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Chapter 1

Introduction

Computer vision is the scientific field that enables computers to gain high-legetstand-
ing from a single digital image or sequence of images. Practically it seeksdmate
tasks that the human visual system can do [1]. Main tasks include the iaggirocess-
ing, analyzing and understanding of digital images, and extracting ohnafbon about the
real world. The countless different applications available today camb#led in some
well researched sub-domains like scene reconstruction, event detedtieo tracking, ob-
ject recognition, 3D pose estimation, learning, segmentation, motion estimatibimage
restoration [2]. The methods presented in this thesis propose novel ssldtiothe 3D
pose estimation and planar scene reconstruction problems.

By camera pose in general we can refer to both the absolute and relsgeefcameras.
Absolute camera pose estimation consists of determining the position and orremtio
a camera with respect to a 3D world coordinate frame, while relative pdses e the
position and orientation with respect to another devieg.@nother camera in case of a
multi-camera setup), or another position of the same (but moving) camera ifeeenif
moment in time. These are fundamental problems in a wide range of applicatioms s
as camera calibration, object tracking, simultaneous localization and magpiuAgv),
augmented reality (AR) or structure-from-motion (SfM).

Computer vision methods rely on the image content to estimate the camera’s pose. |
general, the information retrieved from the image can be of different coditiple starting
from points, lines, regions to higher level semantic objects. Using camelpg 2D-3D
image points as features to determine the absolute pose is often callBdrtpective-n-
Point (PnP) problem, that can be solved with a minimum number of 3 correspoesi{3jc
Similarly thePerspective-n-LinéPnL) problem, that uses line correspondences in the 2D-
3D domain, can also be solved with a minimum numbet ef 3 feature correspondences.

The methods presented in this thesis rely on patches instead of point odlineefg that
are higher order, better defined features that bring a few advardtaggmred to the others.
Also the minimum number of corresponding regions needed for pose estinmtios 1.
Chapter 2 introduces the reader to the basic aspects of pose and hphyogstimation.
The central spherical camera model is described, which enables ual toadle with tradi-
tional perspective and more special dioptric or catadioptric omnidirect@armakras in the
same framework. In Chapter 3, first the State-of-the-Art in absolute estimation is pre-
sented, with an accent on omnidirectional cameras and methods not ratyihg dassical
point features, also reflecting on the possible applications in fields subk decumenting
and preserving of cultural heritage objects, and large scale struchuigings. After this

1



2 1. CHAPTER. INTRODUCTION

overview the technical details of the proposed planar region basetlibpose estimation
method for spherical cameras are presented, including the speciafqeespective cam-
eras and also dealing with non-planar regions. Finally two applicationstaffdsion are
proposed for the documenting of cultural heritage objects and buildings.

The second part of the thesis investigates the possibilities of pose estimatior-an
construction when only 2D information from multiple cameras is available. Fogagain
on image regions as features we can define planar homographies adtiegte¢he cam-
eras, assuming that these region pairs are the segmented images of theDsptapad
surfaces. Homography estimation is a well researched topic of compuin @isd is an
essential part of many applications, as such, it can be used to solveudiffaoblems in-
cluding pose estimation or planar reconstruction. In Chapter 4, first the-&ftdhe-Art
in homography estimation is presented, detailing the difficulties involved whehkingp
with omnidirectional cameras, and having a particular focus on appreactaving 3D
reconstruction. After this overview the first region based homograptignation method
proposed for spherical cameras is presented, then two applicatiotesiriglat, one for rel-
ative pose factorization based on these homographies, then a closeddition for 3D
reconstruction with a differential geometric approach. Finally a specrabgoaphy estima-
tion approach is proposed that can simultaneously provide the relaties pbthe cameras
and the 3D reconstruction of the planar region(s) in a multi-camera set@pté&d wraps
up the presented results with the main conclusions of this thesis.



Chapter 2

Fundamentals

2.1 Central Omnidirectional Cameras

An omnidirectional (sometimes referred to as panoramic) camera is a camei@awvistial
field that covers approximately a hemisphere, or the entire hemisphere gi8itg field
of view. There are different ways to build such a camera, either by wsisigaped lens
(dioptric), using a shaped mirror combined with a standard camera (cat@c)iopr using
multiple cameras with overlapping field of view (polydioptric). Catadioptric camerere
first used for localizing robots in the early '90s [4] and that is still a majqiaption field
for them due to th&60° horizontal field of view. Dioptric, more commonly calléigheye
cameras started to spread only years later when the manufacturing processes enabled
obtaining up tol80° field of view. These cameras’ geometry cannot be described using
the conventional pinhole model because of the high distortion, thus specdgls were
developed to work with them. In this section two models are presented foatentr
nidirectional cameras, central meaning that there is a single effectivpeistythat is the
projection center where all optical rays of the viewed objects intersetad{@©ptric cameras
can be built to be central using parabolic, hyperbolic or elliptical mirrosibe criteria of
single effective viewpoint is important, because it enables the mapping atlmavtional
images onto an image plane forming a planar perspective image, and altesahaluse of
epipolar geometry. Further more the image can be mapped on a unit sphiereden the
single viewpoint. This spherical projection stands at the base of the twolsndelecribed
in this section, both defining the projection of the camera through a sphperajettion of
3D world points that are then mapped to image pixels by some funétias shown on the
generic model in Fig. 2.1.

The first unified model for central catadioptric cameras was propogedelyer and
Daniilidis [6] in 2000, which represents these cameras as a projection onto the surface of
a unit sphereS (see Fig. 2.1). According to [6], all central catadioptric cameras can be
modeled by a unit sphere, such that the projection of 3D points can bermped in two
steps: 1) the 3D poirX is projected onto the unit sphefe obtaining the intersectioX s
of the sphere and the ray joining its center 8dsee Fig. 2.1). 2) The spherical poiX{s
is then mapped into the image plabehrough the camera’s internal projection functidn
yielding the imagex of X in the omnidirectional camera. Thus a 3D paXate R? in the
camera coordinate system is projected afitoy central projection yielding the following

3
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X

Figure 2.1. A generic spherical camera model.

relation betweerX and its imagex in the omnidirectional camera:

X
d(x) =Xs x| (2.1)
This formalism has been widely adopted and various models for the integjetpon func-
tion ® have been proposed by many researcteegsMicusik [7], Puig [8], Scaramuzza [9]
and Sturm [10].

Herein, we will briefly overview two models that have become standards indmacr
tional vision: first the classical specific model of Geyer and Daniilidis §8]datadioptric
cameras, that is not valid for fisheye cameras as shown by [11], theyettezic model of
Scaramuzza [9] also known as Taylor model, who derived a gendyaiguuoial form of the
internal projection valid for any type of omnidirectional camera (catadioptnit dioptric
as well).

2.1.1 The General Catadioptric Camera Model

Let us first see the relationship between a 3D pdint [ X1, X, X3]7 and its projection

x in the omnidirectional imag& (see Fig. 2.2). The camera coordinate system i§,in

the origin (which is also the center of the sphere) isdffective projection centesf the
camera and th& axis is the optical axis of the camera which intersects the image plane
in the principal point We assume that the axis of symmetry of the mirror is aligned with
the optical axis, and{ andY axes of the camera and mirror are also aligned, thus the
two coordinate systems only have a translation al@ngTo represent the nonlinear (but
symmetric) distortion of central catadioptric cameras, Geyer and Daniilidiprf§écts a

3D pointX from the camera coordinate system to omni image pixgdrough four steps.
First X is centrally projected onto the unit sphere:

X

= o = (Xg,Ys,Zs)
[1X]]

Xs
Then point coordinates are changed to a new reference frame akimeége= (0,0, —¢):

Xe = (Xg,Ys, Zs + &)
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where¢ ranges between 0 and X, is then projected onto the normalized image plane:

Xg Ys 1
Zs+§& Zg+¢

m:(xm,ym,l):( ):(I)_l(XS)
In the final step the poinin is mapped to the camera image poinusing the camera
calibration matrixkK

x =Km

where
J 0 =z
K=10 f w
0 0 1

contains the camera’s focal length and optical center coordinates.

This model was later refined by Barreto and Araujo [12], where thegidened that
oriented projective rays,. are mapped for each 3D poikt, = [ X1, X2, X3, 1]7 expressed
in world coordinate system with homogeneous coordinatgs(TX,,, whereT is a rigid
body transformation), and their corresponding projective says, intersect in the mirror
surface

Xeam = Mch(Xc)

whereM.. includes the mirror paramete¢sand (see [12] for details) anél(x.) can be
interpreted as a non-linear mapping between two oriented projective planes

X1
xp = h(x.) = X2
X3+ &/ X7 + X3+ X3

The virtual planeP is then transformed in the image plafigsee Fig. 2.2) through the
homographyH: as

x = Hexp = Heh(x)
He = KcRouMe,

whereK includes the perspective camera parameters (taking the picture of the)mirror
Ry is the rotation between camera and mirror. Thus the relation between image point
x and raysx..m IS given by a collineation depending on camera orientation and internal
parameters. Herein, we will assume an ideal setting: no rotatienR-,; = I) and a
simple pinhole camera with focal lengfhand principal pointxg, yo) yielding

fl=9¢ 0 o v 0
He = 0 flE—=v) wl| =10 =y wo
0 0 1 0 0 1

where~ is the generalized focal length of the camera-mirror system.
According to [6] and [12], this representation includes:

1. catadioptric systems containing a hyperbolic mirror and a perspectiverador0 <
£ < 1,aswellas

2. catadioptric systems with parabolic mirror and orthographic cameta=fot and
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Figure 2.2. Omnidirectional camera model using Geyer and Daniilidis’ reptaton [6].

3. conventional perspective camerag as 0

In the following, without loss of generality, we will focus on case 2). Tlijedbive
mapping® : Z — S is the inverse of the camera’s projection function, which is composed
of 1) transforming the image poist € Z back to theP virtual projection plane bﬁalz

Xp = Halx,

and then 2) projecting back this poifitp1, zpa, zp3)? from P to a 3D ray through the
virtual projection cente€p (assuming = 1):

Ip1
X = h 1(X7>) = Trp2
1'22 3733221 71222
2xp3
%(901 — xq)
1
— hl(H %) = = (2 — ¥o) (2.2)

e\ 2 g\ 2
§<1 (mv O) _( Q'Yyo) >
We thus get the following expression for: Z — S:

h’l(Halx)

20 =Xs = 1 im )]

(2.3)

which provides the corresponding spherical pdXyg € S. V& is easily obtained from
(2.2) and (2.3).
2.1.2 Scaramuzza’'s Omnidirectional Camera Model

The model presented by Micusik and Pajdla [13] also relied on the samefigegjexcting
on the unit sphere, but used a different parametrization for the prajefttrection. It was
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Figure 2.3. Omnidirectional camera model using Scaramuzza'’s repriisetita 14].

already capable of handling both catadioptric and fisheye camerasntautuwnately the
parameters of the two functions that describe the projection had to be degdroriiquely
for every sensor, thus the use of the model was cumbersome. Insteagkrtaral poly-
nomial form proposed by Scaramuzeaal. [9, 14] is easier to apply for different types
of cameras. Following [9, 14], we assume that the camera coordinatensigsite S, the
origin is the effective projection center of the omnidirectional camera. &dirst see the
relationship between a point = [z1,25]" € R? in the imageZ and its representation
Xs = [Xs1, Xs2, Xs3] " € R? on the unit spheré (see Fig. 2.3). Note that only the half
sphere on the image plane side is actually used, as the other half is not visiblérfage
points.

There are several well known geometric models for the internal projeféiof 9]. To
represent the nonlinear (but symmetric) distortion of central omnidiredtogiis, [9, 14]
places a surface between the image plane and the unit sph#&raevhich is rotationally
symmetric around (see Fig. 2.3). The details of the derivation can be found in [9, 14].
As shown by the authors, polynomials of order three or four are suitabladcurately
modeling all commercially available catadioptric and many types of fisheye camsra
well, thus we used a fourth order polynomial:

g(lxl)) = a0 + az||x||* + as||x||* + aa x|, (2.4)

which has4 parametersag, as, as, a4) representing the internal parameters of the camera
(only 4 parameters as; is always0 according to [14]). The bijective mapping: Z — S
is composed of

1. lifting the image poink € Z onto theg surface by an orthographic projection

X

(2.5)
ag + az|x||* + as||x|[* + aa[x|*

Xg =

2. then centrally projecting the lifted poirt, onto the surface of the unit sphese

Xg

Xs=o(x) =

- (2.6)
1%l
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X

Figure 2.4. Perspective camera model using Scaramuzza’'s sphepmdentation, assum-
ingg = 7.

Thus the omnidirectional camera projection is fully described by means ofegtibrsX s
in the half space dR? and these points correspond to the unit vectors of the projection rays.
The gradient ofd can be obtained from (2.5) and (2.6).

Throughout the works presented in this thesis we used the above @eksspberical
camera model to work with omnidirectional cameras.

Spherical Model of the Perspective Camera

It's clear to see that by introducing the polynomial surfacihe camera model described in
Section 2.1.2 can model the different distortion and the large field of viemaidirectional
cameras, solely determined by the parameters (2.4) aof shieface. Consequently if we set
all parameters of to be zero, except the constant, we get a perspective camerais

a planar surface parallel to the image plane) as seen in Fig. 2.4. Furthdifysimgphe
model we can choosg = 7 by usingag = f (f is the focal length, the distance from the
projection center to the image plane), the bijective mapgdingZ — S for a perspective
camera becomes simply the unit vectoxof

- *
]

Xs = ®(x) 2.7)

This special case will be discussed later in Chapter 3.2.2.

2.2 Absolute and Relative Pose

Let's consider an arbitrary right handed world coordinate frameavith a 3D pointX,y,

in it, given by Xy, = [X1, Xo, X3, 1]7 homogeneous coordinates. A camérplaced in
the same space has it's coordinate system chosen asis pointing right,Y” axis down
and Z axis pointing forward in the direction of the optical axis, as shown in Fig. 2tie
relation between the world coordinate system and the one attached to thexéamieen
by the absolute camera pose, a rigid body transformation notdd-agR, t), composed
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X

Figure 2.5. Absolute pose of cametdo the world reference fram@/). T is acting on the
points given inW.

of a rotation matrixR and translation vectdras a3 x 4 matrix:

r11 T2 T3 Iz
T = [R|t] = o1 T922 T923 ty (28)
r31 T2 T3z i

wherer;; are the row-column indexed elements of the rotation matieing the row; the
column index, and,, t,, t, the components of the translation vector.

By the convention used, the above defined absolute pose is acting onild Xy,
given in W, transforming them into the coordinate systemCof Another definition of
the absolute pose would describe the transformation that gives the positi@riantation
of the camera iV, that is basically the inverse transformationIof This is more widely
used in applications where the camera’s pose as an object in spaceast@eay.robotics).
Since we are more interested in the projection of the camera then its position iotide w
in our work T described at (2.8) is part of the camera maRixised for projection to the
image plane, thus it is acting on the 3D points:

x = PXy, = KTX)y = K[R[t]X)y, (2.9)

where =’ denotes the equivalence of homogeneous coordinagegguality up to a non-
zero scale factor, arfd is the3 x 3 upper triangular calibration matrix containing the internal
projection parameters of the perspective camera. Exactly the same traatiém applies

if we consider the spherical camera model, as shown at the beginningapfett?.1.1, the
3D pointX expressed in camera coordinate system is practically obtainEd-ad'X, .

If we consider multiple cameras in the same framework, or if we intend to work on
the image sequence of a moving camera the absolute pose of each cameraédrabe
defined individually, but depending on the application this might not beyatlae best
solution. In tracking, localization or reconstruction related applications théue camera
pose between neighboring cameras or consecutive frames is often revesiimg since it
provides vital information about the actual local state of the system, whildwbspose
provides a more global information useful for calibration, building a mapagigating to a
predefined location.
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z
yd
C C,
y Y
X Tr X
Figure 2.6. Relative pose of two cameras, acting on poinfs.in

By relative pose we refer to the rigid body transformatibnthat acts between the co-
ordinate systems of two cameras. Practically, compared to the absolutéhmodiference
stands in the definition of the global coordinate system. One of the camerhe easigned
the role of the reference frame, and other cameras’ absolute poseréssag relative to
that, resulting the relative pose between cameras. In case of an imagasedhis can be
applied incrementally if needed, each camera taking the role of refenemoe for the next
frame. By definitionT, acts on the points expressed in the reference coordinate system,
thus in the example shown in Fig. 2.6 the relative pose brings 3D points ergr&sC;
into Co, thus theTr% notation can also be used. The absolute posg @ndC, and their
relative pos€T',. satisfy the following relation:

T, = T,iTh (2.10)

Estimating the Camera Pose

The most standard method for estimating camera pose, the Perspectiuat-(PRP) prob-
lem originates from camera calibration. These methods rely on corresgotata (called
features) in the reference world coordinate system and in the camare. frdl PnP prob-
lems include the P3P problem as a special case; 3 being the minimum number of
features, for which the problem can be solved. This special case vgnktmprovide up
to four solutions that can then be disambiguated using a fourth point. Inerspecial
case if the points are coplanar, a homography transformation can béedphstead [15].
A standard approach for the PnP problem is first using P3P in a RANSAéhs [16] to
remove the outliers, then PnP on all remaining inliers. All the P3P algorithmeéitistate
the distance of points from the camera center expressing them in the capoedinate
system, then estimating the transformatibrthat aligns them to the points expressed in
world coordinate system using closed-form solution. Other methods reheaninimizing
of feature projection errors. The possibilities of using different festsuch as lines, con-
tours, regions, objects are actively researched, but so far thelasiat feature®(g.SIFT,
SURF, AKAZE) are most commonly used in applications (a recent comparatialysis
of these can be found in [17]). This thesis presents novel regicedb@gistration meth-
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ods that do not rely on any point features, nor intensity information, ositygusegmented
planar image regions.

2.3 Planar Homography

In general terms a homography is a non-singular, line preservingtilsiegorojective map-
ping from ann dimensional space to itself, represented by a square 1) size matrix,
having(n+1)% — 1 degrees of freedom. In case of 2D planar homographies we favea
matrix representation witk DoF acting between planes defined in 3D space.

Let's assume we have two cameras observing a scene that containsa plame , d)”
so that for pointsX on the planea” X + d = 0. For simplicity we can choose the world
origin to be in the projection center of one of the cameras, thus ptaared pointX are
both defined in the camera coordinate system, then the camera matrices will be:

P, = Kl[IIO} andP2 = KQ[R‘t] (211)

According to [15] a homography induced by the planeacting between the normalized
image planes of; — Cs is composed as:

H xR —tn’/d (2.12)

More specifically, considering the homography acting between image pixed§C; and
xo of Cy we havex, = H;,,,x1 where

H;, = Ko(R — tn” /d)K* (2.13)

but since we are going to work with calibrated cameras, we can considealibeation
matrices are known, thus we can work in the normalized image plane points€atuts in
case of the spherical camera model), using the notation in (2.12) thatlheaata between
the projection rays of the points.

Since in most of the applications only the individual camera images are available
planar homographies have to be computed directly from corresponding iehagents that
specify the plane. SincH has8 DoF (one free scale factor) it is enough to fihghoint
matches on the camera images lying on the image of pfateebe able to determinH.
Using these four points in a general positiae.(no three of them are collineak] can be
calculated using the Direct Linear Transform (DLT) algorithm.

In case of known epipolar geometry, if the fundamental matrix is availdblean be
calculated using three non collinear points, or a line and a point that botiedeflane
uniquely. If the fundamental matrix is not available, it can be computed usengiéda of
plane induced parallax aidmage points4 coplanar points define the homography, and the
two points off the plane provide constraints to determine the epipole [15].r Gthations
rely on conics, curves, discrete contours, or even planar textufe [18

Retrieving Pose and Plane from Homography

According to [15] the knowledge of homographies between the images meamgtknow
the first3 x 3 part of the camera matriR = [M|t] = K[R|t], that in case of calibrated
cameras means that the orientation can be estimated frargithésed on vanishing points)
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hence only the last column (translation) has to be computed. [19] proposexdhod for
recovering the relative pose and also the projective shape throughf&itarization of
a measurement matrix, using only fundamental matrices and epipoles estinuatethér
image data.

Relative pose and plane parameters can also be easily retrieved froan ptemogra-
phies if some special constraints can be applied on the problem. For examplbow
that considering a weaklanhattan Worldsetup with vertical planes in the scene, and the
vertical direction of the camera known from external source, we catttiirdecompose
this special homography to find the unknown rotation angle, translationland pormal.
In this thesis we also present a novel homography estimation framewogk basplanar
regions, that enables us to develop a simultaneous relative pose angataneter esti-
mating algorithm (based on the parametrization (2.12)), and also a différgetimetric
approach for plane reconstruction from homographies.



Chapter 3

Absolute Pose Estimation and Data
Fusion

3.1 State of the Art Overview

Absolute pose estimation of a camera with respect to a 3D world coordinate isaa
fundamental building block in various computer vision applications, sucblagics €.9.
visual odometry [20], localization and navigation [21]), augmented redRy, geodesy, or
cultural heritage [Frohliclet al, 201G. There is also considerable research effort invested
in autonomous car driving projects both on academic and industrial sidele Yéh the
specific scenarios such as highways there are already a nhumbercesiut applications,
this problem is still generally not solved for complex environments such asrba ones
[23, 24]. Recent developments in the autonomous driving, especiallpanemvironment,
are using a great variety of close-to-market sensors including diffeeeneras and active
sensors, this puts into focus the need for information fusion emergingtfiese sensors
[25].

The absolute pose estimation problem has been extensively studied yietdingsv
formulations and solutions. Most of the approaches focus on a singpguive camera
pose estimation using 2D-3D point correspondences. One of the earliest works to con-
sider this problem was [16] who also coined the tétenspective-n-Poinfor PnP) for this
type of problem withn feature points. Later [26] proposed a method based on the iterative
improving of the pose computed with a weak perspective camera model, thvarges to
a pose estimation computed with a perspective camera model, then [27] galgehraic
derivation of this method. More recently [28] proposed a non-iteratiation that had a
linear computational complexity growth with then [29] proposed the first non-iterative
solution (RPnP) that achieved higher accuracy than the iterative St#te-@frt methods
with less computation time. The first Unified PnP (UPnP) solution that unifieseatii¢h
sirable properties of previous algorithms was proposed by [30]. TRepPoblem has been
widely studied not just for larga but also for the minimal case of = 3 (see [30] for a
recent overview). More recently researchers started using linesgwndences instead of
points, that yields th&erspective-n-Ling¢PnL) problem [32, 31] (see [31] for a detailed
overview).

Several applications dealing with multimodal sensors make use of fuseaiZibnetric
and 3D depth information. The availability of 3D data has also became widaebpBD
measurements of a scene can be provided both by the classical imagetdadssques,

13
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such as Structure from Motion (SfM) [33], and modern range sen®ogsLidar, ToF)
that record 3D structure directly. Therefore methods to estimate absokgeopa camera
based on 2D measurements of the 3D scene are still actively reseaddh&@,[35]. Many
of these methods apply to general central cameras (both perspedivereandirectional)
that are often represented by a unit sphere [5-7, 9].

In order to obtain a common coordinate frame for these devices the relaitop
among the different 2D and 3D cameras has to be determined. Althoughatigplispe-
cific solutions exist, the principles of the relative position estimation are still sinfilae
main challenge in the accurate calibration is due to the uncertainty in the relasitep
measurement among different sensor bases. Fortunately, the calilfati@encentral cam-
eras including the perspective or omnidirectional ones can be encegusulaa common
theoretical framework. For both types of cameras a clear distinction is madttecfintrin-
sic and extrinsic calibration.

Internal calibration refers to the self parameters of the camera, whilenakfsrame-
ters describe thposeof the camera with respect to a world coordinate frame. While internal
calibration can be solved in a controlled environmerd,using special calibration patterns,
pose estimation must rely on the actual images taken in a real environment. gkithoo-
conventional central cameras like catadioptric or diopeig.fisheye) panoramic cameras
have a more complex geometric model, their calibration also involves interrehpéars
and external pose. Popular methods rely on point correspondemciesas [14], or us-
ing fiducial markers [36], which may be cumbersome to use in real life situstidhis is
especially true in a multimodal setting, where images need to be combined with other n
conventional sensors like Lidar scans providing range only data. ilee-bmnidirectional
camera calibration problem was analyzed from different perspectiResently, the ge-
ometric formulation of omnidirectional systems were extensively studied [73&7 The
internal calibration of such cameras depends on these geometric modetsighittiifferent
calibration methods and toolboxes exist [36, 39, 14], this problem is lyofarivial and is
still in focus [38]. In [40], the calibration is performed in natural scemesvever point cor-
respondences between the 2D-3D images are selected in a semi-supmatiser. In [41],
calibration is tackled as an observability problem using a (planar) fiducigdenas cali-
bration pattern. In [42] a fully automatic method is proposed based on mutoatiafion
(MI) between the intensity information from the depth sensor and the omniidinatcam-
era, while in [44, 43] a deep learning approach for calibration is ptedenother global
optimization method uses the gradient orientation measure as described. ikp¥&dver,
these methods require range data with recorded intensity values, whitbt alevays avail-
able. In real life applications, it is also often desirable to have a flexiblestagecalibration
for systems which do not necessarily contain sensors fixed to a commaoriplatf

3.1.1 Related Work

Due to the large number of applications using central camera systems, ataogdleef the
calibration methods is rather wide. Beside solving the generic 2D-3D regstraoblem,
several derived applications exist including medical [46], robotick4A8 cultural heritage
ones [Frohlictet al, 2014. For the pose estimation in known environment a good example
can be found in [47], while in [48] an application is reported using sphkimgage fusion
with spatial data.

A possible differentiation for the applications is related to the input data prepge
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such as image resolution. For high precision image registration the workrpeesin [49]
is based on the information of the Lidar scan intensity or the ground elevatieln Mutual
information is computed between the two images and fed to a global optimizatioittatgor
in order to estimate the unknown camera parameters. The algorithm proveduodessful
in urban environment. For low precision and high frame rate systems siileh ases used
for navigation purposes, the registration challenges are addressdffenerd ways. In
these setups several Lidar-camera scan pairs are acquired andistratien is performed
for these image pairs as described in [50].

A more generic classification of the types of algorithms is presented in [5&$idB
the direct measured relative pose methods such as [52], a numberesfcgerethods are
summarized below.

Feature-based Methods

Several variants for calibration based on specific markers are usexktfinsic [53, 54]
camera calibration. In the early work of [55], alighment based on a mininmabeu of point
correspondences is proposed, while in [56], a large number of 2DeBi®@spondences are
used with possibly redundant or mismatched pairs. The extrinsic calibrdtidb tidar
and low resolution perspective color camera was among the first addriesfs7] which
generalized the algorithm proposed in [58]. This method is based on maoinafeature
selection from both domains and assumes a valid camera intrinsic model foatiahb A
similar manual point feature correspondence based approach issprbjpo[40]. Recently,
increasing interest is manifested in various calibration setups ranginghigivresolution
spatial data [49] to low-resolution commercial cameras [59]. Also online rediliim for
different measurements in time such as in case of a moving platforms contaggtigahd
color sensors are presented in [60, 42].

Color-intensity-based Methods

A popular alternative to the feature based matching is the mutual informati@catr and

alignment between the 2D color and the 3D data with intensity information suchcasén
of [61, 45]. Extensions to the simultaneous intrinsic-extrinsic calibratiorpegsented in
the work [41] which makes use of lidar intensity information to find correspands be-
tween the 2D-3D domains. Other works are based on the fusion of IMUWP& iGformation

in the process of calibration [62].

Statistical Methods

A good overview of the statistical techniques based calibration methods ecdoubd
in [46]. Mutual information extraction based on particle filters is present#ukinvork [45]
which performs the calibration based on the whole image space of a singd® 2ibser-
vation. The calibration can be based both on intensity and normal distribufammiation
for the 3D data. A further extension of this approach based on gradiiEmtation mea-
sure is described in [63]. A gradient information extraction and global mragcbetween
the 2D color and 3D reflectivity information is presented in [42]. This hasrtvagor dif-
ferences compared to the work described in this paper. The currektisvoot limited to
lidar systems with reflectivity information rather it is based only on depth infaonaOn
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the optimization side, the proposed method is not restricted to convex prohhehadi@awvs
camera calibration using only a single Lidar-camera image pair.

Silhouette-based Methods

An early and efficient silhouette based registration method is presentet] jmftich solves
a model-based vision problem using parametric description of the model. Ttlisanzan
be used with an arbitrary number of parameters describing the object muatied based
on a global optimization with theevenberg-Marquardinethod. A whole object silhouette
based registration is proposed in [61], where the authors describedH3® Zegistration
pipeline including segmentation, pixel level similarity measure and global optinrizatio
the registration. Although the proposed method can be used in an automatieritars
is limited only to scenes with highly separable foreground-backgrournd.p@y an auto-
matic segmentation of the relevant forms in panoramic images, which are rediatginst
cadastral 3D models the segmented regions are aligned using particle sptamization
in [65]. An extension of the silhouette based registration method is propndéé]. In
this work a hybrid silhouette and keypoint driven approach is used ®rdpistration of
2D and 3D information. The advantage of this method is the possibility of multiple image
registration as well as the precise output of the algorithm.

3.1.2 Cultural Heritage Applications

From a cultural heritage application’s point of view there are completelgraifit criteria
that have to be considered, primarily the availability of the devices and theuneeasnt
method that they require are key aspects. Recently, as more and more 3Dgmeagces
and methods are available, cultural heritage experts have a severaisajtichoose from
for documenting architectures, excavation sites, caves [67], histsgeaks or other large
or small scale objects. Thus the need for effective software solutiorisdsrecreasing.
Capturing an object with different modalities giving different levels of dlettae fusion of
these data is inevitable at a given point. Different devices working oerdifit principles
impose a specific workflow for the creation of a colorized 3D model. Bubmnhately,
as it is well known for all experts working in this field, there is no one singlat®on that
could be used for all types of case studies.

In archaeological cultural heritage study 3D modeling has become a sefyl process
to obtain indispensable data for 3D documentation and visualization. Whileghis@isur-
veying and measurement of architecture, or excavation sites is possibltotaitistations
(e.g.manufactured by Leica Geosystems), the use of these devices anddtiercod a
precise model based on the measurements needs highly experienasssipradls. Using
a Lidar scanner instead, one can also produce a metric 3D model, withebldtigh pre-
cision, that could be sufficient for most tasks, and could be used fapleting different
measurements later on the data itself, even special measurements impossitierio ipe
real world. As we found out it can also be indispensable for planningethevation pro-
cess of some cultural heritage buildings that were never measured|grogiere, since the
plans can only be designed once a complete model of the building’s actigsikstaailable.
Also spatial and color features are important factors for specialists tgzante ruins of
some historical building, make hypothesis about the 3D models and obtainiaBDfithe
assumed original look of the structure, to use it then as an educatioresearch tool.
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Another important cultural heritage application is the creation of accurata@ils of
small scale objects, like ceramics or fragments, including textural detailsrdprissents a
better, new way of documenting ceramics next to the traditional 2D repieggsTs through
technical drawings. Beyond the accuracy of the 3D features suctruedusal surfaces
and shapes, archeologists are also concerned by the accuradgrofieedures, especially
color patterns and color inclusions. Indeed spatial and color feattgdmportant factors
for specialists in ceramics to analyze fragments, make hypothesis aboultj@fstshapes
from sets of fragments, and in general as educational and resealgh to

Reviewing recent cultural heritage publications we can observe, thatllmn the actual
case’s properties and the available budget, different groups usepletely different ap-
proaches starting from the low cost options like photogrammetry or relativelgp, entry
level structured light scanners up to the more professional Lidar scaamd even high-
end, expensive laboratory setups producing the best possible re&sltdrict laboratory
conditions can hardly be ensured on the field, and not all case studigser¢he highest
possible precision of the results, usually some compromises are made as thegjaality
of the results still meets the project’s needs.

Most of the recent works rely on either laser, structured light basedcabners, pho-
togrammetry or a combination of these to obtain the 3D model of an object. Thpihagh
togrammetry is widely used, recent overviews of available techniquesrieskin [69, 68]
show its main disadvantages: a large number of images has to be capturedt \&itko
feedback, not being able to verify partial results on the go, and meddater on powerful
workstations that is also time consuming. The level of detail captured carbentgrified
after the final reconstruction is finished, if accidentally some parts wereapbured from
enough viewpoints, it can only be corrected by a new acquisition. Irr tod®/ercome this
issue, the authors of [70] have experimented with a mathematical positioriogdure to
reduce the required number of images captured and ensure a highflde&ibover all re-
gions. Others use various software solutions to do the 3D reconstrusfitmmore images
taken from arbitrary positions [71]. Since most commercial software nmefthe detection
of some keypoints, problems can occur with objects having no texture at #tle$e cases,
the best practice is placing external markers near or on the object if isglpe, visible on
the captured images. A good example is presented in [72], where gedtaggker points
were used for both photogrammetric and laser scanning techniques.

3D scanners on the other hand are generally more expensive devacethéhDSLR
cameras used for photogrammetry, but they are gaining popularity thatiies ¢atry level,
easy to use, relatively cheap devices available, while serious prafetsare indisputably
relying on laser or structured light scanners for the best possiblégeQonsidering only
the Lidar scanners or even some structured light scanners that haitein BGB camera
as well, we can say that these devices can't produce data that has#ssary color detail
for most heritage applications, since usually the built-in RGB camera is a |mutesn
sensor intended primarily to facilitate registering multiple scans into a complete IBD co
model, and to give a generic colorization of the model. For cultural heritpgkcations,
maybe except for visualization purposes in education, these models tasatisfactory.
Thus, good quality, possibly color calibrated, high resolution RGB informéias to be
attached to the point cloud data. Lidar scanners that don’'t have amaxtemera attached
will not capture RGB information in the same time with point cloud data, while stredtur
light scanners that have a small sensor camera built in, will only captureqoality color
information. In both cases the solution is the same, RGB images have to beechpttir a
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separate device, even a full frame DSLR camera is quite commonly usedsftagk; and
then fused with the point cloud.

Some recent works have shown that while the separate approachesodagepgood
partial results, the true potential is in combining multiple approaches. [73] laser
scanners and digital cameras for the documentation of desert palaceslortlan desert,
while others also included CAD modeling in their work to complete the missing parts of
the data [74]. An effective workflow using the combination of these threlenigues was
presented for 3D modeling of castles [75].

From a technical point of view the main challenge in fusing high resolutiorr call>-
brated RGB images with the 3D data is the estimation of the camera’s relative pibse to
reference 3D coordinate system. In the computer vision community many selatien
available solving this problem based on: finding point or line correspuretebetween the
two domains [49], using mutual information [76], and large number of solstielying on
specific artificial landmarks or markers [53]. There are also experssiftware solutions
(e.g.[69] used Innov Metric Polyworks, [73] used Photomodeler) that stilissproblem.
However, these also require good quality RGB information in the 3D dataeh&mpure
geometric data with no RGB information is not enough to solve the fusion.

In contrast, our method works without color information in the 3D data anslneggons
instead of matching key-points, which can be easier to detect in case abthkuitage ob-
jects with homogeneous surface paintings. One region visible on both the 2j2sraad
the 3D point cloud is already enough to solve the pose estimation, but with egioas the
method becomes more robust [77]. In 2D, these regions can be easilgistagl using stan-
dard segmentation methods, while in 3D, they can usually be segmented Inatbed3D
model’s surface parameters or based on color information, if it is avail@hle.means that
we don’t necessarily use color information stored with the 3D pointcloudnsnexpensive
device could also be used for data acquisition. The 2D images can alsquiseddoy any
RGB camera, that can be calibrated using a free calibration Toolbox. durusorkflow
expects 2D color calibrated images, the camera’s internal parameters3@ndantcloud
with or without intensity information. In the application presented in Chapter 3e8izer
ment step is also proposed for the pipeline, that relies on available colomiation to
further reduce the pose estimation error. Since the ICP based algoritiinmakes use of
the edge lines from the 3D RGB information, color accuracy and high résoldetails are
not needed, even a low resolution RGB information satisfies the needs mfthement
step, if the most prominent edge lines can be detected on it.

Since Lidar scanners are getting more often used for capturing largéusesi, complex
buildings, in the second application presented in Chapter 3.4 we focustdwe @&D-3D
data fusion with Lidar scanners, since they can produce a widely ugael@se metric
3D model. Considering the relative poses of all the cameras to the 3D medalraady
obtained, another challenge arises when dealing with hundreds of sugbsntiat have to
be fused with one common 3D model. This involves different problems, ssich@osing
the best view for each part of the model, blending information from diffeseurces with
possibly different exposition, and generating a consistent, easy téehaumgut file format
that is easily interpretable. For this problem we proposed a camera sel@gioithm, that
can deal with large numbers of images captured with different cameras, mglying on
relevant parameters such as focal length, resolution, sharpnesmg/engle to choose the
best view for every surface of the model. The algorithm ranks all the tieat satisfy the
visibility constraint for each 3D point, then chooses the best one acgoi@some rules.
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3.1.3 Contributions

In Chapter 3 we propose a straightforward absolute pose estimation melticid aver-
comes the majority of the point based methods’ limitatiores by not using any artificial
marker or intensity information from the depth data. Instead, our method nugkesf a
segmented planar region from the 2D and 3D visual data and handlessbietabpose
estimation problem as a nonlinear registration task. More specifically, idspyr¢he 2D
registration framework presented in [78], for the central camera modetamstruct an
overdetermined set of equations containing the unknown camera posevetothe equa-
tions are constructed in a different way here due to the different dinealgipof the lidar
and camera coordinate frames as well as the different camera modelounsadrfidirec-
tional cameras. By solving this system of equation in the least squaresiseasstandard
Levenberg-Marquardalgorithm, we obtain the required set of parameters representing the
camera pose. Since segmentation is required anyway in many real-life imalgsiatasks,
such regions may be available or straightforward to detect. The main ageaoftthe pro-
posed method is the use of regions instead of point correspondeneegameric problem
formulation which allows to treat several types of central cameras in the samework,
including perspective and omnidirectional as well. The method has beeriitqtigely
evaluated on a large synthetic dataset and it proved to be robust aridreffn real-life
situations.

For cultural heritage focused applications in Chapter 3.3 we propose2D3i2gion
based fusion algorithm, that solves the pose estimation problem with segmegied r
pairs, even if no intensity information is available in the 3D data. If intensity médion is
also available the proposed algorithm makes use of it to refine the posegiarain a 2D
edge-lines based ICP refinement step. We show on synthetic benchthmapesrformance
of our method, including the robustness against segmentation errorathatcur in real
world situations. We also validate the method on real data test cases whinmesattat
with good quality input data we can achieve high quality results, as well asratedsrors
in the 3D model are well tolerated.

In Chapter 3.4 we propose a complete pipeline to fuse individual Lidar stath2D
camera images into a complete high resolution color 3D model of large buildings- C
mercial software provided by Lidar manufacturers are limited to the rigid seftapgaser
scanner and a camera attached to it, for which they can produce cooelctfized models
that are usable in many applications. Unfortunately, in cultural heritagesappns usually
a higher level of detail is necessary, especially for some parts of the stenajor impor-
tance. For this reason we have to separate the camera from the scadroapture fine
details from closer viewpoints using different telephoto lenses as wells ffteiproposed
workflow contains a specific step used to select an optimal camera imagefoBP region
that has the best view of that surface based on different criteria. Widyswve can project
images of arbitrary cameras onto the 3D data in an efficient way, wide angégénpao-
viding a good general colorization for most parts while close up shots Epht#o images
provide better resolution for selected parts. The efficiency and qualitiyeoethod has
been demonstrated on two large case studies: the documentation of the&ktdrurches
of Klizska Nema (Kolozsnéma) and Samorin (Somorja) in Slovakia.
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Figure 3.1. Spherical camera model and the projection of sphericalgsdighand Fs.

3.2 Region-based Pose Estimation

Pose estimation consists in computing the position and orientation of a cameraspitictre
to a 3D world coordinate systeW. Herein, we are interested in central cameras, where the
projection rays intersect in a single point called projection center or siffiigletiee view-
point. Typical examples include omnidirectional cameras as well as tradipenspective
cameras. A broadly used unified model for central cameras represeataera as a pro-
jection onto the surface of a unit sphere as described more detailed ine€CRah?2 (see
Fig. 2.3). The absolute pose of our central camera is defined as the ag&fdrmation
(R,t) : W — C acting between the world coordinate framéand the camera coordinate
frameC, that transforms points expressedi into the coordinate system of the camera
C, while the internal projection function of the camera defines how 3D poietsnapped
from C onto the image plang.

Considering the generalized spherical camera model described in CBdpfewe can
clearly see that the projection of a 3D world paiit= [X;, X, X3]" € R? in the camera
is basically a central projection ont® taking into account the extrinsic pose parameters
(R, t). Thus for a world poiniX and its imagex € Z, the following holds on the surface

of S:
RX +t

P(x) = Xs = ¥(X) = oo

(3.1)

A classical solution of the absolute pose problem is to establish a set oD2ipiBit
matches using.g.a special calibration target [59, 41], or feature-based corregrued
and then solve fofR,, t) via the minimization of some error function based on (3.1). How-
ever, in many practical applications, it is not possible to use a calibratioattangl most
3D data €.g.point clouds recorded by a Lidar device) will only record depth infornmtio
which challenges feature-based point matching algorithms.

Therefore the question naturally arises: what can be done when neisipecial target
nor point correspondences are available? Herein, we presentiasdor such challenging
situations. In particular, we will show that by identifying a single planar nedioth in
3D and the camera image, the absolute pose can be calculated. Of coigrss,juist
the necessary minimal configuration. More such regions are availablereastable pose
is obtained. Our solution is inspired by the 2D shape registration apprddabnookos
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et al. [78], where the alignment of non-linear shape deformations are resdweéa the
solution of a special system of equations. Here, however, pose estirgaida a 2D-3D
registration problem in case of a perspective camera and a restrict&d 3Bgistration
problem on the spherical surface for omnidirectional cameras. Tlasss thus require a
different technique to construct the system of equations.

3.2.1 Absolute Pose of Spherical Cameras

For spherical cameras, we have to work on the surface of the unitesplsat provides
a representation independent of the camera internal parameters. rinthesince cor-
respondences are not available, (3.1) cannot be used directly. vidviredividual point
matches can be integrated out yielding the following integral equation [Tarnaklich,
Kato, 2014:
// X dDg = / Zs dFs, (3.2)
Ds Fs
where Dg denotes the surface patch éhcorresponding to the regiofr visible in the
camera imag€, while Fs is the surface patch of the corresponding 3D planar region
projected ontaS by ¥ in (3.1) as shown in Fig. 3.1.

To get an explicit formula for the above surface integrals, the spheritehesDs and
Fs can be naturally parametrized Wiaand ¥ over the planar region® and F. Without
loss of generality, we can assume that the third coordina® ef F is 0, henceD C R?,
F C R% andVXs € Ds : X5 = ®(x),x € Daswell ayvZs € Fs : Zs = ¥(X), X €
F yielding the following form of (3.2) [Tamas, Frohlich, Kat®Q14:

/D/q)(x)‘ dzy day = //\11 H8X1 8X2

where the magnitude of the cross product of the partial derivativesoisrkias the surface
element. The above equation corresponds to a systénegfiations only, because a point
on the surface&s has2 independent components. However, we héymse parameters (
rotation angles and translation components). To construct more equations, we adopt the
general mechanism from [78] and apply a functionR? — R to both sides of the equation
(3.1), yielding

[0 |2 22 e = i | 25 22

Adopting a set of nonlinear functiofss; }¢_,, eachw; generates a new equation yielding a
system of/ independent equations. Hence we are able to generate sufficiently opzay e
tions. The pose parametglR, t) are then simply obtained as the solution of the nonlinear
system of equations (3.4). In practice, an overdetermined system igumiad, which

is then solved by minimizing the algebraic error in teast squares sensga a standard
Levenberg-Marquardalgorithm. Although arbitraryw; functions could be used, power
functions are computationally favorable [78, 77] as these can be compugetecursive

0P 8<I>

dX; dX. 3.3
921 > B2y 1dX; (3.3)

0P 8@

dX;dX, (3.4
901 = 0 14Xy (34)




22 3. CHAPTER. ABSOLUTE POSE ESTIMATION AND DATA FUSION
manner:

wi(Xs) = Xg X3 Xg,

The summary of the proposed algorithm with the projection on the unit sphere-is
sented in Algorithm 1.

Algorithm 1 General form of the proposed pose estimation algorithm

Input: 3D point cloud and 2D binary image representing the same region, and theecame
internal parameters

Output: External parameters of the cameraRasndt

: Back-project the 2D image onto the unit sphere.

Back-project the 3D template onto the unit sphere.

Initialize the rotation matriXR from the centroids of the shapes on sphere.

Construct the system of equations of (3.2) with the polynomjdunctions.

Solve the set of nonlinear system of equation in (3.4) usind-8wenberg-Marquardt

algorithm

a s wnhR

Note that the left hand side of (3.4) is constant, hence it has to be commitednze,
but the right hand side has to be recomputed at each iteration of the leasesgolver
as it involves the unknown pose parameters, which is computationally raghensve for
larger regions. Therefore, in contrast to [Tamas, Frohlich, K&id4 where the integrals
on the 3D side in (3.4) were calculated over all points of the 3D region, letisider a
triangular mesh representatigi™ of the 3D planar regiodr. Due to this representation,
we only have to apply? to the verticeg[V;}}_, of the triangles inF%, yleldlng a trian-
gular representation [Frohlich, Tamas, Ka26,19 of the spherical reglorFS in terms of
spherical triangles The vertice§ Vs ;}_; of ]-'ﬁ are obtained as

Vi=1,...,V: Vg, =¥V, (3.6)

Due to this spherical mesh representatioifgf we can rewrite the integral on the right hand
side of (3.4) adopting; from (3.5), yielding the following system aff equations [Frohlich,
Tamas, Kato2019:

od 09

— X — || daxydae =
8:01X8a;2 1 ar2

J[ #ercosy )
D

> //ZSlZSLZ”L dZs, (3.7)
VAEFS A

where® = [®1, &5, ®3]" denote the coordinate functions &f: Z — S. Thus only the
triangle vertices need to be projected oStaand the integral over these spherical triangles
is calculated using the method presented in [79]. In our experiments, wehsd&atlab
implementation of John Burkardt

The pose parameters are obtained by solving the system of equations (B.& Jeast
squares sense. For an optimal estimate, it is important to ensure humeritalination
and a proper initialization. In contrast to [78], where this was achievewbbyalizing the

'ht t ps:// peopl e. sc. f su. edu/ ~j burkardt/ m src/ sphere_triangl e_quad/
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input pixel coordinates into the unit square in the origin, in the above equaligoint
coordinates are on the unit sphere, hence data normalization is implicit. Tange® an
optimal least squares solution, initialization of the pose parameters is also imtpdmtaur
case, a good initialization ensures that the surface paehemd.Fs, as shown in Fig. 3.1,
overlap as much as possible. How to achieve this?

Initialization

The 3D data is given in the world coordinate fraig which may have an arbitrary orien-
tation, that we have to roughly align with our camera. Thus the first step istoethat the
camera is looking at the correct face of the surface in a correct aticam{&rohlich, Tamas,
Kato, 2019. This is achieved by applying a rotatid®, that aligns the normal of the 3D
regionF% with the Z axis,i.e. F2 will be facing the camera, since according to the camera
model—Z is the optical axis. Then we also apply a translatipnhat brings the centroid

of 72 into [0,0, —1] T, which puts the region into th& = —1 plane. This is necessary to
ensure that the plane doesn’t inters8avhile we initialize the pose parameters in the next
step.

If there is a larger rotation around the axis, then the projected spherical pat"éﬁ
might be oriented very differently w.r.Ds. Using non-symmetric regions, this would not
cause an issue for the iterative optimization to solve, but in other caseslgio@al apriori
input might be needed, such as an approximate value for the verticalialiréc the 3D
coordinate system, which could be provided by different sensors, it foégspecified for a
dataset captured with a particular setup. Based on this extra informati@pphyea rotation
R, around theZ axis that will roughly align the vertical direction to the camer&'saxis,
ensuring a correct vertical orientation of the projection.

To guarantee an optimal least squares solution, initialization of the posme@ra is
also important [Frohlich, Tamas, KataQ19, which ensures that the surface patclizs
and]—'sA overlap as much as possible. This is achieved by computing the centrdigls of
and]—‘SA, and initializingR as the rotation between them. Translation of the planar region
F2 along the direction of its normal vector will cause a scaling/gt on the spherical
surface. Hence an initial is determined by translating” along the axis going through
the centroid ot7-“$A such that the area dﬁ’ﬁ becomes approximately equal to that/eg.

Algorithm 2 Absolute pose estimation algorithm for spherical cameras

Input: The coefficients of;, 3D (triangulated) regiotF> and corresponding 2D regidn
as a binary image.
Output: The camera pose.
1: Produce the spherical patéhs from D using (2.6).
2 Produce}‘sA by prealigningF* as described in Chapter 3.2.1 usiiRy, to) and then
R, then back-projecting it onto the unit sph&taising (3.6).
3: Initialize R from the centroids oDs and]—“SA as in Chapter 3.2.1.
4: Initialize t by translatingF* until the area 017-“5A andDg are approximately equal (see
Chapter 3.2.1).
5: Construct the system of equations (3.7) and solve it ®rt) using theLevenberg-
Marquardtalgorithm.
6: The absolute camera pose is then given as the composition of the transfosnatio
(Ro, to), R, and(R, t).

The steps of the proposed algorithm [Frohlich, Tamas, K2049 for central spheri-
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cal cameras using coplanar regions is summarized in Algorithm 2. For two 1@ nom-
coplanar regions, the algorithm starts similarly, by first using only one meg#ir for an
initial pose estimation, as described in Algorithm 2. Then, starting from thengatgose
as an initial value, the system of equations is solved for all the availablensegichich
provides an overall optimal pose.

3.2.2 Absolute Pose of Perspective Cameras

A classical perspective camera sees the homogeneous world§girt [X;, X», X3,1]"
as a homogeneous poifit = [Z1,79,1]" in the image plain obtained by a perspective
projectionP:

% = PXyy = K[R[t]Xyy, (3.8)

whereP is the3 x 4 camera matrix, which can be factored into the well kndRn=
K[R|t] form, whereK is the3 x 3 upper triangulacalibration matrix containing the camera
intrinsic parameters, whilgR|t] is the absolute pose acting between the world coordinate
frame)V and the camera fran@

As a central camera, the perspective camera can be representedsphdhieal camera
model presented in Chapter 2.1.2. Since we assume a calibrated camesa maltply
both sides of (3.8) byK~!, yielding the normalized inhomogeneous image coordinates
X = [Z'I,ZCQ}T € R?:

x +— K 'x 2 K 'PXyy = [R[t] Xy, (3.9)

Denoting the normalized image I8, the surfacey in (2.4) will be ¢ = Z, hence the
bijective mappingd : Z — S for a perspective camera becomes simply the unit vector of
x, as shown in Chapter 2.1.2:

X

Xs = (x) (3.10)

x|
Starting from the above spherical representation of our perspeativera, the whole method
presented in the previous section applies without any change. Hovitdgezpmputation-
ally more favorable to work on the normalized image pl@néecause this way we can
work with plain double integrals of instead of surface integrals ¢h Hence applying a
nonlinear functionv : R? — R to both sides of (3.9) and integrating out individual point
matches, we get [77]

/Dw(x) dX:/[ w(z) dz. (3.11)

whereD corresponds to the region visible in the normalizacheraimageZ and[R [t].F is
the image of the correspondiBfp planar regionprojected by the normalized camera matrix
[R|t]. Adopting a set of nonlinear functionsv; }¢_,, eachw; generates a new equation
yielding a system of independent equations. Choosing power functionsfdr7]

wi(x) =22y, 0 <mn;m; <3and(n; +m;) <4, (3.12)

and using a triangular mesh representafiéhof the 3D regionF, we can adopt an efficient
computational scheme. First, let us note that this particular choicgydélds 13 equations,
each containing the 2D geometric moments of the projected 3D réBinF. Therefore,
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we can rewrite the integral ovéR [t F* adoptingw; from (3.12) as [77]

x"ixmidx:/ 2V dz ~ /z 20 dz. 3.13
/D 1 o RIF 1 %2 Z 1 %2 ( )

VAE[R|t]FA

The latter approximation is due to the approximationfoby the discrete mesF~.
The integrals over the triangles are various geometric moments which camipeiieol
using efficient recursive formulas discussed hereafter.

2D Geometric Moments Calculation

Since many applications deal with 3D objects represented by a triangulatédsovésce,
the efficient calculation of geometric moments is well researched for 308[§1)n the 2D
case, however, most of the works concentrate on the geometric momentspte digital
planar shapes [84, 82, 83], and less work is addressing the cagngitated 2D regions,
with the possibility to calculate the geometric moments over the triangles of the region.

Since in our method we have a specific case, where a 3D triangulated (E§ida
projected onto the 2D image plaiewhere we need to calculate integrals over the regions
D C T and[R|t]F® C Z, we can easily adopt the efficient recursive formulas proposed
for geometric moments calculation over triangles in 3D and apply them to ourgénse
Since our normalized image plafieis at Z = 1, the Z coordinate of the vertex points is
a constant, hence the generic 3D formula for tlig j, k) geometric moment of a surface
S [80] becomes a plain 2D moment in our specific planar case [Frohlich, Tagtzas,
2019:

M, = /Saciyjzk ds :/S xiyj dx dy (3.14)

as the last term ol ;. will always bel regardless of the value &f 7 and; are integers
such that + j = N is the order of the moment.

Let us now see how to compute the integral on the right hand side of (3.
projected triangulated planar surfad®|t] 7> consists of triangle§” defined by vertices
(a, b, ¢) that are oriented counterclockwise. The integral over this image regiomjys
the sum of the integrals over the triangles. Analytically, the integral overrglgacan be

written as [85, 81]
2aredT)ily!
dz = ————=-5,:(T), 3.15
‘A%% itj+28@) (3.19)

STy = > > ( L, +Aj|1)!azf a3’

|
(41 +ig+iz=1) (j1+j2+js=J) 11

(iQ +]2)'z '2(i3+j3)! i3 J3
914! by i31j3! Clac%)' (3.16)

Substituting (3.15) into (3.13), we get [Frohlich, Tamas, K&l 9
/4@m—%————2mwTU T) (3.17)
vreRjgre 7T (i+7+2)!

where the signed area of triandleis calculated as the magnitude of the cross product of
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two edges:
aredT) — %H(b—a) < (c—a)] (3.18)

As shown by [80] and then by [81], the computational complexity of the t&#{i") can be
greatly reduced from orde&?(N?) to orderO(NN?3). Based on the final generating equations
proposed by [81], we can write our generating equations for 2D domsdifrahlich, Tamas,
Kato,2019

0 ifi<Oorj<o0
1 fi=353=0

Sii(T) = (3.19)
’ a1Si—1,;(T) + a25; j—1(T)
+ D;j(b,c) otherwise
with
0 ifi<Oorj<O
Dy(b,e)={ L Ti=i=0 (3.20)
b1D;_1;(b,c) +b2D; ;_1(b,c)
+ Cjj(c) otherwise
and

0 ifi<Oorj<o0
Cij(C) =<1 ife= ] =0 (321)
6102;17j (C) + CQCZ'7J',1(C) otherwise

Using only the equations (3.19)—(3.21), we can thus perform the egagbwtation of the
contribution of every triangle to all the geometric moments of the image region inya ve
efficient way. The different quantities;;(c), D;;(b, c), andS;;(1") are computed at order
N from their values at ordeV — 1 using the recursive formulas given above and they are
initialized to1 at order0. The resultingS;;(7") are then multiplied by the area of the triangle
T and summed up according to (3.17).

Initialization

As in Chapter 3.2.1, an initial rotatidR is applied to ensure that the camera is looking at
the correct face of the surface followed by an optional rotalgnaround the optical axis

of the camera, that brings the up looking directional vector parallel to thneicgs vertical
axis, then apply a translatidan to center the region in the origin. The initialization of the
parameter® andt is done in a similar way as in Chapter 3.2.1: first the translatialong
the Z axis is initialized such that the image regiPrand the projected 3D region are of the
same size, theR is the rotation that brings the centroid of the projected 3D region close to
the centroid of the corresponding image redi@ifFrohlich, Tamas, Kata2019.

The steps of the numerical implementation of the proposed method are ptesente
Algorithm 3. Note that for non-coplanar regions, as in Algorithm 2, we fige a single
arbitrarily selected region for an initial pose estimation, then in a second gteplue the
system using all the available regions, which provides an optimal pose estimate
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Algorithm 3 Absolute pose estimation algorithm for perspective cameras

Input: The calibration matri¥, 3D triangulated regiotF~ and corresponding 2D region
D as a binary image.
Output: The camera pose.
1: Produce the normalized imageusingK ! as in (3.9)
2: Prealign the 3D regiodF2 by rotating it first withRg then withR,, as described in
Chapter 3.2.2, then center the region in the origin using
3. Initialize t = [0,0,%,]T such that the area of the regions are roughly the same (see
Chapter 3.2.2).
4: Initialize R to ensure that the regions overlagdras in Chapter 3.2.2.
5: Construct the system of equations (3.13) and solve itRt) using theLevenberg-
Marquardtalgorithm.
6: The absolute camera pose is then given as the composition of the transfosiagio
R., t., and(R,t).

3.2.3 Experimental Validation
Evaluation on Synthetic Data

For the quantitative evaluation of the proposed method, we generatecdiffenchmark
sets (of 1000 test cases each) ugiatemplate shapes as 3D planar regions and their images
taken by virtual cameras. The 3D data is generated by pldgig 2D planar shapes with
different orientation and distance in the 3D Euclidean space. Assumintihthlainger side

of a template shape is m, we can express all translations in metric space. A set of 3D
template scenes are obtained wiiff2 /3 planar regions that have a random relative distance
of £[1 — 2] m between each other and a random relative rotatiah3oF.

Both in the perspective and omnidirectional case, a 2D image of the caestr8D
scenes was taken with a virtual camera using the internal parametersabBam« 2376 x
1584 camera and a randomly generated absolute camera pose. The rand@n oftdhe
pose was in the range &f40° around all three axes. The random translation was given in
the ranget[0.5 — 2] m in horizontal and vertical directions a@d- 6 m in the optical axis
direction for the perspective camera, while the omnidirectional camera laesdoat half
the distancei.e. 1 — 3 m in the direction of the optical axis, ant[0.5 — 1] m in the X
andY axis directions to obtain approximately equal sized image regions for bothofype
cameras.

In practice, we cannot expect a perfect segmentation of the regieitienin the 3D
domain or on the 2D images, therefore the robustness against segmentatismas also
evaluated on synthetic data (see samples in Fig. 3.2): we randomly addecthoved
squares distributed uniformly around the boundary of the shapes, bdtle @D images
and on the edges of the 3D planar regions, yielding different levelsgpheetation error
expressed as the percentage of the original shape’s area. Usiagrtagges, we tested the
robustness against 2D and 3D segmentation errors separately. Fesalrtibustness tests,
we show error plots for the maximum segmentation error levels where the nretidion
error around any of the three axes was beléw

Theoretically, one single plane is sufficient to solve for the absolute pasi,s clearly
not robust enough. We have also found, that the robustness offiteé-minimal case is
also influenced by the shape used: Symmetric or less compact shapes widr sneza
and longer contour, and shapes with elongated thin parts often yield tsubbpesults.
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se: 0% 12% 20%

Figure 3.2. Examples of various amount of segmentation ersg's FFirst an omnidirec-
tional image withouseg then the same test wide= 12%, lastly the same template from a
perspective test case witle= 20%.

However, such a solution can be used as an initialization for the solver wité ragions.
Adding one extra non-coplanar region increases the robustness leytiaorl times! We
also remark, that the planarity of the regions is not strictly required. It flae equations
remain true as long as the 3D surface has no self-occlusion from the aamegmpoint
(see [Frohlicket al, 2014 for a cultural heritage application). Of course, planarity guaran-
tees that the equations remain true regardless of the viewpoint.

Since the proposed algorithms work with triangulated 3D data, the planansegfithe
synthetic 3D scene were triangulated. For the perspective test calsés Bglaunay trian-
gulation of only the boundary points of the shapes were used, thus thecmastins less
but larger triangles, which are computationally favorable. For the syaiadtver, however,

a higher number of evenly sized triangles is desirable for a good suafam®ximation,
which was produced by thdi st mesh2D function of [86] with the default parameters.

For a quantitative error measure, we used the rotation errors along tked@bDinate
axes and the difference between the ground ttudimd estimated translation vectors as
|[t—t||. Furthermore, as a region-based back-projection error, we alsainadabe percent-
age of non-overlapping area (denoteddyf the reference 3D shape back-projected onto
the 2D image plane and of the 2D observation image. The algorithms were impléenrente
Matlab and all experiments were run on a standard six-core PC. A demo imkgioa is
available onliné. The average runtime of the algorithm varies froém 3 seconds in the
perspective case tb— 7 seconds in the omnidirectional case, without explicit code or input
data optimization. Quantitative comparisons in terms of the various error pthawn
for each test case.

Omnidirectional Cameras

The results with,, 2 and3 non-coplanar regions using omnidirectional camera are presented
in Fig. 3.3. In Fig. 3.3a - Fig. 3.3d, the rotation and translation errors fdowa test
cases are presented. In the minimal case { region), errors quickly increase, but using
one more region stabilizes the solution: not only the error decreasesebauthber of
correctly solved cases is also greatly increased. éTéor plot in Fig. 3.3e also confirms
the robustness provided by more regions, while it has to be noted that withregions the
back-projection error does not improve in the way the pose parametes grould imply,
since even a smaller error in the pose yields larger non-overlappinghaceaise of the
longer boundary of the distinct regions.

2http://www. i nf.u-szeged. hu/ ~kat o/ sof t war e/
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While the perfect dataset is solved with median translation errors as lawes (see
Fig. 3.3d), the error is increased by an order of magnitude, but still heidgr3 cm, for
regions corrupted with segmentation error. According to our previopsreence [Tamas,
Frohlich, Kato,2014, a ¢ below5% corresponds to a visually good result. Combining this
metric with the rotation error limit ofl°, we conclude that our method is robust against
segmentation errors of up te 12% if at least3 non-coplanar regions are used.
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Figure 3.3. (a-f) Omnidirectional rotation errors along fKeY’, and Z axis, translation,
¢ error and runtime plotsn denotes median errsse2Dandse3Dstand for segmentation
error on the 2D and 3D regions respectively (best viewed in color).

o

We have experimentally shown that the size of the spherical regions idygrdlenc-
ing the performance of the solver. While placing the camera closer to the pceduces
larger spherical projections of the regions and the pose estimation beowrnesobust, we
aimed to use real world camera parameters instead, thus the cameradaistance was
limited. In our test cases, the median area of the spherical projection®fbatid3 region
cases wer@.07 and0.13 units respectively on the unit sphere.

For computing the spherical surface integrals, we compared two diffepgmoaches
for the area approximation of the spherical regions. Our earlier apipisaising standard
numerical integration over the pixels projected onto the unit sphere [Tara@sdich, Kato,
2014 as presented in Chapter 3.2.1 solving the system of equations in (3.4) théieore
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recent approach in Algorithm 2 is integrating over spherical trianglesadsie shown in
(3.7). Theo error and runtime of these numerical schemes are compared in Fig. 3.4, whic
clearly shows that the CPU time of Algorithm 2 is an order of magnitude fastie Wie
precision remains the same as for the earlier scheme in [Tamas, Frohlich2Rath

N
o
T

30 T T 15 T T 5
—time, triang, m=3.41 45
o5 | [ time, pointwise, m=47
—delta, triang, m=0.933 4
-------- delta, pointwise, m=1.08 435

Runtime (s)

Delta error (%)
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Test cases

Figure 3.4. Backprojectiord] errors and runtime comparison for point and triangle based
spherical surface integral approximation oh plane dataset (best viewed in color).

The algorithm’s CPU runtime is shown in Fig. 3.3f, where the slightly increaseiihne
of the 3D segmentation error test cases (notedd8D) is due to the triangulation of the
corrupted planar regions, that increases the number of trianglescatfoeiedges and thus
the computational time. Practically our algorithm can solve the pose estimatideprob
an omnidirectional camera ks 5 seconds using regions.

Perspective Cameras

Pose estimation results using a perspective camera are presented in Fitcl@ding the
same test cases with 2 and3 non-coplanar regions and with segmentation errors as in the
omnidirectional case. The rotation and translation error plots in Fig. 3.5a 355d clearly
confirm the advantage of having more non-coplanar regions. The medieiation error
(see Fig. 3.5d) on the perfect dataset is as low asm, which increases by an order of
magnitude in the presence 2% segmentation error, but still being undecm in case of
3 regions. The error plotin Fig. 3.5e also shows the robustness provided by the addlitiona
regions. Obviously, the back-projection error also increases in tiseipce of segmentation
errors. However, as Fig. 3.5a - Fig. 3.5d shows, the actual poseptais are considerably
improved and the robustness greatly increases by usim@ extra non-coplanar regions.
The algorithm’s CPU time on perspective test cases is shown in Fig. 3.5indteased
runtime of the 3D segmentation error test cases (noteskBi) is due to the triangulation
of the corrupted planar regions, that greatly increases the total nuritiamngles and thus
the computational time. Practically our algorithm can solve the pose estimatioleprob
a perspective camera in aroudd seconds using regions.
As mentioned in Chapter 3.2.2, a perspective camera can also be répdelsgrihe
spherical model developed in Chapter 3.2.3. However, as we havanshaie previous
section, this model’s main limitation is the small size of the spherical regions, $eeau
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Figure 3.5. Perspective pose estimation results: rotation and translatos, &rerror and
algorithm runtime plotsse2Dstands for observation segmentation erseBDfor template
side segmentation error angfor median values (best viewed in color).

perspective camera has a narrower field of view and has to be plaeeldrger distance
from the scene, to produce the same size of regions on the image. Thingespherical
projections of the planar regions in median are typicallynes smaller than in the omnidi-
rectional camera’s case. Thus solving the perspective case usinghrical solver yields
a degraded performance, as shown by &hexror plot in Fig. 3.6. Comparing the algo-
rithm’s runtime plot in Fig. 3.7 also shows that using the spherical solver équeinspective
camera greatly increases the computing time due to the calculation of surfagralsiten
the sphere, which confirms the advantage of using the perspective salpesed in Chap-
ter 3.2.2, instead of a unified spherical solver.

To thoroughly evaluate our method on real world test cases, we userhkdifferent
3D data recorded by commercial as well as a custom built 3D laser ramige fiith corre-
sponding 2D color images captured by commercial SLR and compact digitelraa with
prior calibration and radial distortion removal. Whatever the source of ER8[2 data is,
the first step is the segmentation of planar region pairs used by our algofithere are
several automated or semi-automated 2D segmentation algorithms in the literalude inc
ing e.g.clustering, energy-based or region growing algorithms [87]. In thikyesimple
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Figure 3.7. Runtime comparison on test cases without segmentation errorsamtie
directional and perspective case, the latter using both the normalized imageapld the
spherical solutionm stands for median values (best viewed in color).

region growing was used which proved to be robust enough in urb@rmement [88].
As for 3D segmentation, a number of point cloud segmentation methods adebbe.g.
based on difference of normals [89] or robust segmentation [90]. ihik®, region grow-
ing based on surface normals gave stable results for extracting planaeg8ins in our
experiments. Corresponding 2D-3D regions were simply selected dugrsg#d selection
of region growing as a one-click user input. We remark, however, thalygautomatic re-
gion correspondence could be implemented by detecting and extracting pljeets like
windows [91] (sees.g.Fig. 3.8) which are typically planar surfaces present in urban scenes.
If the segmented 3D region is a simple point cloud, the boundary of the regyaetected
using Alpha Shapes [92], which is then used for generating a triangukdr fre we do not
rely on the Lidar resolution after segmentation). As in the synthetic casthd@mnidirec-
tional case the method of [86] generated a uniform mesh, while for thpgaige case a
simple Delaunay triangulation was sufficient. The absolute pose obtaimadgorithm 2
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or Algorithm 3 was used to fuse the depth and RGB data by projecting the iroatethe
3D point cloud.

In Fig. 3.8, we show the fusion of an RGB perspective camera image apdrses
3D point cloud recorded by a custom built 3D laser range finder contaanitiited Sick
LMS200 ranger. The absolute pose of the camera was computed usingti#iga8, which
was then used to back-project the RGB image onto the 3D point cloud. Dedpte
relatively large displacement between the camera and the Lidar, the aljsodetevas suc-
cessfully estimated.

Evaluation on Real Datasets

Figure 3.8. Pose estimation example with (left-right) central perspectiverazane cus-
tom Lidar data: color 2D image (original frame) with corresponding reg{pnsple); 3D
data with the segmented regions (green); color information overlaid on &Duding the
estimated camera pose (best viewed in color).

For the omnidirectional real data experiments we first tested the proposeddeos 2D
fisheye camera images and a 3D triangulated building model obtained by registeset
of sparse 3D laser scans recorded by a Velodyne HDL-64E mountadrmving car [93]
with a depth resolution up tb cm and an angular resolution up@d°. The best results
were obtained by large non-coplanar regions. Such a test case is sheig. 3.9, where the
fish-eye camera image was reprojected onto the 3D surface using thetelpsse obtained
by Algorithm 2. Note that in case of the omnidirectional cameras, even avediaimall
rotation or translation error in the pose yields large differences in thdinear distortions
on the omnidirectional data. In spite of this sensitivity, Algorithm 2 proved todbeist
enough as the segmented regions in Fig. 3.9 overlap well even if the todabfselected
regions is relatively small compared to the whole image size.
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Figure 3.9. Pose estimation example with (left-right) central dioptric (fish-ayd com-
mercial (Velodyne) Lidar images: color 2D image (original frame) with cgpomding re-
gions (purple); 3D data with the segmented region (green); color informatierlaid on
3D data using estimated pose parameters (best viewed in color).

Fusion result on a test case with a catadioptric-lidar camera pair is shovig. i8. EO.
The omnidirectional image is captured by a commercial SLR camera with a cdtadiop
lens, while the 3D range data is provided by a custom built 3D laser range findtaining a
tilted Sick LMS200 ranger, similar to the one described in [94] with an angesaiation up
to half degree and a depth accuracyl @im. The internal parameters of the omnidirectional
camera were determined using the toolbox of [14]. The method proved tibhstragainst
the segmentation errors caused by the low resolution of the image and alsnsgdénrthe
3D data, but a sufficiently large initial overlap between the regions wasrestjfor better
results.

Finally, test cases with a high precision Riegl Lidar and different camamashown
in Fig. 3.11 and Fig. 3.12. The static Riegl scanner has a rangé0om with a depth
precision of less thafi.5 cm and angular resolution up €0003°. In this dataset, the high
density precise 3D model also includes the 3D positions of marker points gnatset up
on the building facade. Using these markers, we could evaluate the precfsiair pose
estimation by the forward projection of each marker from the 2D image into abesand
then calculated the distance from their ground truth position.

For the omnidirectional case shown in Fig. 3.11, we used a full frame CEQ$ 5
DSLR camera with & mm fish-eye lens. Segmenting only two simple, relatively small
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Figure 3.10. Catadioptric and lidar images with segmented area marked in yatidwhe
fused images after pose estimation. (best viewed in color)

regions, the proposed Algorithm 2 estimated a precise pose with a forn@etion mean
error measured in the marker points of ofilgm. The ground truth marker positions are
visualized in green while the projected markers in red. Note that the camecaite dis-
tance wasz 14 m in this case. For comparison, we also show in Table 3.1 the error of
the absolute pose obtained by the state of the art UPnP [30] method, whictiydirged

the ground truth marker positions as input 2D-3D point matches. In spit@ing with
perfect point correspondences, UPnP achieved 2rdgn better forward projection error

in those marker points than our method which used inherently imperfect segghregion
pairs.

For the perspective case in Fig. 3.12, we used a full frame Nikon DShiewith
a wide field of view20 mm lens, one of the typical RGB cameras that comes calibrated
with these Riegl scanners. The mean forward projection error of thpopeal Algorithm 3
measured in the marker points wagm. The advantage of using multiple regions from
differently oriented surfaces is clearly visible here. In Table 3.1, we ewenpur results to
the factory calibration of the setup. It was interesting to find, tha8at distance from
the wall, the factory calibration parameters prod2éem mean forward projection error,
due to the interchangeable camera mounting system. Applying a marker bfisedent
to the calibration in the scanners own software, this can be redudeti¢m, which is only
slightly better than our marker-less result achieved purely using 3 segimegien pairs.

The proposed Algorithm 3 was also tested with images taken by a flying Datétha
drone. As can be seenin Fig. 3.12, the viewing angle of such a camery tifierent from
that of a ground level imaging device. Using two corresponding segmeeggohs was
sufficient to estimate a correct pose with a mean forward projection €rfamno, which is
a good result considering the extreme angle of the camera and the carsesxéodistance
of =~ 9 m. In comparison, the state of the art UPnP [30] and RPnP[29] methods thein
high precision marker points as input 2D-3D point correspondenaetuped2 cm and
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‘,‘T]‘ J{;j::;f ﬂfu} il

Figure 3.11. Pose estimation example with omnidirectional camera image and dense L
dar data (left to right): color 2D image and 3D triangulated surface withesponding
segmented regions marked with purple and green respectively; lastlimf@ionation pro-
jected onto 3D data using the estimated extrinsic parameters, green dots ntafkithiece
positions of the markers while red dots mark the projected positions (bestdiievcolor).

6 cm mean error, respectively.

The qualitative comparison of all the mentioned methods is presented in Table 3.1
where n/a stands for not available, since factory calibration parameg¢eesomly available
in one case, and RPnP [29] cannot be used with omnidirectional carhetas emphasize,
that all the point-correspondence-based methods (except the Riegglfaarameters) rely
on 2D-3D special markers, that were precisely measured in 3D and 2. b achieve
these results with UPnP and RPnP, a careful setup of special markerguined before
data acquisition, thus both 2D and 3D data capture must be performed atibdime. In
contrast, the proposed method does not require any special targetupr Bence images
recorded at different time can be fused as long as at least one pégam pair is available.

| UPnP | RPnP| Riegl | Riegl(fine) [ Prop. |

Omni 5 n/a n/a n/a 7
Pers. HR 0.9 4 20 1.3 3
Pers. Drone| 2.2 6 n/a n/a 9

Table 3.1. Comparisons on high resolution Lidar data in terms of the meanrébpnaec-
tion errors in marker points in cm. Note that results of UPnP [30], RPnRj28Riegl(fine)
all rely on markersRieglstands for factory calibratio®rop. for the proposed method, and
HR for high resolution full frame camera perspective test case.
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i

Figure 3.12. Pose estimation example with perspective cameras and desisddtal First
row: color 2D image and 3D triangulated surface with corresponding ssigoheegions
marked with purple and green respectively. Second row: color informatiojected onto
3D data using the estimated pose, green dots mark the reference positiennoarkers
while red dots mark the projected position. Top case: wide field of view carbhettbom
case: normal field of view UAV camera. (best viewed in color).



38 3. CHAPTER. ABSOLUTE POSE ESTIMATION AND DATA FUSION

Figure 3.13. Pose estimation on the KITTI dataset, top: color 2D data with khetesd
regions (purple); middle: 3D data with the corresponding regions (§réettom: color
information overlaid on 3D data using the estimated camera pose.

] [transl.] Rx | Ry [ Rz [ (%) | time(s)]
Prop. | 0.592 | 2.970| 0.402 | 0.393| 12.49 1.23
Norm. | 0.441 | 0.522 | 4.740| 0.745| 74.01 166
Int. 0.397 | 3.254 | 4.826 | 1.543| 46.77 147

Table 3.2. Comparative results with the proposed method (Prop), nornsadba
MI(Norm)[45] and intensity based MI (Int)[45] in terms of translation(ntation(deg)
and¢ (for referencey for the ground truth pose £49%) errors.

Algorithm Evaluation on the KITTI Dataset

Comparison with other camera pose estimation methods from the main literaturebeould
performed only in a limited manner due to the fundamental differences of tipoged
algorithm with respect to existing ones presented in Chapter 3.1. Methodgarsficial
markers like the ones described in [53, 57] were tested using the coolédgat by the
authors. The detailed comparisons are presented in our previous Wdrk Pue to the
limitations of [53, 57] on real datasets, we also tested the proposed method KiiTthi
dataset [95] with available ground truth information. In Fig. 3.13 the extricalibration
of a color camera and sparse 3D Lidar data from the KITTI drive= 5 is shown. Using
segmented non-coplanar regions marked in purple and green in Figit®l&mera pose
was estimated with the precision shown in Table 3.2.

For comparison, we used the mutual information based method describéx wdek-
ing on 3D data with intensity and normal information. The algorithm of [45] wiasan the
same 2D-3D data pair both in the normal based and intensity based configsiradipre-
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sented in Fig. 3.13. The comparative results of absolute errors arehalsa ¢ Table 3.2.
Note that while the algorithm of [45] is able to use multiple separate 2D-3D data(fa
sequence of such data is available with a rigid Lidar-camera setup like tHE kl&faset)
to optimize the results, for a fair comparison we only provided the same single ifraage
and point cloud pair as the one that the proposed method was tested am[4Sihis non-
deterministic, the MI based results in Table 3.2 show the best ones out o&peindent
runs of the algorithm.

The results of the proposed method proved to be comparable to the reqd#g, dhe
normal based method being slightly better in the translation parameters, laé indahe
rotation errors. Nevertheless the registration result of the proposeddeitually was
accurate, and the CPU implementation runtime was two orders of magnitude sneler th
the GPU implementation of the mutual information method of [45].

3.3 2D-3D Fusion for Cultural Heritage Objects

3D triangulated model

5D col iibrated 2D/3D data Segmented Shape alignment
color callorate segmentation || 2D/3D regions algorithm
image(s)
Def
SCtey edge Relative pose
S
Visualization parameters
2D/3D data ,
fusion (project 2D Final pose Parameters
3D textured model proj p refinement (ICP)

color on 3D data)

Figure 3.14. Workflow diagram of the proposed method.

In this chapter a workflow is proposed for 2D-3D data fusion, the diagrawhich is
shown in Fig. 3.14. The input consists of a 3D triangulated mesh and a 2& spec-
tral images of the cultural heritage object. These images go through a preEgssing
pipeline [Frohlichet al, 2014 in order to obtain a precise textured 3D model. We assume
that the 2D cameras are color calibrated and their internal projection parsraes known,
furthermore the acquired 3D point cloud has been preprocessed irismguiiated mesh
(this is typically done by the 3D device’s own software). In the following,wi present
each processing step.

3.3.1 Segmentation (2D-3D)

As our method works with regions, we have to segment a correspondiofregions both
in the 2D images and 3D data. Since every test case is unique, we haveokedhe
segmentation method according to the surface properties. On the 2D imagesaradard
segmentation methode.g. [96]) could be used (in our experiments, we used fuezy
selection toolof the freeGimp software). For the 3D data as well, we can choose based
on the type of data that we have. When RGB information is available, we catysisg
color based segmentation methods as in 2D. If it is not available, we canDusegi®n
growing, like the Minimum Covariance Determinant based algorithm [90] oractae
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graph cut like [97]. Manual selection can also be used, for exampleriexperiments
the Z-paintingtool of Meshlabhas been used for interactive selection of regions, which
works well regardless of the availability of RGB data. Let us emphasizenthaatter how
many regions we extract from the data, they only have to corresponaiaslg a pairwise
correspondence is not needed (even the number of regions carfdoerdjt Hence, given a
corresponding set of 2D regiof®;} Y ; and 3D regiong.F; }jf‘il, they only have to satisfy
the following constraint:

D =PF,withD = U, D; andF = UL, F; (3.22)

whereP is the camera projection matrix.

3.3.2 Pose Estimation

Given a corresponding set of segmented 2D-3D redidasid 7, we propose an extension
of our plane-based Lidar-perspective camera pose estimation algorithmChapter 3.2

to the data fusion problem. While the method in Chapter 3.2 was used strictly car plan
regions, we show that it can be extended to curved (but smooth) earfabis way it can

be used in cultural heritage applications, since most of the objects, celfmameEaon-planar
but smooth regions.

Assuming that each of the segmented 3D regi{)ﬁp}jj‘ii are smooth enougl.é. they
satisfy (3.22)), let us express a 3D poiMt, with its homogeneous world coordinates
Xy = (X1, X2, X3,1)T. The perspective camera sees the same world pojptas a ho-
mogeneous point = (1, 22, 1)” in the image plain obtained by the perspective projection

% = K[R|t]X (3.23)

As shown in Chapter 3.2.2, if we consider a calibrated camera, the efféCtoan be
inverted, resulting
x = K™% = [R[t]X)y = PXyy (3.24)

thus the only unknown parameters are éhpose parameters (3 angles of rotatiorRn

3 components of the translation ti. Classical solutions would establish a set of 2D-3D
point matchesd.g.using special calibration targets or markers), and then solveRig) (
via a system of equation based on (3.24).

However, in many cultural heritage applications, it is not always possilalgdaoh mark-
ers to the object’s delicate surface. Furthermore, the 3D scans andecamages might be
acquired at different times, using different lighting conditions for optirealits. Our pose
estimation method, based on the 2D shape registration approach presefiéf] pro-
poses a solution in these challenging situations. Instead of using (3.2df\diredividual
point matches are integrated out according to Chapter 3.2.2 yielding the ifojlamtegral

equation:
/de:/ zdz, (3.25)
D PF

whereD corresponds to the regions visible in temeraimage and F is the virtual image

of the 3D regiors projected byP. We can clearly see that the above integral equation stays
valid for curved, smooth surfaces as well [Frohlehal,, 201§, as long asD and F are
satisfying (3.22) i(e. no self-occlusion of points takes place). There are 2 issues with the
above equation:
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1. it corresponds to a systemdequations only, which is clearly not sufficient to solve
for all 6 parameters of the camera pose;

2. the evaluation of the right hand side requires the explicit projection @&lhegions
F, which might be computationally expensive.

To resolve 1), observe, that (3.24) remains valid when a functio®? — R is acting on
both sides of the equation [77]
w(x) = w(PXyy), (3.26)

and the integral equation of (3.25) becomes

/Dw(x)dx: [wa(z)dz. (3.27)

Thus adopting a set of nonlinear functios }¢_,, eachw; generates a new equation yield-
ing a system of independent equations. Hence we are able to generate sufficiently many
equations. TheR,t) parameters of the camera pose are then simply obtained as the so-
lution of the nonlinear system of equations (3.27). In practice, an oterdimed system
is constructed, which is then solved by minimizing the algebraic error ihetist squares
sensevia a standardlevenberg-Marquardalgorithm.

To resolve 2), let us choose power functionsder

w;i(x) = z{'xy", n; < 3andm; < 3, (3.28)

which yields the 2D geometric moments of the projected 3D refign that can be com-
puted efficiently. SinceF consists of triangulated surface patches, their projection is a set
F% of triangulated planar patches, thus the final form of the equations bedh@esame
asin (3.13).

The integrals over the triangles are various geometric moments, which camipeited
using the closed form formula presented in [77]

2 )k l()()’/kl
2§:§: Bk gl 3.29
LT py iy 0 (3.29)

where

()0
Ykl = sz—z—{—l—j—i—l

=0 7=0

(210 — 211)" (211 — 212)" " (220 — 221)" (221 — 222)" 7 (3.30)

with the notatiornz; andzo;, 7 = 0. .. 2 being the vertices of the triangle.
Alternatively we can also use the recursive formulas presented in Chagte that
were adopted from the generic 3D formulas of [81] to 2D triangular reggion

3.3.3 ICP Refinement

In the previous step, we have obtained a camera pose by minimizirgjgebraic error
of the system in (3.13). Although this is already a good quality estimate, weuctref
refine it by minimizing a relevangeometric error In the following, we will show how
a standard Iterative Closest Point (ICP) [98] algorithm can be used)of information,



42 3. CHAPTER. ABSOLUTE POSE ESTIMATION AND DATA FUSION

even if it is of poor quality, is also available at each 3D point. In our wowkfllCP is
used to align the 3D edge lines’ projection with the 2D edge map (denoted)obyf the
camera image [Frohlickt al,, 2016. There are different approaches to detect edges in a
3D pointcloud based on geometric properties, but for our purpose awe to rely solely

on the color information to be able to detect the same edges as in the 2D imagevéVe h
tackled this by simply projecting the 3D data onto an image with the initial camera pose
using (3.23), then running Matlab’s edge detection function on that imegelting the edge
points. The corresponding 3D poirXs, will be the detected 3D edge points. The algorithm
then iteratively projects the 3, edge points using the curreRijR" |t"] camera matriX,
that has only the camera pose paramefB’, t") changing between iterations, giving the
reprojected edge poinig™ at iterationn:

ze" = K[R"|t"] X (3.31)

The ICP algorithm will align thize™ projection tox., the edge map of the 2D image. We
can clearly see that ICP will actually minimize thackprojection errothis way.

3.3.4 Data Fusion

The final step of the workflow is the data fusion itself. Using the estimatedveladise and
the calibration matrix of the camera, we can project (with (3.23)) the 3D pomitstbe 2D
image. Since these do not necessarily project to exact pixel coordimeg€sn interpolate
the neighbouring pixels’ color to find the best RGB value for every ptegepoint. If we
had multiple 2D input images, then we can fuse all images with the 3D data. Fer3bos
points, that are visible in more camera images, we have to decide which caasdleltibest
view of it. For this purpose, let us calculate the normal veatoior each 3D poiniX;. In
our experiments, we have used Meshlab@mpute normals for point sefisnction, which
fits a local plane to every point’s small neighborhodd ieighbours). Then for every point
X; we compute the angle of its norma) with the orientation vectoe; of each camera’s

optical axis as
Cj -1y

[l 1 |
and the camera imagavith maximalcos 6 value is used to colorize the 3D poiXt [Frohlich

et al, 2014. As a result, we get a good quality colored 3D model of the object. Since the
2D images are color calibrated, no color shift will appear, no transitionsbeilVisible
between regions that get RGB information from different images, if werassa good uni-
form lighting was used when capturing the images. For easier examinatioe céghilts,

we only used a single camera image for fusion in the test cases shown inlEig. 3

cosf = (3.32)

3.3.5 Evaluation on Synthetic Data

For a quantitative and qualitative evaluation of the proposed pose estimbgmittan in
Chapter 3.3.2, we have generated a benchmark set w8idgferent shapes (such as in
Fig. 3.15a). The 3D data was generated by projecting a 2D shape on @ eipherical
surface (having a Gaussian curvaturefof= 1/r? = 1/10000). The 2D image of such
an object was captured with a virtual camera having the intrinsic paramét@rstandard
1Mpx camera and a random pose by rotating it vjiti25° — 25°] along all three axis and
translating it randomly along all three axis with the maximum possible translatiog bein
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equal to the size of the object. A data set consist)6fsuch images.

The results are presented in Fig. 3.15b - Fig. 3.15f. To evaluate the ipreoisthe
pose parameters, we backprojected the 3D points on the image plane,l@andted the
percentage of the non-overlapping aréaefror) between the projection and the original
observation. Ideally these should overlap perfectly, but experimentallgave found that
5% ¢ error or lower can be considered a correct result. We have alsda@duhe errors
of the 3 rotation angles, and the translation error (see Fig. 3.15c) as thaagidetween

reference and estimated position.
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Figure 3.15. (a) Sample synthetic data, (b-f) error plots of the resultgrihetic dataZD
sestands for 2D segmentation err@D sefor segmentation error on the 3D data and

stands for median value).

Since in real cases both the 2D and 3D regions are affected by segmeetatics, we
have also evaluated the robustness of our pose estimation method agetinstrsus. For
this purpose we have generated two different data sets: one with syallyegienerated
segmentation errors on 3D regions and another one with the 2D images baingted by

it. An example synthetic data pair is shown in Fig. 3.15a, on top the 3D curwéatsu
is shown, while below two images of the region, one witl¥, simulated segmentation
error. As we can see from the error plots in Fig. 3.15b - Fig. 3.15f, the odeghmore
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robust for 2D segmentation errors. The same medianror is achieved with 0% 2D
segmentation error as witito error in the 3D segmentation, but with the 3D case we see
more bad results. This also reflects on the rotation and translation error \plits the
median values are similar for the two cases, the number of incorrect restitgher in

the 3D case. Nevertheless a median delta error of befévn using only a single curved
region, is considered satisfactory.

3.3.6 Real Data Test Cases

We have verified our workflow on different real data test cases,hifiw2 are presented
in detail here: one using high precision data inputs, while the other usingaffordable
acquisition solutions.

The Chinese Warrior Test Case

The object used for this test case is a sm&#l ¢m tall) figurine. The 2D images were
taken with a calibrated Nikon D800 DSLR camera having a full frame 36 Mpsa@e
while the 3D data has been produced with a high precision marker basetugtrfrom-
Motion software solution in strict laboratory conditions, giving us a penfeference data
in this case. While usual software solutions use markers or keypoints tlugecsuch
fused data, our method uses only the color images and a raw pointclouc$i’'deven
has to include RGB information!). In the first step of our workflow, we ety segment
a few regions in 2D and 3D. Since the test object has a more complex,drsggece,
we have to concentrate on the smooth, well defined regions, wherecstitmn doesn’t
occur. Best choice in this case is segmenting the straps and bands onthies,ckince
these are smooth regions, raised from their neighbors, with clearly visibke én 2D, a
region growing segmentation tool was used, while in 3D an interactive selengthod in
Meshlab was adopted. Using the segmented data pairs, the second stefesstienpose of
the camera relative to the 3D pointcloud with good precision. This is illustrateid)ir8FL.6
by backprojecting a few hand-picked 3D keypoints with the estimated camseatp the
2D image (red dots) - which are close to their reference location (greéeh ddve measured
average error was arour2® — 30 px, which translates to approx. mm real world error.
In case we don’t have access to intensity information in the 3D data, or ififleetdtself
does not have a rich texture on its surface, then this is the final resulttiNat€there is no
intensity information, using a commercial software solution to align such dat&dvetso
be challenging.

As in this test case we have color information too in the 3D input data, we qay thie
ICP refinement step proposed in our workflow. The algorithm refineethtive pose based
on the edge-map of the 2D image, and the projection of the 3D edge points. Ateis
edges detected on smooth, mostly planar surfaces are desirable. Taerthasuenefits of
using the ICP refinement step, we backprojected the same 3D keypointalanthted the
backprojection error. In Fig. 3.16, we can see that landmark pointsrajecped closer to
their correct location, reducing the average distan@pig equivalent t@.2mm projection
error. This can be considered good precision for most heritage afptisa Final fused
result from only a single camera image can be seen in Fig. 3.19.



3.3. 2D-3D FUSION FOR CULTURAL HERITAGE OBJECTS 45

Figure 3.16. Precision of the region based pose estimation’s results irofirsaind results
of ICP refinement in second row. Green dots are the reference logatiute red dots are
the back-projections of the 3D landmarks.

Ceramic Fragments Test Cases

The objects used in this test case are small fragments of ceramic bowls sexl VEhe
2D images were captured with a standard Canon 1000D DSLR camerag (#agipx
resolution. The 3D data was produced by a handheld Artec Spiderescand its bundled
software. In this case, using a relatively cheap and easy to use scafutén, we cannot
expect perfect 3D data. The software uses a keypoint based atgadaitalign partial scans
and build the complete 3D model. Since the scanner only has a low resolutioc&@8a
built in, this process can get cumbersome in some situations. As we hawk &uem if the
software produces a visually pleasing, watertight 3D model, it may lackgiwac Of course
a perfect alignment was not possible with these incorrect 3D data, boaveeshown, that
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in spite of the imperfect 3D model, our algorithm is robust enough to prodgmsd fused
result. The segmented regions used for the pose estimation are shown &lkig.The
backprojection error of the two test cases can be seen in Fig. 3.18.vélega error was
33px and28px respectively.

Figure 3.18. Final precision achieved using the ICP refinement stepenGias are the
selected specific landmarks, red dots are the back-projection of the saanealiks in 3D.
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Figure 3.19. Final fusion results from single viewpoint, using the ICPeafent step. The
ceramics 3D data are available from the authors affiliated to the Maison derit@t de la
Méditerranée.
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3.4 Large Scale 2D-3D Fusion with Camera Selection

In this chapter we will describe the steps of the proposed processirdloverfor large
scale 2D-3D data fusion with optimal camera selection [Frohdichl., 201§. The steps of
the workflow are shown in Fig. 3.20 and detailed individually in the following.

Lidar scanner . b
alignment :
2D-3D alignment
DSLR camera
Pointcloud Ol
Visualization colorization/ . /
PR bt texturing

Figure 3.20. Workflow of our processing pipeline. Light green showsrtput data.

3.4.1 Data Acquisition

For 3D measurements, we used the Riegl VZ-400 Lidar scanner with aohtaizangle
resolution of0.01° and a vertical angle resolution 6f06°. A complete scan witl00°
vertical and360° horizontal field of view takes abouts minutes, and produces a dense
point cloud of100 — 200 million points, with a nominal depth precision of less tHanm

at distances below00 m. Since a single scan only captures the surfaces visible from the
Lidar’'s point of view, the whole surface of a complete building has to barsaé from
multiple viewpoints. Usually, interior scenes are more complex than exterigr sog¢hese
require a higher number of scans. For a more complex interior, a prelimifemgipg of
scan positions is needed to provide the best coverage of the scene.

For 2D imaging, a Canon EOS 5D Mark Il DSLR camera has been used waith v
ous optics. Actually, many Lidar manufacturers provide a solution to placddefield of
view camera on a rigid frame over the scanner, and let the scannerldbet&D capturing
process as well. While this technique provides a reliable way to match 2D+2Drdsub-
sequent processing steps, the common viewpoint constraint yields limitddties of the
2D imagery for distant surfaces. In a typical cultural heritage applicati@archeologi-
cal site is far more complex, which cannot be captured in high detail frarh adimited
number of positions using a wide angle lens. Due to the fact that the Lidanechas a
drastically higher range, being able to capture objects at dpian with high resolution,
it's not necessary to place the scanner closer to capture the small detbilstth2D imag-
ing we can only produce high resolution images of small detaily.frescos) if we move
the camera closer and use longer focal lengths for better reach. ilioadd 2D camera
produces only sharp images of 3D objects located withimlégsth of fieldrange. Hence
for this reason it's mandatory to separate the camera from the scannwkanadditional
images from different viewpoints capturing all the fine details of the scene.

Thus the 3D-2D acquisition procedure typically consists of 2 stages: duisition
of 3D Lidar scans together with a set of 2D images covering the comp@igtefield of
view from every scan position with 24 mm wide lens; 2) acquisition of 2D images of
all the important details from optimal viewpoints, using various focal lengthken0 —
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200 mm range. These high detail images would then be used to enhance therablor a
spatial resolution of the textured point cloud obtained from the wide angledisnag

3.4.2 Point Cloud Alignment

The first step of 3D data processing is to register the Lidar scans into a comglwizal
coordinate frame. Let us consider a scanner that observes a 3D pmntX,, from
different positions. In the first positiofi;, the scanner will record the positid®; of the
point X,y in the Lidar's coordinate system that has its origin in the projection center of
S1. Moving the device to another positigf will measure positioX 5 for the same point
X,y in the coordinate system &. The pointsX; andXs are related by a rotatioR and
translationt:

X;1=RXa+t (3.33)

Given a sufficient number ofX;, X2) point pairs, one can easily compute the aligning
rigid body transformatiofR, t) between the scanS; and S.. Actually the calculated
transformation brings the coordinate systemSefinto S;. If we chooseS; the global
coordinate system, then we can align e&glscan in the same way, bringing all the data
into the same coordinate system, hence merging the partial scans into on@singétoud.
For this task, we used the standard marker-based automatic registratiothedgavailable

in the Lidar’s software. As an alternative solution for outdoor scanssdiftevare can also
use the recorded GPS data instead of markers. If no markers nor &GPiS daailable, we
can still do a registration by manually selecting sufficiently many correspgijrpoint
pairs in the point clouds, but this will inherently be less precise.

3.4.3 Camera Pose Estimation

Next, we have to bring the 2D camera images into our world coordinate systablished
in the previous step.

The internal parameters of the camera can be easily estimated prior to daitsitiey
using standard camera calibration algorithms. Herein, we use@dliech Calibration
Toolbox[99]. However, the absolute pose (discussed in Chapter 2.2) has stitnated for
each image using.g.standard feature-based methods relying on correspondences etwee
a set ofX,y; 3D points andk; pixels [15]. In our experiments, we simply used the Lidar’s
software to compute camera poses from a given set of 2D-3D point pairs

For a particular camera image, point correspondences can be obtagnsshm-automatic
way using the markers detected in the point cloud and manually picking theéisponding
pixel positions in the image. Images taken by wide angle lenses are likely tdrcentd
markers detected in the Lidar scans, hence they can be reliably aligned yhislaveever,
fine details are captured by telephoto lenses with a narrow field of viewewharkers may
not be visible. Hence the selection of the corresponding points will becamanaal task
in both domains. We solved this by following a two-step procedure: first fiédl of view
images are processed in a semi-automatic way yielding a colorized point dibigldata
enables us then to manually select color based feature points in the tele innaigtee a
point cloud. As a result, we will have the pose for all images that captuierelitt views
at different resolution of the scene, giving us various possibilities dtwrizing the point
cloud.
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3.4.4 Point Cloud Colorization

At this point, we have a complete metric 3D point cloud of the scene and a ldfferfetht
images taken from arbitrary viewpoints, but all registered with the glolmbioate system.
Since a particular 3D poirX of the registered pointcloud may be seen by several cameras,
the question naturally arises: How can we project the color information themmages
onto the 3D points? In order to produce a high quality textured 3D modela@eamstraints
have to be satisfied: the image used to colorize a pishould have asharpimage ofX
(i.e.it has to be within the camera'’s depth of field); the camera has to see thépader
an optimal anglei(e. as close as possible to a perpendicular viewing angle) as well as the
resolution aroun& should be as high as possible. Given a 3D p&nand its projection
in camerag’ ... C, as pixelsx; ...xy,, we can write the projection of the 3D poikt in
cameraC; using (3.23):

x; = Kj[Rj[t;]X (3.34)

where all the parameters are known by now. Thus the RGB color of thé Kogan be
transferred from a particular camera image by making use of the aboaéaqu

The commercial software solutions provided with Lidar devices usuallynassthat
the camera is used in a rigid setup with the scanner, having approximatelynieevaaw-
point. In case of overlapping image regions the colors are simply averagefr the
corresponding 3D points. This approach is correct for this consttaetip, but becomes
unusable when we separate the camera from the scanner, and placerpietely different
positions, making the problem a more complex one. In this case every caiifldrawe a
completely different relative pose that has to be estimated, while in the steemwfamercial
setup this is also reduced to only a change in the rot&iari the camera, which is directly
recorded by the rotating Lidar. The visibility of the points from the camerapuemt also
has to be verified to avoid problems caused by occlusion. Using the comhsaitveare
in this special case, the more images are used the results can get morebbhange of
the averaging of color information from cameras that had suboptimal vievsofface €.g.
camera at a bad angle, out of focus image region, camera too far away).

Therefore we propose a much more effective algorithm [Frotdicd., 2019 to tackle
this problem, which will select for every 3D point one single camera thathebest view
of it, i.e.itis not occluded, captured sharply, from the best angle and with thedsedution.

Visibility

First, we have to detect if a poiX is visible from a camera or it is occluded. For this
purpose, we have adopted tHelden Point Removaiperator [100]. It relies on the obser-
vation, that extracting the points that reside on the convex hull of a sligrigpped point
cloud with respect to a given viewpoint, we get the visible points from thatpaint. Let
us consider the point cloue?C' and the camera positiofi; from which PC' is observed.
Considering a sphere with the origind®y and radius- constrained to include all the points
of PC, spherical flipping will reflect all the pointX € PC with respect to the sphere by
applying the following equation:

X;

i

(3.35)
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Visible points fromC; are those that will reside on the convex hullBf' U C; where PC
denotes the transformed point cloud®f [100]. Repeating this step for each caméta
will give us the set of cameras from which a particular 3D p&nis visible.

Sharpness

Next step is to verify if a point has a sharp image in the camera, only point$athat-
side thedepth of fieldof a camera’; should be colorized from that camera image. The real
world focus distance of the camera is not easily retrievable using only thejrbaginstead
we can directly measure the upper and lower limits of the depth of field. Sineaét im-
age pixel we have the corresponding 3D pdihand from the camera pose we can directly
compute the camera-to-point distance, we only have to find the image regairer¢hin
focus. For this purpose, we adopt the focus measure introduce®by {thich reflects the
statistical properties of the wavelet transform coefficients in differegit frequency sub-
bands. Considering a 2D discrete wavelet transformation, in a singlettamsformation
we will have four coefficient blocks, eadly4 of the size of the original image. The one
noted withLH (Low High frequency) contains coefficients representing the vertibges

in the image, while thélL block shows horizontal edges, and thid block containing high
frequency components both in horizontal and vertical direction will mgarethe diagonal
edges in the image. Using a randomly positioned windowver the original image, its
corresponding operator windows in the single level wavelet transfornmisitiéd, HL, and
HH subbands are denoted by, 5, wy;, andwyy respectively, while the wavelet trans-
form images in the subbands are denoted®yy, Wy, andWy . The focus measure
operator is defined using the standard deviation of the wavelet coefficien

M%,T:NL[ S (Wenlis ) — nom)*+

v ('L,])E'LULH

Y. Waur(i,5) — prn)’+ (3.36)
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whereN,, is the number of pixels iw andy is the expectation of the wavelet coefficients
in each subband denoted with the corresponding subscript. We seleetedhtiowsw,
that had the focus measuié?, ;- above the experimentally determined threshold level of
1.1. We also experimentally determined an appropriate size for the windag a square
window having200px width, since on a full frame camera’s 24Mpx image this is roughly
similar in size to the focus detection squares that the camera uses, while sniadlewss
tend to often miss the sharp details on homogeneous regions.

Since the absolute pose of the cam@ras known, we can simply calculate the average
distance between the camera and the 3D points visible in windoas the average of the
Euclidean distances from point to camera. Having a physical metric distah®list (ws)
assigned to each sharp window, let us create a histogram of the diftbstamnce values,
and take thé% and95% percentiles of the distribution of the values to filter out possible
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outliers. These values are an appropriate estimate for lowest and hiligtaste limits.

lowest_dist =hist(dist(ws), @5%)

(3.37)
highest_dist =hist(dist(ws), @95%)

Points in this distance domain projected in cam@ravill have a sharp image. We apply
these limits to filter out the cameras that don’t see a given point sharply.

Viewing Angle

At this point, we have for each 3D poiX a set of cameras assigned in which it’s visible
and in focus. As a next step we have to choose the one that sees th&qguian optimal
viewing angle and at highest resolution. Let us first calculate the antyl@be the surface
normalnx in X and the projection rapx; pointing from X into the optical center of
camerda’;. Since all the camera poses are known, the camera’s projection ceorginedes

c; = (z,y,2)" are available. The surface normals in a point cloud can be calculated by
different methods, like fitting local planes over a small neighborhood opthets [102],
but these methods could have trouble detecting the correct orientationrafrthels in case
of large point clouds of complex scenes. Fortunately most Lidar scaafrerady provide
the raw scan data with the correct normals in it, so we used this instead. dleschthese
two vectors can be simply calculated using:

0= arccos(&) (3.38)
x| - flox;l
with ox; = X — ¢; being the projection vector of poiX into thei** camera. The angles
0] € (0...m/2) are the geometrically correct ones, as any other angle would mean that the
camera is looking at the back side of the surface. Of course a mostlynplicpkar view
with small|#| value is more favorable here.

Resolution

Next, we also check the projection resolution of the region, since a higlcat fength
camera can produce higher level of detail even from a larger distance lower focal
length camera from a closer position as well might have better resolutionh@vaaterize
the resolution of the projection of poiX,, in thei** camera ases,,; = fi/Dmi, where
fi is the focal length of the camera ahy,,; is the distance of camegdrom pointX,,.

Selection

Then the final decision is taken by choosing the camera with the highestofalue
demi = resmi /0 (3.39)

where#'is the scaled version of angtinto ' € [0...1) with 0 corresponding to the
perpendicular view and corresponding to the /2 angle. dc,,; stands for the decision
value of camerawith respect to the 3D poirX ,,. The algorithmic overview of the method
is summarized in Algorithm 4. Examples of the colorization with this vertex baskd co
assignment can be seen in Fig. 3.22, Fig. 3.26 and Fig. 3.28.
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3.4.5 Texture Mapping

The above presented algorithm provides a point cloud that has thedlestssigned to
each vertex point. In many applications it is desired to have good visuéitygbat with
reduced data size, suitable for online streaming, storing or mobile applicafitms can
be achieved by using the triangular mesh that the scanner software ggasdnstead of
just the point cloud. This also allows us to simplify the model by reducing the sumb
of vertices defined, and visualizing surfaces instead. This also briegsethefit that we
can map texture files to each triangle of the mesh, so instead of using the jpssitgied
color blended over the triangle face, what most software do when visgkzcolorized
mesh, we can map a patch of the high resolution texture on it. This techniqiauslyv
will provide higher level of detail, and even on a reduced size data tharapipquality
is almost the same. The size of the 3D data itself can be efficiently reducesthgation
algorithms [103], that will try to collapse multiple neighboring triangles on the samaoth
surface into one single bigger triangle, reducing the necessary nurifaees for smooth
regions, while trying to keep a higher vertex number in the parts that ameaggoally more
complex.

Applying this to our proposed workflow we observe that for each pXintve only
need to store the corresponding texture coordinate in each camera imtagal in§ the
RGB value, so according to (3.34) we can extract the list of pixel coateax; for each
cameraC;. After that, going through the camera selection steps, when we alreadyahav
cameraC" assigned for each vertexwe can select for each fadg = (vg, vs, v.) the best
camera, simply by selecting the one that was commonly assigned to each vertex:

cti = ¢veiff 0V = O = O

But what happens if the three vertices don't have a common camera ed3igrhis
naive approach will cause issues on the edges of texture maps whereitsige of the
texture image and also at the boundary line between two textures. As anlexXamine
latter, see Fig. 3.21, where on the left hand side we have a fresco triekggoed from two
different cameras, and at the boundary line there is a string of triarghesv( explicitly
on the middle image) that didn’t get either of the cameras assigned, sincedttaes got
assigned to different cameras.

Dealing with all these situations may be cumbersome, instead we adopted a-new ap
proach [Frohlichet al,, 2019 that iterates over all the trianglds of the mesh instead of
the points. This way we are able to select different cameras for neiigighfacces that have
common vertices, and we are not limited to one single camera assigned perpere
The camera ranking steps presented in the previous section still remainnaindeessary,
we only have to adapt the final step of the algorithm, in this case iterating avesH of
the mesh. For each face we look at the th€&e camera ranking lists assigned to each
vertex, that contains the previously defingddecision values for all’; cameras:

C"F =dcy;, wherek € (a,b,c) andi € (1..n) (3.40)

and select the camef(d; that got included in all thre€'” lists and has the highest values
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of dc. Assign this to face;:

Cti e (€% N C™ N C%) wherede = max dcy, (3.41)

The single value assigned & will be the camera index that was chosen for tha trian-
gle. The corresponding texture coordinates are already availabli florese vertices of the
triangle, since we prepared them in the previous step. The data structpared this way
can easily be written out in an ASCII Wavefront OBJ file based on its stdrsgeecifications
[104]. The results obtained using the face based approach canrbendég. 3.21 on the
right hand side image, where different image textures are seamlesslgatednThe algo-
rithmic difference between the vertex based colorization and the facd teagere mapping
can be seen in Algorithm 4.

Figure 3.21. Issue with texture mapping on the boundary of differentreextuages (left
and midle). Switching from vertex based to face based texture mapping teeexan
join seamlessly (right).

Algorithm 4 The proposed camera selection algorithm

Input: A point cloud / triangular mesh and a set of images registered to it.
Output: A list with one camera assigned to every 3D point / face.
1: Considering a 3D poiriK, first filter the list of cameras by visibility using (3.35).
2: Then filter the list of cameras by their depth of field (3.37) domain and the caroer
point distance, keeping only those that have a sharp image of theXoint
3: Using the remaining list of cameras, calculate for each the angle betweemnjbetion
vector and the surface normal in poXtusing (3.38).
4. Also calculate each camera’s projection resolution with respect to their césteam
point X and the focal length.
5. Rank the cameras for each vertgxusing (3.39), putting them in the ligtx.
6: Repeat steps 1-5 for all points of the point cloud.
7: CASE For vertex based colorization select the best camera étdior each vertex and
assign the color seen by that camera according to (3.34).
CASE For texture mapping iterate over all the fadés= (vq, vs, v.), and select the
camera that is best ranked in all three vertices’ cameratlisiccording to (3.41).

3.4.6 Experimental Results

The efficiency of the proposed method has been demonstrated on twatagestudies.
First, the documentation of the Reformed church of Somorja (Samorin), teelotumen-
tation of the Reformed church in Kolozsnéma (Klizska Nema), both of theneldda

Slovakia.
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Reformed Church of Somorja

Somorja (Samaria, Sommerein, Zenthmaria) is a sacred edifice of great ingeottathe
Upper Great Rye Island region. It also ranks among the most signifisanuments of
Christianity in the whole Carpathian Basin, and is standing proof of the higllatd and
prestige of medieval Hungarian Christian culture in Europe. A small chegubktood on
the site of the church sometime before the 11th century. The chapel wasdatarually
expanded from the 11th through the 20th centuries. By the 14th centerfpuilding’s
construction was supported by the likes of King Saint Stephen, King BEl&hperor
Sigismund, King Matthias, King Wladyslaw II, and King Ludwig the Great.

The building had great sacred significance starting in the early Middle, Agescon-
tributed to a large degree the development of the municipality. Archaeoldgidalhave
revealed that, by 1521, the church had undergone twelve separatspifaeconstruction.
The building’s oldest part is the foundation of the Romanesque altar, sitbatew the
current apse, which experienced continual additions since the 1lilrgefhe tower has
been standing in its current form since the 13th century. It is made entirbhick, from its
below-ground sections to the cap on the very top. The main nave’s vaeltedjavas built
at the end of the 15th century in late Gothic style under King Wladyslaw I, irstyile of
the Prague castle.

The majority of the painted depictions of the main nave have not yet beealedve
Researchers have discovered that several ornate layers aredsillthe current plaster, the
earliest of which dates back to the 11th century. During the Romanesqu@athic era,
i.e. in the 11th-12th and 14th centuries, the interior was completely coveregaiiitings,
similar to Europe’s other significant churches. On the northern wall cdpise, the earliest
mural paintings appeared in a horizontal band depicting King Saint SteiirenBéla Il
and Saint Adalbert the Bishop of Prague. To the right of these threeapals, the painter
depicted the most well-known scene from the life of Bishop Saint Martin waga Roman
soldier, he dismounted his horse and handed half of his cloak to a slguseggar. In
a mural band under these images, the painter depicted the death of Maymppbsing
frescoes are an eloquent testimony to the significance of the town of Soimdhja 13th
and 14th centuries. Few similar apse decorations have been presdagdnirCentral and
Western Europe. The depiction’s intellectual message and iconogrdapteément praise a
scholar theologian. According to the celestial vision of John the Apostlsetlerify the
mysterious magnificence of the invisible God.

The pictures were covered by several layers of plaster for 600/28. What we see
today is mostly the paintings’preparatory coating. The complete renovatite @xterior
of the Reformed church in Somorja was supported by the Ministry of HumaouRees
of Hungary under Minister Zoltan Balog. Restoration work started in May42@nd was
completed in September 2015.

In Fig. 3.22 partial views are shown of the interior 3D model of the chur&aimorin.
One of its invaluable heritages, the frescos on the sanctuary’s ceilegisélnle in Fig. 3.22
on the first image. We used this fresco, depicting the coronation of Mardgrtmnstrate
the difference in resolution between an image taken with a telephoto lens,veide &eld
of view image. In Fig. 3.23 we can see the region highlighted with red in Fig. I3e22
ing cropped from &0mm focal length (short telephoto lens) image and froBaam fo-
cal length camera image that captured a wide angle overview of the whaltuagn In
Fig. 3.24 we can see the comparative results if we use these images foe teeping on
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Figure 3.22. Two views of the model colorized with the proposed vertegdasethod
using a low number of images (24). The regions that were not sharply visiday of the
images are left white.

the triangular mesh. Regions that were not visible from any of the cameraghéte.

Nevertheless, as we've shown previously, we need both types of imagasduce a
highly detailed model, since we can only do a complete colorization of the mouhg) us
wide field of view images, and when these already provide a color informétiothe
points, we can register the high resolution images of the small details. As wseean
Fig. 3.24 this second registration step is also performed with good precssnme, the two
sides of the mesh are textured from the two images mentioned before, jpsefantation
purpose shown in a split way, and the transition between the regions is gaitdess. It
is also noteworthy that just by being able to move the camera freely, we ¢anugd
higher resolution details even if using the same focal length lens by taking whoisnages.
Capturing such images may be more intuitive for the non-professionals apadm still
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Figure 3.23. Detail comparison of a wide and short telephoto image. On tredefp of
the24mm camera image, on the right the same region as viewed 0then camera.

Figure 3.24. A wide and short telephoto image used for texturing the mestediia a split
way. The added detail of the tele image is clearly visible. White regions wenregible
from any camera’s point of view, therefore are not colorized.

provide an improvement to the 3D model’s level of detail, as shown in Fig. @&ére the
bottom of the pillar has been textured from a close up image, taken by the aameacthat
provided the wide angle images that textured the rest of the visible walls.

All the above mentioned comparison images show that the registration of thésdata
correct. Since our main interest was in the geometric registration and theacaetection
process for the colorization, we didn’t deal with color calibration in thiskv@f course the
correct color representation in such a cultural heritage documentatpbicaon is also a
key factor, but standard solutions are available [105]. So instead wsionally left all the
images uncorrected in the color and lighting sense, this way the colorized oardgive
us a clue about which regions were colorized from different camsirase these transitions
are not blended in any way. It is well visible in Fig. 3.22 on the walls and orfltiue
that these kind of visible errors are only caused by the constantly clwitigimination of
the scene, the shadows, and the inhomogeneous lighting in some regiores examine
closely the transitions between the different colorizations on the groued;am see the
correct alignment of the cameras, since the edge lines of the bricks dmmatehed. In
Fig. 3.26 we can observe what improvements can be achieved by attemptiomgetct the
white balance and exposure of the images in post processing, doneunegperienced
user. While the color tones are more similar between the different images, gieisible
issue caused by the constantly changing lights and shadows would onipidatde by
using a controlled lighting setup during the acquisition.

One interesting use of a 3D model produced this way, is the possibility to illustrate
historical stages of the buildings, for example by removing completely thendrgm the



58 3. CHAPTER. ABSOLUTE POSE ESTIMATION AND DATA FUSION

Figure 3.25. Model textured with distant images, while a close up image biigpgjficant
improvement in resolution, as seen on the bottom part of the pillar. Green liries riee
texture boundary.

sanctuary (visible in Fig. 3.22), that was only added recently, we coulthlize how the
sanctuary could have looked like centuries ago. This kind of depictionlysparssible on
such 3D data. An example is shown in Fig. 3.27, it is noticeable how the windogg/alls
and the paintings behind the organ get visible on the second image.

Reformed Church of Kolozsnéma

There are two separate theories related to the foundation of the refohmezhdocated in
the village of Kolozsnéma (Klizska Nema). According to those theories theltlnould
have been a Turkish mosque or a Catholic chapel, however most likely irealtigy the
church is a tower of a castle owned by the family Kolosfi, built approximately3irblat
the age of Ludwig the Great. It can be assumed that after the devastatioa adstle the
church was built on its place and the crypt of Kolosfi's can be still foumdien the building
keeping the possibility to perform an archaeological excavation in that Ardream of the
people, living in Kolozsnéma, about the magnification of the church cameltnileg the
ministry of Ferenc Borza (1784 to 1794). The congregation has régmbviaeir church in
1819 and during the construction work a small window has been strucititbe western
part of the building in order to make the indoor part brighter. Due to thetffattthe place
dedicated for the men was not big enough they have built a gallery at therwesart and
in the same time 2 brand new windows have been constructed to keep theamgdegel
of the natural brightness inside. Unfortunately a huge fire has dedtatlyef the buildings
belonging to the congregation at the time of Albefiyéry who was the last pastor of the
village living on site. In the fire almost all of the assets have been damageatdikdurch,
the school, the bowles as well as both of the bells. The congregation wessded by the
calamity, however they did not give up. The damaged church have lemcteed on the
23rd of May 1858 and later in 1928 and 1929 the church has beenateoy the people
living in the village. The internal renovation of the church has been paddrduring the
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Figure 3.26. Overview of the colorized interior using the vertex based me8ume white
balance and exposure correction has been done on the camera images.

ministry of Laszlé Mikes at the second half of the 20th century (1951-1864 finally in
the period of 2002 and 2004 the outer part of the building was renovatadih In the
same time the roof was renewed and the slate used before have beerddplahingle
respecting the strict rules regulating the renovation of the monuments. laihe ttme
period the mechanism of the bells have been automatized, the star on the tegafén
was renovated, the pargeting was renovated as well as the doors amithdogvs, further
the door located on the rotunda have been unfolded. In the past ttaeeagea part of the
work to keep the consistency of the building the tower as well as the raaftste made
from shingle has been repainted, the pulpit, the Chair of Moses, the galemell as the
benches have been renovated.

The exterior model of the church of Kolozsnéma is presented in Fig. 3128.ekam-
ple illustrates well how only a reduced number of images can be sufficiemiddze the
complete model of such a building: we only usddimages in this case with good results.
Of course for a more complex structure more images will be needed to cower gart
without occlusion, and if important details have to be documented in highauties then
again the number of images will increase. In this scenario, we faced a sirsilaras with
the organ in the sanctuary of the other church. The tombstones aroualuted did not
allow for capturing images of the walls without occlusion, so to be able tocitymenlorize
the building without projecting the image of the tombstones on it, we had to makéhsitire



60 3. CHAPTER. ABSOLUTE POSE ESTIMATION AND DATA FUSION

Figure 3.27. lllustrating the sanctuary with and without the organ on a tektnoelel.

Figure 3.28. Exterior model of the Kolozsnéma church. Point cloud cedfiom only21
images using the vertex based method.
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these objects are also included in the 3D scans, and we kept them in the 34D winole
processing the data, simply to obstruct the parts that are not visible frovemcamera’s
viewpoint. After the colorization is finished, these tombs can easily be reniavecessary
from the model.

3.5 Summary

In this chapter, a generic, nonlinear, explicit correspondence-ess gstimation method
was proposed. The absolute camera pose estimation is based on the @pigiation
of a common Lidar-camera planar patch. The proposed method makes nsaiml
information (plain depth data from 3D and radiometric information from 2D)iaggneral
enough to be used both for perspective and omnidirectional centrafasmiehe State-of-
the-Art performance of the proposed method was confirmed both ondgngjeetic data sets
as well as on various real data experiments using different depthrsepsospective and
omnidirectional cameras. The method could be further extended to handteirdamera
parameter estimation as well.

Since most of the current comparable point-based methods usually hedyibnrRGB
information, and struggle with surfaces having homogeneous color, antcb reflection,
our method has a clear advantage by not relying on 3D color informatiorve th@ prob-
lem. As cultural heritage is becoming a field that frequently relies on digital rdetimahe
documenting processes, we proposed a workflow for the 2D-3D \istialfusion based on
our region-based method, extended with a pose refinement step. Thedreatizes us to
fuse color-calibrated high resolution information into the 3D model, by relymgtdeast
a single smooth region visible in both 3D and 2D domains, but it also makes ws®/ of
low quality 3D RGB information that might be available, to enhance the pose estimatio
sults. Furthermore, since we are not directly using the RGB color values)ethod works
with infrared, or even with hyperspectral images, that are widely pojmalaging methods
amongst cultural heritage experts.

As we have found, another popular cultural heritage task is to creates@yenetric,
laser scanned models of buildings or excavation sites both for analyzihgennstruction
purpose. 2D-3D visual data fusion is still a major step of these procehssave proposed
a workflow, that this time relies on the data captured and registered usingdiEatbd
commercial software, and focuses more on the camera selection probldmrtttae chal-
lenging in such a large scale case. The pose estimation step of coursbeoepdaced with
the region-based method propose in this chapter, at any time. While mostaoftimeercial
solutions can give good results in the generic setup, we deal with a diffenere complex
case, when the camera is not attached to the scanner, this way being aoléuocephigher
level of detail, that is necessary for the heritage applications. The pedpoethod chooses
for every point the camera with the best view of that point based on éiffggarameters.
We also presented a texture mapping step that takes advantage of thedlutiom of the
captured images, and even enables us to create a reduced size modihévisualization.
We have shown that the detail level of such a colorized 3D model catlygbesincreased
from what we might get with a camera mounted on the scanner, by captigimggsolution
images of the important details by moving the camera closer and using highéleiogth
lenses if necessary.






Chapter 4

Planar Homography, Relative Pose
and 3D Reconstruction

4.1 State of the Art Overview

Homography estimation is essential in many applications including pose estimadgjp [1
tracking [108, 107], structure from motion [109] as well as recent tiobapplications
with focus on navigation [110], vision and perception [111]. Efficieamography esti-
mation methods exist for classical perspective cameras [15], but thékedaare usually
not reliable in case of omnidirectional sensors. The difficulty of homdgrastimation
with omnidirectional cameras comes from the non-linear projection model yiektiape
changes in the images that make the direct use of these methods nearly itepossib

For the geometric formulation of omnidirectional cameras multiple models have been
presented in Chapter 2.1. When the camera is calibrated, which is typicallyaseeirc
practical application, then image points can be lifted to the surface of a in@tesprovid-
ing a unified model independent of the inner non-linear projection of theem The big
advantage of such a generic model is that many concepts from standgctige geome-
try (in particular homographies or stereo triangulation techniques) rembdhfeacentral
omnidirectional cameras. For example, homography can be estimated usiegpherical
points [108, 107]. Of course, pose estimation must rely on the actual intelggsin a real
environment, hence we cannot rely on the availability of special calibratiget&a

4.1.1 Related Work

Recently, region-based methods have been gaining more attention [22]1jrilparticu-
lar affine invariant detectors [113]. Patch-based scene représenitaproved to be ef-
ficient [114] and consistent with region-based corresponderarefsenethods [115]. A
classical solution is to establish a set of point matches and then estimate hphyogaaed
on these point pairs. For this purpose classical keypoint detectafs asuSIFT [116], are
widely used [109, 107] for omnidirectional images.

Unfortunately, big variations in shape resolution and non-linear distortialienges
keypoint detectors as well as the extraction of invariant descriptorishvare key com-
ponents of reliable point matching. For example, proper handling of smaeiant fea-
ture extraction requires special considerations in case of omnidirecienabrs, yielding
mathematically elegant but complex algorithms [117]. In [118] a new computafide-
scriptor patches was introduced for catadioptric omnidirectional camdriak also aims to

63
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reach rotation and scale invariance. In [109], a correspondessezlgorithm is proposed
to recover relative camera motion. Although matching is avoided, SIFT &=aane still
needed because camera motion is computed by integrating over all featariabsatisfy
the epipolar constraint. Epipolar geometry of omnidirectional camera paiesdiso been
studied [119], which can be used to establish dense stereo matches. A&moimorks
discuss the possibility of featureless image matching and recognition (mobtyndt20]),
but with limited success. Our region-based homography estimation method iaube e
by any of these issues, since the strong non-linear distortion of the caareb& eliminated
simply by working with normalized spherical patches instead, that are suftaidelving
the homography estimation problem. We will show in this chapter that cameraaosee
directly factorized from the estimated planar homography of [Frohlich, SaKeato,2019.

The importance of piecewise planar object representation in 3D stereloebasrec-
ognized by many researchers. There are various solutions in casndasd perspective
cameras, many of them are making use of the plane induced homographlyedia and
Kobbelt used a small plane, called 'disk’, for surface reconstrucfigf,[121]. They proved
that the normal is a linear function of the camera matrix and homography. By mingniz
the difference of the warped images, the surface is reconstructadkava proposed using
a small patch for better correspondence [114], then The surfacevismgrith the expansion
of the patches. The piecewise planar stereo method of ®inhk[123] uses shape from
motion to generate an initial point cloud, then a best fitting plane is estimated,atigt fi
an energy optimization problem is solved by graph cut for plane recatistnu Combin-
ing the work by Furukawa and Sinha [114, 123], Koweleal. introduced learning and
active user interaction for large planar objects [124]. Hoaingl. also started from a point
cloud [125] which was subsequently used for creating a visibility congistesh. In our
approach, planes are directly reconstructed from image region(g) thtm a point cloud.
Fraundorferet al.[126] used MSER regions to establish corresponding regions paien Th
a homography is calculated using SIFT detector inside the regions. Pégaing are then
grown until the reprojection error is small. Zhetial. assumed the whole image is a pla-
nar object, and proposed a short sequence SfM framework calledSARAL127]. The
homography is calculated using optical flow. Although the role of planaomsgn 3D re-
construction has been noticed by many researchers, the final readiustiis still obtained
via triangulation for most State-of-the-Art methods. Planar objects areusely for better
correspondences or camera calibration. Our approach in contoastigs direct solution
for the plane reconstruction problem, only relying on the planar homoygrestimated be-
tween image regions [Molndt al, 2014.

Multi-view 3D reconstruction also has an important role in image-based uiidR
mapping and scene reconstruction [128]. New industrial applicationgaanéng ground
in the domain of street level mapping [129], maintenance, autonomous tiamigad self
localization [130]. A key component in such applications is the simultanealieffinient
solution of 3D reconstruction and pose estimation. Particularly the planamst&action of
objects like facades, walls, tables, traffic signs is an important task in manligatons.
Numerous methods already exist for the extractior.gf traffic signs using CNN [131]
and recognition using Deep Learning [132] or facade elements extraciog RNN and
MRF [133]. Unfortunately feature-point matching on these surfaceard, lthus classical
reconstruction approaches based on sparse point correspeadg&twill struggle. How-
ever, it is well known that a planar homography between a pair of imagen®gontains
information about both the camera relative pose and the 3D plane parartteisiglane re-
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construction is possible from such a homography [134, 15, 112].dBas¢his observation,
we will present a novel direct solution for the simultaneous relative pssmation and
plane reconstruction formulated through a planar homography estimatibleprbetween
corresponding image regions [Frohlich, Ka20,19.

4.1.2 Contributions

In this chapter, multiple homography estimation algorithms are proposed, tHatlinectly
on segmented planar patches. As a consequence, our methods dedektracted key-
points nor keypoint descriptors. In fact, we do not use any photomefdamaation at all,
hence our methods can be used even for multimodal sensors. Since tsggpnénrequired
anyway in many real-life image analysis tasks, such regions may be avaitaibtaightfor-
ward to detect. In our experiments, we have used simple interactive segioentaut au-
tomatic detection oé.g.windows (which are quite common planar regions in urban scenes)
is also possible [135]. Furthermore, segmentation is less affected bynean-distortions
when larger blobs are extracted. The main advantage of the proposealdngethe use of
regions instead of point correspondences and a generic probleml&dion which allows
to treat several types of cameras in the same framework. We reformulatghaphy es-
timation as a shape alignment problem, which can be efficiently solved in a simyaasva
in [78]. We show in the first application how such a homography can bendeased to find
the relative pose of the cameras in case of a general setup, and alse iof @awell known
urban scene constraint, theeak Manhattan worldssumption. Quantitative evaluation on
synthetic datasets proved the methods robustness and efficiency.

Then we present a variational calculus based method for calculating tier glarface
parameters in a closed form solution only from the homography estimateddyespieri-
cal cameras. Quantitative evaluation on a large set of synthetic datancsfifie real-time
performance, efficiency and robustness of the proposed solution.

In the last application we present a direct method for simultaneous pose testisuad
3D plane reconstruction formulated as a homography estimation problem. rdpespd
solution works directly on segmented planar patches, and is solved in a sinajaasv
in [78]. The main advantage of the proposed method is the generic problemulation
which allows to treat several planes and multi-view camera systems in the samenfork.
The method has been quantitatively evaluated on synthetic data and alsd dateefrom
the KITTI dataset.

4.2 Homography Estimation for Omni Cameras

Given a scene plane, let us formulate the relation between its imadesnd F in two
omnidirectional cameras represented by the unit spi&resdS,. The mapping of plane
pointsX,. € « to the camera spherés, i = 1,2 is governed by (2.1), hence it is bijective
(unlessw is going through the camera center, in which caskis invisible). Assuming
that the first camera coordinate system is the reference frame, let atedée normal
and distance ofr to the origin byn = (n1,n2,n3)” andd, respectively. Furthermore,
the relative pose of the second camera is composed of a rofatiand translatiort =
(t1,t2,t3)T, that gives the transformation bringing a point given in the coordinateisys
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Figure 4.1. Homography acting between omnidirectional cameras repgdsas unit
spheres.

of the second came( into the reference frame of the first caméiaas shown in Fig. 4.1
Xer =RXeo +t

thus projecting from spher&, to S; is simply done by applying the same transformation,
then normalizing the transformed point onto the unit sphere:

RXgo +t

X§] = T
St HRXSQ +t”

Because of the single viewpoint, planar homographies, as defined in &al2valid for
omnidirectional cameras too [107].

4.2.1 Planar Homography for Central Omnidirectional Cameras

From our point of view,® provides an equivalergpherical imageby backprojecting the
omnidirectional image ont& and the planar homograpt simply acts between these
spherical images [Frohlich, Tamas, Kag&f)14, as shown in Fig. 4.1. Basically, the ho-
mography transforms the rays &s; « Hxgss, hence the transformation induced by the
planar homography between the spherical points is also bijedfive.defined up to a scale
factor, which can be fixed by choosiigs = 1, i.e. dividing H with its last element, as-
suming it is non-zero. Note thags = 0 iff H(0,0,1)7 = (h13, he3, 0)7, i.e.iff the origin
of the coordinate system in the first image is mapped to the ideal line in the secagel.
That happens only in extreme situatiorsy.whenZ, 1 Z; andO, is on Z; in Fig. 4.1,
which is usually excluded by physical constraints in real applicationss Tl pointX .
on the plane and its spherical images, xs- are related by

A
X, = M Xs1 = MHXs = Xg) = fHst
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HenceXs; andHX s are on the same ray [Frohlich, Tamas, K&014 yielding

HXso

Xeog = — 922
517 [HX s

= ¥(Xs2) (4.1)

4.2.2 Homography Estimation

Given a pair of omnidirectional cameras observing a planar surfack, faie to estimate
the homography between its images, the spherical redigng S; andFs € S»? First,
let us formulate the relation between a pair of corresponding omni image pgiarsdxs;.
The corresponding spherical points are obtained by applying the carimerar projection
functions®, ®-, which are then related by (4.1):
B1(x1) = X1 = 2 = U(Pa(x2)) (4.2)
Any corresponding point paii; , x2) satisfies the above equation. Thus a classical solution
is to establish at least such point correspondencééxt, x4)}Y , by standard intensity-
based point matching, and solve fBf. However, the inherent non-linear distortion of
omnidirectional imaging challenges traditional keypoint detectors as welkaasxthaction

of invariant descriptors, which are key components of reliable point machiherefore
we are interested in a solution without finding point matches.

We will show that by identifying a single planar region in both omni images (tehoy
D and.F, respectively) H can be estimated without any additional information [Frohlich,
Tamas, Kato201§. Since we do not have established point pairs, we cannot directly use
(4.2). However, we can get rid of individual point matches by integraiitty sides of (4.2)
yielding a surface integral ofi; over the surface patch@% = ®,(D) obtained by lifting
the first omni image regio® and Fs = ¥ (®P2(F)) obtained by lifting the second omni
image regionF and transforming it by : So — S;. To get an explicit formula for these
integrals, the surface patchBs and.Fs can be naturally parameterized ¥a and¥ o &,
over the planar regior® C R? andF c R?:

VXs, € Ds @ Xs, = Pi(x1),x1 €D
VZgl € Fs Zgl = \I/(<I)2(X2)),X2 S .7:,

yielding the following integral equation:

/ (1)1 X1

0P, E)<I>1
8:1111 81312

/ U(Py(x2)) Ha(g;fb) X 8(252;{)2)

dz11deie =

' dwgl dwgg (43)

where the magnitude of the cross product of the partial derivativesoisrkias the surface
element. The above integrals can be regarded as component-wise soirégcals of scalar
fields, yielding a set of 2 equations. Since the value of a surface intsgralependent of
the parameterization, the above equality holds because both sides coritaegaal onS,,

parameterized through; on the left hand side and througho ®5 on the right hand side.
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4.2.3 Construction of a System of Equations

Obviously, 2 equations are not enough to determinestharameters of a homography. In
order to generate more equations, let us remark that the identity relation Jrrémains
valid when a functionv : R?* — R is acting on both sides of the equation [78]. Indeed, for
a properly chosew

w(xs;) = w(¥(Pa(x2)))- (4.4)

We thus obtain the following integral equation from (4.3) and (4.4)

//WZ‘I’le ‘

0P 8(1)1
Or1y 59012

//fwi(‘l’(%(xg)) H O(¥oda) OV o)

81‘21 axgg

dl‘ll d:Elg =

‘ dxoy dzes  (4.5)

The basic idea of the proposed approach is to generate sufficiently miapeindent equa-
tions by making use of a set of nonlinear (hence linearly independerajidas {w; }¢_;.
Eachw; generates a new equation yielding a systerhinflependent equations. Note how-
ever, that the generated equations contain no new information, they simplgenmgsov
linearly independent constraints. Although arbitraryfunctions could be used, power
functions are computationally favorable [78]. In our experiments, wetadiahe following
functions:

wilxs) = ahiafia,

with0 < l;,m;,n; <2andl; + m; +n; <3 (4.6)

These functions provide an overdetermined systermboéquations of the form of (4.5),
which can be solved in thieast squares sensda a standard.evenberg-Marquard{LM)
algorithm. The solution to the system directly provides the parameters of theghapiny
H.

The computational complexity is largely determined by the calculation of the itéegra
in (4.5). Since both cameras are calibradand®, are known, hence the integrals on the
left hand side are constant which need to be computed only once. Howey@nknown
homographyH is involved in the right hand side through hence these integrals have to be
computed at each iteration of the LM solver. Of course, the sphericaigjg = P2 (x2)
can be precomputed too, but the computation of the surface elements is mapiexo
First, let us rewrite the derivatives of the composite functiond, in terms of the Jacobian
Jg of ¥ and the gradients @b-:

Since the gradients ob, are independent oH, they can also be precomputed. Hence
only U(®y(x2)) andJ g (P2(x2)) have to be calculated during the LM iterations yielding a
computationally efficient algorithm [Frohlich, Tamas, Ka2619.

0Py 0Py
J J
Y 0o S 0x92

H (9(\:[/ o} (I)Q) % (9(\11 0] q)g)
O0xa1 0x22

Normalization and Initialization

Since the system is solved by minimizing the algebraic error, proper normatizatidgtical
for numerical stability [78]. Unlike in [78], spherical coordinates areadty in the range
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of [—1, 1], therefore no further normalization is needed. Howeveruthieinctions should
also be normalized intp-1, 1] in order to ensure a balanced contribution of each equations
to the algebraic error. In our case, this can be achieved by dividing tbgrats with the
maximal magnitude of the surface integral over the half unit sphere. Weasaly compute
these integrals by parameterizing the surface via points on the unit circleintheplane

asf(z,y) = (z,y, /1 — 22 — 42)T,V||(z,y)| < 1. Thus the normalizing constan; for
the equation generated by the functions

// lwi(f(z,y)) 1/1 1 7 5 drdy 4.7)

(z,y)]I<1

To guarantee an optimal solution, initialization is also important. In our case, @ goo
initialization ensures that the surface patcfgsand.Fs overlap as much as possible. This
is achieved by computing the centroids of the surface pattesnd Fs respectively, and
initializing H as the rotation between them.

We have developed a homography estimation algorithm in this chapter, whidtets in
pendent of the camera’s internal projection functidnsand®,. However, the knowledge
of these functions as well as their gradient are necessary for thd actaputation of the
equations in (4.5). The pseudo code of the proposed method is preseAtgdrithm 5.

Algorithm 5 The proposed homography estimation algorithm

Input: A pair of 2D omnidirectional images with the same planar region segmented

Output: HomographyH between the spherical images of the region

: Back-project the 2D images onto the unit spheres u$ingnd ..

Construct the system of equations of (4.5) using the polynamialnctions in (4.6).

Normalize the equations using (4.7)

Initialize the homography matriHl with the rotation between the centroids of the

shapes on the sphere.

5. Solve the normalized nonlinear system of equations using the Levenbanaquktdt
algorithm.

RwdNR

4.2.4 Homography Estimation Results

A gquantitative evaluation of the proposed method was performed by deneastotal of9
benchmark datasets, each containing image pairs. Images @4 different shapes were
used as scene planes and a pair of virtual omnidirectional cameras wdttnmgsose were
used to generate the omnidirectional images of 1MP. Assuming that§hese800 scene
plane images correspondiox 5 m patches, we place the scene plane randomly at around
1.5 min front of the first camera with a horizontal translationtaf m and+[5° — 10°] rota-

tion around all three axes. The orientation of the second camera is randioosign having
+5° rotation around theX andY axis, andd-10° around the vertical axis, while the lo-
cation of the camera center is randomly chosen from4bhe- 55] cm, [100 — 200] cm, and
[200 — 500] cm intervals, providing the first three datasets for 3 different basedinges.
The alignment error (denoted By was evaluated in terms of the percentage of non over-
lapping area of the omni images after applying the homography.
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Figure 4.3. Alignment errord{ on the synthetic dataset with various baselinesig the
median, best viewed in color).
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Figure 4.2. Alignmentq) error of the homography for various internal projection models
(Scaramuzza [9, 14], Geyer and Daniilidis [6], and mixedstands for median).

Based on our experimental results, we concluded thatreor below 5% corresponds to
a correct alignment with a visually good matching of the shapes. For thestiyntiatasets,
error plots are shown in Fig. 4.2, Fig. 4.3, Fig. 4.5, and Fig. 4.7. Note #wit plot rep-
resents the performed test cases sorted independently in a best-tsavems. In Fig. 4.2,
we present a quantitative comparison of homography estimation with eack o&thera
models described in Chapter 2.1; as well as a test case with mixed cameeas tindfirst
camera uses the Scaramuzza'’s polynomial representation and the adopigithe general
catadioptric model. As expected, the quality of homography estimates is irdbenf
the internal projection functions, both models perform well, error plots dlcaspletely
overlap. Therefore in all other test cases, we will only use Scararisunzalel from Chap-
ter 2.1.2.

The median value of was0.60%, 0.72% and1.17% for the different baselines. In the
first 2 cases, with baselines having values urtfércm, we can say that onli% of the
results were above’ error, while in the case of the biggest baselige8 — 500 cm still
84% of the results are considered good, hawirgrror smaller thaB%. The wrong results
are typically due to extreme situations where the relative translation from stedimera
to the second camera’s position is in such a direction from where the image gdarbe
seen under a totally different angle resulting a highly different distortidheoshape on the
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input image pair 0 =0.5%

input image pair 0 =2.6%

Figure 4.4. Typical registration results for the test cases with unfalecalmera pose. First
row shows a test case with big translation in thevhile the second row contains a test case
with region falling on the periphery of the image.
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Figure 4.5. Alignment errot5) on the synthetic datasets with unfavorable camera pases (
is the median, best viewed in color).

We have also tested the robustness of our method in some cases with abfaeamera
poses. One such situation is when the image of the actual planar regiorageised on
the periphery of the omnidirectional image. It is well known, that these casneave a
much higher distortion in these regions. For this purpose we generatdteasgnthetic
dataset, making sure that all the regions fall on the periphery of the onutidmal image.
Another situation is when the relative camera pose has a much higher transitia
the Z axis, resulting a considerable size difference of the regions on the oeutidital
images. For this experiment a new synthetic dataset was generated witleathagglation
along theZ axis (in the range of:1 m). The alignment errors of these two test cases are
shown in Fig. 4.5. As we can see, the differences in the size of the rejansccur when
having translation along th& axis are well tolerated by the algorithm, a homography can
be estimated with almost the same precision. On the other hand, the higher distbttie
periphery of the images results in considerable loss of resolution, headethography
estimation also looses some precision, but the median of #reors are still belov2%.
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Figure 4.6. Typical registration results for various level of segmentatitr. eFirst row
shows the first image and the amount of segmentation error while the sesordmtains

the overlay of the transformed first image over the second image with dreor (best
viewed in color).
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Figure 4.7. Alignment errord) on the synthetic dataset with various levels of boundary
error (n is the median, best viewed in color).

In summary, these results demonstrate that the method is robust againshfavibrable
situations.

In practice, the shapes are segmented from real world images subjecidosvdegree
of segmentation errors. Therefore robustness against segmentediavas also evaluated
on simulated data. For this we used the dataset having the typical baseelstéihe 2 m
and we generated segmentation error by randomly adding and removiggsauiformly
around the boundary of the shapes in one of the image pairs. A total ofiédasets were
produced fron5% up t020% of boundary error. Samples from these datasets can be seen
in Fig. 4.6, while Fig. 4.7 shows error plots for these datasets. Obviouslynddian ofy
error increases with the segmentation error, but the method shows ressisimto around
15% error level. In particular30% and60% of the first two cases are visually good, while

only 44% and 30% of the cases are below the desif&d § error for larger segmentation
errors.

The algorithm was implemented in Matlab and all benchmarks were run on astand
quad-core desktop PC, resulting a typical runtime of 5 to 8 seconds with®gbde being
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Original image pair Registration result
“ ”

Figure 4.8. Homography estimation results on real omni image pairs. Segnmegieds
are overlayed in lighter color, while the result is shown on the right as thefsemed green
contours from the first image region over the second image.

optimized.

The real images, used for validation, were taken by a Canon 50D DSirRreawith
a Canon EF 8-15mm f/4L fisheye lens and the image size was 3MP. In oerirents,
segmentation was obtained by simple region growing (initialized with only a fewsjlick
but more sophisticated and automatic methods could also be used. The dxhiactey
region masks were then registered by our method and the resulting horpdrap been
used to project one image onto the other. Three such examples are illugtr&igd 4.8,
where the first two images are the input omni image pairs, showing the segimegien
in highlight, and the third image contains the transformed edges overlayechWbserve
that in spite of segmentation errors and slight occlusierg By the tree in the first image
of Fig. 4.8), the edges of the reprojected region and the edges on théntege are well
aligned. We should also mention that while slight occlusions are well toleratedyethod
does not handle the occlusion of bigger parts of the region.

In the next sections we will show two applications that rely on such estimated-ho
graphies to retrieve the relative pose of the two cameras, and even tlee@@struction of
the planar surface used for the homography estimation.
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Figure 4.9. Homography factorization results showingdteror(%) of the homography,
the rotation error and the translation error as the angle between thenafened factorized
translation vectorsig is the median).

4.3 Relative Pose from Homography

If we consider again that the homogragHyis composed as in (2.12) from a rotatiBy) the
ratio t/d of the translation to the distance of plane and the nomnal the plane, we can
express the pose parameters as described in [136] using the sinduladeaomposition
(SVD) of H. Of course as thé distance of the plane is unknown, we can only express the
translationt up to a scale factor. We fixed this scale factor by choosing the last elémment
of H to bel.

The parameters that we obtain by the decomposition method can easily bedvierifie
case of synthetic data, since we have the reference parameters saveftde dataset
generation. The error in the relative translation can be characterizeithiey verifying the
angle between the estimated and reference translation vectors, or by sielite estimated
translation vector with the length of the reference translation and computiriguitielean
distance between them. Here we have chosen to show the former oneeslitis can be
seen in Fig. 4.9, where test cases are sorted by increasinmgr. We can observe that on a
set of 150 test cases the estimated homography is really good, éneor was belov2% in
all cases, and its median is less tla6%. From a good input like this, the relative rotation
and translation of the cameras can be factorized with high precision,0orly median
error in the rotation, an@.51° in the direction of the translation vector.

The results show, that except a few test cases, the relative poseripidettwith high
stability. These few test cases (the spikes on Fig. 4.9) can be better eggitmoking at
Fig. 4.10 which shows only the factorized pose parameters for all tess$,cearted by the
rotation error. The plot confirms a clear correlation between these yahas visible on
the second half of the plot, where the rotation and translation error ires¢agether. This
can be caused by the rare appearance of some specific camera reioiig where these
errors in the parameters can compensate each other’s effect, resultingoirerall good
overlap (hence a low error) but spikes on Fig. 4.9.

Since thej error of the homography in the previously mentioned dataset was consider
ably low (0.57% of median error), we have also tested the factorization on the datasets with
simulated segmentation error used in Chapter 4.2.4, where the homograptsyspan on
a larger scale. The rotation error can be observed in Fig. 4.11. Téet effthe worse ho-
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Figure 4.10. Homography factorization results showing the rotation emtbite translation
error as the angle between the reference and factorized translatimmsyesorted by the

rotation error {n is the median).
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mographies can obviously be seen on the factorized rotation, but still%asegmentation
error, which resulted a error of4.17% for the dataset (see Fig. 4.7), the rotation error is
well below4° in median.

For the characterization of the translation errors in this case, we'vessgd the Eu-
clidean distance between the scaled up translation and the referentativansector. The
effect of the biggep error of the homographies in the different datasets can be observed in
this case as well, visible in Fig. 4.12. The median of approximaitglgm in the case of
the 10% segmentation error can be considered a reasonably good result, smegions
represent approximatelyx 5 m surfaces in the scene.

4.3.1 Manhattan World Assumption

Manhattan worldassumption is quite common when working with images of urban or in-
door scenes [137, 138]. Although this is a strong restriction, yet it isfigatiat least
partially in man-made structures. A somewhat relaxed assumption iwehk Manhat-
tan world[110] consisting of vertical planes with an arbitrary orientation but pdrallthe
gravity vector and orthogonal to the ground plane. Following [110], aveaiso take advan-
tage of the knowledge of the vertical direction, which can be compaiggfrom an inertial
measurement unit (IMU) attached to the camera. While [110] deals with gxthep cam-
eras, herein we will show that homographies obtained from omnidirectcaméras can
also be used [Frohlich, Tamas, Kaf#)1g and then we conduct a synthetic experiment to
evaluate the performance of the method.

Let us consider a vertical planewith its normal vectom = (n;,n,,0)7 (z is the
vertical axis, see Fig. 4.1). The distan¢eof the plane can be set to 1, becaldes
determined up to a free scale factor. Knowing the vertical direction, thdontaatrix R
in (2.12) can be reduced to a rotatiBy around thez axis, yielding

H = Rz_(tmytyvtz)(n:cvnya(])T

cos(a) — ngty, —sin(a) —nyt; 0
= sin(a) — ngt,  cos(a) —nyt, 0 (4.8)
Nyt Nyt 1
hi1 hiz O
= ha1 ha2 O
h31 hs2 1

The estimation of such weak Manhattarhomography matrix is done in the same
way as before, but the last column B is set to(0,0,1)7, yielding 6 free parameters
only [Frohlich, Tamas, Kat®014. In order to quantitatively characterize the performance
of our method, 2 synthetic datasets witleak Manhattan worldasssumption were gener-
ated: first the 3D scene plane is positioned vertically and randomly rotapemdithe
vertical axis by[—10, +10] degrees, followed by a translation in the horizontal direction by
+[400 — 800] pixels, equivalent td2 — 4] m such that the surface of the plane is visible
from the camera. For the second camera position we used a random rofgtiart), +10]
degrees around the vertical axis followed by a horizontal translatiah[® — 100] cm.
The second dataset only differs in the vertical position of the 3D sceme:pla the first
case, the plane is located approximately cm higher than in the second case. Fig. 4.13
shows the registration error for these datasets. As expected, havinfydesparameters
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Figure 4.13. Alignment erroi] on the synthetic dataset witheak Manhattan constraint
(only vertical surfaces and horizontal camera rotation allowed).
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Figure 4.14. Horizontal rotation error in relative poseié the median).

increases estimation accuracy (alignment error is consistently @néfé) and decreases
computational time (typically 2-3 sec.).

Based on the above parametrizatidh,can be easily decomposed in the rotatien
and the translatiom = (t,,t,,t.)” parameters of the relative motion between the cam-
eras [Frohlich, Tamas, Kat®201§. For example, using the fact thaf + n2 = 1,

t, = 41/h3; + h%, (see [110] for more details).

Following the decomposition method of [110], the horizontal rotation anglesofdim-
era can be determined with a precision of aroQréddegrees, which means a precision of
slightly above 5 of the total rotation (see Fig. 4.14). As for the translatiorit can be
also recovered with an error of less thaem in the camera position. Note that the scale
of t cannot be recovered frol, but during the generation of our synthetic dataset we also
stored the length of the translation, hence we can use it to scale up the enttatirvec-
tor obtained fronH and compare directly the distance between the original and estimated
camera centers. This is shown in the plots of Fig. 4.15.

Of course, classical homography decomposition methods could also e Asean
example, we show the pose estimation results obtained on the same datastteiSMB-
based factorization method from [106]. Fig. 4.14 and Fig. 4.15 show thdon and trans-
lation errors for both methods. Although the differences are not bigcanelearly see the
increased stability of [106].
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Figure 4.15. Translation error in relative pose i6 the median).

4.4 Plane Reconstruction from Homography

Returning to the equation that connects the projection rays of the two sghesagh func-

tion ¥,
HXso

- |HXsaf

we can clearly see, that the functidnis fully determined by the homograpf, hence
estimating the homography parameters ugingthe algorithm of [Frohlich, Tamas, Kato,
2014 provides the bijective mapping between the spherical points of the omnidirectional
camera pair. We now present a simple, closed form solution [Manhat, 2014 to recon-
struct the normal vector of a 3D planar surface patch from the plamaod@phy between

a pair of corresponding image regions and known omnidirectional capntbedsvas vali-
dated using the homography estimation method presented in Chapter 4.2. ©noertial
vectorn is determinedd can be easily computed based on (2.12) as shagiin [15].

Xs1 U (Xs2) (4.9)

4.4.1 Normal Vector Computation

Although differential geometric approaches were used to solve variolens in projec-
tive 3D reconstruction, the approach proposed in [Moétaal, 2014 is unique for omnidi-
rectional cameras to the best of our knowledge. For example, [13Patd@bout generic
surface normal reconstruction using point-wise orientation- or spadiguéncy disparity
maps. Unlike [139, 140], which considers only projective camera aad aparametriza-
tion dependent, non-invariant representation; [Moleidal., 2014 uses a general omnidi-
rectional camera model and avoids point correspondences andtemis a planar surface
from the induced planar homography between image regions.

The notations in this section are widely used in classical differential geonf&tryec-
tors and tensors we use bold letters and italics for the coordinates. Stdyadis is defined
by three orthonormal vectoks, e, andez. 3D pointsX € R? are identified with their
coordinates in the standard bads= X'e; + X%e; + X3e3 or X = XFe, using the
summation convention (repeated indices in superscript and subscripbpasean sum-
mation). Considering the visible part of the scene object as a reasomabbtrs surfaces
embedded into the ambient 3D spaSds represented by the general (Gauss) coordinates
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u! andu? as

S (ul,u2) = X! (ul,uQ) e + X? (ul,u2) eyt

+ X3 (ul,u2) e3 = XF (ul) e; (4.10)

The tangent space to surfaSeat a surface poinfu!, u?) is spanned by the local (co-
variant) basis vectorS; = %, Sk = Sk (u!,u?), k € {1,2}. The corresponding con-
travariant basis vecto®', I € {1,2} are defined to satisfy the identi8/ - S, = 6, where
6t 1€ {1,2}, k € {1,2} is the Cronecker delta and the scalar product is denoted by dot.

The normal vector of the surface is defined by the cross prdduetS; x S,. Surface
area element is defined by the triple scalar pro¢iu8§Ss| = n - (S; x S3) wheren = %
is the unit normal vectorof the surface. The cross-tensor of the normal ve®gr =
S2S1 — S1S, is a difference of two dyadic products of the local basis vectors. Dyadic
(direct) products are denoted by a simple sequence of the constituemnsvecto

The dot product between dyads and vectors is defined sucluthatv = (v - w) u.
From this, using the triple product expansion formiMa - v = N x v for any vectorv.

As usual, for the representation of vectors and second order tgngety with their co-
ordinates we use row vectors and two dimensional matrixes. The coordepaesentation
of a non-scalar quantit@ is denoted byQ].

Camera Model Independent Correspondence Equations

Let us now have a closer look at the relation between a 3D imaind its 2D images
(z;,x7) and(«},z?) in a pair of cameras and;j. This has been studied in [141] for es-
tablishing an affine transformation between the images of a known sur&xog known
projection functions. First we briefly overview the derivation of this relatmd then we
will show how to use it for computing normal vectors of planar surfacehestérom corre-
sponding image regions.

An image of the scene is basically a 322D mapping given by two smooth projection
functions, the so called coordinate functions:(X !, X2, X3) and2? (X!, X2, X3) with
(x!, 2?) being the 2D image coordinates. [Molrgtral,, 2014 doesn’t assume any special
form of these coordinate-functions except their differentiability w.r.t. thagial coordinates
X1, X2, X3. If the projected points are on the surface (4.10) too, the image coorslinate
depend on the general parameters as well:

zt =2t (X1 (ul,u2) X2 (ul,u2> X3 (ul,u2))
22 = 12 <X1 (ul,u2>,X2 (ul,uz),X3 (ul,u2>) (4.12)

The mapping in (4.11) can be considered bijective in a small open disk cgitberpoint
(u',u?). Assuming that both the projection functions and the surface are smocgh,ate

the conditions for differentiability and local invertibility. The differentjdii] = [ du'  du? ]T
represents a point shift on the surface with its effect on the image d&ingJ - du where
[dx] = [ dr'  dz? }T and the Jacobiad of the mapping is invertible [Moln&et al,
2014.

Now consider a camera pair, distinguishing them with indicasd j (note thati, j
indices used in subscript position doesn’t stand for “covariant” quasititi&inceJ; is
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invertible, we can establish correspondences between the images takdagth@oint shift
du=J,;-dx;:

dxj =J;-J;71 - dx; =3y - dx; (4.12)
whereJ;; is the Jacobian of th&; — x; mapping. Now consider the derivative of a
composite functiorf (Xl <uk)) 1€{1,2,3}, ke {1,2}:

of  ox' af
ouk  ouk oX!

=S, -V, (4.13)

whereV f is the gradient w.r.t. the spatial coordinates 8pds the local basis vector along
the parameter line*. Applying this result to the projection functions, the components of
the Jacobians take the following form [Molnétral., 2014:

Si-Vai Sy-Vaz!
[‘]Z] 2 21

Si-Va? Sy-Va?

Si-Vai Sy-Va!l
J ] J 4.14
il [Sl-Vx? Sy - Va? (4.14)

Substituting (4.14) into (4.12), the products of the components of (4.14) ietdel ;.
For example, the determinant becomes

det [3,] = Va} - (S Va}) (S2- Va?) - (S2- Val) (S1 - Va?) (4.15)

which can be expressed by dyadic products equivalent to the sunds®l’s cross tensor
as

det [Jz] = Vl'll . (Slsg — 5251) . V[L’ZQ

= —Vz}-N,-Vz? = —|N| ‘V:B%an? , (4.16)

where|N| is the absolute value (length) of the surface normal vector [Mahét., 2014.
The components of the Jacobidy) are then [141]:

[Jis] =

1 l\Vm}anﬂ Vﬂ;}an}\] (4.17)

[VainVai| ||[VeinVai| [VainVa?|

The above quantities are all invariant first-order differentials: theignasiof the projections
and the surface unit normal vector. Note that (4.17) is a general formeitner a special
form of projections, nor a specific surface is assumed here, henae iecapplied for any
camera type and for any reasonably smooth surface.

In [Molnar et al,, 2014 it was shown how to use the above formula for computing the
normal vectom, when both the projection functions and the Jacoligrare known. Let
us write the matrix components estimated either directly with affine estimator or talking th
derivatives of an estimated planar homograplag:

al (Il
Jiles = [ ) %] (4.18)

ay az

To eliminate the common denominator we can use ratios, which can be constructed

The derivatives of a planar homography provides exact affinepooents.
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using either row, column, or cross ratios [Molrgitral., 2014. Without loss of generality,
1 1

the equation for the 3D surface normal can be deduced using cross‘;j%aﬁod“—g. After
2

a1
rearranging equatiofd ;] Ji;] we obtain:

est = |

n- [} (Va? x Va}) - at (Va} x Va})] =0

n-[af (V] x Val) - aj (Va? x Va?)] =0 (4.19)
Here we have two (known) vectors, both perpendicular to the normal:

p=n-[a} (Va? x Va!) —a} (Va? x Val)]

a=n-|a} (V] x Va}) - a} (Va? x Va?)] (4.20)
Thus the surface normal can readily be computed as

n=Px9 (4.21)

 pxq|

In the remaining part of this section, we will show based on [Moktéal., 2014, how to
compute the coordinate gradienta}, k = i,5;1 = 1,2 w.r.t. spatial coordinates arl;
in (4.17) for an omnidirectional camera pair.

Computing Coordinate Gradients for the Spherical Camera Model

The Jacobian (4.17) includes the coordinate gradients w.r.t. spatiaiicatsl These quan-
tities were derived in [Molnéet al, 2014 for the general spherical camera model presented
in Chapter 2.1.2. For the sake of simplicity, the calculations are done in the @aowndi-
nate system, but coordinate gradients calculated below can be easilptraedfinto any
world coordinate system by applying the rotation between that world caatedframe and
the camera.

As described in Chapter 2.1.2, the functidnis fully defined by the internal cam-
era parametergag, as, a3, aq). Therefore the unit projection sphef&can be naturally
parametrized by the omni image coordinates= (z!,2%). Spatial pointsX € R3 are
identified by the unit sphere pointsg, the directions) denoted B s, whereXs - Xs =1,
and their distance from the projection sphere’s center denoted by||X|| such that

X = 23X5. (4.22)

Note that the above equation follows from (2.1) and it is a non-Cartestamgdrization of
R? from which the gradients of the first two parametérs, z2) are required. The identity

0X  0x
o == . =g - Va! 4.23
ET gek X 8 Ve (4.23)
is the basic differential geometry relation between the covagjant % and contravariant

Vz! = g! basis vectors of the parametrization [Molreiral, 2014. Applying (4.23) to

2Gradients are constructed by derivation, hence the translation to amyathe coordinate system cancels
out from the formulae.
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(4.22), we have:

X 400
= —="— 1,2
gk 830’“ x axkv ke { ) }
0X

From this, the metric tensor componenits = g - g, k,1 € {1,2,3} are

o (3)2 02 0%
gkl—glk—(l‘) 5k Bl k,le{1,2}
gr3 = g3k = 0, ke {1,2} (425)
g33=Xs - Xs=1.

Note that the second line of (4.25) follows from the derivation of the camgtX s -
Xs = 1. Using the basic result from differential geometty = ¢'*g;, whereg'* are
the components of the inverse metric tensor, and observing that the metoc bexssthe

. 0 . . . .
special form [?)Zf] L the first two contravariant basis vectors (the sought coordinate

gradients) can be independently expressed [Madtat., 2014 from the third vector such

that
1 -1
Vz g1 912 g1
l Va? ] l g1z 922 ] l g2 ]
1 [ 22 02 00 00 1717 00
— _— | ox 9zt oz 9z2 Ox! (4.26)

3| 92 02 0 09 o0 |- '
oxl  0x2 9x2 Ox2 Ox2
In the above equation, coordinate gradients are expressed purely avithittsphere’s local
basis vectorg;, = % induced by the image coordinates and the distance between the
observed point and the center of the projection sphérélote that:? cancels out from the

normal calculation in (4.21) by division. Once the normal is determined, amponent of
3

(4.17) provides an equation fé{;.
J

Computing the Jacobian Components

Let us now see how to construct the elemerftof the Jacobian matrix in (4.18) acting

directly between the omnidirectional images. Denoting the Cartesian cooslinate the

T
centers of the unit spheres representing the camewad; by [x;] = [ zi 2t 2 } and

(3 K3 7

. T
x;] = [ z} z]2 zj } . These spherical points are related by the bijective mapying

as derived in Chapter 4.2.1, which can be directly estimated by estimating thgfaphy
between the cameras,g. with the method presented in Chapter 4.2.2. Its Jacobign

2k . . . .
composed of the partial derivativé§ = %, associates coordinate differentials from the
sphere pointsg to the sphere points '
dzjl- ht hi hi dz}
dz]2- =| h? h3 h3 dz? (4.27)

dzjg- R h3 h3 dz}
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This Jacobian can be translated to the Jacobian that acts between imaijaateeré? and
zt, k,1 € {1,2}. According to [Molnéret al, 2014, the condition expressing that two
nearby points are constrained to a sphere can be written as

(zl + dzl)2 + <z2 + dzz)2 + (zl + dz3)2 = <21)2 + (z2)2 + (23)2 , (4.28)
hence
2zl 4+ 22d2? + 22d2? = 0. (4.29)

From (4.29), the third differential is
1 2
2 = - (ngzl + 23sz> . (4.30)
z z

This differential constraint reduces the DoF of the Jacobian in (4.2%9ney Only two
lines remain linearly independent. Choosing the first two lines and replakihgy the
right hand side of (4.30), the equations between the coordinate difgdsibecome

(4.31)

1 2

1 Zipl 1 Zipl

[ dzj ] | M- %h?) ha — %hs [ dz} ]
2 2 Zp2 12 Zip2 2

dz; hi— Zkh3 b3 - ih3 dz;

According to (2.6), image pointg, I € {1,2} and sphere points®, k € {1,2} are related
by the bijective mappin@ on the whole domain of estimation. Therefore the differentials

are related by

hence the Jacobian that maps image differenttals= J;; - dx; is as follows:

oe; 097 - 1 @ 1 1 @2 ool ool

ot oa? hi—gshs hy — gihs sl 430
[Jij] = a@é 0P 12 ol h2 R2 P2 2 R (4.32)

ozl Da? Loefts T2 a7 oz}  Ox}

Like the coordinate gradients, (4.32) contains only the components ofplretres’ local
basis vector% k€ {1,2} andg M)J l € {1,2}. Since both cameras are calibratéd and
®; are known. Furthermore, the homograﬂﬂwctlng between the (spherical) regials
and]-' corresponding to the scene planbas been computed using [Frohlich, Tamas, Kato,
2014, V¥ is also know, hencd;; is fully determined.

In summary, given a pair of corresponding regidrisand D in a pair of calibrated
omnidirectional cameras with known projection functidns ®;, the 3D scene planecan
be reconstructed through the following steps:

1. Estimate the homograp acting between the corresponding spherical regidns
andD (usinge.g.[Frohlich, Tamas, Kata?016), which gives¥.

2. Estimate the relative po$®, t) between the cameras. Givéh this can be done by
homography factorization methoelg. [106], [Frohlich, Tamas, Kat®014.

3. Compute the normal of 7 using the direct formula (4.21), and thémy a standard
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Figure 4.16. Homography error for the synthetic datasets (test cased by error).
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Figure 4.17. Distance error and normal error plot for the synthetic elstéest cases sorted
on thez axis based on distance error, normal error values are scaled withctbe ¢60.3
for better visualization).

method based on (2.12) [15].

4.4.2 Reconstruction Results

The proposed method was testeBatatasets, each having approximatedy image pairs.
Images oR4 different shapes were used as scene planes and a pair of virtualicrotidshal
cameras with random pose were used to generate the omni image pairsiidgsoat a
800 x 800 pixels scene corresponds t& & 5 m patch, we positioned the virtual cameras
at distances from thé5 — 55 cm, 100 — 200 cm, and200 — 500 cm intervals respectively,
resulting 3 datasets with different camera base distances. The firstfstepalgorithm is
estimating a homography between the omnidirectional cameras. For this puvwmsise
the region-based method presented in Chapter 4.2. For referendeowéh& homography
error on our synthetic dataset in terms of the percentage of non ovieldgayea § error)
sorted in increasing order in Fig. 4.16. The produced homographieddéss/tharr% error
for about 256 examples. This is important as it directly affects the recmtistin accuracy
of our method.

Once the planar homography between the corresponding region paimaitesl, we
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Figure 4.18. Reconstruction results from a pair of synthetic omni images (estn-
structed, green: original 3D planar patch)
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Figure 4.19. Comparative normal error plot on our synthetic dataset vatm#ihod from
[15] (test cases sorted independently for the two methods)
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Figure 4.20. Comparative distance error plot on our synthetic datasetheithethod from
[15] (test cases sorted independently for the two methods).

can compute the 3D surface normal and distance using the proposed fdoseformula.
Sample 3D reconstructions for synthetic data is shown in Fig. 4.18. The gieéace
is the ground truth surface and the red one is the recovered surfage4. = shows the
correlation of the error plots for the whole synthetic dataset. It is cleardik&nce error
plot runs together with the normal error, hence our method provideslestidonstructions
for most test cases, giving low error rates for both surface parasneter

It is worth mentioning that the reconstruction algorithm’s runtime is @&ys running
in Matlab on an Intel i7 3.4 GHz CPU with 8GB memory. This means it can reathinea
speed due to the closed form solution adopted.

Comparison with a Classical Solution

We have performed an experimental comparison of our method with a wellrkntassi-
cal plane from homography method described by Hartley and Zisserrbafttie Matlab
code used is vgg_plane_from_2P_H)rand quantitatively demonstrated the performance
of our method with respect to that algorithm. The purpose of this experimemt@mpare

Shtt p: // www. r obot s. ox. ac. uk/ ~vgg/ hzbook/ code/
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Figure 4.21. Distance error rates (scaled with a factar. bfor better visualization) corre-
sponding to the homography error (test cases sorted by the homognaphy

our direct method derived via differential geometric considerations witlassical direct
methods derived via projective geometric considerations, as a basigtsRd®w that our
method is significantly better in determining the correct normal vector. Tloe gnown in
Fig. 4.19 is computed as the angle in degrees between the calculated anouthe fguth
normal vectors: mean value of our method was dné6°, while the classical plane from
homography method produceéd2° error on average. We remark that an error aliovean
be considered a completely wrong result. The relative distance error oé¢bastructed
plane is shown in Fig. 4.20. On these plots we can see that the precisionwbthesthods
is almost identical, because both approaches use a similar way to cafgivimg a mean
value of4.0% and4.7% respectively, Hartley’s being the better.

Robustness

As we mentioned before, the precision of the estimated homography is ciacgD re-
construction. As we can see in Fig. 4.21 the distance error of the regctistris low, until
the homography error is beloiv— 3% but then with bigger homography error it increases
exponentially. We can observe the same behavior in the normal vectolat@iowas shown

in Fig. 4.22.

The accuracy of the proposed method depends not only on the qualitg dbthog-
raphy estimation, but also on the determined camera pose parameters. SBhviotmal
estimation is only affected by the rotation matrix, while distance calculation depamd
both rotation and translation. To characterize the robustness of our nahott errors in
these parameters, we added various percent of noise to the origines eald quantitatively
evaluated the reconstruction error on our synthetic dataset. Table 4Tahled4.2 show
that both distance and normal estimation are sensitive to rotation errors iarttega pose,
being robust up t@° degree of rotation error, and distance estimation can tolerate up to
5% translation error as well (see Table 4.3). Normal estimation is more sensitv&tion
error around the& axis, while distance errors increase more with rotation errors around the
X axis.
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Figure 4.22. Normal error rates (scaled with a factof.d¢ffor better visualization) corre-
sponding to the homography error (test cases sorted by the homognaphy

Table 4.1. Normal error(deg) w.r.t. rotation error added in differeesax

Noise(deg) O 0.5 1 2 4

X 055 0.85 146 1.89 4.14
y 0.55 0.78 121 1.80 3.36
z 0.55 1.23 166 3.09 5.59

Table 4.2. Distance error(%) w.r.t. rotation error added in differens axe

Noise(deg) O 0.5 1 2 4

X 259 271 456 492 7.71
y 259 273 298 3.01 3.36
z 259 294 311 3.36 4.67

Table 4.3. Distance error(%) w.r.t. added translation error

Noise(%) O 2 5 10 15
259 3.24 541 873 14.97

Baseline is another important parameter of 3D reconstruction. Threeetiffdatasets
(as described at the beginning of this section) were used to test theadfdwort, medium
and large baselines on reconstruction precision. Fig. 4.23 shows thecéisteror while
Fig. 4.24 shows the normal error with respect to each baseline. Ofezahierter base-
line has higher error rate, which is a well known fact for stereo recoction. However,
homography errors are smaller in case of short and medium base dsstased-ig. 4.25),
hence overall reconstruction performence is better for these datasets.
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Figure 4.25. Homography error w.r.t. different baselines (test cagtsdsindependently,
m is the median of errors).

4.5 Simultaneous Relative Pose Estimation and Plane Recon-
struction

In contrast to the methods presented in the previous sections, whereeaindiaiced ho-
mography was first estimated between image regions, then the relativefibeecameras
was factorized, finally being able to calculate the parameters of the plasd baghese
estimated values, here we present a simultaneous solution for all the aloienps for
perspective cameras.

4.5.1 Methodology

Starting from the absolute pose of perspective cameras, as descriBedprer 3.2.2, we
can work directly with the normalized images (3.9)

x = K™% = [R[t]Xy. (4.33)

Let us formulate the relation between a given scene ptaar& its image®° andD! in two
normalized cameras (see Fig. 4.26). Assuming that the first camera ctergystend is

the reference frame, let us represery its unit norman = (nl,ng,ng)T and distance

d to the origin. Furthermore, the relative pose of the second camera ffaima 3D rigid
body transformatioffR!,t') : C; — C; composed of a rotatioR! and translatiort?,
acting between the camera frantgsandC;. Thus the image in the first and second camera
of any homogeneous 3D poibt of the reference frame is given by

xc, = [I0]X and  x¢, = [RYt!X. (4.34)

The mapping of 3D plane poiniX,; € =« into the camera§;,: = 0,1 is governed by the
same equations, giving rise to a planar homogrdgty: D° — D! induced byr = (n, d)
between the image regio®” andD!. H. is bijective (unlessr is going through the
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camera center, in which casss invisible), composed up to a scale factor as

1
H! xR! - &tlnT. (4.35)
Thus for any pointX; € m, we have the following relation between the corresponding
normalized image points¢, andxc, :

xc, 2 Hixe, 2 (R — étln—r)xco. (4.36)
The classical solution is to find at leassuch point matches and solve H},, then fac-
torizeR!, t!, andn from H. (d cannot be recovered due to the free scaling factor) [134].
However, the extraction of point correspondences in urban envinoheae be challenging
due to repetitive structures and textureless facades, while planar seg@rasier to seg-
ment and matching between frames is not affected by repetitive structliretéfl camera
movement is assumed. Therefore our region-based approach [Rrakéto, 2019 can
robustly recover the alignment of non-linear shape deformations via thtosoof a spe-
cial system of equations without established point correspondentgsrticular, we will
show that by identifying a pair of planar regions in two camera images, thiéveefsose
as well as the 3D plane parameters can be solved up to scale without estgldisi fur-
ther correspondences between the regions. Of course, this is just¢hssary minimal
configuration. The more such regions are available, a more stable solutibtaised. Fur-
thermore, when more cameras are available, then a special regionkogmste adjustment
can be constructed within the same algebraic framework.

Following the idea of [78] we can avoid the need of working with point cspomdences
by integrating out both sides of (4.36), yielding the following integral equatio

/ xc, dx¢, :/ H;XCOIJH}T(XCOM dxc,, (4.37)
D1 Do

where the integral transformationr, = H}x¢,, dx¢, = |[Ju: (x¢,)| dxc, has been ap-
plied. SinceH! is a3 x 3 homogeneous matrix with on/DoF, we will set its last element
to 1. Note that the above equality is true for inhomogeneous point coordirateg/hich
are obtained by projective division. The Jacobian determifst| R? — R gives the
measure of the transformation at each point [78].

The above equation corresponds to a system efuations only, which is clearly not
sufficient to solve for all parameters. As it has been previously showWn8h applying
an appropriate set of functions on both sides of an equality b it remains valid for
f(a) = f(b), thus enabling us to construct new equations. Indeed, (4.36) remaids va
when a functiono : R? — R is acting on both sides of the equation, yielding the integral
equation

[ wtxe) dxe, = [ w(tixe,)dm (xa,)| dxc. (4.38)
Adopting a set of nonlinear functiorfs; }¢_,, eachw; generates a new equation yielding
a system of¢ independent equations. Hence we are able to generate sufficiently many

equations. According to [78], power functions are computationally fler; thus in our
experiments, we adopted the following functions up to pawer

w;i(x) = 2" xy’, with0 < m;,n; <o (4.39)



92 4. CHAPTER. HOMOGRAPHY, POSE AND 3D RECONSTRUCTION

image‘:plane

Figure 4.26. Projection of a 3D plamein a multi-view camera system.

The unknown relative pos@R.!, t') and 3D plane paramete(a, d) are then simply ob-
tained as the solution of the nonlinear system of equations (4.BB).has8 degree of
freedom (DoF), becauseis a unit vector with2 DoF andt/d can only be obtained up to
scale, so it has onlg DoF. Thus we need equations which can be constructed using
functions from (4.39) withD < m;,n; < 2 andm; + n; < 3. In practice, however, an
overdetermined system is constructed, which is then solved ife#fst squares sendsy
minimizing the algebraic error via a standarelvenberg-Marquardalgorithm.

Reconstruction of Multiple Regions

Let us now investigate the case, when a pair of cameras is observing multiee3i@
planes. Each plang; generates a homograplﬂl}ri between the corresponding image re-
gionsDY andD}. While (4.36) and (4.38) remain valid for each of these homographies,
note that the relative pog®', t') of the cameras is the same for Hf. , they only differ
in the 3D plane parametefs;, d;). Hence for al{r;} ¥ ,, we have
1 .

xe, = HL x¢, = (R' — - 'nl)xc,, with x¢, € DY andxc, € D} (4.40)
and (4.38) becomes a systemdfequations [Frohlich, Kat®01§ in terms of the common
camera poséR ', t!) and the parametefs;, d;) of the 3D planegn; }¥ ;:

/D w(xe,) dxe, = /D (B xe,) Ty (xcy)|dxc,, 1<i<N (4.41)

For a givenw function, the above equations providé constraints on the relative pose
parameters, but only constraint for each plang;, having a total ofN equations. Note
also, that we have one free scaling factor for the whole system in (hddjuse a relative
d; parameter for the planes need to be determined, only one of them can treedet
Therefore the minimal number of equations needed to solve ftameras andv > 1
planes isE = 6 + 3N — 1. In terms of the necessary powerswgffunctions in (4.39)p
should satisfyl + o(o +2) > E.
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Multi-view Reconstruction

When multiple cameras are observing the scene planes, then we can cioasystem of
equations which contains multiple constraints not only for the camera relaisesbut
also for each 3D plane. This way, we obtain a region-based bundlemejus where all
camera pose parameters and all 3D plane parameters are simultaneowehyBaiwlich,
Kato, 2019. Let us have a closer look at these equations. First of all, a referesnmera
frame(Cy is chosen, which provides the reference coordinate system of the wéimlera
system: each camera’s relative pose is determined @grdnd all planes are reconstructed
within Cy. Assuming that all scene planés;}, are visible in every camer@Ck}fy:Bl,
each planer; generates a homographl/;i between the corresponding image regions in the

reference camer®? and theth cameraD¥:

1
(RF — —t*n] )xc,. (4.42)

VI<k<M-1: x¢ 2HExe, St
(A

k

12

Hence each camera provides a new constraint on the scene planeteaséamed; ), yield-
ing a total of M — 1 constraints for reconstructing. If a particular plane is not visible in
all other cameras, then the number of these constraints is reduced. Aasl@ngarticular
planer; is visible in the reference camera and at least one other camtran it is possible
to reconstruct it using the equations constructed from the above hopiggjast like in the
minimal case discussed in Chapter 4.5.1.

A particular camera paiiCy, Ci) providesN equations in terms of the common camera
pose(R*, t*) and the parametets;, d;) of the 3D planegr;}¥ ,, yielding a system oV
equations similar to (4.38). Therefore we get

Lo dxe, = [ (bt ) g (e, dxc,

i

1<i<Nandl<k<M-1 (4.43)

For a givenw function, the above equations provi@é constraints on each relative pose
(R*,t%), andM — 1 constraints for each plang, having a total ofV (M — 1) equations.
The minimal number of equations needed to solvelbr> 2 cameras andv > 1 planes
isE =6(M —1)+ 3N — 1. In terms of the necessary powers.gffunctions in (4.39)p
should satisfyl + o(o +2) > E.

Algorithmic Solution

The algorithmic summary of the proposed method for an arbitfafy > 3) multi-view
camera system is presented in Algorithm 5. The first part of the algorithmssive for
each neighboring camera pair, that will provide the initial parameters fosebend part.
This step does not require any specific initialization of the parametersptetkaed; = 0
should be avoided. Since plane distance is expressed as the distandhdrplane to the
origin along the surface normal vector’s direction, it is a positive numb&eibrigin is on
the same side of the plane as the normal, thus it can be initialized with an arbibsitiye
value, in our tests we used the initializatidn= 7. Since plane normal is of unit length,
it has only2 DoF, the third parameter is always calculated with the criteria that the normal
should point towards the camera. Since each pairwise solution provigesmstruction in
one of the cameras, these have to be transformed into the common refeegneafCy,
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Algorithm 6 The proposed multi-view simultaneous algorithm

Input: M > 3 2D image masks wittv > 1 corresponding planar regions
Output: Relative pose of the cameras w.€g., reconstructiorin;, d;) of the N planes
1: Pairwise step:For each)M — 1 neighboring camera pair:
2: Initialize pose parameters wiflij0] and plane parameters with= (0,0, —1)T,d =7

: ConstructH . using (4.40) and divide it by its last element

: Construct and solve the system of equations of (4.41)

: Multi-view step: Choose reference camefg

: Write up relative poses w.r.€, as (4.45) and transform reconstructian, d;) param-
eters intaCy reference frame using (4.44)

. Initialize reconstruction based on the filtered camera pairs

8: Write uprri (devided by its last element) for each camera p@jr Cx) using (4.42)

9: Construct and solve the system of equations of (4.43)Mocameras andV planes

simultaneously

o 01 AW

~

that is practically chosen the middle camera. Plane parametgrg?) are obtained from
(nf,df) as

n’ =R"n* and 4% =df + (n")Tt" (4.44)

)

Relative poses also have to be expressed inCtheeference frame. For any cam-
eraC; that has a relative pog®*, t*!) defined to its neighbof’;,, whose relative pose
(Roﬁ’“,to’k) w.r.t. Cp is already known, then the relative pose(gfin the reference frame
will be

(Ro’l|t0’l) — (Rk’l|tk’l)(R0’k|t0’k), (445)

where(R[t) denote the homogeneodis< 4 matrix constructed fronR andt.

Since multiple camera pairs will provide alternative initializations for the recoastr
tion, and some pairs might be solved less precisely than others, we have théltmmera
pairs. Comparing the algebraic error of the pairwise reconstructiondteredut the pair
with the highest error if it's above the experimentally determined threshald of, and if
it's bigger than3 times the median errors of the camera pairs. The reconstruction param-
eters of the remaining pairs are simply averaged out and together with thieergases
expressed w.r.Cy (4.45) provide the input for the multi-view step.

For the numerical implementation of the equations we also included the alternative
forms of the equation using the inverse transformation and the reverseaintemsfor-
mation as described in [78]. These mathematically redundant forms dawvidprextra
constraints for the parameters, but increase the numerical stability of theaneth

4.5.2 Experimental Synthetic Results

For the quantitative evaluation of the proposed approach, a benchatadetlis generated
with a greatly simplified real world urban environment in mind. The synthetic idatat
metric, but we can interpret it as having the planar shapes in the 3D ssmesent x 1 m
regions, which scales everything into a metric interpretation for easierstadding. A
scene was created by placifdglifferent planar shapes in 3D space havibg0° relative
rotation around the vertical or horizontal axis and translated by2 m in the horizontal
and vertical direction, whild — 3 m in depth. The scene is then captured by a 1Mpx
virtual camera placed at the initial distancedah from the middle plane, then moved into
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Figure 4.27. Comparison to homography estimation method of [78] in termigobr of
the projections, and relative camera pose and plane parameters (f&attfooinH by [78],
provided directly by proposed). (m stands for median).

5 different random positions, in such a way that the resulting positions fomovement
trajectory (see Fig. 4.26). Between each frame there is a random ratadvement of
up to 0.5 m and a rotation oft5° around the vertical axis, ant2° around the other two
axes. The binary images captured by the camera are the input paranetersigorithm,
having the correspondence between the regions provided. Practichkyisimo limitation
on the size difference of the projections. The results were quantitativaelyaed in the
pose and reconstruction parameters, as well as in terms of the aligning famhggwvhich
is characterized by the percentage of the non-overlapping areasenatvecaligned regions
(denoted as error).

Minimal Case

The minimal case consists of one plane seen by two cameras, where wd lestenate
a single homography aligning the planar image regions. First of all, we cechmar
method to the homography estimation method of [78] that solves a similar systamuaf e
tions but it is parametrized in terms &felements offf}, while our method uses tHa!,
t!, n, d parametrization. In Fig. 4.27, the first plot shows that despite having erelif
parametrization, the stability of the proposed method remains similar. All synthete p
are sorted based on the error values. We have to highlight here thattivniliest method
only estimates a homography matrix witlboF, the proposed method estimates the param-
eters of the relative podR', t!, the 3D plane reconstructian d, as well as the composed
aligning homograph$ . simultaneously, up to a scale factor.

Of course, we can decompose the homography matrix computed by the méffigtl o
in terms of (R, t) and (n, d) using the standard decomposition of [134] which uses the
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Figure 4.28. Bundle adjustment refinement dveameras compared to a pairwise solution,
both with 3 regions (m stands for median).

singular value decompaosition (SVD) of the homography. In Fig. 4.27, wepeoe these
decomposed parameters with our results. We can observe that while th@grasneters
are obtained with similar precision, the plane reconstruction has slightly regigerin me-
dian, but also shows increased robustness in the last part of the platse Tesults match
well with the slightly higher errors shown on the first plot in Fig. 4.27. We should high-
light here, that while this was a fair comparison to the baseline method [78ethod’s
advantage is the ability to handle multiple regions and camera images, since itawill pr
vide an optimized solution for the camera group with a common scale, insteadinfha
independent solutions for each region and camera pair.

Multi-View Reconstruction

As it was shown in Chapter 4.5.1, multiple cameras theoretically provide mostraoms
for the reconstruction, while more planes on the pose parameters. Toncdim§, we eval-
uated the proposed method witltameras in two different setups: First solving a pairwise
reconstruction for each neighboring camera pair, then in the secorgs#ting for all5
cameras, using the full algorithm as presented in Algorithm 6. In both capémnes were
used and the results were compared to the synthetic reference valteghalso used to
correctly scale the translation and plane distance parameters that are estinigtiep to a
scale factor. The relative pose parameters are evaluated as absaitgérethe rotation an-
gles, and the difference in the total translation (see first row of Fig. 4\®8)can observe,
that the relevant improvement of the multi-camera setup is not necessarilie\isithe
median error levels, but more so in the number of correct solutions. Tieenof camera
pairs solved with a relative pose error lower thasf in rotation ands cm in translation is
increased fronT5% to aboved0%.
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Figure 4.295 camera results with region compared t8 regions evaluated in terms of the
pose errors (first row) and reconstruction parameters (seconjd titat were evaluated on
the same regions for tHeand3 region test cases.

Since thetl camera pairs in each test case were used separately in the 2-cameisepairw
setup, the reconstruction they provide will balifferent ones for the same plane, thus in
the second row of Fig. 4.28 we show both the minimum and avepagé errors of these
for each test case. In contrast, the bundle adjustment multi-view setuj@sane single
reconstruction in the reference camera frame. We can see, that tHe bdjustment step
greatly reduces the mean errors that the pairwise solution had, apjpraeithe minimal
errors. Note thatl is evaluated as the difference of the scaled result and the reference
distance, expressed as a percentage of the ground truth.

Single Plane Reconstruction

An interesting scenario is a multi-view setup with only one plane available, tirerédie
method was evaluated for the = 5 and N = 1 setup. Results were compared to those
obtained on the full dataset usifglanar regions in each test case, to evaluate the improve-
ments given by the higher number of planes. As can be seen in the firef Fag. 4.29, the
rotation and translation parameters of the relative pose are greatly impiogad multiple
different planes. In more tha#% of the cases, all rotation errors were well beldw* in

the 3 region setup, while in the single region case the errors are bElawhalf of the test
cases only. The translation parameters show the same improvement: froniaa reedr

of 8 cm reducing errors to belodcm in88% of the cases.

The reconstruction error plots in the second row of Fig. 4.29 show tlugseim the
normal vector angle, and the plane distance. While in the first row on thzohtal axis,
the number of camera pairs were depicted which (having a referenceetiafd 50 test
cases each with consecutive frames of a scene wihegions) consists of a total 600
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Figure 4.30. Segmentation error test results in terms of pose and recbiostparameter
errors both in the case of perfect regions and regions with simulated s&gjioe errors of
2% and 5% error measured on the perfect regions.

relative poses; in case of the reconstruction parameters we only haferttorthe separate
test cases since in each test case multiple cameras estimate one commonuetmmstr
the scene. According to the plots in Fig. 4.29, we can observe that thermamal is less
affected by the reduced number of planes, while the plane distance parasreffected in
a quantity comparable to the pose parameters, which is expected, since ppihd these
parameters are able to compensate each other if not enough constegitear But using
only two extra regions, the results can drastically improve8ifs of the test cases, the
distance of the plane is estimated with a relative error lessafieimstead ofl 0%.

Robustness Against Segmentation Errors

In order to evaluate the robustness of the proposed algorithm agairigethible errors
occuring in image segmentation, we simulated segmentation errors by randamlyirod
pixels around the contour of the regions by an amour?%fand 5% of the size of the
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region. Herein, all tests were run in thé = 5 cameras an&v = 3 planes setup.

The errors in the estimated relative pose on these specific datasets cegnhkia the
first row of Fig. 4.30, where first the rotation errors of all the relatiesgs are plotted,
grouped by the axes, then the translation errors are shown next. Allgi®tsorted in a
best to worst sense by each parameter separately, and the resutismpegred to the base
dataset which uses perfect segmentations. In the second row of Rigtl¥e3econstruction
errors are shown, that were estimated simultaneously with the relative ptise froposed
algorithm. Both plane normal and distance errors are evaluated in light ofgineesitation
errors.

Analyzing the pose and reconstruction parameters at the same time, onbseswmeo
that the segmentation errors have a similar impact on all the parameters, thestikdian
rotation errors don't excee@5° except the rotation around the verticlaxis in the5%
segmentation error case. Based on the relative pose régélsegmentation error could be
acceptable in many applications, whéfiecm translation errors are acceptable, but due to
the reconstruction being more sensitive to these, a segmentation errar tfdez% would
be desirable in most applications. On the last plot in Fig. 4.30§ #eors are shown. We
can see that in aboét% of the cases, & error of less thar3% is achieved even in the
presence of segmentation error. Based on our previous experianogsny applications a
o error of up to5% is considered a correct solution.

4.5.3 Real Data Experiments

In the first real data test case, we present the results on a high res@ti8D dataset,
that contains ground truth pointcloud data captured by a precise LidaneGaK resolu-
tion UAV video frames and also the reference 3D positions of special msapkeced in the
scene, which enabled the calculation of reference camera poses with [30nfor each
camera frame, resulting a median forward projection error of the markergyl — 2 cm.

In urban environments the automatic segmentation of planar structures,wgindoors,
facades or boards could be solved with different methods [135], lmutritests the segmen-
tation of the corresponding planar regions on each frame was perfonraegmi-automatic
way using region growing segmentation method available in commercial image quiting
grams, requiring only a few clicks of user intervention. The segmehtedions are shown

in Fig. 4.31, marked with red on the first and last image frame. We bdemmes of the
video sequence, at— 2 seconds distance from each other. The estimated parameters were
compared to the ground truth values (plane parameters were calculatethégoint cloud
data). The relative camera pose rotations were estimated with a mean drez°ef.2°,
0.59° around theX, Y, Z axes, the maximum rotation errors being beltw The relative
translation was evaluated as the difference of the reference valueeacartbctly scaled up
estimated translation, that can be interpreted as a position displacement in ticespeate.
These errors are betweéd cm and33 cm. The error in the orientation of the estimated
plane normals wa2° and2.95° respectively, while the error of the plane distance from the
origin was0.38 m and0.77 m. For a different perspective over the plane distance parame-
ter, we also calculated the distance from the camera to the center of trene=f&D region
and the reconstructed 3D region, since this might be more useful in matigadigms. At
camera-to-surface distancesldf1 m and21.4 m these errors represedit, and7% differ-
ences, respectively. These results comply with the synthetic test resula 8hFig. 4.30,
where we found that with higher segmentation error the plane distangecarr@o above
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Figure 4.31. Top: first and last image of the sequence, witk gegmented corresponding
regions marked in red. Bottom: the reference camera positions (greemstimated cam-
era positions (red) and the reconstructed 3D planar regions are ga@arincluding a side

view of both).

Figure 4.32. Results on the same sequence as in Fig. 4.31 but with 6 regien®fdrence
camera positions (green), the estimated camera positions (red) and thetrected 3D
planar regions are shown (including close-up views from the side). tetanprovement
in the relative camera poses!
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7%. Increasing the number of regions by using all the segmentable regions sartne
sequence (see Fig. 4.32) the mean pose errors were reduzeéd0.18°, 0.13° rotation

and2.7 — 16 cm translation; and the median reconstruction errors Wesnd65 cm, thus
we considered test cases with less regions are more interesting to shaenysire regions
obviously increase the stability of the algorithm.

Comparison on KITTI Dataset

To test the applicability of the proposed method to urban road-scene ajplEae used
the KITTI [142] dataset. Having a camera attached to a car that is onlypkaphforward
motion and turns is a more challenging problem for pose estimation and readitstr A
region based plane reconstruction method could be applied in such aareneint for ex-
ample for the reconstruction of traffic signs as planar objects. Unfadlyniaa the KITTI
dataset not all traffic signs are visible in the 3D pointclouds, due to thegrdiit height
and the position and orientation of the Velodyne scanner. We found tratHrgher dis-
tances these traffic signs were visible for the 3D scanner, thus we cairdosequence of
pointclouds using the ground truth poses and segmented traffic signssandbembined
pointclouds. Then selecting all the cases where this 3D segmentation vwasfslicwe
had from the KITTI Visual Odometry training video sequendéglifferent test cases. In
each test case the segmented traffic signs consecutive frames were extracted using the
tool described in the previous section, while automatic segmentation of thies¢sab also
a well researched topic with many solutiomsg.[131] also provides the boundary of the
signs.

The proposed method was tested both on the minimum numbgifraines, and on
5 frames per test case (using only one small segmented region from each)fwhere
the latter showed slightly better reconstruction results, the individual relptises showed
similar median errors but more robustness for 3heamera setup. This is caused by the
traffic signs moving out of the frame too fast, thus the more frames we try tothise
more segmentation error we have on the extra images. Median errors ordabketdssing
5 frames were 00.12°,0.24°,0.098° and0.088 m in the relative poses, arid.14° with
0.55 m the normal vector error and object distance of the reconstructiongdi tiestcases.
Nevertheless30% of the cases were solved with reconstruction errors bélaiwn normal
vector, andl m in the object center’s distance wiitframes.

Evaluating our results in a similar way as the official KITTI Visual Odometrgdbe
mark, only on the above described test cases with reconstruction eelow 20° and
1 m, using5 frames, we get a median translation error5ai8% and rotation error of
0.2126(deg/m), that is comparable to the published benchmark results of State-of-the-Art
methods €.9.VISO2-M [143] is only better in rotation [F 11.94%, R=0.0234(deg/m)],
but it cannot reconstruct traffic signs).

A direct comparison with feature based multi-view reconstruction methodsrdgiie
performed using the full images as inputs instead of just the segmented sraiffs; since
those typically wouldn’t provide enough image features. For this we use8ttte-of-the-
Art Structure from Motion and multi-view reconstruction library COLMAP #1445] that
was recently rated the best of the testéd-econstruction methods by [146]. We used the
C++ implementation with CUDA and reconstructed each test case from thesstrames.
The median errors of the estimated camera poses and the reconstruceggriameters
are given in Table 4.4. Note that COLMAP fails to find good initial image paiisSinases,
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Table 4.4. Quantitative results of the proposed method and COLMAP [¥48},dh the
KITTI dataset, evaluated only on test cases where reconstruction gidse ie reference
bounding box

] | solved| inBB || norm.) | obj_d(m) || RC/m) | T(%) || time |
COLMAP | 28/41 | 11/28 11.07 0.46 0.13 2.35 46
Proposed| 41/41 | 34/41 8.63 0.47 0.17 4.53 15

Figure 4.33. Comparative results of the propsed method and COLMAPLY4}. Cam-
era poses (left) and a traffic sign reconstruction (right) shown in gigemuind truth), red
(proposed), and blue (COLMAP).

thus providing no solution at all, while less then half of the solved casesdewa correct
reconstruction of the traffic sign that can be identified insidelthe bounding box of the
reference. For a fair comparison we only evaluated the test cases wieetraffic sign
was reconstructed inside the bounding box. The proposed algorithwnhotuns faster
with a native Matlab implementation, but it solves all test cases and recasstrsicle the
bounding box i34 test cases. An example result of fra@®® of Sequenc®3 is shown in
Fig. 4.33.

4.6 Summary

In this chapter, a new homography estimation method has been proposedti@ omni-
directional cameras. Unlike traditional homography estimation approasiesprk with
segmented regions corresponding to a 3D planar patch, hence otitraigavoids the need
for keypoint detection and descriptor extraction. In addition, being elpshape-based ap-
proach, our method works with multimodal sensors as long as corresgargions can be
segmented in the different modalities. The parameters of the homograptiyeoty ob-
tained as the solution of a system of non-linear equations, whose size fieitddnt of the
input images. Furthermore, the method is also independent of the inteojediisn model
of the camera as long as the projection function and its gradient are krfidveralgorithm
is computationally efficient, allowing near-real time execution with a further opédim-
plementation. We have presented different applications for the uselbestimated planar
homographies, first, for relative pose factorization assuming some el scene con-
straints and the availability of the camera’s vertical direction, then for thenstaiction
of the planar region. These being closed form solutions, they run irtirmalwhich can
be particularly useful for mobile and embedded vision systems. We havemposed
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a novel simultaneous reconstruction, relative pose and homography testimmeethod for
perspective cameras. It constructs a system of non-linear equationse solution directly
provides the relative poses of the cameras, the reconstruction of theaB8spas well as
the aligning planar homographies between the image regions. It has hmem ttat with
more than two cameras, a special region-based bundle adjustment proidist results
in a multi-view camera system. Quantitative evaluation on various synthetic tatase
firms the performance and robustness of the methods. We have also tieteahshat the
accuracy of our homography estimates allows reliable estimation of extrinsieragpa-
rameters and reconstruction of planar region of superior perfornvantea classical plane
reconstruction algorithm. The simultaneous multi-view method was extensiviidiatesi
and compared with recent methods on the KITTI dataset, where it praegel &-the-Art
performance.






Chapter 5

Conclusions

This thesis work presented the author’s research on three importanttamajsion topics,
namely pose estimation, 3D reconstruction and planar homographies. Sist®ftloe
current solutions rely on the extraction and matching of point-wise featthhesunusual
region-based registration formulation of the presented methods bringsebapproach to
these problems. Since large field of view omnidirectional cameras are getéfeygntial
in many modern applications, such as robotics, navigation or autonommirsggnnost
of the region-based methods were presented using a general spbaneaa model that
is valid for several types of dioptric and catadioptric cameras, and carbalapplied for
the special case of traditional perspective cameras. The presentkdntemded to pro-
vide alternative solutions for well researched computer vision problenm& pfesented
region-based absolute pose estimation brings multiple advantages. Besitkes that the
use of point features is completely avoided, in many real world scenes witiodpeneous
untextured surfaces large smooth surfaces might be easier to identifsoth#st point fea-
tures, since such corresponding regions are easily detectable ddfessnt modalities,
even in 3D without intensity information. This holds a large potential in many agtjbics
in fields where multispectral, hyperspectral or IR imaging is used in combinatibrdepth
data, such as cultural heritage, for which the thesis proposed two nesD2iata fusion
methods. Homography estimation is also mainly solved using well selected pamcisg
points, thus the presented region-based homography estimation brintjsraatae solu-
tion with the advantages mentioned above. Since many applications rely omargagon
of the input images, such planar regions may already be segmented outdcesging
pipeline €.g.industrial production line surveillance, urban traffic signs or buildingdic
detection), thus the homography estimation can be straightforward, rdihgessy manual
user input, or extra feature detection that could fail due to the non-linstartion of om-
nidirectional cameras. Based on the well known relation between the hapiogrelative
pose and inducing plane parameters [15], multiple solutions are presentestiinating
the relative pose between cameras, and reconstruction of the plandgybfatttorization
from an estimated general homography, and by parameterizing the hgghggrstimation
problem itself through these parameters to have a direct solution of theeprob

The first topic of the thesis addressed a novel registration framewotkédoabsolute
pose estimation of a camera with respect to a reference 3D coordinate frétimeut us-
ing explicit point correspondences. The solution relies solely on segth2bBte3D planar
patches. As little as one such segmented region pair is enough to estimate ifsicextr
parameters of the camera, but more regions increase the robustngseaistn of the
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method. The proposed method is general enough to be used both feegters and omni-
directional central cameras. The method was validated on large synthietieta and on
various real data test cases. Two applications were proposed fgarsitultural heritage,
first a pose estimation based on the extension of the method to non-plaivaisreégen a
2D-3D visual data fusion method, that described a full pipeline in which thpgsed pose
estimation step can be included, but focused more on the problem of vatadudion and
correct camera selection in case of large number of camera images. Ehiegipas tested
on the large scale dataset of two Reformed churches.

The second topic addressed a region-based homography estimation matilcidr
central cameras, that works with segmented regions corresponding $autiee 3D pla-
nar patch, hence it avoids the use of keypoints. Being a purely stageetapproach, the
method works with multimodal sensors as long as corresponding regiofie cagmented
in the different modalities. The method is computationally efficient, and indegpeiod the
internal projection model of the camera as long as the projection functiortsagthdient
are known. Two applications based on closed form solutions were gedpthat rely on
planar homographies estimated this way, one for the factorization of the agmelative
pose, another for the reconstruction of the planar region. Quantitatheation on various
synthetic datasets confirms the performance and robustness of the megitodstruction
of planar regions showed superior performance w.r.t. a classical ptaoastruction al-
gorithm. A novel simultaneous reconstruction, relative pose and homogesgtimation
method was also proposed, that relies on the construction of a system-tihear equa-
tions, whose solution directly provides the relative pose of the camera3Dtipdanar re-
construction of the region, as well as the aligning planar homographiegéetive image
regions. This method also relies on the 2D segmentation of planar regiore,special
region-based bundle adjustment setup is applied, thus it can handle motetheameras
in an optimal way. Validated on the KITTI dataset, the method proved Stateeoftt
performance.



Appendix A

Summary in English

Computer visioris the scientific field that aims at analyzing and interpreting digital images
to gain higher-level understanding through the use of various compuhtmrls. One of
the fundamental tasks is to determine the position and orientation of a cameravorttie
i.e. estimate its absolute pose relative to a reference coordinate frame. Hal@agtawo
images with known pose in a common coordinate frame directly enables us tsten
the missing depth information of the scene, practically in the same way as the kigsuahn
system does. The pose estimation is a vital step of any computer vision algonitiiia,
3D reconstruction is also often needed in real world applications. Sincgaal was to
propose novel region-based solutions for different problems, wélcaso make use of
planar homographies to gain a different approach of the problems. Thispresents my
research on developing solutions for various problems related to ptsetsn and 3D
reconstruction.

A.1 Key Points of the Thesis

In the following, | summarized my results into two main thesis groups. In the first b
present my findings on 2D-3D absolute pose estimation and visual data,fugite in the
second one my results on planar homography estimation and 3D reconstiaretishown.
In Table A.1., the connections between the thesis points and the corrasppunblications
are displayed.

I. Absolute Pose Estimation and Data Fusion
Inspired by the 2D registration framewaork of [78], [77] proposedeehéormulation
of the absolute pose estimation of a perspective camera with respect to ep8&D d
data as a general 2D-3D registration that works without the use of atiyated cal-
ibration pattern or explicit point correspondences. This idea can badedento a
general framework for the absolute pose estimation of central sphesicedras, and
applied for different visual data fusion tasks. The basic idea is to set system
of non-linear equations whose solution directly provides the parametéhre afign-
ing transformation. This thesis group summarizes my results on the absoléte pos
estimation topic and two data fusion applications.

(a) | experimentally tested the performance of the absolute pose estimatien algo
rithm of omnidirectional cameras introduced in [Tamas, Frohlich, Ka8d.4
on synthetic data. For a common registration framework for central carheras
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(b)

A. APPENDIX. SUMMARY IN ENGLISH

implemented the proposed spherical surface integral calculation thatrefo
lates [Tamas, Frohlich, Kat@014 to work with triangles of a mesh represen-
tation, and | deducted an efficient 2D geometric moments calculation scheme
for the surface integrals of perspective cameras presented in [Figpbsed an
initialization step of the rotation and translation parameters for both spherical
and perspective cameras, that works automatically using the projectior of th
corresponding 2D-3D regions. Through quantitative evaluation of thkaodel
proved its performance, | compared it to previous point-wise spheritajrial
approximation approach [Tamas, Frohlich, K&614 on large scale synthetic
data, while also comparing the spherical and classical models applied for the
perspective camera. | also demonstrated the performance and usabiligy of
method on multiple real data test cases with different cameras and 3Dsensor

For the first visual data fusion application for cultural heritage dbjé@dapted

our region-based registration method [Tamas, Frohlich, K¥&4 extending

it to non-planar, smooth surfaces. As part of the workflow, | progase |ICP
refinement step based on intensity data edges, and a simple solution for the
multi-camera fusion problem based on the cameras’ orientation. | experimen-
tally proved that despite the change to non-planar surfaces, the rebsisih

the method remains the same, while also conducting real tests on collected data
of cultural heritage objects. The second application focuses on theigelet

views from large number of cameras. | implemented a more complex camera
selection algorithm, to fully benefit from the different focal length, resofu

and position of cameras, based on multiple criteria, like visibility, sharpness,
viewing angle and resolution. Visualizing the fusion results required a solutio
for the correct texture mapping between the 3D model and hundredstofeex
image files, thus | proposed a technical solution that can easily use theabrigin
images as textures, without the need to create specially baked texture files. |
validated the proposed pipeline on the acquired 2D-3D large scale dafaset
two Reformed churches.

Planar Homography Estimation and 3D Reconstruction

The 2D registration framework of [78] can also be extended for estimatartap
homographies between spherical cameras. Practically the homographidsastin

this case between the spherical projections in the two cameras, reprgsieatimage
of the same planar region. In general, relative pose parameters, aswied normal
and distance of the inducing plane can be factorized from such a plamargnaphy,
but due to the inherent parametrization of a planar homography, dirpobaghes
for solving the problem are also possible, avoiding the factorization stepletely.

This thesis group summarizes my results on the planar homography estimation and

3D reconstruction topics.

(a) | experimentally validated the proposed region-based homogratinyagen

method for omnidirectional cameras using two of the most commonly used
models. Following [110] | deducted the decomposition of relative pose pa-
rameters from homographies assuming a weak Manhattan world constraint,
then proved its comparable performance to the standard factorization method
of [136] on synthetic data. If relative pose is available, one can alsole#dc
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Table A.1. The connection between the thesis points and publications.

the parameters of the inducing planar patch from the homography. | validate
the proposed differential geometric approach for the computation of the no
mal vector, using the homographies estimated by our method [Frohlich, Tamas,
Kato, 2019. Through comparative evaluation on synthetic data, | proved, that
the proposed method outperforms the classical method of [15], and itustrob
against noise in the rotation and translation parameters.

(b) Taking a different approach on the homography estimation problempeith
spective cameras, a standard parametrization of the homography weesl app
through the relative pose and plane parameters. Each camera paircind ea
available region pair defines a new homography, thus | deducted the hamog
phy equations in a multi-camera multi-region setup through the common pose
and plane parameters, and validated the algorithm both in a minimal case setup,
and various configurations of cameras and regions. For the multi-caetega s
| built a bundle adjustment to simultaneously estimate all the unknown param-
eters of the system. | experimentally proved the method’s performancenen sy
thetic and on real data with precise Lidar pointcloud and marker based raeasu
ments as reference, and also on the KITTI benchmark dataset wheowedp
State-of-the-Art performance in comparison to the point-based multi-view re-
construction method of [144, 145].






Appendix B

Summary in Hungarian

A szamitbgépes lat&e a tudomanyterilet, melynek célja a digitalis képek elemzése altal,
kilonbdd szamitasi eszkdzoket felhasznalva, magasabb-rendi informézifkhi. A te-
meghatarozasa, vagyis egy referencia koordinata rendszerbgz&ifebszollt pose becs-
Iése. Ha rendelkezésiinkre all legalabb két kamera-kép és azoleteebgy ktzos koordi-
nata rendszerben, leldstgink van direkt moédon a képékhianyzé mélységi informacio
rekonstrudlasara, hasonld elv alapjan, mint ahogy az emberi lataskExékélységet. A
pose becslés elengedhetetlen [épése barmely szamitégépes latas algdtitmig@a3D
rekonstrukcio is gyakran hasznalt Iépés valos alkalmazasokbanl dkuatasom célja az
volt, hogy Ujszer(i régié-alapi megoldasokat javasoljak az egyessdigmoblémakra, sik-
homogréfiak hasznélata altal egy Ujfajta megkdzelitésre isiségém nyilt. A dolgozatban
Osszefoglaltam a pose becsléssel és 3D rekonstrukcioval kapsdalédtasi eredményeim.

B.1. Az eredmeények tézisszerl 6sszefoglalasa

A dolgozat eredményeit kébftéziscsoportban foglaltam 6ssze, ahol adleds abszolut
pose becslésével és vizualis adatok fuziéjaval foglalkozom, mig a masodimerak ko-
z6tti sikhomografia becsléssel és 3D sikrekonstrukcidval. A tézisaedpss az elfogadott
publikaciéim kdzotti kapcsolatot a B.1 tablazatban prezentalom.

I. Abszolut pose becslés és adatfuzid

A [78] altal bemutatott 2D regisztracios médszer altal inspiralva, [77] ¢ifyeliré-

gié alapu abszolut pose be@iginegoldast javasolt, amely perspektiv kamerak egy
3D tér-adathoz képesti helyzetét képes meghatarozni egy altalan8p 2Bgiszt-
raciéos megoldassal, mindenféle kalibracios minta vagy explicit pontmegfeleketés
hasznélata nélkill. Ez az alap o6tlet &ilithe® egy altalanos abszollt pose becslési
keretrendszerré centralis szférikus kamerak szamara, amely kifniizalis adat-
fuzios feladatokra alkalmazhat6. Az alap oOtlet egy nem-linearis egyentistzen
konstrualasa, melynek a megoldasa direkt médon adja meg a keresefoimadsio
paramétereit. Ez a tézis csoport az abszolUt pose becslési és adattéimakban
elért eredményeimet foglalja 6ssze.

() Kisérleti iton kimutattam az omnidirekcionalis kamerak szamara [Tamds, Fro
lich, Kato, 2014 altal bevezetett régié alapl abszollt pose lieaddoritmus
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teljesitményét. A centralis kamerak szamara bemutatott altalanos regisztracios
keretrendszerhez validaltam a gémbfelszini haromszdghalon dolgogdainte
szamol6t. A perspektiv kamerdk felszini integréljainak szamolasara egy haté
kony, 2D geometriai momentumok rekurziv felirdsan alapul6 szamolasi méd-
szert vezettem be. A forgatasi és eltolasi paraméterek inicializalasaiaueg
tomatikus megoldast javasoltam perspektiv és omni kamerak szamara. A maéd-
szert kvantitativ kiértékeltem szintetikus adathalmazokon, 6sszehasoriva a
rabbi pont-alapu integral kdzelitéses megoldassal, és vizsgalva &ktivda-
merak esetében a szférikus és klasszikus modell hasznélatat. A médszer h
nalhatésagat kulonféle kamerakkal és 3D szenzorokkal rogzitett adiiokon

is igazoltam.

A

régio-alapu regisztracios modszerinket [Tamas, Frohlich, Kdi®4, kiter-
jesztve azt nem-sik, de sima régiokra. A javasolt munkafolyamat részegyn
intenzitas informacioébal kinyerh@#lekre tamaszkodo ICP alapu finomitasi 1é-
pést javasoltam, mig a tébb kamerabdl todtéiziora egy egyszer(i megoldast

a kamerak orientacidja alapjan. Kvantitativ kiértékelés alapjan bizonyitottam,
hogy a médszer nem-sik felliletekre kiterjesztve is robusztus marad, mig valds
kulturalis 6rokségvédelmi szempontbdl érdekes targyakon is helygménye-

ket kaptam. A masodik alkalmazas egy nagyméretii kulturalis orokségviéde
objektumok (példaul templomok) dokumentalasara szolgalé fuzios munkafo-
lyamat, melyhez megoldast javasoltam a nagy mennyiségiipoér esetében
felmerub kamera szelekcios kérdésre, ami figyelembe veszi az egyes kamerak
ralatasat, elessegét, betekintési szogét és felbontasat. Az eredmizonadiza-
cigjara javasoltam egy olyan technikai megoldast, amely képes nagy mennyisé
g, kalonallo textara-kép kezelésére. A munkafolyamatot két refosrtatap-
lomrél rogzitett 2D-3D nagyméretii adathalmazon validaltam.

II. Sikhomografia becslés és 3D rekonstrukcio

A [78] 2D regisztracids megoldas kiterjeszthestférikus kamerak kézott haté sikho-
mografidk becslésére is. Lényegében ez esetben a homografiakag akarégionak
megfeleb gdmbfelszini vetilletek kozott értelmezbek. Altalanossagban elmondha-
t6, hogy a relativ pose paraméterek és az indukald sik paraméterei kzbomiddl-
szerekkel faktorizalhat6ak ki az igy meghatarozott homografiabolstklhamografia
eredend paraméterezésének koszordieet direkt megoldasokra is lelbstg nyilik,
ezaltal kikerllhet a faktorizalas, annak minden velejaré bizonytalansagaval. Ez a
tézis csoport a sikhomografia becslés és 3D sikrekonstrukcio témdkbaeredmé-
nyeimet foglalja 6ssze.

(a) Kisérleti Gton igazoltam az omnidirekcionalis kamerak kdzott hat6 sikh@mog

fidk becslésére javasolt médszert, tobbféle szférikus modellt felHaaziftl 0]

altal inspiralva bemutattam egy megoldast a relativ pose faktorizalasara sikho
mografidbdl, amely vertikalis irdny ismeretében és dtpnhattan vilagfel-
tételezés mellett a [136] standard moédszerhez m@nbentossagot produkalt
szintetikus adatokon. Ha mar a relativ pose paraméterei rendelkezésie alln
az indukal6 sik paramétereit is meghatarozhatjuk a homogréfiabdl. A bemu-
tatott médszerink [Frohlich, Tamas, Ka1q altal becsult homografidkkal
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B.1. tdblazat. A tézispontokhoz kapcsolddo publikaciok.

igazoltam a sik normalvektoranak a kiszamolasara javasolt differencidglage

riai megoldast. Szintetikus adathalmazon végeztem dsszehasonlit6 kiétigkelé
melyben a klasszikus [15] médszernél jobb teljesitményt értiink el, és a forg
tasi és eltolasi paraméterekbendévibakra is kefben robusztusnak bizonyult a
maodszerink.

A homogréfia becslés az egyenletek megfegparaméterezésével akar direkt
maddon is megadhatja a kamerak relativ pose-at és a sik paramétereit, ezzel ki-
kiiszobolheh a homografia faktorizalas és az azzal jar6 bizonytalansagok. Mi-
vel minden kamera par és minden régié egy Ujabb homografiat hataroz meg,
ezek egyenleteit felirtram a kdzos paraméterek fliggvényében egy adidr&s

tobb régids rendszerben, és validaltam az algoritmust igy a minimalis megoldéa-
si esetben, mint tébb kilénbéXonfiguracidban is. A tébb kameras esetre egy
kotegelt behangolasi megoldast is javasoltam, mely szimultdn moédon egyszerre
finomitja az 6sszes keresett paramétert. Az algoritmus teljesitményét kiértékel-
tem szintetikus és tobbféle valds adaton is: pontos Lidar poidtfellés marker
alapu referencia mérésekkel rendetkesajat adathalmazon, tovabba a KITTI
publikus adathalmazon is, ahol a médszeriink a legjobb pont-alapu altalanos
rekonstrukciés médszernél [144] jobban teljesitett.

Publications

Articles

[Frohlich, Tamas, Kata2019 R. Frohlich, L. Tamas, and Z. Kato. “Absolute Pose Es-
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Book Chapters

[Frohlichet al, 201§ R. Frohlich, S. Gubo, A. Lévai, and Z. Kato. “3D-2D Data Fu-
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