Algebra and Discrete MathematicsVolume 28 (2019). Number 1, pp. 107–122(c) Journal "Algebra and Discrete Mathematics"

On the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs

Phaisatcha Inpoonjai and Thiradet Jiarasuksakun

Communicated by D. Simson

ABSTRACT. Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph G is called degree-magic if there exists a labelling of the edges by integers $1, 2, \ldots, |E(G)|$ such that the sum of the labels of the edges incident with any vertex v is equal to $(1 + |E(G)|) \deg(v)/2$. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the n-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even n-tuple magic rectangles to exist.

1. Introduction

We consider simple graphs without isolated vertices. If G is a graph, then V(G) and E(G) stand for the vertex set and the edge set of G, respectively. Cardinalities of these sets are called the *order* and *size* of G.

Let a graph G and a mapping f from E(G) into positive integers be given. The *index mapping* of f is the mapping f^* from V(G) into positive

The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.

²⁰¹⁰ MSC: Primary 05C78; Secondary 05B15.

Key words and phrases: regular graphs, bipartite graphs, tripartite graphs, supermagic graphs, degree-magic graphs, balanced degree-magic graphs, magic rectangles.

integers defined by

$$f^*(v) = \sum_{e \in E(G)} \eta(v, e) f(e)$$
 for every $v \in V(G)$,

where $\eta(v, e)$ is equal to 1 when e is an edge incident with vertex v, and 0 otherwise. An injective mapping f from E(G) into positive integers is called a *magic labelling* of G for an *index* λ if its index mapping f^* satisfies

$$f^*(v) = \lambda$$
 for all $v \in V(G)$.

A magic labelling f of a graph G is called a *supermagic labelling* if the set $\{f(e) : e \in E(G)\}$ consists of consecutive positive integers. We say that a graph G is *supermagic (magic)* whenever a supermagic (magic) labelling of G exists.

A bijective mapping f from E(G) into $\{1, 2, ..., |E(G)|\}$ is called a *degree-magic labelling* (or *d-magic labelling*) of a graph G if its index mapping f^* satisfies

$$f^*(v) = \frac{1 + |E(G)|}{2} \operatorname{deg}(v) \quad \text{for all} \quad v \in V(G).$$

A *d*-magic labelling f of a graph G is called *balanced* if for all $v \in V(G)$, the following equation is satisfied

$$\begin{split} |\{e \in E(G) \quad : \eta(v, e) = 1, f(e) \leqslant \lfloor |E(G)|/2 \rfloor \}| \\ &= |\{e \in E(G) : \eta(v, e) = 1, f(e) > \lfloor |E(G)|/2 \rfloor \}|. \end{split}$$

We say that a graph G is *degree-magic* (*balanced degree-magic*) or only *d-magic* when a *d*-magic (balanced *d*-magic) labelling of G exists.

The concept of magic graphs was introduced by Sedláček [1]. Later, supermagic graphs were introduced by Stewart [2]. There are now many papers published on magic and supermagic graphs; see Gallian [3] for more comprehensive references. The concept of degree-magic graphs was then introduced by Bezegová and Ivančo [4] as an extension of supermagic regular graphs. They established the basic properties of degree-magic graphs and characterized degree-magic and balanced degree-magic complete bipartite graphs in [4]. They also characterized degree-magic complete tripartite graphs in [5]. Some of these concepts are investigated in [6-8].

Magic rectangles are a natural generalization of the magic squares which have widely intrigued mathematicians and the general public. A magic (p, q)-rectangle R is a $p \times q$ array in which the first pq positive integers are placed such that the sum over each row of R is constant and the sum over each column of R is another (different if $p \neq q$) constant. Harmuth [9, 10] studied magic rectangles over a century ago and proved that

Theorem 1. ([9, 10]) For p, q > 1, there is a magic (p, q)-rectangle R if and only if $p \equiv q \pmod{2}$ and $(p, q) \neq (2, 2)$.

In 1990, Sun [11] studied the existence of magic rectangles. Later, Bier and Rogers [12] studied on balanced magic rectangles, and Bier and Kleinschmidt [13] studied about centrally symmetric and magic rectangles. Then Hagedorn [14] presented a simplified modern proof of the necessary and sufficient conditions for a magic rectangle to exist. The concept of magic rectangles was generalized to n-dimensions and several existence theorems were proven by Hagedorn [15].

We will hereinafter use the following auxiliary results from these studies.

Theorem 2. ([4]) Let G be a regular graph. Then G is supermagic if and only if it is d-magic.

Theorem 3. ([4]) Let G be a d-magic graph of even size. Then every vertex of G has an even degree and every component of G has an even size.

Theorem 4. ([4]) Let G be a balanced d-magic graph. Then G has an even number of edges and every vertex has an even degree.

Theorem 5. ([4]) Let G be a d-magic graph having a half-factor. Then 2G is a balanced d-magic graph.

Theorem 6. ([4]) Let H_1 and H_2 be edge-disjoint subgraphs of a graph G which form its decomposition. If H_1 is d-magic and H_2 is balanced d-magic, then G is a d-magic graph. Moreover, if H_1 and H_2 are both balanced d-magic, then G is a balanced d-magic graph.

Proposition 1. ([4]) For p, q > 1, the complete bipartite graph $K_{p,q}$ is *d*-magic if and only if $p \equiv q \pmod{2}$ and $(p,q) \neq (2,2)$.

Theorem 7. ([4]) The complete bipartite graph $K_{p,q}$ is balanced d-magic if and only if the following statements hold:

(i) $p \equiv q \equiv 0 \pmod{2}$; (ii) if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \ge 6$.

2. The *n*-fold self-union of complete bipartite graphs

For any integer $n \ge 1$, the *n*-fold self-union of a graph G, denoted by nG, is the union of n disjoint copies of G. For integers p, q > 1, we consider the *n*-fold self-union $nK_{p,q}$ of complete bipartite graphs. Let $nK_{p,q}$ be a d-magic graph. Since deg(v) is p or q and $f^*(v) = (npq + 1) \deg(v)/2$ for any $v \in V(nK_{p,q})$, we then have

Proposition 2. Let $nK_{p,q}$ be a d-magic graph. Then the following conditions hold:

(i) if n is odd, then $p \equiv q \pmod{2}$;

(ii) if n is even, then $p \equiv q \equiv 0 \pmod{2}$.

Theorem 8. Let $nK_{p,q}$ be a balanced d-magic graph. Then the following conditions hold:

(i) p and q are both even;

(ii) if n is odd and $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \ge 6$.

Proof. For any integer $n \ge 1$, suppose that $nK_{p,q}$ is balanced *d*-magic. By Theorem 4, *p* and *q* are both even because $nK_{p,q}$ has vertices of degrees *p* and *q*.

For any $t \in \{1, 2, ..., n\}$, let $K_{2,2s}^t$ be the $t^{\underline{th}}$ copy of a graph $K_{2,2s}$ and let $e^t(v^t)$ be its edge (vertex) corresponding to $e \in E(K_{2,2s})(v \in V(K_{2,2s}))$. Let f be a balanced d-magic labelling of a graph $nK_{2,2s}$ and let $\{u^t, v^t\}$ be a partite set of $K_{2,2s}^t$ with two vertices. Put

$$A^{t} := \{ e^{t} \in E(K^{t}_{2,2s}) : \eta(u^{t}, e^{t}) = 1, f(e^{t}) \leqslant 2ns \}$$

and

$$B^{t} := \{ e^{t} \in E(K_{2,2s}^{t}) : \eta(w^{t}, e^{t}) = 1, f(e^{t}) \leq 2ns \}.$$

Clearly, $A^t \cap B^t = \emptyset$ and $|A^t| = |B^t| = s$ because f is balanced d-magic. We can see that any edge of $K_{2,2s}^t$ is incident to either u^t or w^t and the set of labels of edges incident to a vertex of degree two is $\{r, 4ns - r + 1\}$ for some $r \in \{1, 2, \ldots, 2ns\}$. As a result, we have

$$\frac{4ns+1}{2}2s = \frac{|E(nK_{2,2s})|+1}{2}\deg(u^t) = f^*(u^t)$$
$$= \sum_{e^t \in A^t} f(e^t) + \sum_{e^t \in B^t} (4ns - f(e^t) + 1)$$
$$= (4ns+1)s + \sum_{e^t \in A^t} f(e^t) - \sum_{e^t \in B^t} f(e^t).$$

This means that $\sum_{e^t \in A^t} f(e^t) = \sum_{e^t \in B^t} f(e^t)$. Consequently,

$$(2ns+1)ns = \sum_{i=1}^{2ns} i = \sum_{t=1}^{n} (\sum_{e^t \in A^t} f(e^t) + \sum_{e^t \in B^t} f(e^t))$$
$$= \sum_{t=1}^{n} (2\sum_{e^t \in A^t} f(e^t)) = 2\sum_{t=1}^{n} (\sum_{e^t \in A^t} f(e^t)) \equiv 0 \pmod{2}.$$

Since n is odd, s is even. This proves that condition (ii) holds.

Proposition 2 allows the set of *d*-magic graphs $nK_{p,q}$ to be divided into sets of odd and even *d*-magic graphs. Inspection quickly shows that for (p,q) = (2,2), a *d*-magic graph $nK_{2,2}$ does not exist. In the next results, we prove the existence of *d*-magic graphs $nK_{p,q}$ for other even integers $(p,q) \neq (2,2)$.

Now let us consider a concept of a half-factor of a graph G defined by Bezegová and Ivančo [4]. A spanning subgraph H of a graph G is called a half-factor of G whenever $\deg_H(v) = \deg_G(v)/2$ for every vertex $v \in V(G)$. Note that a spanning subgraph of G with the edge set $E(G) \setminus E(H)$ is also a half-factor of G. Similarly, if f is a balanced d-magic labelling of G, then the spanning subgraphs with the edge sets $\{e \in E(G) : f(e) \leq \lfloor |E(G)|/2 \rfloor\}$ and $\{e \in E(G) : f(e) > \lfloor |E(G)|/2 \rfloor\}$ are half factors of G.

Theorem 9. For even integers p, q > 1. If the complete bipartite graph $K_{p,q}$ is d-magic, then the following conditions hold:

- (i) $nK_{p,q}$ is a d-magic graph for all odd integers $n \ge 3$;
- (ii) $nK_{p,q}$ is a balanced d-magic graph for all even integers $n \ge 2$.

Proof. For any integer $n \ge 2$ and $t \in \{1, 2, ..., n\}$, let $K_{p,q}^t$ be the $t^{\underline{th}}$ copy of a graph $K_{p,q}$ and let $e^t(v^t)$ be its edge (vertex) corresponding to $e \in E(K_{p,q})(v \in V(K_{p,q}))$. Since $K_{p,q}$ is *d*-magic, there is a *d*-magic labelling *g* of $K_{p,q}$. Since *p* and *q* are both even, there is a half-factor *H* of $K_{p,q}$. First suppose that $nK_{p,q} = K_{p,q}^1 \cup K_{p,q}^2 \cup \cdots \cup K_{p,q}^n$ and we consider a mapping *f* from $E(nK_{p,q})$ into positive integers given by

$$f(e^{t}) = \begin{cases} g(e) + (t-1)pq & \text{if } e \in E(H), \\ g(e) + (n-t)pq & \text{if } e \in E(K_{p,q}) \setminus E(H). \end{cases}$$

We can then check that f is a bijection from $E(nK_{p,q})$ onto $\{1, 2, \ldots, npq\}$. For any vertex $v^t \in V(K_{p,q}^t)$, we have

$$\begin{split} f^*(v^t) &= \sum_{e^t \in E(K_{p,q}^t)} \eta(v^t, e^t) f(e^t) = \sum_{e \in E(H)} \eta(v, e) (g(e) + (t-1)pq) \\ &+ \sum_{e \in E(K_{p,q}) \setminus E(H)} \eta(v, e) (g(e) + (n-t)pq) \\ &= \sum_{e \in E(H)} \eta(v, e) g(e) + \sum_{e \in E(K_{p,q}) \setminus E(H)} \eta(v, e) g(e) + (t-1)pq \deg_{H}(v) \\ &+ (n-t)pq \deg_{K_{p,q} - E(H)}(v) \\ &= \sum_{e \in E(H)} \eta(v, e) g(e) + \sum_{e \in E(K_{p,q}) \setminus E(H)} \eta(v, e) g(e) + \frac{(t-1)pq}{2} \deg_{K_{p,q}}(v) \\ &+ \frac{(n-t)pq}{2} \deg_{K_{p,q}}(v) \\ &= g^*(v) + \frac{(n-1)pq}{2} \deg_{K_{p,q}}(v) \\ &= \frac{npq+1}{2} \deg_{K_{p,q}}(v) = \frac{npq+1}{2} \deg_{K_{p,q}}(v^t). \end{split}$$

Hence f is d-magic and $nK_{p,q}$ is a d-magic graph for all integers $n \ge 2$. If n is even, then for any $v^t \in V(K_{p,q}^t)$ and $t \le n/2$, we have

$$\begin{split} |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) = 1, f(e^t) \leqslant npq/2\}| \\ &= \deg_H(v) = \frac{\deg_{K_{p,q}}(v)}{2} = \deg_{K_{p,q}-E(H)}(v) \\ &= |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) = 1, f(e^t) > npq/2\}|, \end{split}$$

and for any $v^t \in V(K_{p,q}^t)$ and t > n/2, we have

$$\begin{split} |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) &= 1, f(e^t) \leqslant npq/2\}| \\ &= \deg_{K_{p,q} - E(H)}(v) = \frac{\deg_{K_{p,q}}(v)}{2} = \deg_H(v) \\ &= |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) = 1, f(e^t) > npq/2\}|. \end{split}$$

Thus f is balanced d-magic and $nK_{p,q}$ is a balanced d-magic graph for all even integers $n \ge 2$.

Combining Proposition 1 and Theorem 9, we obtain the following result.

Proposition 3. Let p and q be even positive integers with $(p,q) \neq (2,2)$. Then the following conditions hold:

(i) $nK_{p,q}$ is a d-magic graph for all odd integers $n \ge 1$;

(ii) $nK_{p,q}$ is a balanced d-magic graph for all even integers $n \ge 2$.

Corollary 1. Let p and q be even positive integers with $(p,q) \neq (2,2)$. If p = q, then $nK_{p,q}$ is a supermagic graph.

Proof. Follows from Theorem 2 and Proposition 3.

Example 1. Consider the complete bipartite graph $K_{2,6}$. One can confirm that $K_{2,6}$ is *d*-magic, but it is not a balanced *d*-magic graph (see Figure 1), and the labels on edges $u_i v_j$ of $K_{2,6}$, where $1 \leq i \leq 2$ and $1 \leq j \leq 6$, are shown in Table 1.

Then we can construct a balanced *d*-magic graph $4K_{2,6}$ (see Figure 2) with the labels on edges $u_i^t v_j^t$ of $4K_{2,6}$, where $1 \leq i \leq 2, 1 \leq j \leq 6$ and $1 \leq t \leq 4$, in Table 2.

Theorem 10. Let p and q be integers with p, q > 1. If the complete bipartite graph $K_{p,q}$ is balanced d-magic, then $nK_{p,q}$ is a balanced d-magic graph for all integers $n \ge 2$.

Proof. For any integer $n \ge 2$ and $t \in \{1, 2, ..., n\}$, let $K_{p,q}^t$ be the $t^{\underline{th}}$ copy of a graph $K_{p,q}$ and let $e^t(v^t)$ be its edge (vertex) corresponding to $e \in E(K_{p,q})(v \in V(K_{p,q}))$. Since $K_{p,q}$ is balanced *d*-magic, there is a balanced *d*-magic labelling *g* of $K_{p,q}$. Let $H'_1 := \{e \in E(K_{p,q}) : g(e) \le \lfloor pq/2 \rfloor\}$ and $H'_2 := \{e \in E(K_{p,q}) : g(e) > \lfloor pq/2 \rfloor\}$. Thus, the spanning subgraphs H_1 and H_2 of $K_{p,q}$ with the edge sets H'_1 and H'_2 are half-factors of $K_{p,q}$, respectively. Suppose that $nK_{p,q} = K^1_{p,q} \cup K^2_{p,q} \cup \cdots \cup K^n_{p,q}$ and we consider a mapping *f* from $E(nK_{p,q})$ into positive integers given by

$$f(e^{t}) = \begin{cases} g(e) + (t-1)pq & \text{if } e \in H'_{1}, \\ g(e) + (n-t)pq & \text{if } e \in H'_{2}. \end{cases}$$

FIGURE 1. A *d*-magic complete bipartite graph $K_{2,6}$ with 8 vertices and 12 edges.

Vertices	v_1	v_2	v_3	v_4	v_5	v_6
u_1	1	11	3	9	8	7
u_2	12	2	10	4	5	6

TABLE 1. The labels on edges of d-magic complete bipartite graph $K_{2,6}$.

FIGURE 2. A balanced *d*-magic graph $4K_{2,6}$ with 32 vertices and 48 edges.

Vertices	v_1^1	v_{2}^{1}	v_3^1	v_4^1	v_5^1	v_6^1
u_{1}^{1}	37	47	39	9	8	7
u_{2}^{1}	12	2	10	40	41	42
Vertices	v_{1}^{2}	v_{2}^{2}	v_{3}^{2}	v_{4}^{2}	v_{5}^{2}	v_{6}^{2}
u_1^2	25	35	27	21	20	19
u_{2}^{2}	24	14	22	28	29	30
Vertices	v_1^3	v_2^3	v_{3}^{3}	v_{4}^{3}	v_{5}^{3}	v_{6}^{3}
u_1^3	13	23	15	33	32	31
u_{2}^{3}	36	26	34	16	17	18
Vertices	v_{1}^{4}	v_{2}^{4}	v_{3}^{4}	v_4^4	v_{5}^{4}	v_{6}^{4}
u_1^4	1	11	3	45	44	43
u_{2}^{4}	48	38	46	4	5	6

TABLE 2. The labels on edges of balanced *d*-magic graph $4K_{2,6}$.

We can then check that f is a bijection from $E(nK_{p,q})$ onto $\{1, 2, \ldots npq\}$. For any vertex $v^t \in V(K_{p,q}^t)$, we have

$$\begin{split} f^*(v^t) &= \sum_{e^t \in E(K_{p,q}^t)} \eta(v^t, e^t) f(e^t) \\ &= \sum_{e \in H_1'} \eta(v, e) (g(e) + (t-1)pq) + \sum_{e \in H_2'} \eta(v, e) (g(e) + (n-t)pq) \\ &= \sum_{e \in H_1'} \eta(v, e) g(e) + \sum_{e \in H_2'} \eta(v, e) g(e) + (t-1)pq \deg_{H_1}(v) \\ &+ (n-t)pq \deg_{H_2}(v) \\ &= \sum_{e \in H_1'} \eta(v, e) g(e) + \sum_{e \in H_2'} \eta(v, e) g(e) + \frac{(t-1)pq}{2} \deg_{K_{p,q}}(v) \\ &+ \frac{(n-t)pq}{2} \deg_{K_{p,q}}(v) \\ &= g^*(v) + \frac{(n-1)pq}{2} \deg_{K_{p,q}}(v) \\ &= \frac{npq+1}{2} \deg_{K_{p,q}}(v) \\ &= \frac{npq+1}{2} \deg_{K_{p,q}}(v) = \frac{npq+1}{2} \deg_{K_{p,q}}(v^t). \end{split}$$

Hence f is a d-magic labelling. For $v^t \in V(K_{p,q}^t)$ and $t \leq (n+1)/2$, we have

$$\begin{split} |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) &= 1, f(e^t) \leq \lfloor npq/2 \rfloor\}| \\ &= \deg_{H_1}(v) = \frac{\deg_{K_{p,q}}(v)}{2} = \deg_{H_2}(v) \\ &= |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) = 1, f(e^t) > \lfloor npq/2 \rfloor\}|, \end{split}$$

and for any $v^t \in V(K_{p,q}^t)$ and t > (n+1)/2, we have

$$\begin{split} |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) &= 1, f(e^t) \leq \lfloor npq/2 \rfloor\}| \\ &= \deg_{H_2}(v) = \frac{\deg_{K_{p,q}}(v)}{2} = \deg_{H_1}(v) \\ &= |\{e^t \in E(K_{p,q}^t) : \eta(v^t, e^t) = 1, f(e^t) > \lfloor npq/2 \rfloor\}|. \end{split}$$

Hence f is balanced d-magic. Therefore, $nK_{p,q}$ is a balanced d-magic graph for all integers $n \ge 2$.

According to Theorems 7 and 10, we obtain the following result.

Proposition 4. Let p and q be even positive integers and the following condition holds:

if $p \equiv q \equiv 2 \pmod{4}$, then $\min\{p, q\} \ge 6$.

Then $nK_{p,q}$ is a balanced d-magic graph for all integers $n \ge 1$.

3. A construction of supermagic regular graphs

In this section we construct supermagic regular graphs by applying the existence of the *n*-fold self-union of complete bipartite graphs. Herein, we consider the ξ -multiplication of a graph introduced by Bezegová and Ivančo [4] to prove the next result. Let G be a graph and ξ be a mapping from V(G) into the positive integers. The ξ -multiplication of G, denoted by G^{ξ} , is a graph whose vertices are all ordered pairs (v, i), where $v \in V(G)$ and $1 \leq i \leq \xi(v)$, and two vertices (u, i), (v, j) are joined by an edge in G^{ξ} if and only if u, v are adjacent in G. Note that G^{ξ} is isomorphic to lexicographic product $G[D_n]$ of G and a totally disconnected graph D_n , when $\xi(v) = n$ for all $v \in V(G)$.

Proposition 5. For any integer $n \ge 1$ and $t \in \{1, 2, ..., n\}$. Let G^t be the $t^{\underline{th}}$ copy of a graph G and let v^t be its vertex corresponding to $v \in V(G)$. Let ξ be a mapping from V(nG) into even positive integers such that the following conditions hold:

(i) $\xi(v^t) = \xi(v^s)$ for all $t, s \in \{1, 2, \dots, n\}$;

(ii) for any adjacent vertices $u^t, v^t \in V(G^t)$, if $\xi(u^t) \equiv \xi(v^t) \equiv 2 \pmod{4}$, then $\min\{\xi(u^t), \xi(v^t)\} \ge 6$.

Then the ξ -multiplication $(nG)^{\xi}$ is a balanced d-magic graph.

Proof. For any integer $n \ge 1$ and $t \in \{1, 2, ..., n\}$. Let edge $e^t = u^t v^t \in E(G^t)$ and let $(G_{e^t}^t)^{\xi}$ be a subgraph of $(G^t)^{\xi}$ induced by $\{(u^t, i) : 1 \le i \le \xi(u^t)\} \cup \{(v^t, j) : 1 \le j \le \xi(v^t)\}$. Evidently, $(G_{e^t}^t)^{\xi}$ is isomorphic to a complete bipartite graph $K_{\xi(u^t),\xi(v^t)}$. According to Theorem 7, $K_{\xi(u^t),\xi(v^t)}$ is a balanced *d*-magic graph. By condition (i), we obtain that $K_{\xi(u^t),\xi(v^t)}$ is isomorphic to $K_{\xi(u^s),\xi(v^s)}$ for all $t, s \in \{1, 2, ..., n\}$. Thus, by Proposition 4, $\bigcup_{t=1}^n K_{\xi(u^t),\xi(v^t)}$ is a balanced *d*-magic graph. Since $\bigcup_{t=1}^n (G_{e^t}^t)^{\xi}$ is isomorphic to $\bigcup_{t=1}^n K_{\xi(u^t),\xi(v^t)}$, $\bigcup_{t=1}^n (G_{e^t}^t)^{\xi}$ is a balanced *d*-magic graph. The ξ -multiplication $(nG)^{\xi}$ is decomposed into edge-disjoint subgraphs $\bigcup_{t=1}^n (G_{e^t}^t)^{\xi}$ for all $e^t \in E(G^t)$. Therefore, by Theorem 6, $(nG)^{\xi}$ is a balanced *d*-magic graph. □

Note that the subgraph of $(nG)^{\xi}$ induced by $\bigcup_{t=1}^{n} \{ (v^t, 1) : v^t \in V(G^t) \}$ is isomorphic to nG. Thus, by Proposition 5, for any graph G there is a balanced *d*-magic graph which contains an induced subgraph isomorphic to nG for all integers $n \ge 1$.

We end this section with a similar result for supermagic regular graphs.

Theorem 11. For any graph G there is a supermagic regular graph which contains an induced subgraph isomorphic to nG for all integers $n \ge 1$.

Proof. Let G_1 be a graph obtained from G by attaching a pendant edge at each vertex of G. For any integer $n \ge 1$ and $t \in \{1, 2, ..., n\}$. Let $G^t(G_1^t)$ be the $t^{\underline{th}}$ copy of a graph $G(G_1)$. Put $m := |V(G^t)|$ and denote the vertices of G_1^t by $u_1^t, u_2^t, ..., u_m^t, w_1^t, w_2^t, ..., w_m^t$ in such a way that $V(G^t) = \{u_1^t, ..., u_m^t\}$ and $u_i^t w_i^t$, for all $i \in \{1, ..., m\}$, is an attached edge of G_1^t . Consider a mapping ξ from $V(nG_1)$ into positive integers given by

$$\xi(u_i^t) = 4$$
 and $\xi(w_i^t) = 4(1 + \Delta - \deg_{G^t}(u_i^t))$

for all $i \in \{1, \ldots, m\}$ and $t \in \{1, 2, \ldots, n\}$, where Δ is the maximum degree of G^t . Let $H_1 := (nG_1)^{\xi}$. By Proposition 5, H_1 is a balanced *d*-magic graph.

We set

$$U := \bigcup_{t=1}^{n} \bigcup_{i=1}^{m} \bigcup_{j=1}^{\xi(u_i^t)} \{ (u_i^t, j) \} \text{ and } W := \bigcup_{t=1}^{n} \bigcup_{i=1}^{m} \bigcup_{j=1}^{\xi(w_i^t)} \{ (w_i^t, j) \}.$$

It is clear that $U \cap W = \emptyset$ and $U \cup W = V(H_1)$. The set W is an independent set of H_1 and |W| = 4nh, where $h = \sum_{i=1}^m (1 + \Delta - \deg_{G^t}(u_i^t))$ for any $t \in \{1, 2, \ldots, n\}$. Consider h, we have

$$h = m + \sum_{i=1}^{m} (\Delta - \deg_{G^t}(u_i^t)) \ge m > \Delta.$$

Moreover, $h = (1 + \Delta)m - \sum_{i=1}^{m} \deg_{G^t}(u_i^t) = (1 + \Delta)m - 2|E(G^t)|$. Thus, if Δ is odd, then h is even. Since $h > \Delta$ and both of h, Δ are not odd, there is a Δ -regular graph R order h. According to Proposition 5, $(nR)[D_4]$ is balanced d-magic, 4Δ -regular graph of order 4nh. Therefore, there is a balanced d-magic graph H_2 , 4Δ -regular graph, such that $V(H_2) = W$.

Let H denote the graph such that the graphs H_1 and H_2 form its decomposition. As H_1 and H_2 are balanced *d*-magic, by Theorem 6, the

graph H is balanced d-magic. Clearly, any vertex of U has degree $4(1 + \Delta)$ in H_1 . Similarly, the degree of any vertex belonging to W is 4 in H_1 and 4Δ in H_2 . So, H is a regular graph of degree $4(1 + \Delta)$. According to Theorem 2, the graph H is supermagic. Therefore, H is a desired graph because its subgraph induced by $\bigcup_{i=1}^{n} \bigcup_{i=1}^{m} \{(u_i^t, 1)\}$ is isomorphic to nG. \Box

Example 2. Considering a path P_2 , we can construct a supermagic regular graph H which contains an induced subgraph isomorphic to $3P_2$ (see Figure 3), and the labels on edges $u_i^t v_j^t, v_i^t x_j^t, x_i^t y_j^t$ and $u_i^t y_j^t$ of H, where $1 \leq i \leq 4, 1 \leq j \leq 4$ and $1 \leq t \leq 3$, are shown in Table 3.

FIGURE 3. A supermagic regular graph H containing an induced subgraph isomorphic to $3P_2$.

4. The n-tuple magic rectangles

In this section we introduce *n*-tuple magic rectangles and obtain a sufficient condition for even *n*-tuple magic rectangles to exist.

Definition 1. An *n*-tuple magic (p,q)-rectangle $R := (r_{i,j}^1)(r_{i,j}^2) \dots (r_{i,j}^n)$ is a class of *n* arrays in which each array has *p* rows and *q* columns, and the first npq positive integers are placed such that the sum over each row of any array of *R* is constant and the sum over each column of *R* is another (different if $p \neq q$) constant.

Let R be an n-tuple magic (p,q)-rectangle. Since each row sum of any array of R is q(npq+1)/2 and each column sum of R is p(npq+1)/2 and both are integer, we have

v_1^1 49541391447380117116 v_2^1 56511421377875114119 v_3^1 14113852551151187677 v_4^1 14014353501201137974 y_1^1 161871922530163168 y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231441404447 y_3^3 13613162571101078284 y_3^2 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>									
v_2^1 56511421377875114119 v_3^1 14113852551151187677 v_4^1 14014353501201137974 y_1^1 161871922530163168 y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_3^3 u_3^3 x_1^3 x_2^3 x	Vertices	u_1^1	u_{2}^{1}	u_{3}^{1}	u_{4}^{1}	x_1^1	x_{2}^{1}	x_{3}^{1}	x_{4}^{1}
v_3^1 14113852551151187677 v_4^1 14014353501201137974 y_1^1 161871922530163168 y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 1741764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542 v_1^2 17317020231491464447 y_3^2 13613162571101078283 v_1^3 129134	v_1^1	49	54	139	144	73	80	117	116
v_4^1 14014353501201137974 y_1^1 161871922530163168 y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17317020231491464447 y_3^2 17317020231491464447 y_3^2 17317021181481514542Vertices u_1^3 u_2^3 u_3^3	v_2^1	56	51	142	137	78	75	114	119
y_1^1 161871922530163168 y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3	v_{3}^{1}	141	138	52	55	115	118	76	77
y_2^1 831901853227166161 y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^3 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_3^3 u_3^3 u_3^3 x_1^3 x_2^3 x_3^3 x_1^3 v_1^3 12913459641051128584 v_3^3 61581321358386108109 v_1^3 136581331308881111106 y_3^3 1310180183<	v_4^1	140	143	53	50	120	113	79	74
y_3^1 189186471651622831 y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_3^3 u_3^3 x_1^3 x_2^3 x_3^3 x_3^3 v_1^3 12913459641051128584 v_2^3 13613162571101078287 v_3^3 61581321358386108109 v_3^3 13101801833734156155 y_3^3 1310180183373	y_1^1	1	6	187	192	25	30	163	168
y_4^1 188191521641672926Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^1 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_4^3 x_1^3 x_2^3 x_3^3 x_4^3 v_1^3 12913459641051128584 v_3^3 61581321358386108109 v_4^3 60631331308881111106 y_1^3 17718211161531583540 y_3^3 13101801833734156159	y_2^1	8	3	190	185	32	27	166	161
Vertices u_1^2 u_2^2 u_3^2 u_4^2 x_1^2 x_2^2 x_3^2 x_4^2 v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^2 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_4^3 x_1^3 x_2^3 x_3^3 x_4^3 v_1^3 12913459641051128584 v_3^3 61581321358386108109 v_4^3 60631331308881111106 y_1^3 17718211161531583540 y_3^3 13101801833734156159	y_3^1	189	186	4	7	165	162	28	31
v_1^2 65701231288996101100 v_2^2 7267126121949198103 v_3^3 1251226871991029293 v_4^2 1241276966104979590 y_1^2 17221711764146147152 y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_4^3 x_1^3 x_2^3 x_3^3 x_4^3 v_1^3 12913459641051128584 v_3^3 61581321358386108109 v_4^3 60631331308881111106 y_1^3 17718211161531583540 y_3^3 13101801833734156159	y_4^1	188	191	5	2	164	167	29	26
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Vertices	u_1^2	u_{2}^{2}	u_{3}^{2}	u_{4}^{2}	x_1^2	x_{2}^{2}	x_{3}^{2}	x_{4}^{2}
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v_{1}^{2}	65	70	123	128	89	96	101	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_2^2	72	67	126	121	94	91	98	103
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{3}^{2}	125	122	68	71	99	102	92	93
y_2^2 24191741694843150145 y_3^2 17317020231491464447 y_4^2 17217521181481514542Vertices u_1^3 u_2^3 u_3^3 u_4^3 x_1^3 x_2^3 x_3^3 x_4^3 v_1^3 12913459641051128584 v_2^3 13613162571101078287 v_3^3 61581321358386108109 v_4^3 60631331308881111106 y_1^3 17718211161531583540 y_2^3 1841791491601553833 y_3^3 13101801833734156159	v_4^2	124	127	69	66	104	97	95	90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y_1^2	17	22	171	176	41	46	147	152
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y_2^2	24	19	174	169	48	43	150	145
Vertices u_1^3 u_2^3 u_3^3 u_4^3 x_1^3 x_2^3 x_3^3 x_4^3 v_1^3 12913459641051128584 v_2^3 13613162571101078287 v_3^3 61581321358386108109 v_4^3 60631331308881111106 y_1^3 17718211161531583540 y_2^3 1841791491601553833 y_3^3 13101801833734156159	y_{3}^{2}	173	170	20	23	149	146	44	47
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	y_4^2	172	175	21	18	148	151	45	42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vertices	u_1^3	u_{2}^{3}	u_{3}^{3}	u_{4}^{3}	x_1^3	x_{2}^{3}	x_{3}^{3}	x_{4}^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{1}^{3}	129	134	59	64	105	112	85	84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{2}^{3}	136	131	62	57	110	107	82	87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	v_{3}^{3}	61	58	132	135	83	86	108	109
y_2^3 1841791491601553833 y_3^3 13101801833734156159		60	63	133	130	88	81	111	106
y_2^3 1841791491601553833 y_3^3 13101801833734156159	y_{1}^{3}	177	182	11	16	153	158	35	40
		184	179	14	9	160	155	38	33
	y_{3}^{3}	13	10	180	183	37	34	156	159
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	y_{4}^{3}	12	15	181	178	36	39	157	154

TABLE 3. The labels on edges of supermagic regular graph ${\cal H}.$

Proposition 6. If R is an n-tuple magic (p,q)-rectangle, then the following conditions hold:

- (i) if n is odd, then $p \equiv q \pmod{2}$;
- (ii) if n is even, then $p \equiv q \equiv 0 \pmod{2}$.

Proposition 6 allows the set of n-tuple magic rectangles to be divided into sets of odd and even rectangles. We quickly see that an n-tuple magic (2, 2)-rectangle does not exist, because the row sums and column sums of any array are different.

Theorem 12. For any integer $n \ge 1$ and even integers p, q > 1, let $K_{p,q}^t$ be the $t^{\underline{th}}$ copy of $K_{p,q}$ for all $t \in \{1, 2, ..., n\}$. A mapping f from $E(nK_{p,q})$ into positive integers given by

$$f(u_i^t v_j^t) = r_{i,j}^t \quad for \ every \quad u_i^t v_j^t \in E(K_{p,q}^t),$$

is a d-magic labelling of $nK_{p,q}$ if and only if $R := (r_{i,j}^1)(r_{i,j}^2) \dots (r_{i,j}^n)$ is an n-tuple magic (p,q)-rectangle.

Proof. Let $U^t = \{u_1^t, u_2^t, \ldots, u_p^t\}$ and $V^t = \{v_1^t, v_2^t, \ldots, v_q^t\}$ be partite sets of $K_{p,q}^t$. Suppose that R is an n-tuple magic (p,q)-rectangle. It is easy to see that the map $f : E(nK_{p,q}) \to \{1, 2, \ldots, npq\}$ is bijective. For any $u_i^t \in U^t$, we have

$$f^*(u_i^t) = \sum_{j=1}^q f(u_i^t v_j^t) = \sum_{j=1}^q r_{i,j}^t = \frac{q(npq+1)}{2} = \frac{npq+1}{2} \deg(u_i^t),$$

and for any $v_i^t \in V^t$, we have

$$f^*(v_j^t) = \sum_{i=1}^p f(u_i^t v_j^t) = \sum_{i=1}^p r_{i,j}^t = \frac{p(npq+1)}{2} = \frac{npq+1}{2} \deg(v_j^t).$$

i.e., f is a d-magic labelling of $nK_{p,q}$.

Now suppose that f is a d-magic labelling of $nK_{p,q}$. For all $1 \leq i \neq s \leq p$, we have

$$\sum_{j=1}^{q} r_{i,j}^{t} = \sum_{j=1}^{q} f(u_{i}^{t}v_{j}^{t}) = f^{*}(u_{i}^{t}) = f^{*}(u_{s}^{t}) = \sum_{j=1}^{q} f(u_{s}^{t}v_{j}^{t}) = \sum_{j=1}^{q} r_{s,j}^{t}.$$
 (1)

For all $1 \leq j \neq z \leq q$, we have

$$\sum_{i=1}^{p} r_{i,j}^{t} = \sum_{i=1}^{p} f(u_{i}^{t}v_{j}^{t}) = f^{*}(v_{j}^{t}) = f^{*}(v_{z}^{t}) = \sum_{i=1}^{p} f(u_{i}^{t}v_{z}^{t}) = \sum_{i=1}^{p} r_{i,z}^{t}.$$
 (2)

By (1), we have

$$\sum_{j=1}^{q} r_{i,j}^{t} = \sum_{j=1}^{q} r_{s,j}^{t} = \frac{q(npq+1)}{2}.$$

By (2), we have

$$\sum_{i=1}^{p} r_{i,j}^{t} = \sum_{i=1}^{p} r_{i,z}^{t} = \frac{p(npq+1)}{2}$$

Therefore, R is an *n*-tuple magic (p, q)-rectangle.

According to Proposition 3 and Theorem 12, we obtain the following result.

Proposition 7. Let p and q be even positive integers with $(p,q) \neq (2,2)$. Then an n-tuple magic (p,q)-rectangle exists.

References

- J. Sedláček, Theory of graphs and its applications, in: Problem 27, Proc. Symp. Smolenice, Praha, 1963, pp. 163-164.
- [2] B.M. Stewart, Magic graphs, Canad. J. Math., Vol. 18, 1966, pp. 1031-1059.
- [3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Vol. 16, 2009, #DS6.
- [4] L'. Bezegová, J. Ivančo, An extension of regular supermagic graphs, Discrete Math., Vol. 310, 2010, pp. 3571-3578.
- [5] L'. Bezegová, J. Ivančo, A characterization of complete tripartite degree-magic graphs, Discuss. Math. Graph Theory, Vol. 32, 2012, pp. 243-253.
- [6] L'. Bezegová, J. Ivančo, On conservative and supermagic graphs, Discrete Math., Vol. 311, 2011, pp. 2428-2436.
- [7] L'. Bezegová, J. Ivančo, Number of edges in degree-magic graphs, Discrete Math., Vol. 313, 2013, pp. 1349-1357.
- [8] L'. Bezegová, Balanced degree-magic complements of bipartite graphs, Discrete Math., Vol. 313, 2013, pp. 1918-1923.
- [9] T. Harmuth, Über magische Quadrate und ähniche Zahlenfiguren, Arch. Math. Phys., Vol. 66, 1881, pp. 286-313.
- [10] T. Harmuth, Uber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys., Vol. 66, 1881, pp. 413-447.
- [11] R. Sun, Existence of magic rectangles, Nei Mongol Daxue Xuebao Ziran Kexue, Vol. 21, No. 1, 1990, pp. 10-16.
- [12] T. Bier, G. Rogers, Balanced Magic Rectangles, European J. Combin., Vol. 14, 1993, pp. 285-299.

- [13] T. Bier, A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math., Vol. 176, 1997, pp. 29-42.
- [14] T.R. Hagedorn, Magic rectangles revisited, Discrete Math., Vol. 207, 1999, pp. 65-72.
- [15] T.R. Hagedorn, On the existence of magic n-dimensional rectangles, Discrete Math., Vol. 207, 1999, pp. 53-63.

CONTACT INFORMATION

P. Inpoonjai	Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Chiangrai, 99, Sai Khao, Phan District, Chiang Rai, 57120, Thailand <i>E-Mail(s)</i> : phaisatcha_in@outlook.com
T. Jiarasuksakun	Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand <i>E-Mail(s)</i> : thiradet.jia@kmutt.ac.th

Received by the editors: 28.12.2016 and in final form 07.03.2017.

122