) demodulator --- a special 

scheme of Amplitude Shift Keying (ASK) which has a higher data recovery efficiency 

compared to Frequency Shift Keying (FSK) structure for digital signal transmission --- the 

biology data captured by the implant are transmitted back to the off-body transceiver 

(external device). The LSK demodulation technique allows power and data transmission 

through one single inductive link simultaneously. It can work under a variety of modulation 

indexes and different coding/decoding protocols. Therefore, it can achieve a high data rate 
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and a high power transfer efficiency.  Furthermore, it is also able to scale down the whole 

microelectronic system in terms of power consumption and volume.  

1.2 Medical Implants 

A medical implant is a man-made device implanted inside the human body. It is different 

from a transplant, which is an organ or tissue of natural origin [5]. A medical implant is 

implanted inside a human body to replace a missing biological structure or rectify a 

deforming structure of the body and eventually to re-implement the lost functionalities or 

to compensate for the abnormalities. Implants are not only passive biomedical materials 

such as silicone or apatite, they can also be active devices that contain electronic circuits 

so that to help people actively fulfil some particular functionalities. And these active 

devices are normally called implantable devices. One appealing technique for implantable 

devices is integrated solid-state circuit because of its higher integration density which 

enables its physical size to be smaller and its power consumption to be lower. Coupled 

with modern biomaterials, more and more implantable devices are developed with solid-

state circuits integrated on them.  

1.2.1 Wireless Medical Implantable Devices  

In 1889, John Alexander MacWilliam reported his experiment about using electrical 

impulse to evoke a heart of asystole so that to achieve a rhythm of 60-70 beats per minute 

in the British Medical Journal (BMJ) [6]. Since then, a lot of researchers worked on 

pacemakers, which is a kind of device that uses electrical stimulation to drive heart beating. 

A pacemaker is primarily designed to aid a heart to maintain in an adequate beating rate 
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for a patient whose natural heart rate is not fast enough or there is disease in the heart’s 

natural electrical conduction system [7]. In 1958, the first implantable artificial cardiac 

pacemaker was successfully implanted into Arne Larsson who is the world’s first 

implantable pacemaker patient through thoracotomy at the Karolinska Institute in Solna, 

Sweden [8]. Recently，with wireless technique, modern pacemakers can inter-transfer 

data with the off-body device, and also be recharged or powered wirelessly.  

Figure 1.1 and Figure 1.2 show us a couple of implant examples that have been clinically 

used. Both of them have been commercially launched in the healthcare market. The retinal 

implant as shown in Figure 1.1 was approved by the FDA in 2013, which was designed to 

enhance vision in patients who have been progressively blinded by the condition retinitis 

pigmentosa [9]. A miniature video camera is mounted on a patient’s glasses to capture 

images, then the images are converted into electrical pulses and transmitted into the 

electrode array implanted on the retina of the patient through wireless channels. The 

electrode array will then stimulate the healthy cells on the retina and eventually create 

visual patterns in the brain [10]. Figure 1.2 shows a middle ear implantable device which 

has been approved by both European CE-mark in 1998 and FDA in 2000 [11] [12] [13]. 

Similar to the retinal implant, a microphone and an audio processor are worn by a patient 

on his or her ear to capture sounds, and then the sounds are converted into electrical signals 

and transmitted to a device implanted in the middle ear of the patient through wireless 

channels. The implanted device will transfer “the sounds” to the inner ear where auditory 

neurons will be activated to generate the sense of hearing [14]. Both of these two 

implantable devices are capable of being wirelessly recharged and transferring data.   
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Figure 1.1 Retinal implant with wireless interface [10] 

 

  
Figure 1.2 Middle ear implantable device powered via inductive couple coils [15] 

 

It is expected that more and more sophisticated implantable devices to be developed and 

launched in the healthcare market. These devices may need more power supply and wider 

bandwidth communication channel; meanwhile, to be integrated within a tiny package and 

should be easily implanted and maintained inside the human body. The requirements of 

wireless recharging and data transfer are therefore becoming more critical. 
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1.2.2 Wireless Telemetry 

Telemetry generally means a device or the technique that fulfills automatic measurement 

and data transmission from remote locations or inaccessible sources through wire, radio or 

other methods, etc. [16]. The telemetry instrumentations that are employed in implantable 

medical devices are called biomedical telemetries or biotelemetries. With biomedical 

telemetries, the off-body devices of implantable medical devices can transmit data and 

power to the implanted internal devices. This transmission of data can be unidirectional or 

bidirectional. Unidirectional biotelemetries can be divided into two types: one is to transmit 

the biological data from the implanted device to the external body device where the data 

will be processed and monitored, such as electrocardiograph (ECG), neural signal or blood 

oxygen saturation; the other is to transmit commanding data or manipulating data from the 

external body devices to the implanted device so that to configure the internal device or 

control the internal device, for example, to stimulate the body tissue in a desired pattern 

[17] [18]. Normally, the biotelemetry which is used to transmit data is called data telemetry, 

whereas, the one which is used to transmit power is called power telemetry.  

Telemetry has become a research topic for more than a century. How to wirelessly transmit 

power and data in a high efficiency is still challenging researchers. Especially, some 

applications (e.g. implants) even pose additional constraints on form factors and this 

increases the difficulty of research and development. At the same time, technology on 

biosensors are also becoming more advanced, which result in that higher and higher 

communication rate to be achieved between the external body device and the internal 

implanted device. All these requirements bring about higher difficulties in designing both 
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the power link and the data link. In the next section we will discuss some general 

requirements regarding the implantable medical devices.   

1.2.3 Requirements of Wireless Implantable Medical Devices 

Surgeries and some particular diseases require that the implantable medical devices to be 

as small as possible. For example, retinal implants and some cochlear implants are expected 

to be less than one centimeter in size. Some particular devices that are designed to process 

disease cells or to flow through the human circulatory system should be even smaller. If a 

medical device is similar to a blood cell in size (in couple of micro-meters), blood vessels 

can take the medical device to almost everywhere of a human body to cure diseases. 

Therefore, in modern micro-electronics research, it is expected to scale down the 

implantable device in physical size by a few orders of magnitudes.  

A pivotal problem of designing such a tiny wireless implantable electronic device is to 

ensure enough power supply while the device is tiny. As we know, the power sources 

normally provide less power supply when its size is reduced. Another problem is that the 

micro-electronic devices are required to communicate wirelessly with external devices in 

order to transmit and receive biosignals and commands. Similar to the power source, 

antennas or inductive coils also perform worse when their physical sizes are diminished. 

Moreover, when a micro-electronic device is implanted inside a human body, the human 

tissue surrounding the device will reduce the inductance or radiation of the inductive coils 

or antennas. Hence, signal penetration through human tissue becomes the third problem in 

designing an implantable electronic device, which dictates that the device have to work in 
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a proper frequency and with enough power density. Therefore, there is a trade-off in 

designing implantable devices between size and power/data transmission.  

1.2.4 Power Link of Implantable Devices 

Since implantable micro-electronic devices are designed for specific diseases, the 

requirements on power also vary from application to application. Normally, devices with 

a higher data communication rate such as multi-channel neural recorders require relatively 

higher power density to support the wireless data link. Some other implantable devices, for 

instance, the retinal implants or the cochlear implants may consume a very large amounts 

of current in order to stimulate the target nerves, and therefore they consume even more 

power.  

Table 1.1 lists the range of power consumptions of different implantable devices regarding 

the range of data rates in the former published research reports. The contents in this table 

are adapted from [19]. Even though different applications of implantable devices require 

different amounts of power, a trend can still be observed from the table. In Table 1.1, we 

can find that devices with higher data communication rates usually consume more power. 

It also can be seen in Table 1.1 that most of the devices or systems consume about 1 mW, 

and there are only three devices that consume less than 10-1 mW. Also most of the devices 

are in one centimeter size scale. And for a smaller device, its power consumption also tends 

to be lower.  
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Table 1.1 Power and data transmit status from recent research reports 

 Data Rate (Mbps) 

Power (mW) 10-3 – 10-2 10-2 – 100 100 – 102 102 – 103 

102 - 103 
  Emira 04 

Khorram 05 
Aytur 06 

101 - 102 

 Choi 03 
Parramon 06 

 
 

Dong 05 
Ryckaert 06 

 

100 - 101 

Philp 04 
Peiris 05 

Solzbacher 07 

Najafi 98 
Melly 01 

Molnar 04  
Jarvinen 05 

Chen 06 
Dawson 07 

 

Daly06  

10-1 - 100 
Otis 05 Cook 06 

Dawson 09 
Guermandi 07 

Ghovanloo 04 
Sawan 05 

 

10-2 – 10-1 
 Pletercher 07 

Pletercher 09 
Bashirullah 09 

  

 

Nowadays, researchers are very interested in designing ultra-low power consumption 

circuits for implantable devices by optimizing analog circuits. The idea is to improve the 

analog circuit performance through different approaches such as high integration density, 

integrating fewer components and balancing different trade-offs, etc. as well as reducing 

the entire circuit power consumption. On the other hand, in digital circuit design, 

researchers are also attempting to miniaturize the whole circuit by lowering the data 

communication rate through better algorithms [20]. Recently, a lot of researchers have 

published studies on devices and systems with ultra-low power consumption [19]. They 

reported a large array of implantable devices that may consume from 10s to 100s of nW 

Cojocaru 06 
Verma 05
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through optimized circuit design and advance fabrication techniques. For example, in [21], 

the author reported a system with its amplifier, band-pass filter, and SAR-ADC integrated 

in a single chip and consumes just 450 nW. In fact, there are also some implantable devices 

which do not need to transmit data which may consume even less power. 

To deliver enough energy to the implanted internal device from the external device as 

discussed above, many methods have been studied, for example, electro-magnetic wave, 

pure magnetic field, light or even sound. We will briefly analyze them below.  

Radio frequency (RF) is a particular kind of electromagnetic wave with frequencies lies in 

a range of 3 kHz to 300 GHz [22]. It is widely used in wireless telemetries for industry 

applications, it can also be found in satellites, mobile phones, televisions and even radar 

systems. It is actually one of the most common and the most widely utilized technique to 

achieve wireless power and data transmission. However, because of its high frequency, RF 

may cause body tissue damage, e.g. ionizing tissue [23], it is rarely used in implantable 

device researches. In addition, radio frequency can be significantly attenuated when it 

passes through the human body tissue.  

Another medium that is used to transmit signals is light, which is quite common in 

navigation applications. Sailors use a series of flash to communicate with each other from 

remote locations. In telemetry studies, researchers employ laser or diode to emit light from 

a source device, and then harvest and convert the optical signal into energy or data with a 

receiver device. One limitation of optical transmission is that the substance between the 

source device and the receiver device may block or attenuate the optical signal. To 

penetrate the tissues of human body, researchers also attempted to use light of different 
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wavelengths, e.g. infrared light to implement the optical link [24]. In [25], light was used 

to penetrate cornea and lens of a patient to transmit power and data for a retinal prosthesis 

implant. However, long time exposure under strong light may result in fatigue or even 

damage to human tissue.  

One more technique which is used to transfer energy is acoustic wave. It is a commonly 

employed method in industry applications, especially in submarine applications. The 

reason behind is that other media source can be absorbed under water, yet sound wave can 

propagate faraway. However, with sound wave, the achievable data rate is very low. Hence, 

in implantable devices, researchers are attracted more by some media source such as 

inductive link which has no absorption issue and can also accomplish high data rate.  

Inductive link is a kind of media source to implement telemetry, especially for biotelemetry. 

By placing two coupled coils in a proper distance, the coupling magnetic field generated 

in one coil will be transformed into electric current in the other coil. Then energy and data 

will be inter-transmitted between two coils simultaneously. Inductive link is one of the 

most widely used techniques to accomplish energy and data transmission in implantable 

devices. Compare with other media sources, inductive link can achieve a very high power 

transmission efficiency. Furthermore, data signal can also be transmitted through different 

modulation methods in an inductive link with power carrier signal. One critical limitation 

of the inductive link is its limited coil distance. Large distance may cause the transmission 

efficiency to greatly decrease, which means the external body inductive coil has to be 

placed in a proper distance (normally one to few centimeters) from the implanted inductive 

coil.  
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1.2.5 Data Link of Implantable Devices 

For centuries, scientists were interested in transmitting data or signals into the bodies of 

living beings. A century ago, a series of experiments were conducted by Maurey to record 

the bird’s muscle movements, in which a flying bird was studied by having wires attached 

on it and a hose lead to a smoked drum [26]. These experiments boosted most of the data 

transmission topics till even today for implantable device research. It is obvious that using 

wire is not a good choice for implantable devices. Not to mention that the wires will limited 

the movements of a human body; the wires penetrating skin surface can also easily cause 

skin infections. Furthermore, friction of the percutaneous wires may also lead to the muscle 

tissue damage. Hence, there are few researchers working on percutaneous wires that are 

used to connect implantable devices for clinical patients.  

Advance of modern physical science enables engineering researchers to utilize various 

methods to implement data transmission without contact cables or wires. For implantable 

medical devices, similar to the power transmission, there are also several techniques 

including magnetic field, electro-magnetic wave and even light, etc. that have been 

employed or under research investigation for data links. Inductive link, which is a typical 

application of electro-magnetic induction has been widely used for implantable 

implementations, for example, the aforementioned mid-ear implantable device. The 

implanted device (receiver) and the external device (transceiver) communicate across the 

patient’s skin in a distance of few centimeters’ range. The transceiver and the receiver 

cannot be separated too far away because the further the distance between the transceiver 

coil and the receiver coil the more attenuation the electro-magnetic wave will experience. 
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On the contrary, shorter distance can help to enhance the strength of the inductive coupling. 

Recently, some of the implantable devices are designed to transmit power and data 

simultaneously through one coupling coil pair [27] [28]. However, for this type of designs 

or applications, the carrier frequencies cannot exceed tens of MHz because human tissue 

may absorb the high frequency signals and may also be damaged by them [29]. The most 

common frequency for these devices is 13.56 MHz. Meanwhile, the bandwidth of the 

transmitted signals may also be relatively small. For some particular implementations, 

which are not critical in data rate, this single coil pair solution is the best choice, because 

it can achieve high power efficiency and it takes less space than solutions of multi 

antennas/coil pairs.  

There are also some researchers exploring the capability of radio frequency (RF) in 

transmitting a higher data rate because the carrier frequencies of RF signals can be 

hundreds of MHz or even higher as GHz. Another merit of RF technique is that the distance 

between transceiver and receiver can be meters away which is very competitive compared 

to inductive coupling coils. In [30], the author just employed RF as the data transmission 

method to fulfill the high data rate requirements of a neural recording. But also, as we have 

mentioned, because of the high carrier frequency, RF may be harmful to human body, and 

it is quite difficult to obtain approval from medical device regulation agency. For instance, 

the bandwidth is limited to 300 kHz for MICS (Medical Implant Communication Services) 

by FCC (Federal Communication Committee) standards in the USA. Hence, a lot of 

researchers are still concentrating on the inductive link systems. It can be found that quite 

many publications about the innovations on the inductive link were reported such as [31] - 

[34].  
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For modulation scheme of inductive links, considering the generic data transmission, 

frequency modulation is widely used for analog signal transmission because it is resilient 

to noise. Meanwhile, it can also be found that several different modulation schemes are 

used for inductive links, such as amplitude-shift keying (ASK) and phase-shift keying 

(PSK) are mostly employed for digital signal transmission. Also, considered the power 

transmission, there were some previous reports by means of multi-channels or multi coil 

pairs [35] [36] [37] to implement both the data and power transmission. However, 

including more physical components may result in a bigger implant device. Therefore, for 

implantable biomedical devices, because of the low power requirement and the limited 

physical size, the amplitude-shift keying (ASK) scheme is particularly appealing. In 

addition, an ASK scheme is normally a simple modulation circuit, which has low energy 

dissipation, adequate modulation index and reasonable signal-to-noise ratio (SNR) [38]. 

Furthermore, it enables the data transmission and power delivery to be achieved 

simultaneously.   

1.2.6 Architecture of the Proposed Medical Device 

Figure 1.3 shows the architecture of the proposed biomedical system which includes the 

external device and the implantable device. We propose to develop this as a neurosensory 

system to acquire sub-scalp EEG data so that to provide long-term, neurological health 

monitoring for epilepsy patients. As can be seen in Figure 1.3, the whole microsystem has 

two parts. The internal part on the right side in the figure is a microchip which is implanted 

under the skin of a patient and connected to a well-designed thin electrode array that is also 

implanted in the body but separated from the microchip. The electrons array is located in 
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the sub-galeal beneath the patient’s scalp yet in the outside of the patient’s skull. The other 

part on the left is the external body device which is a wearable device. It is the so called 

transceiver which can be a small piece of device integrated with power amplifier, data 

receiver and signal processor.  In this design, the implant device on the right side of the 

figure is wirelessly powered through the coupling coils by the transceiver on the left. After 

detecting EEG data from the sub-scalp, the implant device can transmit the biological 

signal to the transceiver through the same coupling coils. In this thesis, we will concentrate 

on the transceiver part (the left part of Figure 1.3).  
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Figure 1.3 Architecture of the proposed implantable device and external device 

Based on the discussions above, in the following contents, we will present a transceiver 

design of the implantable system by means of inductive coupling coils for power and data 

transmission. An E type power amplifier is employed to amplify and transfer power from 

the external transceiver to the internal implantable device. At the same time, by designing 

a load-shift keying (LSK) demodulator --- a special scheme of ASK --- the data signal from 

the implanted device is transmitted to the external transceiver. The LSK demodulation 
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technique allows power and data to be transmitted through one single inductive link 

simultaneously. It can work under a variety of modulation indexes and different 

coding/decoding protocol. Meanwhile, it enables us to reduce the power consumption and 

body size of the whole microelectronic system.  
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Chapter 2 Power Amplifier 

This chapter conveys the analysis and design of power amplifiers for inductive data and 

power transceivers. First, we will discuss different topologies of power amplifiers. Then, 

state-of-the-art power amplifier designs are reviewed and analyzed. At last, we propose a 

novel Class-E amplifier for the proposed inductive transceiver device.  

2.1 Power Amplifier  

2.1.1 Introduction 

Considering that the external transceiver part of a biomedical device is normally designed 

as a wearable/portable equipment so that it can be easily carried around by patients, and 

battery is normally the best option for its power supply. While, to extend the duration of a 

battery after a single recharge and also to prolong the lifetime of a battery, power amplifiers 

are widely employed to overcome the power issue in the external transceiver design.  There 

are several topologies of power amplifiers. Based on the output stages for analog designs, 

they are categorized as A, B, AB and C, and based on the proportion of each input cycle 

for switching designs, they are categorized as D and E [39]. The D and E power amplifiers 

performance is significantly better than A to C [40] - [47]. Class E power amplifiers are 

generally one single-transistor solution, whereas two or more transistors are commonly 

required for Class D power amplifier. The transistors in power amplifiers are utilized as 

switches, which are expected to be non-power consumption components. Theoretically, a 

Class E power amplifier can achieve peak energy efficiency of 100%, whereas the values 

of Class A and Class B amplifier are 50% and 78% respectively. [48] reports a Class E 
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power amplifier design with power efficiency of 96%. Hence, a Class E amplifier is the 

more advantageous topology compared to the rest types of power amplifiers in terms of 

power efficiency. Furthermore, to drive a Class E amplifier is also simpler than the other 

power amplifiers [49]. Therefore, for power amplifications, Class E amplifier is 

particularly appealing among all the other amplifier architectures, especially for 

implantable device or short distance wireless communication applications.  

2.1.2 Principle of Class E Power Amplifiers  

Figure 2.1 shows a typical conventional basic architecture of Class E power amplifiers. As 

can be found in Figure 2.1, there is an RF choke, a MOS transistor M and a load network 

that includes two capacitors Cp and C0 and an inductor Lp. The MOS transistor M is utilized 

as a switch. Controlled by the driver voltage at a specific work frequency, it will be 

switched between stages of “on” and “off” regularly. The inductance of RF choke should 

be large enough such that the DC current can dominate the AC components in the current. 

Therefore, the RF choke acts as a DC current source. In the load network, the capacitors 

C0, Cp and the inductor Lp work together to generate sinusoidal waveforms, and eventually 

enable the MOS transistor M to be switched between on and off smoothly. And, the current 

that flows across M during the operations is quite a small value. In this circuit, the load of 

the circuit is Rp.  

As mentioned above, to extend the battery life, we should try to reduce the energy 

dissipation in the circuit at the utmost. In another word, we need to endeavor to maximize 

the power efficiency while designing the whole circuit. The power efficiency is a parameter, 
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which is used to assess the proportion of power that is converted and delivered to the load. 

Regarding the definition, we can have the equation to calculate power efficiency: 

ŋ
power	that	is	converted	and	delivered	to	the	load	

DC	power	supply	of	
 

From the equation, it can be found that the ideal efficiency is 100%.  

 

Figure 2.1 Structure of Class E power amplifier 

 

2.1.3 Design Procedure 

Since the concept of Class E power amplifier was introduced in 1964 by Ewing [50], there 

have been a lot of researches published on this type of power amplifier. Some introduces 

circuits that can support different quality factors, as well as the different duty ratios, and 

some introduces the analytical solutions for Class E power amplifier [51] [52].  

From the previous designs, researchers were attempting to find out how the components 

affect each other, and what is the optimum setting value for each component, and 

eventually minimize the switching loss. Ideally, for conventional applications, by 
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neglecting the parasitic resistance of all the components, the total power that is delivered 

to the load resistor Rp can be 100%. But, this efficiency can never be achieved in practice. 

For wireless implantable devices, Class E power amplifiers are also widely employed to 

amplify and deliver power [53]. However, it can be found that the conventional 

applications are different from the wireless implantable devices. In the conventional 

applications, the output power of the circuit is the total power consumption of the load 

resistor Rp. While, for wireless implantable devices, the delivered power is expected to be 

the electromagnetic energy generated by the inductor Lp, and the power dissipated in the 

load resistor Rp should be as small as possible. But the design methods and procedures for 

the conventional applications are still applicable for the wireless implantable devices, 

because the optimizing aims are the same, which is to reduce the loss on the MOS transistor 

switch.  

According to the optimizing design procedures introduced in [54], we will initially 

determine a starting parameter. What we need to consider in designing the circuit including: 

first, how much power we need to generate and deliver to the inductor Lp in the external 

device which is denoted as PL. This is actually a requirement of the implanted device; 

second, the quality factor of the entire circuit, which is denoted as Qp is determined by the 

requirement of the data transfer rate; last, the voltage source that is used to supply the 

power amplifier is denoted as Vcc. This voltage source value is normally the starting 

parameter. But it is adjustable in case that parameters of PL and Qp cannot meet the desired 

requirements. The power which is dissipated in the load resistor Rp and the power delivered 

in the inductor Lp can be calculated by  
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	 	 | |                                                                     (2.1) 

	 	 | |                                                                         (2.2) 

Where IP is the current that flow through RP and LP. With (2.1) and (2.2) and the quality 

factor equation of (2.3),  

	                                                                            (2.3) 

we can have: 

                                                                        (2.4) 

Then, PR, which is the power consumed by RP can be calculated by:   

                                                                          (2.5) 

Where k is a constant parameter that is determined by QP and the duty ratio. Combining 

the equation above, we can derive the equation of LP: 

                                                                      (2.6) 

The equation of Rp is also achievable given Qp,  

                                                                       (2.7) 

After the calculation of the resistor Rp and the inductor Lp, we can then determine the 

remaining parameters of the whole circuit, for example, the values of the capacitors. 

However, considering the parasitic capacitance, we connected more capacitors and 

inductors in the circuit so that the values can be adjustable.  
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2.1.4 The Proposed Class E Amplifier 

In this research, the power amplifier is required to deliver 1 mW to the secondary coil. And 

the power carrier frequency should be from 10 to 20 MHz. Based on these requirements, 

we designed the circuit as shown in Figure 2.2. The coil on the transceiver side is 19.8 mm 

and the size of the secondary side is 9.3 mm as shown in Figure 2.3 and the transceiver 

PCB prototype is shown in Figure 2.4. Measurement results will be discussed in chapter 7.  

 

 
Figure 2.2 Class E amplifier circuit 
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Figure 2.3 The coupling coils of the proposed Class E power amplifier 

 

 
Figure 2.4 Proposed Class E amplifier prototype 
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Chapter 3 Load Shift Keying 

3.1 Introduction  

It is commonly seen that inductive coupling coils are employed to power implanted devices. 

However, most of the coupling coils suffer from transmitting enough power because of 

their limited physical sizes. Hence, to mitigate this limitation, Load Shift Keying (LSK) 

modulation scheme is adopted because it can support small modulation index signals which 

enhance the power transfer efficiency.  

LSK, is also called "reflectance modulation" [55] [56], which is a particular 

implementation of passive impedance reflection, and also a primary method used in 

designing implantable medical devices for retrieving biological data. LSK is also 

considered as a special topology of amplitude-shift keying (ASK) in terms of the circuit 

design [56]. As we have discussed, the LSK is a bi-functional modulation technique, which 

allows transmissions of power and data to be accomplished simultaneously through one 

single inductive coupling link. A common inductive coupling link includes two basic 

inductive coil components. One property of an inductive coupling link is that when the 

loading impedance of one side is changed, the loading impedance in the coupled side 

reflects the change. This is actually the change of the reflected impedance. LSK modulation 

topology is just an application of this property. By detecting the reflected impedance 

changes occurred in the primary side, a LSK modulation device is able to analyze the 

loading impedance changes that happened in the secondary side, and eventually decode the 

signal. This signal is just the digital data transmitted by the secondary circuit. This working 
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scheme is different from a common topology of ASK scheme because in a common ASK 

modulation device the power efficiency may suffer more decrease when data is also 

transmitted in the same inductive link. For example, in the common ASK design of [57], 

the primary side was used to detect the amplitude changes of the input waveform, which 

was a reflection against the resonant capacitance changes or the inductance changes 

appeared on the secondary coil. However, while the primary side was working on the 

reflection, the changes from the secondary coil might conduct a resonant frequency change 

in the primary side, and this change could greatly affect the power transmission efficiency.  

To realize the LSK modulation topology, a particular functional circuit is required to 

modulate the load impedance changes on the secondary side related to the transmitted 

digital data. This modulating procedure should affect as small as possible on the resonant 

capacitance or the inductance of the secondary side circuit; otherwise, the power 

transmission from the primary side to the secondary side will be affected. In this particular 

functional circuit design, the AC loading impedance on the secondary side is determined 

by both the inductive power recovery circuit and the DC loading impedance [58]. Therefore, 

through varying the power recovery circuit appropriately, which may adjust the DC load 

impedance of this circuit to a desire value, the AC loading impedance can be eventually 

modulated. In practice, a data-driven switch will be adopted to configure the circuit from 

one stage to another, and to change the DC loading impedance from one value to another. 

This configuration can eventually shift the AC loading impedance between two values 

according to the binary digital data. When the voltage potential crossing the primary coil 

reflects the AC loading impedance changes on its own amplitude, the changes will be 

recognized as data bits “0” and “1”. Through such a procedure, the data signal is thus 
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transmitted from the secondary side circuit to the primary side circuit. In this research, we 

focus on the development of the transceiver device, which is the primary side circuit. To 

test the entire working procedure, we utilized an FPGA to simulate the AC load impedance 

changes.  

Even though the LSK is one of the most common ways to implement power and data 

transmission link, to design and realize a LSK with a high efficiency and high-speed 

transmission is still a challenging task.   

The first challenge is to make sure that the waveform amplitude on the primary side circuit 

(the external body circuit) can reflect an immediate and distinct change when the AC load 

impedance on the secondary side circuit (the implanted device circuit) changes. To 

overcome this challenge, the AC load impedance change on the secondary coil have to be 

distinguishable as much as possible, which means the total amount of the load value should 

be changed as large as possible. Because the maximum achievable change on the load 

impedance is to reduce the amount from an initial value to zero, many reported designs 

chose either to shut down the load completely which means to keep the circuit open or to 

bypass the load which means to short the circuit. However, both of these two methods may 

disturb the secondary circuit on the resonance, and eventually reduce the total efficiency 

of power transmission from the primary circuit to the secondary circuit.  

The second challenge is to achieve a high data rate. In the former discussed working 

procedure of LSK topology, to achieve a reliable recovery of the data signal on the primary 

circuit, the power carrier frequency ought to be separated away from the data bandwidth 

as much as possible. Meanwhile, the power carrier frequency cannot be too high as 



27 
 

discussed in chapter 1, because the high frequency signals can be absorbed by human tissue 

and may result in cell damage [59].  Hence, the carrier frequency have to be set to less than 

tens of MHz, for example, the most commonly used carrier frequency is 13.56MHz. This 

may ultimately affect the data rate of a LSK link by limiting it to a few Mbps. The 

achievable ratio of data rate to carrier frequency is normally very small.  

The last challenge is to reduce the sensitivity of a LSK data link against the interferences 

of the surrounding environment. The media source that a LSK data link applied is 

electromagnetic wave. Hence, when the relative position or the orientation of the inductive 

coupling coils is changed, the density of the electromagnetic wave may also be modified, 

and this will lead to reduction on the efficiency of the wireless link. At the same time, other 

electronic devices around may also emit electromagnetic wave, and the unresolved 

electromagnetic wave may also affect a LSK inductive link by generating some unexpected 

amplitude variations on the power carrier waveform. All these changes or interferences 

may substantially reduce the demodulation accuracy of the LSK link. And it could be even 

more severe when the design is required to achieve a higher power transmission efficiency 

because this means the modulation index have to be small.  
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3.2 Principle of LSK [58] 
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Figure 3.1 Circuit for analysis of LSK principle  

Figure 3.1 shows the circuit, which is used to analyze the principle of LSK. It can be seen 

in the figure that M is the mutual inductance of the inductive coils; Z2 is the secondary coil 

load impedance and reflected impedance in the primary side is Zref. If we define the RF 

power carrier’s angular frequency as ω, according to [58] then we can have: 

                                                                        (3.1) 

And the primary coil load impedance is: 

                                         (3.2) 

If we take L2 as a voltage source V2, and the impedance in series with L2 is jωL2. Then we 

can calculate the secondary coil’s impedance by the following equation: 

           

                               (3.3) 
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As can be seen, both of the two circuits in the primary and the secondary sides work in 

frequency ω, which is a common resonant frequency. Therefore, if the imaginary parts of 

the impedance for both Z1 and Z2 are equal to zero, we can have:  

0                                                             (3.4) 

0                                                     (3.5) 

With (3.5) and (3.3), we obtain: 

                                                              (3.6) 

According to [60], the mutual inductance can be calculate by the following equation: 

                                                                          (3.7) 

Where k is the parameter of coupling-coefficient, which is determined by geometrical 

parameters. Then with the equations above, we can derive Z1 as: 

	 k ω                                                          (3.8) 

If we define VL1 as the potential difference between the two terminals of L1, then,   

	 	
	

                                               (3.9) 

From the equation, if the resistance of the receiver circuit is changed from R2 to R’2, then 

the voltage VL1 will become: 

	
	

                                                      (3.10) 

The equation of (3.9) and (3.10) complied with our discussion in the former section. And 

based on this equation, the LSK modulation is designed in the following section.  
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3.3 The Proposed LSK Demodulator  

Based on the discussion above, a LSK demodulator is designed and portrayed in Figure 

3.2. This LSK demodulator is employed in the transceiver device to demodulate the 

received data from the reflected power carrier signal, process the demodulated signal and 

finally output a digitized waveform. It can be seen in Figure 3.2 that there are 6 modules 

in the whole circuit. The demodulator consists of a pre-amplifier (a), an envelope detector 

(b), a switched-capacitor band-pass filter (c) and an asynchronous 10-bit SAR ADC (d). 

Figure 3.2(e) and Figure 3.2(f) are two independent modules, which are an FPGA and a 

signal indicator.  
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Figure 3.2 LSK demodulator circuit schematic 
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The pre-amplifier is a two stage Operational Transconductance Amplifier (OTA) that 

supports 600MHz GBW and serves as a buffer of the signal. Its output is directly fed to the 

next module, an envelope detector.  

The envelope detector is designed to realize the spectral analysis following the pre-

amplifier. A simple conventional envelope detector usually includes a diode and a capacitor, 

which has a diode voltage drop and a trade-off between slew rate and droop rate [61]. Some 

more practical designs may utilize an op-amp and either a diode or a CMOS transistor with 

a feedback path so that to reduce the diode voltage drop. However, the limited slew rate of 

op-amp increases the droop rate of the circuit [61]. And an increased droop rate means a 

faster speed of discharge. When the input voltage drops very fast, it is very hard for the 

detector to follow the input signal and accurately detect the peak value.  In addition, most 

of the conventional designs discharge through a RC filter or a current source [61] - [64]. 

With these discharge branches, ripples may be introduced in the extracted envelope and 

they require a substantial bit-to-bit interval to avoid decoding errors. As a comparison, the 

envelope detector design in this thesis inherently suppresses the mentioned defects: as 

shown in Figure 3.2(b). More details about the design and the working flow will be 

discussed in chapter 4.  

The switched-capacitor band-pass filter is cascaded following the envelope detector to get 

rid of the large DC component from the extracted envelope and amplify the envelope. This 

is because that the extracted envelope contains some unresolved interferences, which 

should be removed subsequently for a reliable data transmission. Detailed content will be 

discussed in chapter 5 
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In addition, the 10-bit asynchronous SAR ADC with 10 MHz sampling rate is designed to 

digitize the output signal of the filter. In this ADC design, both split-capacitor array and 

VCM-based switching topology are employed to reduce power and area. More discussion 

can be found in chapter 6.  

Compared to the previous research reports, the performance of this design is improved in 

the following two aspects: firstly, it achieves a higher sensitivity of modulation based on 

the simulation, which is less than 1% in modulation index without sacrificing the power 

transmission efficiency. Secondly the multi-phase envelope detector overcomes the trade-

off between envelope ripples and the detector speed which increases the achievable data 

rate significantly [65] [66]. Thirdly, this design is an integrated circuit that included analog 

and digital components, which can reject some artifacts and interferences while processing 

and transmitting signals.  

The schematic is implemented and simulated in Cadence 6.1.  To test the simulation 

performance of the envelope detector, we generated an input signal in 20 MHz frequency 

and the modulation index was 1%, the signal was shown in Figure 3.3. This signal was 

generated by multiplying two signal sources, one was sinusoidal signal with a 20 MHz 

frequency and 1.0 V amplitude, and it was used to simulate the power carrier signal; the 

other signal was a square signal in a frequency of 2.5 MHz and amplitudes are 50 mV and 

49.5 mV.  Figure 3.4 shows the squire signal and it can be found that the modulation index 

is 1%. The demodulation result is shown in Figure 3.5. The result was captured before SAR 

ADC module. Measurement result of the prototype will be discussed in chapter 7. 
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Figure 3.3 Mixed simulation input waveform with modulation index 1% 

 
Figure 3.4 Square signal with 1% modulation index  

 
Figure 3.5 Demodulation simulation result of 2.5 MHz signal with 1% modulation index. 
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Chapter 4 Envelope Detector 

4.1 Introduction 

Envelope detector is also called peak detector, which is widely utilized as a core component 

by the transceiver side of a wireless communication link. It is usually employed to build 

up a closed-loop, which is also called automatic voltage gain circuit [67].  Normally, in 

analog circuit design, an envelope detector is used to detect either the positive peak value 

or the negative peak value of a signal, and also to track the values along with the change 

of time. Figure 4.1 shows the ideal output waveform of a positive envelope detector [68]. 

In this chapter, we will discuss a few envelope detector designs and the circuit we 

implemented for this thesis.  

v

t

 

Figure 4.1 Ideal envelope detector output waveform 

 

Detected envelope waveform
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4.2 Principle of Envelope Detector 

4.2.1 Diode Capacitor Envelope Detector 

Figure 4.2 shows the principle schematics of a positive envelope detector [69]. From the 

schematic, this circuit contains two components only, which are a diode and a capacitor. 

We take this positive envelope detector as an example to illustrate the working principle of 

the envelop detector. As we can see in Figure 4.2, when the input voltage Vi is greater than 

the detected value Vp plus the voltage drop across the forward-biased diode D, then the 

diode D will be “turned on” and current will pass through the diode D and charge the 

capacitor Ch until the voltage of Vb is equal to or greater than Va, then the diode will be 

“turned off” and the capacitor holds the Vb at the maximum value of the input signal, which 

means the output voltage follows input peak value. Even when Vi drop, the maximum value 

Vp will still be held at the maximum value of the input signal by capacitor Ch. Hence, if the 

capacitance of Ch is appropriate, the output signal will the waveform as shown in Figure 

4.3.  

 

Figure 4.2 Diode capacitor envelope detector 
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Figure 4.3 Output waveform of diode capacitor envelop detector 

By analyzing the circuit shown in Figure 4.2 we can find that there are a few problems with 

this envelope detector circuit. First, the detected value Vp cannot be accurately equal to the 

maximum value of the input signal because there is a voltage drop across the diode D. Thus, 

if the input signal is similar to the diode voltage drop, the circuit may not able to detect the 

input. Second, the input impedance is almost zero which is too small because the diode is 

operated in forward-biased condition. Third, normally for a diode, the voltage drop is 

sensitive to the change of environmental temperature, as well as the current. This may be 

another severe effect on the accuracy of the envelope detector circuit. Fourth, there is no 

discharge path in the circuit. If there is a quick and distinct drop happens in the input signal, 

this envelope detector may not able to follow the drop, as shown in Figure 4.4. Fifth, there 

is also a tradeoff on how to set up the capacitor value. For a small capacitor, it is easy to 

discharge, however, hard to hold the peak value. On the contrary, for a big capacitor, it is 

easy to hold the peak value, however, need longer time to charge up and discharge [69]. 

 

Diode voltage drop

t

v  



37 
 

 

Figure 4.4 Envelope detector output failed to detect a quick and distinct input voltage drop 
 

4.2.2 Detector Using Op-amp  

Figure 4.5 shows a positive envelope detector with an op-amp in the loop. In this circuit, 

the voltage Vp is fed as a feedback to the negative input terminal of an op-amp A. With this 

configuration, Vp can closely follow the positive input Vi when Vi is larger than negative 

inputs of the op-amp A, which is Vp. Meanwhile, we can solve the first problem of the 

diode voltage drop discussed in section 4.2.1. While, when the input voltage Vi drops till 

less than Vp, which means the op-amp A operates in negative saturation condition, then the 

diode D is switched off, and the capacitor Ch will hold Vp at the previous maximum value.  

 

Figure 4.5 Envelope detector with op-amp 
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Compared with the diode capacitor envelope detector, an extra power supply is required to 

drive the op-amp A. At the same time, the slew rate of the op-amp will restrict the operation 

speed of the whole circuit.  

4.2.3 Envelope Detector with MOS Transistor 

Figure 4.6 demonstrates another envelope detector scheme, which is more practical. Its 

difference from the scheme shown in Figure 4.2 is that the diode is replaced by a source 

follower, and a buffer A2 is cascaded. In this circuit, when the input Vi is greater than Vp, 

the MOS transistor M will be “turned on”, which means the current can flow through M to 

charge up the capacitor Ch. In contrast, when Vi drops till less than Vp, which means that 

the negative input of op-amp A1 is greater than the positive input, the MOS transistor will 

be “turned off” and the capacitor Ch will hold the output voltage at the former detected 

peak value. To improve the performance of following a falling input signal, the output is 

grounded through the resistor Rd to discharge Ch. With this discharge path, the circuit can 

achieve a higher droop rate. In some designs, the resistor Rd may also be replaced by a 

current source. Generally, to improve the loading capacity, a buffer A2 may be 

implemented to isolate the detected voltage Vp from the following load circuit. 

  

Figure 4.6 Positive envelope detector with MOS transistor and buffer 

Vi A1 M 

Vp 

Ch Rd
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With this schematic, we can found that the first four problems mentioned in section 4.2.1 

are somehow resolved. This circuit can have a more accurate trace in terms of a quick drop 

of the input signal because there is a special path to discharge the hold capacitor. However, 

we have to design the discharge path carefully. Because if the droop rate is too high or too 

low, the detector may not be able to detect the neighboring peak value if the input signal 

fluctuates too fast. 

 

4.2.4 Positive Peak Detector Using Current Mirror 

One more method to enhance the speed and accuracy of an envelope detector is to use a 

current mirror as the displacement of the diode in Figure 4.6. Figure 4.7 shows the 

schematic designed by this method. It can be seen that this positive envelope detector 

consists of a differential amplifier (CMOS transistor M1 to M4), a current mirror (CMOS 

transistor M5/M6) and a discharge path (Rd). In this circuit, the function of the differential 

amplifier is same as the op-amp in section 4.2.3. When Vi is greater than Vp, then transistor 

M5 and M6 will be “turned on”, the current can flow through. The current through transistor 

M5 will be mirrored by transistor M6 and charge up the hold capacitor Ch.  
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Figure 4.7 Positive envelope detector with current mirror 

 

4.3 The Proposed Envelope Detector  

In this work, the envelope detector is applied to accomplish spectral analysis following the 

pre-amplifier as shown in Figure 3.2. A simple conventional envelope detector as shown 

in Figure 4.2 is usually a diode-capacitor circuit, which has a diode voltage drop, and the 

droop rate conflict with the slew rate. Some more practical designs discussed above may 

utilize an op-amp and a diode or a MOS transistor with a feedback path so that to reduce 

the diode voltage drop or solve other problems discussed in section 4.2.1. However, the 

restricted slew rate of the operation amplifier may increase the droop rate. A higher droop 

rate means the discharge is faster. When the input peak value falls very fast, it may be very 

hard for the detector to accurately chase the input peak values.  Furthermore, many of the 

conventional designs discharge through a RC filter or a current source [70] - [73] as 

M1 M2 

M3 M4 M5 M6 

Ch Rd 

Vp Vi 
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discussed in section 4.2.3 - 4.2.4. And this may contribute to the ripples in the output, 

which may need a substantial bit-to-bit interval to correct the decoding errors. As a 

comparison, the envelope detector design in this research inherently overcome the 

mentioned defects.  

Firstly, as shown in Figure 4.8, to remove the diode voltage drop, a unidirectional current 

mirror (M5 and M6 or M11 and M12) is constructed to replace the ideal diode of a 

conventional circuit. When the input voltages are greater than the maximum detected 

values, the OTA will produce a voltage amplitude on the drain and gate of M5 or M11 which 

will “turn on” the current mirror, the excess current will flow through M5 or M11, and will 

be mirrored by M6 or M12 and eventually to charge up the hold capacitor Ch1/ Ch2 and force 

Vl/Vp to track the peak values of Vi. On the contrary, as Vl or Vp approaches Vi or while 

the input signal drop till less than the output peak value, the output of OTAs which are 

built-up by M1 - M4 and M7 - M10 will drop to zero or even below, and the current mirrors 

will be cut off.  

Secondly, to overcome the detecting issue due to low droop rate, we employ a 

configuration of non-overlapping clock and switched-capacitor to control two sets of 

envelope detectors to work in turns. With such a mechanism, through resetting each peak 

detector periodically, each envelope detector will be distributed more time to discharge 

itself. And after the reset, each one will work more precisely. The work procedure is stated 

here. When S1 is switched on, then the upper envelope detector (M7 to M12) will work, and 

the lower detector (M1 to M6) will be reset. This is phase one. In reverse, when S2 is 

switched on, then the lower envelope detector (M1 to M6) will work, and the upper detector 

(M7 to M12) will be reset. This is phase two. The holding capacitors Ch1 and Ch2 will work 
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in turns for these two envelope detectors to hold and output the detected peak values phase 

by phase. Through this mechanism, both of the two envelope detectors can have enough 

time to discharge itself, which eventually diminish the ripples and the distortions on the 

output waveform while the data rate is maintained the same.  

We utilize a top clock to generate several non-overlapped clocks through digital standard 

cells. Also, the output signals of the proposed envelop detector are sampled by the 

subsequent filter or the ADC with a ¼-delayed sampling clock signal, which allows that 

the proposed system architecture has enough time for signal processing and settling. 

This circuit can suppress the effect of switching glitches with three methods: first, the 

values of hold capacitors Ch1 and Ch2 are larger enough to suppress the switching glitches 

compared with conventional circuits; second, Switches S1 and S2 are controlled by non-

overlapping clock signals, and dummy transistors are also used in the switches to remove 

glitches; third, the input signal has already been amplified before it is sent to the envelop 

detector, so the effect on amplitude introduced by glitches can be neglected here.  
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Figure 4.8 Multi-phase envelope detector with current mirror 

 

The schematic is simulated in Cadence 6.1.  To test the performance of the envelope 

detector, we generate an input signal in 20 MHz frequency and 50 mV amplitude as shown 

in Figure 4.9. This input is a multiplied signal by two sources, one is sinusoidal signal with 

a 20 MHz frequency and 1 V amplitude, and it is used to simulate the power carrier signal; 

the other one is a square signal in a frequency of 2.5 MHz and amplitudes of 50 mV and 

35 mV. The simulation result is shown in Figure 4.10. Because the bit error rate is generally 

higher when the transmission signal is in a higher frequency compared with the signal in a 

lower frequency, so we provided the simulated results of the signal in a high frequency 

only and take them as reference.   
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Figure 4.9 Modulated input signal for envelope detector simulation 

 
Figure 4.10 Simulate result regarding the input signal of Figure 4.9, two different color plots are 

the two phase of outputs, which are Vl and Vp in Figure 4.8 

 

It can be seen in Figure 4.10 that there are still some ripples in the output waveform of 

envelope detector. This is because the designed envelope detector has a very quick 

discharge path which can help the envelope to follow the input signal closely. It is 

worthwhile to highlight that this output signal is actually a combination of the outputs from 

two phases, and they are the black color and the red color in the plots.  The reason of having 

two phases of outputs is that in this research, to enhance the speed of the envelope detector 
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and also to give the envelope detector enough time to discharge, two sets of envelop 

detectors are employed to work in alternative phases, as shown in Figure 4.8. Based on 

such a switching machanism, the output of each set of envelop detector is then plotted in 

turns in Figure 4.10. Prototype mearsurement will be discussed in chapter 7. 
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Chapter 5 Filters 

5.1 Introduction 

Filter is a basic functional module in analog circuit design, which is used to process signals. 

Filters can be used to block some components of undesired frequencies from the original 

signals, or to amplify some particular frequency components of the original signal, or both 

[74].  A low-pass filter can block the components of high-frequencies from the pass-

through signal and let low-frequencies components to flow through; a high-pass filter can 

block the components of low-frequencies from a signal and let the high-frequencies 

components to flow through.  A band-pass filter is a hybrid circuit which is able to block 

both unwanted high and low frequencies components and let the signals within a certain 

range of frequencies to go through. 

5.2 Principles of Filters 

5.2.1 Passive Filters 

 

 

Figure 5.1 RC low-pass filter 

 

Figure 5.1 demonstrates a conventional passive low-pass filter. If we assume that the input 

signal Vin is in high frequencies, then the capacitor C will act as a shorted branch. And the 

Vout Vin 

R 

C 
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output Vout will be equal to zero. On the contrary, if we assume that the input signal Vin is 

in low frequencies, the capacitor C will act like a huge impedance or even an open circuit. 

Then the output Vout will be approximately equal to Vin. From this analysis, we notice that 

the circuit in Figure 5.1 allows low frequencies signals to pass, and rejects signals of high 

frequencies. So, it is a low-pass filter. We take this filter as an example to discuss its 

mathematic module. Based on Figure 5.1, we can have the magnitude equation of the 

transfer function below:  
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                             (5.1)     

From the equation (5.1), it can be seen, when angular frequency ω increases, the magnitude 

of transfer function of the circuit which is the value of )( jA  will drop quickly until zero. 

This is the reason why only low frequencies signals can pass. Normally, we define f0 as the 

half-power frequency, where f0 = ω0/2π. When the signal is in the half-power frequency, 

the low-pass magnitude is given by   

max0
2

1
)( AA 

                                                      (5.2) 

Factor 21  is also calculated as 3dB. The Figure 5.2 shows the magnitude versus 

frequency of a low-pass filter.  
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Figure 5.2 Magnitude versus frequency of RC low-pass filter 

C

Rvin vout

 

Figure 5.3 RC high-pass filter 

Another filter circuit is shown in Figure 5.3. When the input signal Vin is in low frequencies, 

the capacitor C will act as a huge impedance or even an open circuit. Then the output Vout 

will approximately equal to zero. On the contrary, when the input signal Vin is in high 

frequencies, the capacitor C will act as a shorted path. Then the current will flow through 

capacitor C and the output Vout will approximately equal to Vin. From this analysis, we 

notice that the circuit in Figure 5.3 allows high frequencies signals to pass, and rejects 

signals of low frequencies. So, it is a high-pass filter. Similar to the low-pass filter, Figure 

5.4 shows the magnitude versus frequency of a high-pass filter. 
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Figure 5.4 Magnitude versus frequency of RC high-pass filter  
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Figure 5.5 RC band-pass filter 

Figure 5.5 demonstrates a band-pass filter. It is a hybrid circuit which was made up by a 

low-pass filter and a high-pass filter. It can be seen in the circuit, the R1 and C1 constitute 

a low-pass filter where only signals of low frequencies can flow through and R2 and C2 

constitute a high-pass filter where only signals of high frequencies can flow through. This 

means that both the signals of low frequencies and signals of high frequencies are not able 

to flow through. Only the signals in a certain range of frequencies can pass. So, it is a band 

pass filter. As can be seen in Figure 5.5, the transfer function can be calculated by: 
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Where, 
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Assume R1 = R2 and C1 = C2, and ω0 = 1/(RC), then, 
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The magnitude of the transfer function |A(jω)| can be calculated by the equation below: 
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From the equation (5.8), we can find that when ω is both too small or too big, the magnitude 

|A(jω)| reduces. Figure 5.6 shows the magnitude response of a band-pass filter. 
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Figure 5.6 Magnitude versus frequency of RC band-pass filter  

 
5.2.2 Active Filters 

All the designs we have discussed above are filters built up with passive components. In 

practice, there are many designs that utilize active components to implement filter circuits. 

The reason is that if we design a filter with passive components only, attenuation will be 

introduced in the output of the circuit. However, active components can help to reduce or 

even overcome the attenuation.  A typical low-pass filter circuit with an active component 

is shown in Figure 5.7. In this filter, there is an op-amp in the loop. The resistance and the 

capacitor make this circuit a low-pass filter, because signal components in high frequencies 

cannot pass through the circuit.  
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Figure 5.7 Low-pass filter with an operational amplifier 

Figure 5.8 shows a high-pass filter. The principle is similar as the low-pass filter we 

discussed above.  
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Figure 5.8 High-pass filter with an operational amplifier 
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5.3 The Proposed Band Pass Filter  
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Figure 5.9 The proposed switched capacitor band-pass filter circuit 

Figure 5.9 shows the differential switched capacitor band-pass filter circuit implemented 

in this research. The switched capacitor band-pass filter is cascaded following the envelope 

detector that we have discussed in Chapter 4. The function of this circuit is to remove the 

large DC components in the extracted envelope and amplify the envelope amplitude. From 

Figure 5.9, it can be seen that there are three parts in the circuit. The first part, Figure 5.9 

(a) is a unity gain buffer, which is applied as a driver for the following circuits.  Then, 

Figure 5.9 (b) is a switched capacitor based high-pass filter. In Figure 5.9 (b), switches 

controlled by ɸ1 and ɸ2 and capacitors CH1 constitute high resistors. And a high pass pole 

can be implemented with these high resistors and capacitors CH0. Finally, Figure 5.9 (c) is 

a switched capacitor based low pass filter, which is a single stage active filter. In this part, 

the function of capacitor CL2 can remove the DC offset components caused by the amplifier. 

Switches controlled by ɸ1 and ɸ2 and capacitors CL0 and CL1 can provide a low pass pole. 

As a result, the complete circuit as shown in Figure 5.9 can realize a band-pass filer, and 
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this band-pass filter is employed to remove the unresolved interferences from the extracted 

envelop signals in order to eventually achieve a reliable data transmission.  
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Chapter 6 ADC 

6.1 Introduction 

Among all the functional modules in solid-state integrated circuit design, data converter 

should be one of the most widely used circuits that can be used as an interface between 

digital circuit and analog circuit. For example, when the physical signals are captured in 

the real world, they are all in analog format. To allow data post processing, we have to 

utilize converter to convert the signals from analog format to digital. Generally, there are 

two types of converters: one is DAC (digital to analog converter) which is used to convert 

digital signal to analog signal, the other one is ADC (analog to digital converter) which is 

used to convert analog signal to digital signal. ADC converters can also be divided into 

two categories: serial ADC and parallel ADC. A serial ADC outputs digital signal bit by 

bit; while a parallel ADC outputs digital signal by multi-bits simultaneously. 

With the development of wearable electronic devices and portable devices, low power 

ADC or DAC converter circuits are extensively studied by many researchers. Among all 

the different types of low power ADC applications, Successive Approximation Register 

(SAR) Analog to Digital Converter (ADC) is one of the most common implementations of 

ADC because of its simpler circuit structure and lower power consumption [75] [76].  
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6.2 Principle of ADCs 

6.2.1 Principle of SAR ADC 

A successive approximation register ADC is a particular type of analog to digital converter 

that converts a continuous analog waveform into a discrete digital representation through 

binary search algorithm [76]. It needs a few cycles of comparison to achieve one signal 

sample’s conversion. Normally the amount of the comparison cycles is the resolution of a 

SAR ADC. For example, if the resolution of a SAR ADC is 10 bit, then the output of a 

sample will be generated after 10 cycles of comparison. Higher resolution means more 

cycles of comparison, which commonly also means the SAR ADC needs more time to 

process a sampled signal. The SAR ADCs are widely used for low power and low speed 

applications. The speed is usually less than several MS (Mega Samples) per second. In 

recent years, along with the development of CMOS technology, the average device size of 

SAR ADCs is scaled down, the speed of them is however increased. Some designs can 

achieve resolution from 5 bit to 12 bit while the speed is around tens of MS per second, 

and some may be even faster [77]. Figure 6.1 shows the structure of a conventional 

successive approximation ADC.  
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Figure 6.1 Structure of conventional SAR ADC [78] 

Since a SAR ADC works in cycles. In every comparison cycle, the algorithm begins by 

comparing the voltage of the target with the middle element of the sorted array. If the target 

voltage is less than the voltage of the middle element, then the comparison goes ahead on 

the lower half of the array; if the voltage is greater than the voltage of the middle element, 

then the comparison goes ahead on the upper half of the array; if they are the same, then 

the position is returned and the comparison is finished and the conversion of a sample is 

done. The comparison operation flow of a SAR ADC is displayed in Figure 6.2.  
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Figure 6.2 Operation flow of SAR ADC  

 

 

6.2.2 Charge Redistribution SAR ADC 

A Charge Redistribution Successive Approximation Register Analog to Digital Converter 

(Charge Redistribution SAR ADC, CR SAR ADC) is a particular architecture of the SAR 

ADC implementation [78]. It normally consists of a switch capacitor array, a sample and 

hold circuit, a DAC and a comparator. Figure 6.3 shows a typical schematic of the CR SAR 

ADC. The work flow of a CR SAR ADC considered consists of three steps, which represent 

three different working modes of it. They are sampling, holding and redistribution modes. 

Before an ADC working, the capacitor array will commonly be discharged. Then the ADC 
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shown in Figure 6.3 will first work in the sampling mode. By switching Sb and S1 - Sn to 

the Vin side, all of the lower plates of the capacitors are switched to connect to the input 

signal. The comparator acts thence as an op-amp in this mode. If Sa is connected to the 

ground, which mean both Vx and Vy are zero. In such a connection, a total charge amount 

of (-2NC0 *Vin) will be stored on the upper plant of the capacitors. C0 is the capacitor unit 

in the switch-capacitor array.  

Next, ADC will work in the holding mode. Sb is switched to the Vref side, and all the 

switches from S1 to Sn on the lower plant side are switched to ground. At the meantime, Sa 

is switched off so that the charges in the upper plant of all the capacitors is applied as a 

voltage of (-Vin), which is input to the comparator as Vy.  

Finally, in the third step ADC works in the redistribution mode, the charges in the upper 

plate of each capacitor is going to be applied independently or in group as a specific voltage 

supply to compare with the reference voltage Vref to approximate the input sample signal 

and determine digital signal bits. It begins with generating the most significant bit (MSB) 

by switch Sn (the one controls the largest capacitor) to Vref. This operation will change the 

voltage Vy to (-Vin +Vref/2) from -Vin, and eventually, this voltage will become the input of 

the comparator. It can be seen from Figure 6.3 that the two input terminals are connected 

to Vy = (-Vin +Vref/2) and ground, and it means Vin is compared with Vref/2. After this 

operation, the ADC will get the first bit of the result. If Vy is larger than the potential of 

ground (-Vin +Vref/2 > 0), which mean Vin is less than Vref/2, then the first bit of output, 

which is also the most significant bit B1, will be “0”; on the contrary, if voltage Vy is less 

than the voltage of ground (-Vin +Vref/2 < 0), which means Vin is larger, then the first bit of 
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output B1 will be “1”. Each bit of output signal from the comparator will also be used to 

control the next cycle of the comparison.  

 

Figure 6.3 Switch-capacitor array scheme in CR SAR ADC [79] 

 

If the first MSB output from comparator is a high potential output, then the most significant 

bit capacitor will remain connecting with Vref; meanwhile, the neighbor capacitor, which 

is the second largest one in the switch-capacitor array will also be connected to the 

reference voltage Vref through switch Sn-1. Since the capacitance of this capacitor is 2N-2C0, 

the voltage Vy will be (–Vin +Vref/2 + Vref/4). In contrast, if the first MSB output from 

comparator is a low potential output, then the most significant bit capacitor will be 

connected to ground but not remain connecting to Vref. Meanwhile, the neighbor capacitor, 

which is the second largest one in the switch-capacitor array will be connected to Vref 

through switch Sn-1. Since the capacitance of this capacitor is 2N-2C0, the voltage Vy will be 

equal to (–Vin + Vref/4). The comparison procedure is same as the first MSB bit above. 
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After all the N cycles of comparison, the comparator will output the accurate digital value 

of the sampled input signal.  

Figure 6.4 shows the equivalent switch capacitor array circuit of a charge redistribution 

SAR ADC which is in the redistribution mode. Regarding the principle of charge 

conservation, the changes of the voltage Vy is determined by the changes of the charges 

during each cycle of comparison in the redistribution mode. In another word, during the 

switching operation, the charges stored in the switch-capacitor array in the redistribution 

mode should equal to the sampling mode. From Figure 6.4, and Vy, we can have  

ref ∗ y −  + gnd ∗ y = (−2NC ∗ in) 

Solve the equation above, we can have 

y = −  + ( ref )/Ʃ  

Where	 ∑ , 	∑ 	 2 .  

Cref is the capacitance summation of Vref-connected-capacitors, and Cgnd is the 

capacitance summation of all the grounded capacitors. N is the ADC converter’s 

resolution. 

 
 

Figure 6.4 Analog equivalent of switch-capacitor array during charge redistribution 
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From the discussion in section 6.2, it is obvious that the performance of the entire charge 

redistribution SAR ADC device is determined by the performance of switch-capacitor 

array. The merit of this charge redistribution SAR ADC is that it is a low power 

consumption device, however, there are also some constraints with it. The most to be 

considered constraint of this circuit is that the big capacitance of switch-capacitor array 

limits the speed of the whole circuit. And, the parasitic capacitance is another limitation of 

the circuit. The parasitic capacitance in this charge redistribution SAR ADC circuit 

crucially determines the performance of the switch-capacitor array and the accuracy. 

Figure 6.5 shows that the parasitic capacitances, which associate with the capacitor Ci in 

both the upper plate and the lower plate. It can be seen in Figure 6.5, the capacitor Ci is a 

designed binary weighted capacitance. It consists of polysilicon layers and metal layers. 

And normally, when the substrate below the metal layers (the lower plate) is grounded in 

solid circuit, there may be parasitic capacitance exists, such as Cpl in Figure 6.5. And this 

parasitic capacitance may be 1/5 of the total capacitance of Ci. At the meantime, the 

parasitic capacitance on the upper plate may also exists because of the interconnect ware. 

It may also take 1% - 5% of the total capacitance of Ci. 
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Figure 6.5 The parasitic capacitance of integrated capacitor 

The switch array may contribute additional error in the circuit because the switches are 

implemented with CMOS transistors. Also, since the switches are connected to the upper 

plate and the lower plate, the performance will be affected by clock feedthrough and charge 

injections due to the channel capacitance. However, if all the capacitors’ lower plant can 

be connected to Vref, yet not the input of the comparator, the effect of parasitic capacitance 

can be reduced.  

6.3 The Proposed SAR ADC 

In this research, considering the power supply and the frequency of the power carrier signal. 

The ADC in the off-body transceiver side is expected to work with less than 20MHz signal 

bandwidth and the required resolution is 10 bit with a speed of 50MSps. And the power 

consumption should be less than 1 mW. Figure 6.6 shows the architecture of the SAR ADC 

in this research. It can be seen that this circuit is a fully differential architecture. The reason 

to choose a full differential architecture is that it can suppress the noises from the substrate 
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and the sample signal, and it can also reject the common mode noise. Hence, the accuracy 

can be significantly improved.  
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Figure 6.6 SAR ADC architecture in this research 

Because the proposed SAR ADC is a fully differential architecture, the top switch array 

and the bottom switch array work in fully complementary operations. To simplify the 

description, we will only discuss the work mechanism of the top side. At the beginning, all 

the upper plants in the capacitor array should be connected to the input signal. At the 

meantime, the lower plant of the capacitors will be connected to Vref. Then, the SAR ADC 

will disconnect the connection between the input and the upper plant of the capacitors. 

With this operation, the SAR ADC realizes the first cycle of comparison between Vinp and 

Vinn. It can be noticed that in this cycle, the SAR ADC outputs the first MSB bit without 

switching any single capacitor. Following this comparison, regarding the first MSB bit, the 

higher voltage potential side between the top and bottom sides of switch-capacitor arrays 

will be re-configured by connecting its largest capacitor to ground, and the side with lower 

voltage potential will be kept unchanged. With this operation, the SAR ADC realizes the 
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second cycle of comparison between (Vinp-Vinn) and (Vref/2) or (-Vref/2). Reiterating the 

operations, the SAR ADC will eventually get the least significant bit (LBT). For each cycle 

of comparison, there will be just one single capacitor re-configured by the switch array, 

and this mechanism significantly reduces the power dissipation of the whole ADC circuit. 

The schematic is simulated in Cadence 6.1.5. The simulation result is listed below: 

 

Figure 6.7 Measured 32,658 point FFT spectrum  

 

The reason why we chose a 500kHz frequency signal is to verify high-order harmonic 

distortions for the designed circuits. Figure 6.7 demonstrates the power spectral and Table 

6.1 displays the testing result in detail. Prototype measurement results will be discussed in 

chapter 7. 
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Table 6.1 Simulation result of the proposed SAR ADC 

Specification Result 

Supply Voltage (V) 1 1 

DNL -0.8 – 0.95 -0.92 - 1 

INL -0.9 - 1 -1.1 - 1.3 

Power (mW) <1 <1 

SNDR (dB) 58.0 59 

SFDR (dB) 47.8 52.9 
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Chapter 7 Measurement and Result 

7.1 Introduction 

Besides all the discussion earlier, in this chapter, we will demonstrate the prototype of this 

research and report the measurement result.  

7.2 Class E amplifier measurement 

As we have discussed in Chapter 2, considering the application requirements on the circuit, 

a prototype was created. Figure 7.1 shows the prototype of the proposed class E amplifier 

implementation. It can be found that there are three parts in Figure 7.1. The Class E 

amplifier in the figure is the implementation of the circuit of Figure 2.3, and it is connected 

to the coupling coil of the external transceiver by a piece of coaxial cable. The coaxial 

cable can help to reduce interferences. It can also be seen in the figure that there is a coil 

of implant. It is connected by another coaxial cable to an FPGA which is used to simulate 

the in body implanted device so that to generate loading impedance changes in this research.  

 
Figure 7.1 Prototype of the Class E power amplifier 

 

Coil of the external transceiver 

Coil of the implant 

Class E amplifier 
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The measurement is carried out with a power carrier of 10 MHz sinusoidal signal. The 

measure result is displayed in Figure 7.2 and Figure 7.3. Figure 7.2 displays how the 

coupling coefficient of the inductive link changes with respect to the different distances 

between the implanted coupling coil and the external transceiver coil, as shown in Figure 

7.1. The range of distance is from 1 millimeter to 12 millimeters and the range of coupling 

coefficient is from 4% to 24%. The coupling coefficient will drop significantly with the 

increasing of coil distance. To achieve a coupling coefficient higher than 20%, we have to 

keep the coupling coil on the transceiver side close to coil on the implant side to within 3.5 

millimeters; and to achieve a coupling coefficient of 10%, the coil distance should be less 

than 7.5 millimeters. The experiment was carried out in free space to verify the 

performance of the proposed system architecture. If the experiment is done with human 

tissue, the experiment performance will be degenerated. In the future, we will optimize the 

circuit design in order to achieve a better system performance, especially when there is 

human tissue between the transceiver and receiver. 

 

Figure 7.2 Coupling coefficient versus coils distance 
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Figure 7.3 displays how the inductive link efficiency changes with respect to different 

distances between the implanted coupling coil and the external transceiver coil as shown 

in Figure 7.1. It can be found that the range of distance is the same as Figure 7.2, which is 

from 1 millimeters to 12 millimeters, and the range of inductive link efficiency changes 

from 70% to 98%. The inductive link efficiency drops significantly with the increasing of 

coil distance. From 1 millimeter to 6 millimeters, the inductive link efficiency doesn’t 

change too much (less than 5%), and after the coupling coils are separated by more than 7 

millimeters, the inductive link efficiency will drop very quick.   

 

 

Figure 7.3 Inductive Link Efficiency versus coils distance 

 

7.3 Envelope Detector and LSK Measurement 

The designed LSK including the pre-amplifier, the envelope detector, the switched-

capacitor band-pass filter and the SAR ADC were fabricated with 180nm CMOS 

technology as shown in Figure 7.4. A PCB testing circuit was created to test the chip as 
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shown in Figure 7.5.  It can be seen that the chip has a core circuit area of 750 µm x 800 

µm.  

 
Figure 7.4 Prototype chip micrograph 

 

 
Figure 7.5 Prototype PCB board of the proposed transceiver  

To test the envelope detector, a series of signals were generated by signal generator --- 

Agilent 33250A, and the signals were input to the envelope detector module in the 

prototype; then the outputs were captured by a mixed signal oscilloscope --- Agilent 

MSO614A. Results were processed and plotted in Matlab 2014. The envelope detector was 

independently tested by capturing the output signal before the output signal was sent to the 

SAR ADC. Figure 7.6 shows the extracted envelope of a square waveform which was 
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modulated by a 20k Hz signal with carrier frequency of 10 MHz in 50% modulation index.  

The amplitude difference could be clearly distinguished from the detected envelope 

because the modulation index of the input signal was relatively large, which was 50%.  

Similarly, to test the LSK demodulator performance, a series of signal were generated by 

signal generator --- Agilent 33250A, and the signals were input to the prototype and the 

output signals were captured by a mixed signal oscilloscope --- Agilent MSO614A.  A data 

signal of 1 MHz multiplied by a carrier signal in 10 MHz frequency and modulated in 6% 

modulation index was input to and demodulated by the prototype. The result was shown in 

Figure 7.7. A more distinct output was plotted in Figure 7.8 (a) and the SAR ADC output 

was plotted in Figure 7.8 (B).  

 

Figure 7.6 Extracted envelope of square wave modulated input signal (carrier frequency 
=10MHz, data rate =20 KHz, modulation index = 50%) 
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Figure 7.7 Demodulated output of a 1 MHz signal with carrier frequency of 10 MHz in 6% 

modulation index 

 
Figure 7.8 (a) Zoom-in of the output in Figure 7.7, (b) SAR ADC output  

Figure 7.9 indicates how the minimum achievable modulation index changes related to the 

increasing inductive coils distance. It can be found that the coil distance is changed from 1 

millimeter to 12 millimeters, and the corresponding minimum achievable modulation index 

(a) 

(b) 
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changes from 5% to 20%. For example, when the coils were separated in a 6 millimeters 

distance, to have a distinguish demodulation result, the input signal have to be modulated 

in a higher modulation index than 13%. In another word, this design can only detect a 

signal with modulation index of >13% when the coils distance is 6 millimeters. From the 

experiment result, it is shown that the best modulation index that we can achieve is 5%, 

which is a little different from the simulation because the performance of the designed 

circuits is degenerated after the chip was fabricated and there are several environment 

interferences on the prototype.  

Figure 7.10 shows the power efficiency changes according to the inductive coils distance. 

From the figure we can find that in this design, 4 millimeters coil distance was the most 

optimal condition to achieve the highest efficiency which was 22%. This test was carried 

in the prototype with an FPGA to simulate an implanted device so that to generate the data 

signal. A more appropriate optimal distance can be a future work direction. Table 7.1 lists 

the details of the performance of the entire transceiver.  

 

Figure 7.9 Minimum modulation index versus inductive link distance 
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Figure 7.10 Power efficiency versus inductive link distance 

 

Table 7.1 Designed transceiver performance 

Wireless Power 
Data Link 

(LSK demodulator) 
Operating 
Frequency 

10 MHz 
Fabricate 
Technology 

0.18µm 

Transmitter 
Coil 

19.8mm, 1.62µH Area 750µm x 800µm 

Receiver Coil 9.3mm, 752nH 
Current 
Consumption 

3.6mA 

Coupling 
Coefficient 

11.7% Data Rate 1Mbps 

Inductive Link 
Efficiency 

93.6% 
Carrier/Data 
Ratio 

10:1 

  
Modulation 
Index 

5-20% 
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Chapter 8 Conclusion 

Advance in science and technology changes the life style of modern human. For example, 

most of the people nowadays communicate and interact through electronic devices, which 

is very different from the conventional intercommunication method. When the technology 

is employed in medical research, new diagnosis and therapeutic methods were therefore 

created. There are a lot of new appliances, devices and software applications invented for 

health care. Implantable device and wearable devices are two typical types of devices in 

these inventions that have been extensively employed in clinic and health care markets 

because of the low cost, portability and easy operation. When researchers were exploring 

in this field, they found that smaller device size and lower power consumption made these 

devices being more widely used, especially when such devices could even perform better 

in wireless data communication and accuracy. Wireless biotelemetry, as the only 

contactless interface in both the transceiver and receiver of these devices is thus 

challenging to the researchers. Higher data rate and less energy dissipation are the two 

important objectives for such applications.  

In this work, to achieve a higher data rate and to consume less power consumption, a novel 

transceiver for biotelemetry was designed. The circuit, which included a pre-amplifier, a 

multi-phase envelope detector, a switch-capacitor based bandpass filter and a 10 bit 

resolution SAR ADC was designed and the schematic was fabricated in 180nm CMOS 

process technology. A PCB prototype was also designed and produced to test the chip.  

To reduce the power dissipation, a transistor based Class E power amplifier was designed 

for the transceiver to amplify input signals, and a pair of inductive coupling coils were 
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created for the Class E power amplifier while and FPGA based receiver were used to 

implement the transmission of energy and data. To reduce the power consumption and the 

body size, a single antenna/coil modulation solution --- LSK, which is a special scheme of 

ASK was opted for the transceiver demodulator. This is because the LSK modulation 

method has a higher data spectral efficiency than other modulation methods such as FSK 

or PSK. Meanwhile, the LSK demodulation technique allows power and data transmission 

simultaneously through one single inductive link. Through the LSK demodulator, the 

biological signals generated by the receiver were transmitted back to the transceiver. 

The transceiver could work under a variety of modulation indexes and different 

coding/decoding protocols. At the same time, it was able to impose the whole 

microelectronic system in terms of power consumption and device size. The measurement 

results indicated that the circuit could support the power carrier signal in different 

frequencies and data rates.  The area of the chip was 750µm x 800µm and the achievable 

minimum modulation index of the prototype was 5%, whereas the supported data rate was 

1 Mbps. The total current consumption was 3.6mW with a 1.65 V power supply. There is 

still a gap between the prototype testing performance and the simulation result. However, 

consider the comprehensive performance, the proposed transceiver design was 

significantly improved in both power consumption and data rate among the same designs.  
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