# On the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs 

Phaisatcha Inpoonjai and Thiradet Jiarasuksakun

Communicated by D. Simson


#### Abstract

Magic rectangles are a classical generalization of the well-known magic squares, and they are related to graphs. A graph $G$ is called degree-magic if there exists a labelling of the edges by integers $1,2, \ldots,|E(G)|$ such that the sum of the labels of the edges incident with any vertex $v$ is equal to $(1+|E(G)|) \operatorname{deg}(v) / 2$. Degree-magic graphs extend supermagic regular graphs. In this paper, we present a general proof of the necessary and sufficient conditions for the existence of degree-magic labellings of the $n$-fold self-union of complete bipartite graphs. We apply this existence to construct supermagic regular graphs and to identify the sufficient condition for even $n$-tuple magic rectangles to exist.


## 1. Introduction

We consider simple graphs without isolated vertices. If $G$ is a graph, then $V(G)$ and $E(G)$ stand for the vertex set and the edge set of $G$, respectively. Cardinalities of these sets are called the order and size of $G$.

Let a graph $G$ and a mapping $f$ from $E(G)$ into positive integers be given. The index mapping of $f$ is the mapping $f^{*}$ from $V(G)$ into positive

[^0]integers defined by
$$
f^{*}(v)=\sum_{e \in E(G)} \eta(v, e) f(e) \quad \text { for every } \quad v \in V(G)
$$
where $\eta(v, e)$ is equal to 1 when $e$ is an edge incident with vertex $v$, and 0 otherwise. An injective mapping $f$ from $E(G)$ into positive integers is called a magic labelling of $G$ for an index $\lambda$ if its index mapping $f^{*}$ satisfies
$$
f^{*}(v)=\lambda \quad \text { for all } \quad v \in V(G)
$$

A magic labelling $f$ of a graph $G$ is called a supermagic labelling if the set $\{f(e): e \in E(G)\}$ consists of consecutive positive integers. We say that a graph $G$ is supermagic (magic) whenever a supermagic (magic) labelling of $G$ exists.

A bijective mapping $f$ from $E(G)$ into $\{1,2, \ldots,|E(G)|\}$ is called a degree-magic labelling (or d-magic labelling) of a graph $G$ if its index mapping $f^{*}$ satisfies

$$
f^{*}(v)=\frac{1+|E(G)|}{2} \operatorname{deg}(v) \quad \text { for all } \quad v \in V(G)
$$

A $d$-magic labelling $f$ of a graph $G$ is called balanced if for all $v \in V(G)$, the following equation is satisfied

$$
\begin{aligned}
\mid\{e \in E(G) & : \eta(v, e)=1, f(e) \leqslant\lfloor|E(G)| / 2\rfloor\} \mid \\
& =|\{e \in E(G): \eta(v, e)=1, f(e)>\lfloor|E(G)| / 2\rfloor\}|
\end{aligned}
$$

We say that a graph $G$ is degree-magic (balanced degree-magic) or only $d$-magic when a $d$-magic (balanced $d$-magic) labelling of $G$ exists.

The concept of magic graphs was introduced by Sedláček [1]. Later, supermagic graphs were introduced by Stewart [2]. There are now many papers published on magic and supermagic graphs; see Gallian [3] for more comprehensive references. The concept of degree-magic graphs was then introduced by Bezegová and Ivančo [4] as an extension of supermagic regular graphs. They established the basic properties of degree-magic graphs and characterized degree-magic and balanced degree-magic complete bipartite graphs in [4]. They also characterized degree-magic complete tripartite graphs in [5]. Some of these concepts are investigated in [6-8].

Magic rectangles are a natural generalization of the magic squares which have widely intrigued mathematicians and the general public. A magic $(p, q)$-rectangle $R$ is a $p \times q$ array in which the first $p q$ positive
integers are placed such that the sum over each row of $R$ is constant and the sum over each column of $R$ is another (different if $p \neq q$ ) constant. Harmuth $[9,10]$ studied magic rectangles over a century ago and proved that

Theorem 1. ([9, 10]) For $p, q>1$, there is a magic $(p, q)$-rectangle $R$ if and only if $p \equiv q(\bmod 2)$ and $(p, q) \neq(2,2)$.

In 1990, Sun [11] studied the existence of magic rectangles. Later, Bier and Rogers [12] studied on balanced magic rectangles, and Bier and Kleinschmidt [13] studied about centrally symmetric and magic rectangles. Then Hagedorn [14] presented a simplified modern proof of the necessary and sufficient conditions for a magic rectangle to exist. The concept of magic rectangles was generalized to $n$-dimensions and several existence theorems were proven by Hagedorn [15].

We will hereinafter use the following auxiliary results from these studies.

Theorem 2. ([4]) Let $G$ be a regular graph. Then $G$ is supermagic if and only if it is d-magic.

Theorem 3. ([4]) Let $G$ be a d-magic graph of even size. Then every vertex of $G$ has an even degree and every component of $G$ has an even size.

Theorem 4. ([4]) Let $G$ be a balanced d-magic graph. Then $G$ has an even number of edges and every vertex has an even degree.

Theorem 5. ([4]) Let $G$ be a d-magic graph having a half-factor. Then $2 G$ is a balanced d-magic graph.

Theorem 6. ([4]) Let $H_{1}$ and $H_{2}$ be edge-disjoint subgraphs of a graph $G$ which form its decomposition. If $H_{1}$ is d-magic and $H_{2}$ is balanced d-magic, then $G$ is a d-magic graph. Moreover, if $H_{1}$ and $H_{2}$ are both balanced d-magic, then $G$ is a balanced d-magic graph.

Proposition 1. ([4]) For $p, q>1$, the complete bipartite graph $K_{p, q}$ is $d$-magic if and only if $p \equiv q(\bmod 2)$ and $(p, q) \neq(2,2)$.

Theorem 7. ([4]) The complete bipartite graph $K_{p, q}$ is balanced d-magic if and only if the following statements hold:
(i) $p \equiv q \equiv 0(\bmod 2)$;
(ii) if $p \equiv q \equiv 2(\bmod 4)$, then $\min \{p, q\} \geqslant 6$.

## 2. The $n$-fold self-union of complete bipartite graphs

For any integer $n \geqslant 1$, the $n$-fold self-union of a graph $G$, denoted by $n G$, is the union of $n$ disjoint copies of $G$. For integers $p, q>1$, we consider the $n$-fold self-union $n K_{p, q}$ of complete bipartite graphs. Let $n K_{p, q}$ be a $d$-magic graph. Since $\operatorname{deg}(v)$ is $p$ or $q$ and $f^{*}(v)=(n p q+1) \operatorname{deg}(v) / 2$ for any $v \in V\left(n K_{p, q}\right)$, we then have

Proposition 2. Let $n K_{p, q}$ be a d-magic graph. Then the following conditions hold:
(i) if $n$ is odd, then $p \equiv q(\bmod 2)$;
(ii) if $n$ is even, then $p \equiv q \equiv 0(\bmod 2)$.

Theorem 8. Let $n K_{p, q}$ be a balanced d-magic graph. Then the following conditions hold:
(i) $p$ and $q$ are both even;
(ii) if $n$ is odd and $p \equiv q \equiv 2(\bmod 4)$, then $\min \{p, q\} \geqslant 6$.

Proof. For any integer $n \geqslant 1$, suppose that $n K_{p, q}$ is balanced $d$-magic. By Theorem 4, $p$ and $q$ are both even because $n K_{p, q}$ has vertices of degrees $p$ and $q$.

For any $t \in\{1,2, \ldots, n\}$, let $K_{2,2 s}^{t}$ be the $t^{\text {th }}$ copy of a graph $K_{2,2 s}$ and let $e^{t}\left(v^{t}\right)$ be its edge (vertex) corresponding to $e \in E\left(K_{2,2 s}\right)\left(v \in V\left(K_{2,2 s}\right)\right)$. Let $f$ be a balanced $d$-magic labelling of a graph $n K_{2,2 s}$ and let $\left\{u^{t}, v^{t}\right\}$ be a partite set of $K_{2,2 s}^{t}$ with two vertices. Put

$$
A^{t}:=\left\{e^{t} \in E\left(K_{2,2 s}^{t}\right): \eta\left(u^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant 2 n s\right\}
$$

and

$$
B^{t}:=\left\{e^{t} \in E\left(K_{2,2 s}^{t}\right): \eta\left(w^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant 2 n s\right\}
$$

Clearly, $A^{t} \cap B^{t}=\varnothing$ and $\left|A^{t}\right|=\left|B^{t}\right|=s$ because $f$ is balanced $d$-magic. We can see that any edge of $K_{2,2 s}^{t}$ is incident to either $u^{t}$ or $w^{t}$ and the set of labels of edges incident to a vertex of degree two is $\{r, 4 n s-r+1\}$ for some $r \in\{1,2, \ldots, 2 n s\}$. As a result, we have

$$
\begin{aligned}
\frac{4 n s+1}{2} 2 s & =\frac{\left|E\left(n K_{2,2 s}\right)\right|+1}{2} \operatorname{deg}\left(u^{t}\right)=f^{*}\left(u^{t}\right) \\
& =\sum_{e^{t} \in A^{t}} f\left(e^{t}\right)+\sum_{e^{t} \in B^{t}}\left(4 n s-f\left(e^{t}\right)+1\right) \\
& =(4 n s+1) s+\sum_{e^{t} \in A^{t}} f\left(e^{t}\right)-\sum_{e^{t} \in B^{t}} f\left(e^{t}\right) .
\end{aligned}
$$

This means that $\sum_{e^{t} \in A^{t}} f\left(e^{t}\right)=\sum_{e^{t} \in B^{t}} f\left(e^{t}\right)$. Consequently,

$$
\begin{aligned}
(2 n s+1) n s & =\sum_{i=1}^{2 n s} i=\sum_{t=1}^{n}\left(\sum_{e^{t} \in A^{t}} f\left(e^{t}\right)+\sum_{e^{t} \in B^{t}} f\left(e^{t}\right)\right) \\
& =\sum_{t=1}^{n}\left(2 \sum_{e^{t} \in A^{t}} f\left(e^{t}\right)\right)=2 \sum_{t=1}^{n}\left(\sum_{e^{t} \in A^{t}} f\left(e^{t}\right)\right) \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Since $n$ is odd, $s$ is even. This proves that condition (ii) holds.

Proposition 2 allows the set of $d$-magic graphs $n K_{p, q}$ to be divided into sets of odd and even $d$-magic graphs. Inspection quickly shows that for $(p, q)=(2,2)$, a $d$-magic graph $n K_{2,2}$ does not exist. In the next results, we prove the existence of $d$-magic graphs $n K_{p, q}$ for other even integers $(p, q) \neq(2,2)$.

Now let us consider a concept of a half-factor of a graph $G$ defined by Bezegová and Ivančo [4]. A spanning subgraph $H$ of a graph $G$ is called a half-factor of $G$ whenever $\operatorname{deg}_{H}(v)=\operatorname{deg}_{G}(v) / 2$ for every vertex $v \in V(G)$. Note that a spanning subgraph of $G$ with the edge set $E(G) \backslash E(H)$ is also a half-factor of $G$. Similarly, if $f$ is a balanced $d$-magic labelling of $G$, then the spanning subgraphs with the edge sets $\{e \in E(G): f(e) \leqslant\lfloor|E(G)| / 2\rfloor\}$ and $\{e \in E(G): f(e)>\lfloor|E(G)| / 2\rfloor\}$ are half factors of $G$.

Theorem 9. For even integers $p, q>1$. If the complete bipartite graph $K_{p, q}$ is d-magic, then the following conditions hold:
(i) $n K_{p, q}$ is a d-magic graph for all odd integers $n \geqslant 3$;
(ii) $n K_{p, q}$ is a balanced d-magic graph for all even integers $n \geqslant 2$.

Proof. For any integer $n \geqslant 2$ and $t \in\{1,2, \ldots, n\}$, let $K_{p, q}^{t}$ be the $t^{\text {th }}$ copy of a graph $K_{p, q}$ and let $e^{t}\left(v^{t}\right)$ be its edge (vertex) corresponding to $e \in E\left(K_{p, q}\right)\left(v \in V\left(K_{p, q}\right)\right)$. Since $K_{p, q}$ is $d$-magic, there is a $d$-magic labelling $g$ of $K_{p, q}$. Since $p$ and $q$ are both even, there is a half-factor $H$ of $K_{p, q}$. First suppose that $n K_{p, q}=K_{p, q}^{1} \cup K_{p, q}^{2} \cup \cdots \cup K_{p, q}^{n}$ and we consider a mapping $f$ from $E\left(n K_{p, q}\right)$ into positive integers given by

$$
f\left(e^{t}\right)=\left\{\begin{array}{lll}
g(e)+(t-1) p q & \text { if } \quad e \in E(H) \\
g(e)+(n-t) p q & \text { if } \quad e \in E\left(K_{p, q}\right) \backslash E(H)
\end{array}\right.
$$

We can then check that $f$ is a bijection from $E\left(n K_{p, q}\right)$ onto $\{1,2, \ldots, n p q\}$. For any vertex $v^{t} \in V\left(K_{p, q}^{t}\right)$, we have

$$
\begin{aligned}
f^{*}\left(v^{t}\right)= & \sum_{e^{t} \in E\left(K_{p, q}^{t}\right)} \eta\left(v^{t}, e^{t}\right) f\left(e^{t}\right)=\sum_{e \in E(H)} \eta(v, e)(g(e)+(t-1) p q) \\
& +\sum_{e \in E\left(K_{p, q}\right) \backslash E(H)} \eta(v, e)(g(e)+(n-t) p q) \\
= & \sum_{e \in E(H)} \eta(v, e) g(e)+\sum_{e \in E\left(K_{p, q}\right) \backslash E(H)} \eta(v, e) g(e)+(t-1) p q \operatorname{deg}_{H}(v) \\
& +(n-t) p q \operatorname{deg}_{K_{p, q}-E(H)}(v) \\
= & \sum_{e \in E(H)} \eta(v, e) g(e)+\sum_{e \in E\left(K_{p, q}\right) \backslash E(H)} \eta(v, e) g(e)+\frac{(t-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
& +\frac{(n-t) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
= & g^{*}(v)+\frac{(n-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v)=\frac{p q+1}{2} \operatorname{deg}_{K_{p, q}}(v) \\
& +\frac{(n-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
= & \frac{n p q+1}{2} \operatorname{deg}_{K_{p, q}}(v)=\frac{n p q+1}{2} \operatorname{deg}_{n K_{p, q}}\left(v^{t}\right) .
\end{aligned}
$$

Hence $f$ is $d$-magic and $n K_{p, q}$ is a $d$-magic graph for all integers $n \geqslant 2$. If $n$ is even, then for any $v^{t} \in V\left(K_{p, q}^{t}\right)$ and $t \leqslant n / 2$, we have

$$
\begin{aligned}
\mid\left\{e^{t}\right. & \left.\in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant n p q / 2\right\} \mid \\
& =\operatorname{deg}_{H}(v)=\frac{\operatorname{deg}_{K_{p, q}}(v)}{2}=\operatorname{deg}_{K_{p, q}-E(H)}(v) \\
& =\left|\left\{e^{t} \in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right)>n p q / 2\right\}\right|
\end{aligned}
$$

and for any $v^{t} \in V\left(K_{p, q}^{t}\right)$ and $t>n / 2$, we have

$$
\begin{aligned}
\mid\left\{e^{t}\right. & \left.\in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant n p q / 2\right\} \mid \\
& =\operatorname{deg}_{K_{p, q}-E(H)}(v)=\frac{\operatorname{deg}_{K_{p, q}}(v)}{2}=\operatorname{deg}_{H}(v) \\
& =\left|\left\{e^{t} \in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right)>n p q / 2\right\}\right|
\end{aligned}
$$

Thus $f$ is balanced $d$-magic and $n K_{p, q}$ is a balanced $d$-magic graph for all even integers $n \geqslant 2$.

Combining Proposition 1 and Theorem 9, we obtain the following result.

Proposition 3. Let $p$ and $q$ be even positive integers with $(p, q) \neq(2,2)$. Then the following conditions hold:
(i) $n K_{p, q}$ is a d-magic graph for all odd integers $n \geqslant 1$;
(ii) $n K_{p, q}$ is a balanced d-magic graph for all even integers $n \geqslant 2$.

Corollary 1. Let $p$ and $q$ be even positive integers with $(p, q) \neq(2,2)$. If $p=q$, then $n K_{p, q}$ is a supermagic graph.

Proof. Follows from Theorem 2 and Proposition 3.

Example 1. Consider the complete bipartite graph $K_{2,6}$. One can confirm that $K_{2,6}$ is $d$-magic, but it is not a balanced $d$-magic graph (see Figure 1), and the labels on edges $u_{i} v_{j}$ of $K_{2,6}$, where $1 \leqslant i \leqslant 2$ and $1 \leqslant j \leqslant 6$, are shown in Table 1.

Then we can construct a balanced $d$-magic graph $4 K_{2,6}$ (see Figure 2) with the labels on edges $u_{i}^{t} v_{j}^{t}$ of $4 K_{2,6}$, where $1 \leqslant i \leqslant 2,1 \leqslant j \leqslant 6$ and $1 \leqslant t \leqslant 4$, in Table 2 .

Theorem 10. Let $p$ and $q$ be integers with $p, q>1$. If the complete bipartite graph $K_{p, q}$ is balanced d-magic, then $n K_{p, q}$ is a balanced d-magic graph for all integers $n \geqslant 2$.

Proof. For any integer $n \geqslant 2$ and $t \in\{1,2, \ldots, n\}$, let $K_{p, q}^{t}$ be the $t^{\underline{t h}}$ copy of a graph $K_{p, q}$ and let $e^{t}\left(v^{t}\right)$ be its edge (vertex) corresponding to $e \in$ $E\left(K_{p, q}\right)\left(v \in V\left(K_{p, q}\right)\right)$. Since $K_{p, q}$ is balanced $d$-magic, there is a balanced $d$-magic labelling $g$ of $K_{p, q}$. Let $H_{1}^{\prime}:=\left\{e \in E\left(K_{p, q}\right): g(e) \leqslant\lfloor p q / 2\rfloor\right\}$ and $H_{2}^{\prime}:=\left\{e \in E\left(K_{p, q}\right): g(e)>\lfloor p q / 2\rfloor\right\}$. Thus, the spanning subgraphs $H_{1}$ and $H_{2}$ of $K_{p, q}$ with the edge sets $H_{1}^{\prime}$ and $H_{2}^{\prime}$ are half-factors of $K_{p, q}$, respectively. Suppose that $n K_{p, q}=K_{p, q}^{1} \cup K_{p, q}^{2} \cup \cdots \cup K_{p, q}^{n}$ and we consider a mapping $f$ from $E\left(n K_{p, q}\right)$ into positive integers given by

$$
f\left(e^{t}\right)=\left\{\begin{array}{lll}
g(e)+(t-1) p q & \text { if } & e \in H_{1}^{\prime} \\
g(e)+(n-t) p q & \text { if } & e \in H_{2}^{\prime}
\end{array}\right.
$$



Figure 1. A $d$-magic complete bipartite graph $K_{2,6}$ with 8 vertices and 12 edges.

| Vertices | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $v_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}$ | 1 | 11 | 3 | 9 | 8 | 7 |
| $u_{2}$ | 12 | 2 | 10 | 4 | 5 | 6 |

Table 1. The labels on edges of $d$-magic complete bipartite graph $K_{2,6}$.


Figure 2. A balanced $d$-magic graph $4 K_{2,6}$ with 32 vertices and 48 edges.

| Vertices | $v_{1}^{1}$ | $v_{2}^{1}$ | $v_{3}^{1}$ | $v_{4}^{1}$ | $v_{5}^{1}$ | $v_{6}^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}^{1}$ | 37 | 47 | 39 | 9 | 8 | 7 |
| $u_{2}^{1}$ | 12 | 2 | 10 | 40 | 41 | 42 |
| Vertices | $v_{1}^{2}$ | $v_{2}^{2}$ | $v_{3}^{2}$ | $v_{4}^{2}$ | $v_{5}^{2}$ | $v_{6}^{2}$ |
| $u_{1}^{2}$ | 25 | 35 | 27 | 21 | 20 | 19 |
| $u_{2}^{2}$ | 24 | 14 | 22 | 28 | 29 | 30 |
| Vertices | $v_{1}^{3}$ | $v_{2}^{3}$ | $v_{3}^{3}$ | $v_{4}^{3}$ | $v_{5}^{3}$ | $v_{6}^{3}$ |
| $u_{1}^{3}$ | 13 | 23 | 15 | 33 | 32 | 31 |
| $u_{2}^{3}$ | 36 | 26 | 34 | 16 | 17 | 18 |
| Vertices | $v_{1}^{4}$ | $v_{2}^{4}$ | $v_{3}^{4}$ | $v_{4}^{4}$ | $v_{5}^{4}$ | $v_{6}^{4}$ |
| $u_{1}^{4}$ | 1 | 11 | 3 | 45 | 44 | 43 |
| $u_{2}^{4}$ | 48 | 38 | 46 | 4 | 5 | 6 |

Table 2. The labels on edges of balanced $d$-magic graph $4 K_{2,6}$.

We can then check that $f$ is a bijection from $E\left(n K_{p, q}\right)$ onto $\{1,2, \ldots n p q\}$. For any vertex $v^{t} \in V\left(K_{p, q}^{t}\right)$, we have

$$
\begin{aligned}
f^{*}\left(v^{t}\right)= & \sum_{e^{t} \in E\left(K_{p, q}^{t}\right)} \eta\left(v^{t}, e^{t}\right) f\left(e^{t}\right) \\
= & \sum_{e \in H_{1}^{\prime}} \eta(v, e)(g(e)+(t-1) p q)+\sum_{e \in H_{2}^{\prime}} \eta(v, e)(g(e)+(n-t) p q) \\
= & \sum_{e \in H_{1}^{\prime}} \eta(v, e) g(e)+\sum_{e \in H_{2}^{\prime}} \eta(v, e) g(e)+(t-1) p q \operatorname{deg}_{H_{1}}(v) \\
& +(n-t) p q \operatorname{deg}_{H_{2}}(v) \\
= & \sum_{e \in H_{1}^{\prime}} \eta(v, e) g(e)+\sum_{e \in H_{2}^{\prime}} \eta(v, e) g(e)+\frac{(t-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
& +\frac{(n-t) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
= & g^{*}(v)+\frac{(n-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v)=\frac{p q+1}{2} \operatorname{deg}_{K_{p, q}}(v) \\
& +\frac{(n-1) p q}{2} \operatorname{deg}_{K_{p, q}}(v) \\
= & \frac{n p q+1}{2} \operatorname{deg}_{K_{p, q}}(v)=\frac{n p q+1}{2} \operatorname{deg}_{n K_{p, q}}\left(v^{t}\right)
\end{aligned}
$$

Hence $f$ is a $d$-magic labelling. For $v^{t} \in V\left(K_{p, q}^{t}\right)$ and $t \leqslant(n+1) / 2$, we have

$$
\begin{aligned}
\mid\left\{e^{t}\right. & \left.\in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant\lfloor n p q / 2\rfloor\right\} \mid \\
& =\operatorname{deg}_{H_{1}}(v)=\frac{\operatorname{deg}_{K_{p, q}}(v)}{2}=\operatorname{deg}_{H_{2}}(v) \\
& =\left|\left\{e^{t} \in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right)>\lfloor n p q / 2\rfloor\right\}\right|
\end{aligned}
$$

and for any $v^{t} \in V\left(K_{p, q}^{t}\right)$ and $t>(n+1) / 2$, we have

$$
\begin{aligned}
\mid\left\{e^{t}\right. & \left.\in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right) \leqslant\lfloor n p q / 2\rfloor\right\} \mid \\
& =\operatorname{deg}_{H_{2}}(v)=\frac{\operatorname{deg}_{K_{p, q}}(v)}{2}=\operatorname{deg}_{H_{1}}(v) \\
& =\left|\left\{e^{t} \in E\left(K_{p, q}^{t}\right): \eta\left(v^{t}, e^{t}\right)=1, f\left(e^{t}\right)>\lfloor n p q / 2\rfloor\right\}\right|
\end{aligned}
$$

Hence $f$ is balanced $d$-magic. Therefore, $n K_{p, q}$ is a balanced $d$-magic graph for all integers $n \geqslant 2$.

According to Theorems 7 and 10, we obtain the following result.
Proposition 4. Let $p$ and $q$ be even positive integers and the following condition holds:

$$
\text { if } p \equiv q \equiv 2(\bmod 4), \text { then } \min \{p, q\} \geqslant 6
$$

Then $n K_{p, q}$ is a balanced d-magic graph for all integers $n \geqslant 1$.

## 3. A construction of supermagic regular graphs

In this section we construct supermagic regular graphs by applying the existence of the $n$-fold self-union of complete bipartite graphs. Herein, we consider the $\xi$-multiplication of a graph introduced by Bezegová and Ivančo [4] to prove the next result. Let $G$ be a graph and $\xi$ be a mapping from $V(G)$ into the positive integers. The $\xi$-multiplication of $G$, denoted by $G^{\xi}$, is a graph whose vertices are all ordered pairs $(v, i)$, where $v \in V(G)$ and $1 \leqslant i \leqslant \xi(v)$, and two vertices $(u, i),(v, j)$ are joined by an edge in $G^{\xi}$ if and only if $u, v$ are adjacent in $G$. Note that $G^{\xi}$ is isomorphic to lexicographic product $G\left[D_{n}\right]$ of $G$ and a totally disconnected graph $D_{n}$, when $\xi(v)=n$ for all $v \in V(G)$.

Proposition 5. For any integer $n \geqslant 1$ and $t \in\{1,2, \ldots, n\}$. Let $G^{t}$ be the $t^{\text {th }}$ copy of a graph $G$ and let $v^{t}$ be its vertex corresponding to $v \in V(G)$. Let $\xi$ be a mapping from $V(n G)$ into even positive integers such that the following conditions hold:
(i) $\xi\left(v^{t}\right)=\xi\left(v^{s}\right)$ for all $t, s \in\{1,2, \ldots, n\}$;
(ii) for any adjacent vertices $u^{t}, v^{t} \in V\left(G^{t}\right)$, if $\xi\left(u^{t}\right) \equiv \xi\left(v^{t}\right) \equiv 2$ $(\bmod 4)$, then $\min \left\{\xi\left(u^{t}\right), \xi\left(v^{t}\right)\right\} \geqslant 6$.

Then the $\xi$-multiplication $(n G)^{\xi}$ is a balanced d-magic graph.
Proof. For any integer $n \geqslant 1$ and $t \in\{1,2, \ldots, n\}$. Let edge $e^{t}=u^{t} v^{t} \in$ $E\left(G^{t}\right)$ and let $\left(G_{e^{t}}^{t}\right)^{\xi}$ be a subgraph of $\left(G^{t}\right)^{\xi}$ induced by $\left\{\left(u^{t}, i\right): 1 \leqslant\right.$ $\left.i \leqslant \xi\left(u^{t}\right)\right\} \cup\left\{\left(v^{t}, j\right): 1 \leqslant j \leqslant \xi\left(v^{t}\right)\right\}$. Evidently, $\left(G_{e^{t}}^{t}\right)^{\xi}$ is isomorphic to a complete bipartite graph $K_{\xi\left(u^{t}\right), \xi\left(v^{t}\right)}$. According to Theorem $7, K_{\xi\left(u^{t}\right), \xi\left(v^{t}\right)}$ is a balanced $d$-magic graph. By condition (i), we obtain that $K_{\xi\left(u^{t}\right), \xi\left(v^{t}\right)}$ is isomorphic to $K_{\xi\left(u^{s}\right), \xi\left(v^{s}\right)}$ for all $t, s \in\{1,2, \ldots, n\}$. Thus, by Proposition $4, \bigcup_{t=1}^{n} K_{\xi\left(u^{t}\right), \xi\left(v^{t}\right)}$ is a balanced $d$-magic graph. Since $\bigcup_{t=1}^{n}\left(G_{e^{t}}^{t}\right)^{\xi}$ is isomorphic to $\bigcup_{t=1}^{n} K_{\xi\left(u^{t}\right), \xi\left(v^{t}\right)}$, $\bigcup_{t=1}^{n}\left(G_{e^{t}}^{t}\right)^{\xi}$ is a balanced $d$-magic graph. The $\xi$-multiplication $(n G)^{\xi}$ is decomposed into edge-disjoint subgraphs $\bigcup_{t=1}^{n}\left(G_{e^{t}}^{t}\right)^{\xi}$ for all $e^{t} \in E\left(G^{t}\right)$. Therefore, by Theorem $6,(n G)^{\xi}$ is a balanced $d$-magic graph.

Note that the subgraph of $(n G)^{\xi}$ induced by $\bigcup_{t=1}^{n}\left\{\left(v^{t}, 1\right): v^{t} \in V\left(G^{t}\right)\right\}$ is isomorphic to $n G$. Thus, by Proposition 5, for any graph $G$ there is a balanced $d$-magic graph which contains an induced subgraph isomorphic to $n G$ for all integers $n \geqslant 1$.

We end this section with a similar result for supermagic regular graphs.
Theorem 11. For any graph $G$ there is a supermagic regular graph which contains an induced subgraph isomorphic to $n G$ for all integers $n \geqslant 1$.

Proof. Let $G_{1}$ be a graph obtained from $G$ by attaching a pendant edge at each vertex of $G$. For any integer $n \geqslant 1$ and $t \in\{1,2, \ldots, n\}$. Let $G^{t}\left(G_{1}^{t}\right)$ be the $t^{\underline{t h}}$ copy of a graph $G\left(G_{1}\right)$. Put $m:=\left|V\left(G^{t}\right)\right|$ and denote the vertices of $G_{1}^{t}$ by $u_{1}^{t}, u_{2}^{t}, \ldots, u_{m}^{t}, w_{1}^{t}, w_{2}^{t}, \ldots, w_{m}^{t}$ in such a way that $V\left(G^{t}\right)=\left\{u_{1}^{t}, \ldots, u_{m}^{t}\right\}$ and $u_{i}^{t} w_{i}^{t}$, for all $i \in\{1, \ldots, m\}$, is an attached edge of $G_{1}^{t}$. Consider a mapping $\xi$ from $V\left(n G_{1}\right)$ into positive integers given by

$$
\xi\left(u_{i}^{t}\right)=4 \quad \text { and } \quad \xi\left(w_{i}^{t}\right)=4\left(1+\Delta-\operatorname{deg}_{G^{t}}\left(u_{i}^{t}\right)\right)
$$

for all $i \in\{1, \ldots, m\}$ and $t \in\{1,2, \ldots, n\}$, where $\Delta$ is the maximum degree of $G^{t}$. Let $H_{1}:=\left(n G_{1}\right)^{\xi}$. By Proposition $5, H_{1}$ is a balanced $d$-magic graph.

We set

$$
U:=\bigcup_{t=1}^{n} \bigcup_{i=1}^{m} \bigcup_{j=1}^{\xi\left(u_{i}^{t}\right)}\left\{\left(u_{i}^{t}, j\right)\right\} \quad \text { and } \quad W:=\bigcup_{t=1}^{n} \bigcup_{i=1}^{m} \bigcup_{j=1}^{\xi\left(w_{i}^{t}\right)}\left\{\left(w_{i}^{t}, j\right)\right\}
$$

It is clear that $U \cap W=\varnothing$ and $U \cup W=V\left(H_{1}\right)$. The set $W$ is an independent set of $H_{1}$ and $|W|=4 n h$, where $h=\sum_{i=1}^{m}\left(1+\Delta-\operatorname{deg}_{G^{t}}\left(u_{i}^{t}\right)\right)$ for any $t \in\{1,2, \ldots, n\}$. Consider $h$, we have

$$
h=m+\sum_{i=1}^{m}\left(\Delta-\operatorname{deg}_{G^{t}}\left(u_{i}^{t}\right)\right) \geqslant m>\Delta .
$$

Moreover, $h=(1+\Delta) m-\sum_{i=1}^{m} \operatorname{deg}_{G^{t}}\left(u_{i}^{t}\right)=(1+\Delta) m-2\left|E\left(G^{t}\right)\right|$. Thus, if $\Delta$ is odd, then $h$ is even. Since $h>\Delta$ and both of $h, \Delta$ are not odd, there is a $\Delta$-regular graph $R$ order $h$. According to Proposition $5,(n R)\left[D_{4}\right]$ is balanced $d$-magic, $4 \Delta$-regular graph of order $4 n h$. Therefore, there is a balanced $d$-magic graph $H_{2}, 4 \Delta$-regular graph, such that $V\left(H_{2}\right)=W$.

Let $H$ denote the graph such that the graphs $H_{1}$ and $H_{2}$ form its decomposition. As $H_{1}$ and $H_{2}$ are balanced $d$-magic, by Theorem 6, the
graph $H$ is balanced $d$-magic. Clearly, any vertex of $U$ has degree $4(1+\Delta)$ in $H_{1}$. Similarly, the degree of any vertex belonging to $W$ is 4 in $H_{1}$ and $4 \Delta$ in $H_{2}$. So, $H$ is a regular graph of degree $4(1+\Delta)$. According to Theorem 2, the graph $H$ is supermagic. Therefore, $H$ is a desired graph because its subgraph induced by $\bigcup_{t=1}^{n} \bigcup_{i=1}^{m}\left\{\left(u_{i}^{t}, 1\right)\right\}$ is isomorphic to $n G$.

Example 2. Considering a path $P_{2}$, we can construct a supermagic regular graph $H$ which contains an induced subgraph isomorphic to $3 P_{2}$ (see Figure 3), and the labels on edges $u_{i}^{t} v_{j}^{t}, v_{i}^{t} x_{j}^{t}, x_{i}^{t} y_{j}^{t}$ and $u_{i}^{t} y_{j}^{t}$ of $H$, where $1 \leqslant i \leqslant 4,1 \leqslant j \leqslant 4$ and $1 \leqslant t \leqslant 3$, are shown in Table 3.


Figure 3. A supermagic regular graph $H$ containing an induced subgraph isomorphic to $3 P_{2}$.

## 4. The n-tuple magic rectangles

In this section we introduce $n$-tuple magic rectangles and obtain a sufficient condition for even $n$-tuple magic rectangles to exist.

Definition 1. An $n$-tuple magic $(p, q)$-rectangle $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{n}\right)$ is a class of $n$ arrays in which each array has $p$ rows and $q$ columns, and the first npq positive integers are placed such that the sum over each row of any array of $R$ is constant and the sum over each column of $R$ is another (different if $p \neq q$ ) constant.

Let $R$ be an $n$-tuple magic ( $p, q$ )-rectangle. Since each row sum of any array of $R$ is $q(n p q+1) / 2$ and each column sum of $R$ is $p(n p q+1) / 2$ and both are integer, we have

Table 3. The labels on edges of supermagic regular graph $H$.

| Vertices | $u_{1}^{1}$ | $u_{2}^{1}$ | $u_{3}^{1}$ | $u_{4}^{1}$ | $x_{1}^{1}$ | $x_{2}^{1}$ | $x_{3}^{1}$ | $x_{4}^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{1}^{1}$ | 49 | 54 | 139 | 144 | 73 | 80 | 117 | 116 |
| $v_{2}^{1}$ | 56 | 51 | 142 | 137 | 78 | 75 | 114 | 119 |
| $v_{3}^{1}$ | 141 | 138 | 52 | 55 | 115 | 118 | 76 | 77 |
| $v_{4}^{1}$ | 140 | 143 | 53 | 50 | 120 | 113 | 79 | 74 |
| $y_{1}^{1}$ | 1 | 6 | 187 | 192 | 25 | 30 | 163 | 168 |
| $y_{2}^{1}$ | 8 | 3 | 190 | 185 | 32 | 27 | 166 | 161 |
| $y_{3}^{1}$ | 189 | 186 | 4 | 7 | 165 | 162 | 28 | 31 |
| $y_{4}^{1}$ | 188 | 191 | 5 | 2 | 164 | 167 | 29 | 26 |
| Vertices | $u_{1}^{2}$ | $u_{2}^{2}$ | $u_{3}^{2}$ | $u_{4}^{2}$ | $x_{1}^{2}$ | $x_{2}^{2}$ | $x_{3}^{2}$ | $x_{4}^{2}$ |
| $v_{1}^{2}$ | 65 | 70 | 123 | 128 | 89 | 96 | 101 | 100 |
| $v_{2}^{2}$ | 72 | 67 | 126 | 121 | 94 | 91 | 98 | 103 |
| $v_{3}^{2}$ | 125 | 122 | 68 | 71 | 99 | 102 | 92 | 93 |
| $v_{4}^{2}$ | 124 | 127 | 69 | 66 | 104 | 97 | 95 | 90 |
| $y_{1}^{2}$ | 17 | 22 | 171 | 176 | 41 | 46 | 147 | 152 |
| $y_{2}^{2}$ | 24 | 19 | 174 | 169 | 48 | 43 | 150 | 145 |
| $y_{3}^{2}$ | 173 | 170 | 20 | 23 | 149 | 146 | 44 | 47 |
| $y_{4}^{2}$ | 172 | 175 | 21 | 18 | 148 | 151 | 45 | 42 |
| Vertices | $u_{1}^{3}$ | $u_{2}^{3}$ | $u_{3}^{3}$ | $u_{4}^{3}$ | $x_{1}^{3}$ | $x_{2}^{3}$ | $x_{3}^{3}$ | $x_{4}^{3}$ |
| $v_{1}^{3}$ | 129 | 134 | 59 | 64 | 105 | 112 | 85 | 84 |
| $v_{2}^{3}$ | 136 | 131 | 62 | 57 | 110 | 107 | 82 | 87 |
| $v_{3}^{3}$ | 61 | 58 | 132 | 135 | 83 | 86 | 108 | 109 |
| $v_{4}^{3}$ | 60 | 63 | 133 | 130 | 88 | 81 | 111 | 106 |
| $y_{1}^{3}$ | 177 | 182 | 11 | 16 | 153 | 158 | 35 | 40 |
| $y_{2}^{3}$ | 184 | 179 | 14 | 9 | 160 | 155 | 38 | 33 |
| $y_{3}^{3}$ | 13 | 10 | 180 | 183 | 37 | 34 | 156 | 159 |
| $y_{4}^{3}$ | 12 | 15 | 181 | 178 | 36 | 39 | 157 | 154 |

Proposition 6. If $R$ is an n-tuple magic ( $p, q$ )-rectangle, then the following conditions hold:
(i) if $n$ is odd, then $p \equiv q(\bmod 2)$;
(ii) if $n$ is even, then $p \equiv q \equiv 0(\bmod 2)$.

Proposition 6 allows the set of $n$-tuple magic rectangles to be divided into sets of odd and even rectangles. We quickly see that an $n$-tuple magic $(2,2)$-rectangle does not exist, because the row sums and column sums of any array are different.

Theorem 12. For any integer $n \geqslant 1$ and even integers $p, q>1$, let $K_{p, q}^{t}$ be the $t^{\underline{t h}}$ copy of $K_{p, q}$ for all $t \in\{1,2, \ldots, n\}$. A mapping $f$ from $E\left(n K_{p, q}\right)$ into positive integers given by

$$
f\left(u_{i}^{t} v_{j}^{t}\right)=r_{i, j}^{t} \quad \text { for every } \quad u_{i}^{t} v_{j}^{t} \in E\left(K_{p, q}^{t}\right)
$$

is a d-magic labelling of $n K_{p, q}$ if and only if $R:=\left(r_{i, j}^{1}\right)\left(r_{i, j}^{2}\right) \ldots\left(r_{i, j}^{n}\right)$ is an $n$-tuple magic $(p, q)$-rectangle.

Proof. Let $U^{t}=\left\{u_{1}^{t}, u_{2}^{t}, \ldots, u_{p}^{t}\right\}$ and $V^{t}=\left\{v_{1}^{t}, v_{2}^{t}, \ldots, v_{q}^{t}\right\}$ be partite sets of $K_{p, q}^{t}$. Suppose that $R$ is an $n$-tuple magic $(p, q)$-rectangle. It is easy to see that the map $f: E\left(n K_{p, q}\right) \rightarrow\{1,2, \ldots, n p q\}$ is bijective. For any $u_{i}^{t} \in U^{t}$, we have

$$
f^{*}\left(u_{i}^{t}\right)=\sum_{j=1}^{q} f\left(u_{i}^{t} v_{j}^{t}\right)=\sum_{j=1}^{q} r_{i, j}^{t}=\frac{q(n p q+1)}{2}=\frac{n p q+1}{2} \operatorname{deg}\left(u_{i}^{t}\right)
$$

and for any $v_{j}^{t} \in V^{t}$, we have

$$
f^{*}\left(v_{j}^{t}\right)=\sum_{i=1}^{p} f\left(u_{i}^{t} v_{j}^{t}\right)=\sum_{i=1}^{p} r_{i, j}^{t}=\frac{p(n p q+1)}{2}=\frac{n p q+1}{2} \operatorname{deg}\left(v_{j}^{t}\right)
$$

i.e., $f$ is a $d$-magic labelling of $n K_{p, q}$.

Now suppose that $f$ is a $d$-magic labelling of $n K_{p, q}$. For all $1 \leqslant i \neq$ $s \leqslant p$, we have

$$
\begin{equation*}
\sum_{j=1}^{q} r_{i, j}^{t}=\sum_{j=1}^{q} f\left(u_{i}^{t} v_{j}^{t}\right)=f^{*}\left(u_{i}^{t}\right)=f^{*}\left(u_{s}^{t}\right)=\sum_{j=1}^{q} f\left(u_{s}^{t} v_{j}^{t}\right)=\sum_{j=1}^{q} r_{s, j}^{t} \tag{1}
\end{equation*}
$$

For all $1 \leqslant j \neq z \leqslant q$, we have

$$
\begin{equation*}
\sum_{i=1}^{p} r_{i, j}^{t}=\sum_{i=1}^{p} f\left(u_{i}^{t} v_{j}^{t}\right)=f^{*}\left(v_{j}^{t}\right)=f^{*}\left(v_{z}^{t}\right)=\sum_{i=1}^{p} f\left(u_{i}^{t} v_{z}^{t}\right)=\sum_{i=1}^{p} r_{i, z}^{t} \tag{2}
\end{equation*}
$$

By (1), we have

$$
\sum_{j=1}^{q} r_{i, j}^{t}=\sum_{j=1}^{q} r_{s, j}^{t}=\frac{q(n p q+1)}{2}
$$

By (2), we have

$$
\sum_{i=1}^{p} r_{i, j}^{t}=\sum_{i=1}^{p} r_{i, z}^{t}=\frac{p(n p q+1)}{2}
$$

Therefore, $R$ is an $n$-tuple magic $(p, q)$-rectangle.
According to Proposition 3 and Theorem 12, we obtain the following result.

Proposition 7. Let $p$ and $q$ be even positive integers with $(p, q) \neq(2,2)$. Then an $n$-tuple magic $(p, q)$-rectangle exists.

## References

[1] J. Sedláček, Theory of graphs and its applications, in: Problem 27, Proc. Symp. Smolenice, Praha, 1963, pp. 163-164.
[2] B.M. Stewart, Magic graphs, Canad. J. Math., Vol. 18, 1966, pp. 1031-1059.
[3] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Vol. 16, 2009, \#DS6.
[4] L'. Bezegová, J. Ivančo, An extension of regular supermagic graphs, Discrete Math., Vol. 310, 2010, pp. 3571-3578.
[5] L'. Bezegová, J. Ivančo, A characterization of complete tripartite degree-magic graphs, Discuss. Math. Graph Theory, Vol. 32, 2012, pp. 243-253.
[6] L'. Bezegová, J. Ivančo, On conservative and supermagic graphs, Discrete Math., Vol. 311, 2011, pp. 2428-2436.
[7] L'. Bezegová, J. Ivančo, Number of edges in degree-magic graphs, Discrete Math., Vol. 313, 2013, pp. 1349-1357.
[8] L'. Bezegová, Balanced degree-magic complements of bipartite graphs, Discrete Math., Vol. 313, 2013, pp. 1918-1923.
[9] T. Harmuth, Über magische Quadrate und ähniche Zahlenfiguren, Arch. Math. Phys., Vol. 66, 1881, pp. 286-313.
[10] T. Harmuth, Ü ber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys., Vol. 66, 1881, pp. 413-447.
[11] R. Sun, Existence of magic rectangles, Nei Mongol Daxue Xuebao Ziran Kexue, Vol. 21, No. 1, 1990, pp. 10-16.
[12] T. Bier, G. Rogers, Balanced Magic Rectangles, European J. Combin., Vol. 14, 1993, pp. 285-299.
[13] T. Bier, A. Kleinschmidt, Centrally symmetric and magic rectangles, Discrete Math., Vol. 176, 1997, pp. 29-42.
[14] T.R. Hagedorn, Magic rectangles revisited, Discrete Math., Vol. 207, 1999, pp. 65-72.
[15] T.R. Hagedorn, On the existence of magic n-dimensional rectangles, Discrete Math., Vol. 207, 1999, pp. 53-63.

## Contact information

| P. Inpoonjai | Faculty of Sciences and Agricultural |
| :--- | :--- |
|  | Technology, Rajamangala University of |
|  | Technology Lanna Chiangrai, 99, Sai Khao, |
|  | Phan District, Chiang Rai, 57120, Thailand |
|  | E-Mail(s): phaisatcha_in@outlook.com |

T. Jiarasuksakun Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand E-Mail(s): thiradet.jia@kmutt.ac.th

Received by the editors: 28.12.2016
and in final form 07.03.2017.


[^0]:    The authors would like to thank the anonymous referee for careful reading and the helpful comments improving this paper.

    2010 MSC: Primary 05C78; Secondary 05B15.
    Key words and phrases: regular graphs, bipartite graphs, tripartite graphs, supermagic graphs, degree-magic graphs, balanced degree-magic graphs, magic rectangles.

