1,061 research outputs found

    Local Antimagic Coloring of Some Graphs

    Full text link
    Given a graph G=(V,E)G =(V,E), a bijection f:E{1,2,,E}f: E \rightarrow \{1, 2, \dots,|E|\} is called a local antimagic labeling of GG if the vertex weight w(u)=uvEf(uv)w(u) = \sum_{uv \in E} f(uv) is distinct for all adjacent vertices. The vertex weights under the local antimagic labeling of GG induce a proper vertex coloring of a graph GG. The \textit{local antimagic chromatic number} of GG denoted by χla(G)\chi_{la}(G) is the minimum number of weights taken over all such local antimagic labelings of GG. In this paper, we investigate the local antimagic chromatic numbers of the union of some families of graphs, corona product of graphs, and necklace graph and we construct infinitely many graphs satisfying χla(G)=χ(G)\chi_{la}(G) = \chi(G)

    Coarse-grained entanglement classification through orthogonal arrays

    Full text link
    Classification of entanglement in multipartite quantum systems is an open problem solved so far only for bipartite systems and for systems composed of three and four qubits. We propose here a coarse-grained classification of entanglement in systems consisting of NN subsystems with an arbitrary number of internal levels each, based on properties of orthogonal arrays with NN columns. In particular, we investigate in detail a subset of highly entangled pure states which contains all states defining maximum distance separable codes. To illustrate the methods presented, we analyze systems of four and five qubits, as well as heterogeneous tripartite systems consisting of two qubits and one qutrit or one qubit and two qutrits.Comment: 38 pages, 1 figur

    On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs

    Get PDF
    Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers 1, 2, . . . , |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal to (1 + |E(G)|) deg(v)/2. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist

    A SURVEY OF DISTANCE MAGIC GRAPHS

    Get PDF
    In this report, we survey results on distance magic graphs and some closely related graphs. A distance magic labeling of a graph G with magic constant k is a bijection l from the vertex set to {1, 2, . . . , n}, such that for every vertex x Σ l(y) = k,y∈NG(x) where NG(x) is the set of vertices of G adjacent to x. If the graph G has a distance magic labeling we say that G is a distance magic graph. In Chapter 1, we explore the background of distance magic graphs by introducing examples of magic squares, magic graphs, and distance magic graphs. In Chapter 2, we begin by examining some basic results on distance magic graphs. We next look at results on different graph structures including regular graphs, multipartite graphs, graph products, join graphs, and splitting graphs. We conclude with other perspectives on distance magic graphs including embedding theorems, the matrix representation of distance magic graphs, lifted magic rectangles, and distance magic constants. In Chapter 3, we study graph labelings that retain the same labels as distance magic labelings, but alter the definition in some other way. These labelings include balanced distance magic labelings, closed distance magic labelings, D-distance magic labelings, and distance antimagic labelings. In Chapter 4, we examine results on neighborhood magic labelings, group distance magic labelings, and group distance antimagic labelings. These graph labelings change the label set, but are otherwise similar to distance magic graphs. In Chapter 5, we examine some applications of distance magic and distance antimagic labeling to the fair scheduling of tournaments. In Chapter 6, we conclude with some open problems

    Distance magic-type and distance antimagic-type labelings of graphs

    Get PDF
    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection f from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G=(V,E) of order n is a bijection f from V to {1,2,...,n} with induced weight function w(x_{i})=\underset{x_{j}\in N(x_{i})}{\sum}f(x_{j}) \] such that f(x_{i})=i and the sequence of weights w(x_{1}),w(x_{2}),...,w(x_{n}) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i+1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n. In Chapter 2 we provide general constructions for every d at least 1 for large classes of both n and k, providing breadth and depth to the catalog of known H(n,k,d)\u27s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G=(V,E) of order n there exists an orientation of G and a companion bijection f from V to Gamma with the property that there is an element mu in Gamma (called the magic constant) such that \[ w(x)=\sum_{y\in N_{G}^{+}(x)}\overrightarrow{f}(y)-\sum_{y\in N_{G}^{-}(x)}\overrightarrow{f}(y)=\mu for every x in V where w(x) is the weight of vertex x, we say that G is orientable Gamma-distance magic}. In addition to introducing the concept, we provide numerous results on orientable Z_n distance magic graphs, where Z_n is the cyclic group of order n. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work

    Labeling Generating Matrices

    Get PDF
    This paper is mainly devoted to generate (special)(super) edge-magic labelings of graphs using matrices. Matrices are used in order to find lower bounds for the number of non-isomorphic (special)(super) edge-magic labelings of certain types of graphs. Also new applications of graph labelings are discussed
    corecore