172 research outputs found

    Dynamic Programming and Skyline Extraction in Catadioptric Infrared Images

    Get PDF
    International audienceUnmanned Aerial Vehicles (UAV) are the subject of an increasing interest in many applications and a key requirement for autonomous navigation is the attitude/position stabilization of the vehicle. Some previous works have suggested using catadioptric vision, instead of traditional perspective cameras, in order to gather much more information from the environment and therefore improve the robustness of the UAV attitude/position estimation. This paper belongs to a series of recent publications of our research group concerning catadioptric vision for UAVs. Currently, we focus on the extraction of skyline in catadioptric images since it provides important information about the attitude/position of the UAV. For example, the DEM-based methods can match the extracted skyline with a Digital Elevation Map (DEM) by process of registration, which permits to estimate the attitude and the position of the camera. Like any standard cameras, catadioptric systems cannot work in low luminosity situations because they are based on visible light. To overcome this important limitation, in this paper, we propose using a catadioptric infrared camera and extending one of our methods of skyline detection towards catadioptric infrared images. The task of extracting the best skyline in images is usually converted in an energy minimization problem that can be solved by dynamic programming. The major contribution of this paper is the extension of dynamic programming for catadioptric images using an adapted neighborhood and an appropriate scanning direction. Finally, we present some experimental results to demonstrate the validity of our approach

    Learning the surroundings: 3D scene understanding from omnidirectional images

    Get PDF
    Las redes neuronales se han extendido por todo el mundo, siendo utilizadas en una gran variedad de aplicaciones. Estos métodos son capaces de reconocer música y audio, generar textos completos a partir de ideas simples u obtener información detallada y relevante de imágenes y videos. Las posibilidades que ofrecen las redes neuronales y métodos de aprendizaje profundo son incontables, convirtiéndose en la principal herramienta de investigación y nuevas aplicaciones en nuestra vida diaria. Al mismo tiempo, las imágenes omnidireccionales se están extendiendo dentro de la industria y nuestra sociedad, causando que la visión omnidireccional gane atención. A partir de imágenes 360 capturamos toda la información que rodea a la cámara en una sola toma.La combinación del aprendizaje profundo y la visión omnidireccional ha atraído a muchos investigadores. A partir de una única imagen omnidireccional se obtiene suficiente información del entorno para que una red neuronal comprenda sus alrededores y pueda interactuar con el entorno. Para aplicaciones como navegación y conducción autónoma, el uso de cámaras omnidireccionales proporciona información en torno del robot, person o vehículo, mientras que las cámaras convencionales carecen de esta información contextual debido a su reducido campo de visión. Aunque algunas aplicaciones pueden incluir varias cámaras convencionales para aumentar el campo de visión del sistema, tareas en las que el peso es importante (P.ej. guiado de personas con discapacidad visual o navegación de drones autónomos), un número reducido de dispositivos es altamente deseable.En esta tesis nos centramos en el uso conjunto de cámaras omnidireccionales, aprendizaje profundo, geometría y fotometría. Evaluamos diferentes enfoques para tratar con imágenes omnidireccionales, adaptando métodos a los modelos de proyección omnidireccionales y proponiendo nuevas soluciones para afrontar los retos de este tipo de imágenes. Para la comprensión de entornos interiores, proponemos una nueva red neuronal que obtiene segmentación semántica y mapas de profundidad de forma conjunta a partir de un único panoramaequirectangular. Nuestra red logra, con un nuevo enfoque convolucional, aprovechar la información del entorno proporcionada por la imagen panorámica y explotar la información combinada de semántica y profundidad. En el mismo tema, combinamos aprendizaje profundo y soluciones geométricas para recuperar el diseño estructural, junto con su escala, de entornos de interior a partir de un único panorama no central. Esta combinación de métodos proporciona una implementación rápida, debido a la red neuronal, y resultados precisos, gracias a lassoluciones geométricas. Además, también proponemos varios enfoques para la adaptación de redes neuronales a la distorsión de modelos de proyección omnidireccionales para la navegación y la adaptación del dominio soluciones previas. En términos generales, esta tesis busca encontrar soluciones novedosas e innovadoras para aprovechar las ventajas de las cámaras omnidireccionales y superar los desafíos que plantean.Neural networks have become widespread all around the world and are used for many different applications. These new methods are able to recognize music and audio, generate full texts from simple ideas and obtain detailed and relevant information from images and videos. The possibilities of neural networks and deep learning methods are uncountable, becoming the main tool for research and new applications in our daily-life. At the same time, omnidirectional and 360 images are also becoming widespread in industry and in consumer society, causing omnidirectional computer vision to gain attention. From 360 images, we capture all the information surrounding the camera in a single shot. The combination of deep learning methods and omnidirectional computer vision have attracted many researchers to this new field. From a single omnidirectional image, we obtain enough information of the environment to make a neural network understand its surroundings and interact with the environment. For applications such as navigation and autonomous driving, the use of omnidirectional cameras provide information all around the robot, person or vehicle, while conventional perspective cameras lack this context information due to their narrow field of view. Even if some applications can include several conventional cameras to increase the system's field of view, tasks where weight is more important (i.e. guidance of visually impaired people or navigation of autonomous drones), the less cameras we need to include, the better. In this thesis, we focus in the joint use of omnidirectional cameras, deep learning, geometry and photometric methods. We evaluate different approaches to handle omnidirectional images, adapting previous methods to the distortion of omnidirectional projection models and also proposing new solutions to tackle the challenges of this kind of images. For indoor scene understanding, we propose a novel neural network that jointly obtains semantic segmentation and depth maps from single equirectangular panoramas. Our network manages, with a new convolutional approach, to leverage the context information provided by the panoramic image and exploit the combined information of semantics and depth. In the same topic, we combine deep learning and geometric solvers to recover the scaled structural layout of indoor environments from single non-central panoramas. This combination provides a fast implementation, thanks to the learning approach, and accurate result, due to the geometric solvers. Additionally, we also propose several approaches of network adaptation to the distortion of omnidirectional projection models for outdoor navigation and domain adaptation of previous solutions. All in all, this thesis looks for finding novel and innovative solutions to take advantage of omnidirectional cameras while overcoming the challenges they pose.<br /

    Calibration by correlation using metric embedding from non-metric similarities

    Get PDF
    This paper presents a new intrinsic calibration method that allows us to calibrate a generic single-view point camera just by waving it around. From the video sequence obtained while the camera undergoes random motion, we compute the pairwise time correlation of the luminance signal for a subset of the pixels. We show that, if the camera undergoes a random uniform motion, then the pairwise correlation of any pixels pair is a function of the distance between the pixel directions on the visual sphere. This leads to formalizing calibration as a problem of metric embedding from non-metric measurements: we want to find the disposition of pixels on the visual sphere from similarities that are an unknown function of the distances. This problem is a generalization of multidimensional scaling (MDS) that has so far resisted a comprehensive observability analysis (can we reconstruct a metrically accurate embedding?) and a solid generic solution (how to do so?). We show that the observability depends both on the local geometric properties (curvature) as well as on the global topological properties (connectedness) of the target manifold. We show that, in contrast to the Euclidean case, on the sphere we can recover the scale of the points distribution, therefore obtaining a metrically accurate solution from non-metric measurements. We describe an algorithm that is robust across manifolds and can recover a metrically accurate solution when the metric information is observable. We demonstrate the performance of the algorithm for several cameras (pin-hole, fish-eye, omnidirectional), and we obtain results comparable to calibration using classical methods. Additional synthetic benchmarks show that the algorithm performs as theoretically predicted for all corner cases of the observability analysis

    Enhancing 3D Visual Odometry with Single-Camera Stereo Omnidirectional Systems

    Full text link
    We explore low-cost solutions for efficiently improving the 3D pose estimation problem of a single camera moving in an unfamiliar environment. The visual odometry (VO) task -- as it is called when using computer vision to estimate egomotion -- is of particular interest to mobile robots as well as humans with visual impairments. The payload capacity of small robots like micro-aerial vehicles (drones) requires the use of portable perception equipment, which is constrained by size, weight, energy consumption, and processing power. Using a single camera as the passive sensor for the VO task satisfies these requirements, and it motivates the proposed solutions presented in this thesis. To deliver the portability goal with a single off-the-shelf camera, we have taken two approaches: The first one, and the most extensively studied here, revolves around an unorthodox camera-mirrors configuration (catadioptrics) achieving a stereo omnidirectional system (SOS). The second approach relies on expanding the visual features from the scene into higher dimensionalities to track the pose of a conventional camera in a photogrammetric fashion. The first goal has many interdependent challenges, which we address as part of this thesis: SOS design, projection model, adequate calibration procedure, and application to VO. We show several practical advantages for the single-camera SOS due to its complete 360-degree stereo views, that other conventional 3D sensors lack due to their limited field of view. Since our omnidirectional stereo (omnistereo) views are captured by a single camera, a truly instantaneous pair of panoramic images is possible for 3D perception tasks. Finally, we address the VO problem as a direct multichannel tracking approach, which increases the pose estimation accuracy of the baseline method (i.e., using only grayscale or color information) under the photometric error minimization as the heart of the “direct” tracking algorithm. Currently, this solution has been tested on standard monocular cameras, but it could also be applied to an SOS. We believe the challenges that we attempted to solve have not been considered previously with the level of detail needed for successfully performing VO with a single camera as the ultimate goal in both real-life and simulated scenes

    Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs)

    Full text link
    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances

    Augmented indoor hybrid maps using catadioptric vision

    Get PDF
    En este Trabajo de Fin de Máster se presenta un nuevo método para crear mapas semánticos a partir de secuencias de imágenes omnidireccionales. El objetivo es diseñar el nivel superior de un mapa jerárquico: mapa semántico o mapa topológico aumentado, aprovechando y adaptando este tipo de cámaras. La segmentación de la secuencia de imágenes se realiza distinguiendo entre Lugares y Transiciones, poniendo especial énfasis en la detección de estas Transiciones ya que aportan una información muy útil e importante al mapa. Dentro de los Lugares se hace una clasificación más detallada entre pasillos y habitaciones de distintos tipos. Y dentro de las Transiciones distinguiremos entre puertas, jambas, escaleras y ascensores, que son los principales tipos de Transiciones que aparecen en escenarios de interior. Para la segmentación del espacio en estos tipos de áreas se han utilizado solo descriptores de imagen globales, en concreto Gist. La gran ventaja de usar este tipo de descriptores es la mayor eficiencia y compacidad frente al uso de descriptores locales. Además para mantener la consistencia espacio-temporal de la secuencia de imágenes, se hace uso de un modelo probabilístico: Modelo Oculto de Markov (HMM). A pesar de la simplicidad del método, los resultados muestran cómo es capaz de realizar una segmentación de la secuencia de imágenes en clusters con significado para las personas. Todos los experimentos se han llevado a cabo utilizando nuestro nuevo data set de imágenes omnidireccionales, capturado con una cámara montada en un casco, por lo que la secuencia sigue el movimiento de una persona durante su desplazamiento dentro de un edificio. El data set se encuentra público en Internet para que pueda ser utilizado en otras investigaciones

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing
    corecore