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Chapter 1

Introduction

Computer vision is the scientific field that enables computers to gain high-level understand-
ing from a single digital image or sequence of images. Practically it seeks to automate
tasks that the human visual system can do [1]. Main tasks include the acquiring, process-
ing, analyzing and understanding of digital images, and extracting of information about the
real world. The countless different applications available today can be enrolled in some
well researched sub-domains like scene reconstruction, event detection, video tracking, ob-
ject recognition, 3D pose estimation, learning, segmentation, motion estimation, and image
restoration [2]. The methods presented in this thesis propose novel solutions for the 3D
pose estimation and planar scene reconstruction problems.

By camera pose in general we can refer to both the absolute and relative pose of cameras.
Absolute camera pose estimation consists of determining the position and orientation of
a camera with respect to a 3D world coordinate frame, while relative pose refers to the
position and orientation with respect to another device (e.g.another camera in case of a
multi-camera setup), or another position of the same (but moving) camera in a different
moment in time. These are fundamental problems in a wide range of applications such
as camera calibration, object tracking, simultaneous localization and mapping (SLAM),
augmented reality (AR) or structure-from-motion (SfM).

Computer vision methods rely on the image content to estimate the camera’s pose. In
general, the information retrieved from the image can be of different complexities, starting
from points, lines, regions to higher level semantic objects. Using corresponding 2D-3D
image points as features to determine the absolute pose is often called thePerspective-n-
Point (PnP) problem, that can be solved with a minimum number of 3 correspondences [3].
Similarly thePerspective-n-Line(PnL) problem, that uses line correspondences in the 2D-
3D domain, can also be solved with a minimum number ofn = 3 feature correspondences.

The methods presented in this thesis rely on patches instead of point or line features, that
are higher order, better defined features that bring a few advantagescompared to the others.
Also the minimum number of corresponding regions needed for pose estimationis n = 1.
Chapter 2 introduces the reader to the basic aspects of pose and homography estimation.
The central spherical camera model is described, which enables us to deal both with tradi-
tional perspective and more special dioptric or catadioptric omnidirectionalcameras in the
same framework. In Chapter 3, first the State-of-the-Art in absolute pose estimation is pre-
sented, with an accent on omnidirectional cameras and methods not relying on the classical
point features, also reflecting on the possible applications in fields such asthe documenting
and preserving of cultural heritage objects, and large scale structures, buildings. After this
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2 1. CHAPTER. INTRODUCTION

overview the technical details of the proposed planar region based absolute pose estimation
method for spherical cameras are presented, including the special caseof perspective cam-
eras and also dealing with non-planar regions. Finally two applications of data fusion are
proposed for the documenting of cultural heritage objects and buildings.

The second part of the thesis investigates the possibilities of pose estimation and re-
construction when only 2D information from multiple cameras is available. Focusing again
on image regions as features we can define planar homographies acting between the cam-
eras, assuming that these region pairs are the segmented images of the same 3D planar
surfaces. Homography estimation is a well researched topic of computer vision and is an
essential part of many applications, as such, it can be used to solve different problems in-
cluding pose estimation or planar reconstruction. In Chapter 4, first the State-of-the-Art
in homography estimation is presented, detailing the difficulties involved when working
with omnidirectional cameras, and having a particular focus on approaches involving 3D
reconstruction. After this overview the first region based homography estimation method
proposed for spherical cameras is presented, then two applications related to it, one for rel-
ative pose factorization based on these homographies, then a closed form solution for 3D
reconstruction with a differential geometric approach. Finally a special homography estima-
tion approach is proposed that can simultaneously provide the relative poses of the cameras
and the 3D reconstruction of the planar region(s) in a multi-camera setup. Chapter 5 wraps
up the presented results with the main conclusions of this thesis.



Chapter 2

Fundamentals

2.1 Central Omnidirectional Cameras

An omnidirectional (sometimes referred to as panoramic) camera is a camera witha visual
field that covers approximately a hemisphere, or the entire hemisphere givinga 360◦ field
of view. There are different ways to build such a camera, either by usinga shaped lens
(dioptric), using a shaped mirror combined with a standard camera (catadioptric), or using
multiple cameras with overlapping field of view (polydioptric). Catadioptric cameras were
first used for localizing robots in the early ’90s [4] and that is still a major application field
for them due to the360◦ horizontal field of view. Dioptric, more commonly calledfisheye
cameras started to spread only10 years later when the manufacturing processes enabled
obtaining up to180◦ field of view. These cameras’ geometry cannot be described using
the conventional pinhole model because of the high distortion, thus specialmodels were
developed to work with them. In this section two models are presented for central om-
nidirectional cameras, central meaning that there is a single effective viewpoint, that is the
projection center where all optical rays of the viewed objects intersect. Catadioptric cameras
can be built to be central using parabolic, hyperbolic or elliptical mirrors [5]. The criteria of
single effective viewpoint is important, because it enables the mapping of omnidirectional
images onto an image plane forming a planar perspective image, and also enables the use of
epipolar geometry. Further more the image can be mapped on a unit sphere centered on the
single viewpoint. This spherical projection stands at the base of the two models described
in this section, both defining the projection of the camera through a sphericalprojection of
3D world points that are then mapped to image pixels by some functionΦ as shown on the
generic model in Fig. 2.1.

The first unified model for central catadioptric cameras was proposed by Geyer and
Daniilidis [6] in 2000, which represents these cameras as a projection onto the surface of
a unit sphereS (see Fig. 2.1). According to [6], all central catadioptric cameras can be
modeled by a unit sphere, such that the projection of 3D points can be performed in two
steps: 1) the 3D pointX is projected onto the unit sphereS, obtaining the intersectionXS

of the sphere and the ray joining its center andX (see Fig. 2.1). 2) The spherical pointXS

is then mapped into the image planeI through the camera’s internal projection functionΦ

yielding the imagex of X in the omnidirectional camera. Thus a 3D pointX ∈ R
3 in the

camera coordinate system is projected ontoS by central projection yielding the following

3



4 2. CHAPTER. FUNDAMENTALS

Figure 2.1. A generic spherical camera model.

relation betweenX and its imagex in the omnidirectional camera:

Φ(x) = XS =
X

‖X‖
(2.1)

This formalism has been widely adopted and various models for the internal projection func-
tion Φ have been proposed by many researchers,e.g.Micusik [7], Puig [8], Scaramuzza [9]
and Sturm [10].

Herein, we will briefly overview two models that have become standards in omnidirec-
tional vision: first the classical specific model of Geyer and Daniilidis [6] for catadioptric
cameras, that is not valid for fisheye cameras as shown by [11], then thegeneric model of
Scaramuzza [9] also known as Taylor model, who derived a general polynomial form of the
internal projection valid for any type of omnidirectional camera (catadioptricand dioptric
as well).

2.1.1 The General Catadioptric Camera Model

Let us first see the relationship between a 3D pointX = [X1, X2, X3]T and its projection
x in the omnidirectional imageI (see Fig. 2.2). The camera coordinate system is inS,
the origin (which is also the center of the sphere) is theeffective projection centerof the
camera and theZ axis is the optical axis of the camera which intersects the image plane
in theprincipal point. We assume that the axis of symmetry of the mirror is aligned with
the optical axis, andX andY axes of the camera and mirror are also aligned, thus the
two coordinate systems only have a translation alongZ. To represent the nonlinear (but
symmetric) distortion of central catadioptric cameras, Geyer and Daniilidis [6]projects a
3D pointX from the camera coordinate system to omni image pixelx through four steps.
FirstX is centrally projected onto the unit sphere:

XS =
X

‖X‖
= (XS , YS , ZS)

Then point coordinates are changed to a new reference frame centered in Cξ = (0, 0,−ξ):

Xξ = (XS , YS , ZS + ξ)
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whereξ ranges between 0 and 1.Xξ is then projected onto the normalized image plane:

m = (xm, ym, 1) = (
XS

ZS + ξ
,

YS

ZS + ξ
, 1) = Φ−1(XS)

In the final step the pointm is mapped to the camera image pointx using the camera
calibration matrixK

x = Km

where

K =



f 0 x0

0 f y0

0 0 1




contains the camera’s focal length and optical center coordinates.
This model was later refined by Barreto and Araujo [12], where they considered that

oriented projective raysxc are mapped for each 3D pointXw = [X1, X2, X3, 1]T expressed
in world coordinate system with homogeneous coordinates (xc = TXw, whereT is a rigid
body transformation), and their corresponding projective raysxcam intersect in the mirror
surface

xcam = Mch(xc)

whereMc includes the mirror parametersξ andψ (see [12] for details) andh(xc) can be
interpreted as a non-linear mapping between two oriented projective planes:

xP = h(xc) =




X1

X2

X3 + ξ
√
X2

1 +X2
2 +X2

3




The virtual planeP is then transformed in the image planeI (see Fig. 2.2) through the
homographyHC as

x = HCxP = HCh(xc)

HC = KCRCM MC ,

whereKC includes the perspective camera parameters (taking the picture of the mirror),
RCM is the rotation between camera and mirror. Thus the relation between image point
x and raysxcam is given by a collineation depending on camera orientation and internal
parameters. Herein, we will assume an ideal setting: no rotation (i.e. RCM = I) and a
simple pinhole camera with focal lengthf and principal point(x0, y0) yielding

HC =



f(ψ − ξ) 0 x0

0 f(ξ − ψ) y0

0 0 1


 =



γ 0 x0

0 −γ y0

0 0 1




whereγ is the generalized focal length of the camera-mirror system.
According to [6] and [12], this representation includes:

1. catadioptric systems containing a hyperbolic mirror and a perspective camera for0 <
ξ < 1, as well as

2. catadioptric systems with parabolic mirror and orthographic camera forξ = 1 and
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Figure 2.2. Omnidirectional camera model using Geyer and Daniilidis’ representation [6].

3. conventional perspective cameras asξ = 0

In the following, without loss of generality, we will focus on case 2). The bijective
mappingΦ : I → S is the inverse of the camera’s projection function, which is composed
of 1) transforming the image pointx ∈ I back to theP virtual projection plane byH−1

C :

xP = H−1
C x,

and then 2) projecting back this point(xP1, xP2, xP3)T from P to a 3D ray through the
virtual projection centerCP (assumingξ = 1):

X = h−1(xP) =




xP1

xP2
x2

P3
−x2

P1
−x2

P2

2xP3




= h−1(H−1
C x) =




1
γ
(x1 − x0)

1
γ
(x2 − y0)

1
2

(
1−

(
x1−x0

γ

)2
−
(

x2−y0

γ

)2
)


 (2.2)

We thus get the following expression forΦ : I → S:

Φ(x) = XS =
h−1(H−1

C x)

‖h−1(H−1
C x)‖

(2.3)

which provides the corresponding spherical pointXS ∈ S. ∇Φ is easily obtained from
(2.2) and (2.3).

2.1.2 Scaramuzza’s Omnidirectional Camera Model

The model presented by Micusik and Pajdla [13] also relied on the same idea of projecting
on the unit sphere, but used a different parametrization for the projection function. It was
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Figure 2.3. Omnidirectional camera model using Scaramuzza’s representation [9, 14].

already capable of handling both catadioptric and fisheye cameras, but unfortunately the
parameters of the two functions that describe the projection had to be determined uniquely
for every sensor, thus the use of the model was cumbersome. Instead, the general poly-
nomial form proposed by Scaramuzzaet al. [9, 14] is easier to apply for different types
of cameras. Following [9, 14], we assume that the camera coordinate system is in S, the
origin is the effective projection center of the omnidirectional camera. Let us first see the
relationship between a pointx = [x1, x2]⊤ ∈ R

2 in the imageI and its representation
XS = [XS1, XS2, XS3]⊤ ∈ R

3 on the unit sphereS (see Fig. 2.3). Note that only the half
sphere on the image plane side is actually used, as the other half is not visible from image
points.

There are several well known geometric models for the internal projection[5–7, 9]. To
represent the nonlinear (but symmetric) distortion of central omnidirectional optics, [9, 14]
places a surfaceg between the image plane and the unit sphereS, which is rotationally
symmetric aroundz (see Fig. 2.3). The details of the derivation can be found in [9, 14].
As shown by the authors, polynomials of order three or four are suitable for accurately
modeling all commercially available catadioptric and many types of fisheye cameras as
well, thus we used a fourth order polynomial:

g(‖x‖) = a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4, (2.4)

which has4 parameters(a0, a2, a3, a4) representing the internal parameters of the camera
(only 4 parameters asa1 is always0 according to [14]). The bijective mappingΦ : I → S

is composed of

1. lifting the image pointx ∈ I onto theg surface by an orthographic projection

xg =

[
x

a0 + a2‖x‖
2 + a3‖x‖

3 + a4‖x‖
4

]
(2.5)

2. then centrally projecting the lifted pointxg onto the surface of the unit sphereS:

XS = Φ(x) =
xg

‖xg‖
(2.6)
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Figure 2.4. Perspective camera model using Scaramuzza’s spherical representation, assum-
ing g ≡ I.

Thus the omnidirectional camera projection is fully described by means of unitvectorsXS

in the half space ofR3 and these points correspond to the unit vectors of the projection rays.
The gradient ofΦ can be obtained from (2.5) and (2.6).

Throughout the works presented in this thesis we used the above described spherical
camera model to work with omnidirectional cameras.

Spherical Model of the Perspective Camera

It’s clear to see that by introducing the polynomial surfaceg, the camera model described in
Section 2.1.2 can model the different distortion and the large field of view of omnidirectional
cameras, solely determined by the parameters (2.4) of theg surface. Consequently if we set
all parameters ofg to be zero, except the constanta0, we get a perspective camera (g is
a planar surface parallel to the image plane) as seen in Fig. 2.4. Further simplifying the
model we can chooseg ≡ I by usinga0 = f (f is the focal length, the distance from the
projection center to the image plane), the bijective mappingΦ : I → S for a perspective
camera becomes simply the unit vector ofx:

XS = Φ(x) =
x

‖x‖
(2.7)

This special case will be discussed later in Chapter 3.2.2.

2.2 Absolute and Relative Pose

Let’s consider an arbitrary right handed world coordinate frameW with a 3D pointXW

in it, given byXW = [X1, X2, X3, 1]T homogeneous coordinates. A cameraC placed in
the same space has it’s coordinate system chosen asX axis pointing right,Y axis down
andZ axis pointing forward in the direction of the optical axis, as shown in Fig. 2.5.The
relation between the world coordinate system and the one attached to the camera is given
by the absolute camera pose, a rigid body transformation noted asT = (R, t), composed
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Figure 2.5. Absolute pose of cameraC to the world reference frameW. T is acting on the
points given inW.

of a rotation matrixR and translation vectort as a3× 4 matrix:

T = [R|t] =



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz


 (2.8)

whererij are the row-column indexed elements of the rotation matrix,i being the row,j the
column index, andtx, ty, tz the components of the translation vector.

By the convention used, the above defined absolute pose is acting on 3D points XW

given inW, transforming them into the coordinate system ofC. Another definition of
the absolute pose would describe the transformation that gives the position and orientation
of the camera inW, that is basically the inverse transformation ofT. This is more widely
used in applications where the camera’s pose as an object in space is relevant (e.g.robotics).
Since we are more interested in the projection of the camera then its position in the world,
in our workT described at (2.8) is part of the camera matrixP used for projection to the
image plane, thus it is acting on the 3D points:

x ∼= PXW = KTXW = K[R|t]XW , (2.9)

where ’∼=’ denotes the equivalence of homogeneous coordinates,i.e. equality up to a non-
zero scale factor, andK is the3×3 upper triangular calibration matrix containing the internal
projection parameters of the perspective camera. Exactly the same transformation applies
if we consider the spherical camera model, as shown at the beginning of Chapter 2.1.1, the
3D pointX expressed in camera coordinate system is practically obtained asX = TXW .

If we consider multiple cameras in the same framework, or if we intend to work on
the image sequence of a moving camera the absolute pose of each camera/frame can be
defined individually, but depending on the application this might not be always the best
solution. In tracking, localization or reconstruction related applications the relative camera
pose between neighboring cameras or consecutive frames is often more interesting since it
provides vital information about the actual local state of the system, while absolute pose
provides a more global information useful for calibration, building a map or navigating to a
predefined location.
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Figure 2.6. Relative pose of two cameras, acting on points inC1.

By relative pose we refer to the rigid body transformationTr that acts between the co-
ordinate systems of two cameras. Practically, compared to the absolute pose,the difference
stands in the definition of the global coordinate system. One of the cameras can be assigned
the role of the reference frame, and other cameras’ absolute pose is expressed relative to
that, resulting the relative pose between cameras. In case of an image sequence this can be
applied incrementally if needed, each camera taking the role of reference frame for the next
frame. By definitionTr acts on the points expressed in the reference coordinate system,
thus in the example shown in Fig. 2.6 the relative pose brings 3D points expressed inC1

into C2, thus theTr
2
1 notation can also be used. The absolute pose ofC1 andC2 and their

relative poseTr
2
1 satisfy the following relation:

T2 = Tr
2
1T1 (2.10)

Estimating the Camera Pose

The most standard method for estimating camera pose, the Perspective-n-Point (PnP) prob-
lem originates from camera calibration. These methods rely on corresponding data (called
features) in the reference world coordinate system and in the camera frame. All PnP prob-
lems include the P3P problem as a special case,n = 3 being the minimum number of
features, for which the problem can be solved. This special case is known to provide up
to four solutions that can then be disambiguated using a fourth point. In another special
case if the points are coplanar, a homography transformation can be exploited instead [15].
A standard approach for the PnP problem is first using P3P in a RANSAC scheme [16] to
remove the outliers, then PnP on all remaining inliers. All the P3P algorithms firstestimate
the distance of points from the camera center expressing them in the camera coordinate
system, then estimating the transformationT that aligns them to the points expressed in
world coordinate system using closed-form solution. Other methods rely onthe minimizing
of feature projection errors. The possibilities of using different features such as lines, con-
tours, regions, objects are actively researched, but so far the pointbased features (e.g.SIFT,
SURF, AKAZE) are most commonly used in applications (a recent comparative analysis
of these can be found in [17]). This thesis presents novel region-based registration meth-
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ods that do not rely on any point features, nor intensity information, only using segmented
planar image regions.

2.3 Planar Homography

In general terms a homography is a non-singular, line preserving, invertible projective map-
ping from ann dimensional space to itself, represented by a square(n + 1) size matrix,
having(n+1)2−1 degrees of freedom. In case of 2D planar homographies we have a3×3

matrix representation with8 DoF acting between planes defined in 3D space.

Let’s assume we have two cameras observing a scene that contains a planeπ = (nT , d)T

so that for pointsX on the planenT X + d = 0. For simplicity we can choose the world
origin to be in the projection center of one of the cameras, thus planeπ and pointX are
both defined in the camera coordinate system, then the camera matrices will be:

P1 = K1[I|0] andP2 = K2[R|t] (2.11)

According to [15] a homography induced by the planeπ, acting between the normalized
image planes ofC1 → C2 is composed as:

H ∝ R − tnT /d (2.12)

More specifically, considering the homography acting between image pixelsx1 of C1 and
x2 of C2 we havex2 = Himx1 where

Him = K2(R − tnT /d)K−1
1 (2.13)

but since we are going to work with calibrated cameras, we can consider thecalibration
matrices are known, thus we can work in the normalized image plane points (unitvectors in
case of the spherical camera model), using the notation in (2.12) that basically acts between
the projection rays of the points.

Since in most of the applications only the individual camera images are available, the
planar homographies have to be computed directly from corresponding image elements that
specify the plane. SinceH has8 DoF (one free scale factor) it is enough to find4 point
matches on the camera images lying on the image of planeπ to be able to determineH.
Using these four points in a general position (i.e. no three of them are collinear)H can be
calculated using the Direct Linear Transform (DLT) algorithm.

In case of known epipolar geometry, if the fundamental matrix is available,H can be
calculated using three non collinear points, or a line and a point that both define a plane
uniquely. If the fundamental matrix is not available, it can be computed using the idea of
plane induced parallax and6 image points,4 coplanar points define the homography, and the
two points off the plane provide constraints to determine the epipole [15]. Other solutions
rely on conics, curves, discrete contours, or even planar texture [18].

Retrieving Pose and Plane from Homography

According to [15] the knowledge of homographies between the images means that we know
the first3 × 3 part of the camera matrixP = [M|t] = K[R|t], that in case of calibrated
cameras means that the orientation can be estimated from it, (e.g.based on vanishing points)
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hence only the last column (translation) has to be computed. [19] proposeda method for
recovering the relative pose and also the projective shape through SVDfactorization of
a measurement matrix, using only fundamental matrices and epipoles estimated from the
image data.

Relative pose and plane parameters can also be easily retrieved from planar homogra-
phies if some special constraints can be applied on the problem. For example we show
that considering a weakManhattan Worldsetup with vertical planes in the scene, and the
vertical direction of the camera known from external source, we can directly decompose
this special homography to find the unknown rotation angle, translation and plane normal.
In this thesis we also present a novel homography estimation framework based on planar
regions, that enables us to develop a simultaneous relative pose and planeparameter esti-
mating algorithm (based on the parametrization (2.12)), and also a differential geometric
approach for plane reconstruction from homographies.



Chapter 3

Absolute Pose Estimation and Data
Fusion

3.1 State of the Art Overview

Absolute pose estimation of a camera with respect to a 3D world coordinate frame is a
fundamental building block in various computer vision applications, such as robotics (e.g.
visual odometry [20], localization and navigation [21]), augmented reality [22], geodesy, or
cultural heritage [Frohlichet al., 2016]. There is also considerable research effort invested
in autonomous car driving projects both on academic and industrial side. While for the
specific scenarios such as highways there are already a number of successful applications,
this problem is still generally not solved for complex environments such as theurban ones
[23, 24]. Recent developments in the autonomous driving, especially in urban environment,
are using a great variety of close-to-market sensors including different cameras and active
sensors, this puts into focus the need for information fusion emerging fromthese sensors
[25].

The absolute pose estimation problem has been extensively studied yielding various
formulations and solutions. Most of the approaches focus on a single perspective camera
pose estimation usingn 2D–3D point correspondences. One of the earliest works to con-
sider this problem was [16] who also coined the termPerspective-n-Point(or PnP) for this
type of problem withn feature points. Later [26] proposed a method based on the iterative
improving of the pose computed with a weak perspective camera model, that converges to
a pose estimation computed with a perspective camera model, then [27] gave analgebraic
derivation of this method. More recently [28] proposed a non-iterative solution that had a
linear computational complexity growth withn, then [29] proposed the first non-iterative
solution (RPnP) that achieved higher accuracy than the iterative State-of-the-Art methods
with less computation time. The first Unified PnP (UPnP) solution that unifies all the de-
sirable properties of previous algorithms was proposed by [30]. The PnP problem has been
widely studied not just for largen but also for the minimal case ofn = 3 (see [30] for a
recent overview). More recently researchers started using line correspondences instead of
points, that yields thePerspective-n-Line(PnL) problem [32, 31] (see [31] for a detailed
overview).

Several applications dealing with multimodal sensors make use of fused 2D radiometric
and 3D depth information. The availability of 3D data has also became widespread. 3D
measurements of a scene can be provided both by the classical image-based techniques,

13
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such as Structure from Motion (SfM) [33], and modern range sensors(e.g. Lidar, ToF)
that record 3D structure directly. Therefore methods to estimate absolute pose of a camera
based on 2D measurements of the 3D scene are still actively researched [34, 30, 35]. Many
of these methods apply to general central cameras (both perspective and omnidirectional)
that are often represented by a unit sphere [5–7, 9].

In order to obtain a common coordinate frame for these devices the relative position
among the different 2D and 3D cameras has to be determined. Although application spe-
cific solutions exist, the principles of the relative position estimation are still similar.The
main challenge in the accurate calibration is due to the uncertainty in the relative position
measurement among different sensor bases. Fortunately, the calibrationof the central cam-
eras including the perspective or omnidirectional ones can be encapsulated in a common
theoretical framework. For both types of cameras a clear distinction is made for the intrin-
sic and extrinsic calibration.

Internal calibration refers to the self parameters of the camera, while external parame-
ters describe theposeof the camera with respect to a world coordinate frame. While internal
calibration can be solved in a controlled environment,e.g.using special calibration patterns,
pose estimation must rely on the actual images taken in a real environment. Although non-
conventional central cameras like catadioptric or dioptric (e.g.fisheye) panoramic cameras
have a more complex geometric model, their calibration also involves internal parameters
and external pose. Popular methods rely on point correspondences such as [14], or us-
ing fiducial markers [36], which may be cumbersome to use in real life situations. This is
especially true in a multimodal setting, where images need to be combined with other non-
conventional sensors like Lidar scans providing range only data. The Lidar-omnidirectional
camera calibration problem was analyzed from different perspectives. Recently, the ge-
ometric formulation of omnidirectional systems were extensively studied [7, 37, 38]. The
internal calibration of such cameras depends on these geometric models. Although different
calibration methods and toolboxes exist [36, 39, 14], this problem is by farnot trivial and is
still in focus [38]. In [40], the calibration is performed in natural scenes, however point cor-
respondences between the 2D-3D images are selected in a semi-supervised manner. In [41],
calibration is tackled as an observability problem using a (planar) fiducial marker as cali-
bration pattern. In [42] a fully automatic method is proposed based on mutual information
(MI) between the intensity information from the depth sensor and the omnidirectional cam-
era, while in [44, 43] a deep learning approach for calibration is presented. Another global
optimization method uses the gradient orientation measure as described in [45]. However,
these methods require range data with recorded intensity values, which arenot always avail-
able. In real life applications, it is also often desirable to have a flexible onestep calibration
for systems which do not necessarily contain sensors fixed to a common platform.

3.1.1 Related Work

Due to the large number of applications using central camera systems, also therange of the
calibration methods is rather wide. Beside solving the generic 2D-3D registration problem,
several derived applications exist including medical [46], robotics [45] and cultural heritage
ones [Frohlichet al., 2016]. For the pose estimation in known environment a good example
can be found in [47], while in [48] an application is reported using spherical image fusion
with spatial data.

A possible differentiation for the applications is related to the input data properties,
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such as image resolution. For high precision image registration the work presented in [49]
is based on the information of the Lidar scan intensity or the ground elevation level. Mutual
information is computed between the two images and fed to a global optimization algorithm
in order to estimate the unknown camera parameters. The algorithm proved to be successful
in urban environment. For low precision and high frame rate systems such asthe ones used
for navigation purposes, the registration challenges are addressed in different ways. In
these setups several Lidar-camera scan pairs are acquired and the registration is performed
for these image pairs as described in [50].

A more generic classification of the types of algorithms is presented in [51]. Beside
the direct measured relative pose methods such as [52], a number of generic methods are
summarized below.

Feature-based Methods

Several variants for calibration based on specific markers are used for extrinsic [53, 54]
camera calibration. In the early work of [55], alignment based on a minimal number of point
correspondences is proposed, while in [56], a large number of 2D-3Dcorrespondences are
used with possibly redundant or mismatched pairs. The extrinsic calibration of 3D lidar
and low resolution perspective color camera was among the first addressed in [57] which
generalized the algorithm proposed in [58]. This method is based on manualpoint feature
selection from both domains and assumes a valid camera intrinsic model for calibration. A
similar manual point feature correspondence based approach is proposed in [40]. Recently,
increasing interest is manifested in various calibration setups ranging fromhigh-resolution
spatial data [49] to low-resolution commercial cameras [59]. Also online calibration for
different measurements in time such as in case of a moving platforms containing depth and
color sensors are presented in [60, 42].

Color-intensity-based Methods

A popular alternative to the feature based matching is the mutual information extraction and
alignment between the 2D color and the 3D data with intensity information such as incase
of [61, 45]. Extensions to the simultaneous intrinsic-extrinsic calibration arepresented in
the work [41] which makes use of lidar intensity information to find correspondences be-
tween the 2D-3D domains. Other works are based on the fusion of IMU or GPS information
in the process of calibration [62].

Statistical Methods

A good overview of the statistical techniques based calibration methods can be found
in [46]. Mutual information extraction based on particle filters is presented inthe work [45]
which performs the calibration based on the whole image space of a single 2D-3D obser-
vation. The calibration can be based both on intensity and normal distribution information
for the 3D data. A further extension of this approach based on gradientorientation mea-
sure is described in [63]. A gradient information extraction and global matching between
the 2D color and 3D reflectivity information is presented in [42]. This has twomajor dif-
ferences compared to the work described in this paper. The current work is not limited to
lidar systems with reflectivity information rather it is based only on depth information. On
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the optimization side, the proposed method is not restricted to convex problems and allows
camera calibration using only a single Lidar-camera image pair.

Silhouette-based Methods

An early and efficient silhouette based registration method is presented in [64], which solves
a model-based vision problem using parametric description of the model. This method can
be used with an arbitrary number of parameters describing the object model and is based
on a global optimization with theLevenberg-Marquardtmethod. A whole object silhouette
based registration is proposed in [61], where the authors describe the 2D-3D registration
pipeline including segmentation, pixel level similarity measure and global optimization of
the registration. Although the proposed method can be used in an automatic manner, this
is limited only to scenes with highly separable foreground-background parts. By an auto-
matic segmentation of the relevant forms in panoramic images, which are registered against
cadastral 3D models the segmented regions are aligned using particle swarmoptimization
in [65]. An extension of the silhouette based registration method is proposedin [66]. In
this work a hybrid silhouette and keypoint driven approach is used for the registration of
2D and 3D information. The advantage of this method is the possibility of multiple image
registration as well as the precise output of the algorithm.

3.1.2 Cultural Heritage Applications

From a cultural heritage application’s point of view there are completely different criteria
that have to be considered, primarily the availability of the devices and the measurement
method that they require are key aspects. Recently, as more and more 3D imaging devices
and methods are available, cultural heritage experts have a several options to choose from
for documenting architectures, excavation sites, caves [67], historicalscenes or other large
or small scale objects. Thus the need for effective software solutions is also increasing.
Capturing an object with different modalities giving different levels of detail, the fusion of
these data is inevitable at a given point. Different devices working on different principles
impose a specific workflow for the creation of a colorized 3D model. But unfortunately,
as it is well known for all experts working in this field, there is no one single solution that
could be used for all types of case studies.

In archaeological cultural heritage study 3D modeling has become a very useful process
to obtain indispensable data for 3D documentation and visualization. While the precise sur-
veying and measurement of architecture, or excavation sites is possible withtotal stations
(e.g.manufactured by Leica Geosystems), the use of these devices and the creation of a
precise model based on the measurements needs highly experienced professionals. Using
a Lidar scanner instead, one can also produce a metric 3D model, with relatively high pre-
cision, that could be sufficient for most tasks, and could be used for completing different
measurements later on the data itself, even special measurements impossible to perform in
real world. As we found out it can also be indispensable for planning therenovation pro-
cess of some cultural heritage buildings that were never measured properly before, since the
plans can only be designed once a complete model of the building’s actual state is available.
Also spatial and color features are important factors for specialists to analyze the ruins of
some historical building, make hypothesis about the 3D models and obtain a 3D view of the
assumed original look of the structure, to use it then as an educational or research tool.
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Another important cultural heritage application is the creation of accurate 3Dmodels of
small scale objects, like ceramics or fragments, including textural details. Thisrepresents a
better, new way of documenting ceramics next to the traditional 2D representations through
technical drawings. Beyond the accuracy of the 3D features such as structural surfaces
and shapes, archeologists are also concerned by the accuracy of color features, especially
color patterns and color inclusions. Indeed spatial and color features are important factors
for specialists in ceramics to analyze fragments, make hypothesis about 3D objects/shapes
from sets of fragments, and in general as educational and research tools.

Reviewing recent cultural heritage publications we can observe, that based on the actual
case’s properties and the available budget, different groups used completely different ap-
proaches starting from the low cost options like photogrammetry or relativelycheap, entry
level structured light scanners up to the more professional Lidar scanners and even high-
end, expensive laboratory setups producing the best possible results. As strict laboratory
conditions can hardly be ensured on the field, and not all case studies require the highest
possible precision of the results, usually some compromises are made as long as the quality
of the results still meets the project’s needs.

Most of the recent works rely on either laser, structured light based 3Dscanners, pho-
togrammetry or a combination of these to obtain the 3D model of an object. Thoughpho-
togrammetry is widely used, recent overviews of available techniques presented in [69, 68]
show its main disadvantages: a large number of images has to be captured without any
feedback, not being able to verify partial results on the go, and processed later on powerful
workstations that is also time consuming. The level of detail captured can onlybe verified
after the final reconstruction is finished, if accidentally some parts were not captured from
enough viewpoints, it can only be corrected by a new acquisition. In order to overcome this
issue, the authors of [70] have experimented with a mathematical positioning procedure to
reduce the required number of images captured and ensure a high level of detail over all re-
gions. Others use various software solutions to do the 3D reconstruction using more images
taken from arbitrary positions [71]. Since most commercial software rely on the detection
of some keypoints, problems can occur with objects having no texture at all. In these cases,
the best practice is placing external markers near or on the object if it is possible, visible on
the captured images. A good example is presented in [72], where geotagged marker points
were used for both photogrammetric and laser scanning techniques.

3D scanners on the other hand are generally more expensive devices than the DSLR
cameras used for photogrammetry, but they are gaining popularity thanks tothe entry level,
easy to use, relatively cheap devices available, while serious professionals are indisputably
relying on laser or structured light scanners for the best possible results. Considering only
the Lidar scanners or even some structured light scanners that have a built in RGB camera
as well, we can say that these devices can’t produce data that has the necessary color detail
for most heritage applications, since usually the built-in RGB camera is a low resolution
sensor intended primarily to facilitate registering multiple scans into a complete 3D color
model, and to give a generic colorization of the model. For cultural heritage applications,
maybe except for visualization purposes in education, these models are not satisfactory.
Thus, good quality, possibly color calibrated, high resolution RGB information has to be
attached to the point cloud data. Lidar scanners that don’t have an external camera attached
will not capture RGB information in the same time with point cloud data, while structured
light scanners that have a small sensor camera built in, will only capture poor quality color
information. In both cases the solution is the same, RGB images have to be captured with a
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separate device, even a full frame DSLR camera is quite commonly used for this task; and
then fused with the point cloud.

Some recent works have shown that while the separate approaches may produce good
partial results, the true potential is in combining multiple approaches. [73] used laser
scanners and digital cameras for the documentation of desert palaces in the Jordan desert,
while others also included CAD modeling in their work to complete the missing parts of
the data [74]. An effective workflow using the combination of these three techniques was
presented for 3D modeling of castles [75].

From a technical point of view the main challenge in fusing high resolution color cali-
brated RGB images with the 3D data is the estimation of the camera’s relative pose tothe
reference 3D coordinate system. In the computer vision community many solutions are
available solving this problem based on: finding point or line correspondences between the
two domains [49], using mutual information [76], and large number of solutions relying on
specific artificial landmarks or markers [53]. There are also expensive software solutions
(e.g.[69] used Innov Metric Polyworks, [73] used Photomodeler) that solvethis problem.
However, these also require good quality RGB information in the 3D data, hence a pure
geometric data with no RGB information is not enough to solve the fusion.

In contrast, our method works without color information in the 3D data and uses regions
instead of matching key-points, which can be easier to detect in case of cultural heritage ob-
jects with homogeneous surface paintings. One region visible on both the 2D images and
the 3D point cloud is already enough to solve the pose estimation, but with more regions the
method becomes more robust [77]. In 2D, these regions can be easily segmented using stan-
dard segmentation methods, while in 3D, they can usually be segmented based on the 3D
model’s surface parameters or based on color information, if it is available.This means that
we don’t necessarily use color information stored with the 3D pointcloud, soan inexpensive
device could also be used for data acquisition. The 2D images can also be acquired by any
RGB camera, that can be calibrated using a free calibration Toolbox. Thusour workflow
expects 2D color calibrated images, the camera’s internal parameters and a3D pointcloud
with or without intensity information. In the application presented in Chapter 3.3 a refine-
ment step is also proposed for the pipeline, that relies on available color information to
further reduce the pose estimation error. Since the ICP based algorithm only makes use of
the edge lines from the 3D RGB information, color accuracy and high resolution details are
not needed, even a low resolution RGB information satisfies the needs of therefinement
step, if the most prominent edge lines can be detected on it.

Since Lidar scanners are getting more often used for capturing large structures, complex
buildings, in the second application presented in Chapter 3.4 we focused onthe 2D-3D
data fusion with Lidar scanners, since they can produce a widely usable,precise metric
3D model. Considering the relative poses of all the cameras to the 3D model are already
obtained, another challenge arises when dealing with hundreds of such images, that have to
be fused with one common 3D model. This involves different problems, such as choosing
the best view for each part of the model, blending information from different sources with
possibly different exposition, and generating a consistent, easy to handle output file format
that is easily interpretable. For this problem we proposed a camera selectionalgorithm, that
can deal with large numbers of images captured with different cameras, while relying on
relevant parameters such as focal length, resolution, sharpness, viewing angle to choose the
best view for every surface of the model. The algorithm ranks all the cameras that satisfy the
visibility constraint for each 3D point, then chooses the best one according to some rules.
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3.1.3 Contributions

In Chapter 3 we propose a straightforward absolute pose estimation method which over-
comes the majority of the point based methods’ limitations,i.e. by not using any artificial
marker or intensity information from the depth data. Instead, our method makesuse of a
segmented planar region from the 2D and 3D visual data and handles the absolute pose
estimation problem as a nonlinear registration task. More specifically, inspired by the 2D
registration framework presented in [78], for the central camera model we construct an
overdetermined set of equations containing the unknown camera pose. However, the equa-
tions are constructed in a different way here due to the different dimensionality of the lidar
and camera coordinate frames as well as the different camera model used for omnidirec-
tional cameras. By solving this system of equation in the least squares sense by a standard
Levenberg-Marquardtalgorithm, we obtain the required set of parameters representing the
camera pose. Since segmentation is required anyway in many real-life image analysis tasks,
such regions may be available or straightforward to detect. The main advantage of the pro-
posed method is the use of regions instead of point correspondence anda generic problem
formulation which allows to treat several types of central cameras in the sameframework,
including perspective and omnidirectional as well. The method has been quantitatively
evaluated on a large synthetic dataset and it proved to be robust and efficient in real-life
situations.

For cultural heritage focused applications in Chapter 3.3 we propose a 3D-2D region
based fusion algorithm, that solves the pose estimation problem with segmented region
pairs, even if no intensity information is available in the 3D data. If intensity information is
also available the proposed algorithm makes use of it to refine the pose parameters in a 2D
edge-lines based ICP refinement step. We show on synthetic benchmarksthe performance
of our method, including the robustness against segmentation errors that can occur in real
world situations. We also validate the method on real data test cases which confirms that
with good quality input data we can achieve high quality results, as well as moderate errors
in the 3D model are well tolerated.

In Chapter 3.4 we propose a complete pipeline to fuse individual Lidar scansand 2D
camera images into a complete high resolution color 3D model of large buildings. Com-
mercial software provided by Lidar manufacturers are limited to the rigid setupof a laser
scanner and a camera attached to it, for which they can produce correctlycolorized models
that are usable in many applications. Unfortunately, in cultural heritage applications usually
a higher level of detail is necessary, especially for some parts of the scene of major impor-
tance. For this reason we have to separate the camera from the scanner and capture fine
details from closer viewpoints using different telephoto lenses as well. Thus the proposed
workflow contains a specific step used to select an optimal camera image for each 3D region
that has the best view of that surface based on different criteria. Thisway we can project
images of arbitrary cameras onto the 3D data in an efficient way, wide angle images pro-
viding a good general colorization for most parts while close up shots and telephoto images
provide better resolution for selected parts. The efficiency and quality ofthe method has
been demonstrated on two large case studies: the documentation of the Reformed churches
of Klížska Nemá (Kolozsnéma) and Šamorín (Somorja) in Slovakia.
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Figure 3.1. Spherical camera model and the projection of spherical patchesDS andFS .

3.2 Region-based Pose Estimation

Pose estimation consists in computing the position and orientation of a camera with respect
to a 3D world coordinate systemW. Herein, we are interested in central cameras, where the
projection rays intersect in a single point called projection center or single effective view-
point. Typical examples include omnidirectional cameras as well as traditionalperspective
cameras. A broadly used unified model for central cameras representsa camera as a pro-
jection onto the surface of a unit sphere as described more detailed in Chapter 2.1.2 (see
Fig. 2.3). The absolute pose of our central camera is defined as the rigid transformation
(R, t) : W → C acting between the world coordinate frameW and the camera coordinate
frameC, that transforms points expressed inW into the coordinate system of the camera
C, while the internal projection function of the camera defines how 3D points are mapped
from C onto the image planeI.

Considering the generalized spherical camera model described in Chapter2.1.2 we can
clearly see that the projection of a 3D world pointX = [X1, X2, X3]⊤ ∈ R

3 in the camera
is basically a central projection ontoS taking into account the extrinsic pose parameters
(R, t). Thus for a world pointX and its imagex ∈ I, the following holds on the surface
of S:

Φ(x) = XS = Ψ(X) =
RX + t

‖RX + t‖
(3.1)

A classical solution of the absolute pose problem is to establish a set of 2D-3D point
matches usinge.g.a special calibration target [59, 41], or feature-based correspondences
and then solve for(R, t) via the minimization of some error function based on (3.1). How-
ever, in many practical applications, it is not possible to use a calibration target and most
3D data (e.g.point clouds recorded by a Lidar device) will only record depth information,
which challenges feature-based point matching algorithms.

Therefore the question naturally arises: what can be done when neithera special target
nor point correspondences are available? Herein, we present a solution for such challenging
situations. In particular, we will show that by identifying a single planar region both in
3D and the camera image, the absolute pose can be calculated. Of course, this is just
the necessary minimal configuration. More such regions are available, a more stable pose
is obtained. Our solution is inspired by the 2D shape registration approach of Domokos
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et al. [78], where the alignment of non-linear shape deformations are recovered via the
solution of a special system of equations. Here, however, pose estimationyields a 2D-3D
registration problem in case of a perspective camera and a restricted 3D-3D registration
problem on the spherical surface for omnidirectional cameras. These cases thus require a
different technique to construct the system of equations.

3.2.1 Absolute Pose of Spherical Cameras

For spherical cameras, we have to work on the surface of the unit sphere as it provides
a representation independent of the camera internal parameters. Furthermore, since cor-
respondences are not available, (3.1) cannot be used directly. However, individual point
matches can be integrated out yielding the following integral equation [Tamas,Frohlich,
Kato,2014]: ∫∫

DS

XS dDS =

∫∫

FS

ZS dFS , (3.2)

whereDS denotes the surface patch onS corresponding to the regionD visible in the
camera imageI, while FS is the surface patch of the corresponding 3D planar regionF

projected ontoS by Ψ in (3.1) as shown in Fig. 3.1.

To get an explicit formula for the above surface integrals, the sphericalpatchesDS and
FS can be naturally parametrized viaΦ andΨ over the planar regionsD andF . Without
loss of generality, we can assume that the third coordinate ofX ∈ F is 0, henceD ⊂ R

2,
F ⊂ R

2; and∀XS ∈ DS : XS = Φ(x),x ∈ D as well as∀ZS ∈ FS : ZS = Ψ(X),X ∈

F yielding the following form of (3.2) [Tamas, Frohlich, Kato,2014]:

∫∫

D

Φ(x)

∥∥∥∥
∂Φ

∂x1
×
∂Φ

∂x2

∥∥∥∥ dx1 dx2 =

∫∫

F

Ψ(X)

∥∥∥∥
∂Ψ

∂X1
×

∂Ψ

∂X2

∥∥∥∥ dX1 dX2 (3.3)

where the magnitude of the cross product of the partial derivatives is known as the surface
element. The above equation corresponds to a system of2 equations only, because a point
on the surfaceS has2 independent components. However, we have6 pose parameters (3

rotation angles and3 translation components). To construct more equations, we adopt the
general mechanism from [78] and apply a functionω : R3 → R to both sides of the equation
(3.1), yielding

∫∫

D

ω(Φ(x))

∥∥∥∥
∂Φ

∂x1
×
∂Φ

∂x2

∥∥∥∥ dx1 dx2 =

∫∫

F

ω(Ψ(X))

∥∥∥∥
∂Ψ

∂X1
×

∂Ψ

∂X2

∥∥∥∥ dX1 dX2 (3.4)

Adopting a set of nonlinear functions{ωi}
ℓ
i=1, eachωi generates a new equation yielding a

system ofℓ independent equations. Hence we are able to generate sufficiently many equa-
tions. The pose parameters(R, t) are then simply obtained as the solution of the nonlinear
system of equations (3.4). In practice, an overdetermined system is constructed, which
is then solved by minimizing the algebraic error in theleast squares sensevia a standard
Levenberg-Marquardtalgorithm. Although arbitraryωi functions could be used, power
functions are computationally favorable [78, 77] as these can be computedin a recursive
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manner:

ωi(XS) = X li
S1X

mi

S2X
ni

S3,

with 0 ≤ li,mi, ni ≤ 2 andli +mi + ni ≤ 3 (3.5)

The summary of the proposed algorithm with the projection on the unit sphere ispre-
sented in Algorithm 1.

Algorithm 1 General form of the proposed pose estimation algorithm

Input: 3D point cloud and 2D binary image representing the same region, and the camera
internal parameters

Output: External parameters of the camera asR andt

1: Back-project the 2D image onto the unit sphere.
2: Back-project the 3D template onto the unit sphere.
3: Initialize the rotation matrixR from the centroids of the shapes on sphere.
4: Construct the system of equations of (3.2) with the polynomialωi functions.
5: Solve the set of nonlinear system of equation in (3.4) using theLevenberg-Marquardt

algorithm

Note that the left hand side of (3.4) is constant, hence it has to be computed only once,
but the right hand side has to be recomputed at each iteration of the least squares solver
as it involves the unknown pose parameters, which is computationally rather expensive for
larger regions. Therefore, in contrast to [Tamas, Frohlich, Kato,2014] where the integrals
on the 3D side in (3.4) were calculated over all points of the 3D region, let’s consider a
triangular mesh representationF△ of the 3D planar regionF . Due to this representation,
we only have to applyΨ to the vertices{Vi}

V
i=1 of the triangles inF△, yielding a trian-

gular representation [Frohlich, Tamas, Kato,2019] of the spherical regionF△
S in terms of

spherical triangles. The vertices{VS,i}
V
i=1 of F△

S are obtained as

∀i = 1, . . . , V : VS,i = Ψ(Vi) (3.6)

Due to this spherical mesh representation ofFS , we can rewrite the integral on the right hand
side of (3.4) adoptingωi from (3.5), yielding the following system of17 equations [Frohlich,
Tamas, Kato,2019]:

∫∫

D

Φli
1 (x)Φmi

2 (x)Φni

3 (x)

∥∥∥∥
∂Φ

∂x1
×
∂Φ

∂x2

∥∥∥∥ dx1 dx2 ≈

∑

∀△∈F△

S

∫∫

△

Z li
S1Z

mi

S2Z
ni

S3 dZS , (3.7)

whereΦ = [Φ1,Φ2,Φ3]⊤ denote the coordinate functions ofΦ : I → S. Thus only the
triangle vertices need to be projected ontoS, and the integral over these spherical triangles
is calculated using the method presented in [79]. In our experiments, we used the Matlab
implementation of John Burkardt1.

The pose parameters are obtained by solving the system of equations (3.7)in the least
squares sense. For an optimal estimate, it is important to ensure numerical normalization
and a proper initialization. In contrast to [78], where this was achieved bynormalizing the

1https://people.sc.fsu.edu/~jburkardt/m_src/sphere_triangle_quad/

https://people.sc.fsu.edu/~jburkardt/m_src/sphere_triangle_quad/
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input pixel coordinates into the unit square in the origin, in the above equation all point
coordinates are on the unit sphere, hence data normalization is implicit. To guarantee an
optimal least squares solution, initialization of the pose parameters is also important. In our
case, a good initialization ensures that the surface patchesDS andFS , as shown in Fig. 3.1,
overlap as much as possible. How to achieve this?

Initialization

The 3D data is given in the world coordinate frameW, which may have an arbitrary orien-
tation, that we have to roughly align with our camera. Thus the first step is to ensure that the
camera is looking at the correct face of the surface in a correct orientation [Frohlich, Tamas,
Kato, 2019]. This is achieved by applying a rotationR0 that aligns the normal of the 3D
regionF△ with theZ axis,i.e.F△ will be facing the camera, since according to the camera
model−Z is the optical axis. Then we also apply a translationt0 that brings the centroid
of F△ into [0, 0,−1]⊤, which puts the region into theZ = −1 plane. This is necessary to
ensure that the plane doesn’t intersectS while we initialize the pose parameters in the next
step.

If there is a larger rotation around theZ axis, then the projected spherical patchF△
S

might be oriented very differently w.r.t.DS . Using non-symmetric regions, this would not
cause an issue for the iterative optimization to solve, but in other cases an additional apriori
input might be needed, such as an approximate value for the vertical direction in the 3D
coordinate system, which could be provided by different sensors, or might be specified for a
dataset captured with a particular setup. Based on this extra information, weapply a rotation
Rz around theZ axis that will roughly align the vertical direction to the camera’sX axis,
ensuring a correct vertical orientation of the projection.

To guarantee an optimal least squares solution, initialization of the pose parameters is
also important [Frohlich, Tamas, Kato,2019], which ensures that the surface patchesDS

andF△
S overlap as much as possible. This is achieved by computing the centroids ofDS

andF△
S , and initializingR as the rotation between them. Translation of the planar region

F△ along the direction of its normal vector will cause a scaling ofF△
S on the spherical

surface. Hence an initialt is determined by translatingF△ along the axis going through
the centroid ofF△

S such that the area ofF△
S becomes approximately equal to that ofDS .

Algorithm 2 Absolute pose estimation algorithm for spherical cameras

Input: The coefficients ofg, 3D (triangulated) regionF△ and corresponding 2D regionD
as a binary image.

Output: The camera pose.
1: Produce the spherical patchDS fromD using (2.6).
2: ProduceF△

S by prealigningF△ as described in Chapter 3.2.1 using(R0, t0) and then
Rz, then back-projecting it onto the unit sphereS using (3.6).

3: Initialize R from the centroids ofDS andF△
S as in Chapter 3.2.1.

4: Initialize t by translatingF△ until the area ofF△
S andDS are approximately equal (see

Chapter 3.2.1).
5: Construct the system of equations (3.7) and solve it for(R, t) using theLevenberg-

Marquardtalgorithm.
6: The absolute camera pose is then given as the composition of the transformations

(R0, t0), Rz, and(R, t).

The steps of the proposed algorithm [Frohlich, Tamas, Kato,2019] for central spheri-
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cal cameras using coplanar regions is summarized in Algorithm 2. For two or more non-
coplanar regions, the algorithm starts similarly, by first using only one region pair for an
initial pose estimation, as described in Algorithm 2. Then, starting from the obtained pose
as an initial value, the system of equations is solved for all the available regions, which
provides an overall optimal pose.

3.2.2 Absolute Pose of Perspective Cameras

A classical perspective camera sees the homogeneous world pointXW = [X1, X2, X3, 1]⊤

as a homogeneous pointx̃ = [x̃1, x̃2, 1]⊤ in the image plain obtained by a perspective
projectionP:

x̃ ∼= PXW = K[R|t]XW , (3.8)

whereP is the 3 × 4 camera matrix, which can be factored into the well knownP =

K[R|t] form, whereK is the3×3 upper triangularcalibrationmatrix containing the camera
intrinsic parameters, while[R|t] is the absolute pose acting between the world coordinate
frameW and the camera frameC.

As a central camera, the perspective camera can be represented by thespherical camera
model presented in Chapter 2.1.2. Since we assume a calibrated camera, we can multiply
both sides of (3.8) byK−1, yielding the normalized inhomogeneous image coordinates
x = [x1, x2]⊤ ∈ R

2:

x← K−1x̃ ∼= K−1PXW = [R|t]XW , (3.9)

Denoting the normalized image byI, the surfaceg in (2.4) will be g ≡ I, hence the
bijective mappingΦ : I → S for a perspective camera becomes simply the unit vector of
x, as shown in Chapter 2.1.2:

XS = Φ(x) =
x

‖x‖
(3.10)

Starting from the above spherical representation of our perspective camera, the whole method
presented in the previous section applies without any change. However,it is computation-
ally more favorable to work on the normalized image planeI, because this way we can
work with plain double integrals onI instead of surface integrals onS. Hence applying a
nonlinear functionω : R2 → R to both sides of (3.9) and integrating out individual point
matches, we get [77] ∫

D
ω(x) dx =

∫

[R|t]F
ω(z) dz. (3.11)

whereD corresponds to the region visible in the normalizedcameraimageI and[R|t]F is
the image of the corresponding3D planar regionprojected by the normalized camera matrix
[R|t]. Adopting a set of nonlinear functions{ωi}

ℓ
i=1, eachωi generates a new equation

yielding a system ofℓ independent equations. Choosing power functions forωi [77]

ωi(x) = xni

1 x
mi

2 , 0 ≤ ni,mi ≤ 3 and(ni +mi) ≤ 4, (3.12)

and using a triangular mesh representationF△ of the 3D regionF , we can adopt an efficient
computational scheme. First, let us note that this particular choice ofωi yields13 equations,
each containing the 2D geometric moments of the projected 3D region[R|t]F . Therefore,
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we can rewrite the integral over[R|t]F△ adoptingωi from (3.12) as [77]

∫

D
xni

1 x
mi

2 dx =

∫

[R|t]F
zni

1 z
mi

2 dz ≈
∑

∀△∈[R|t]F△

∫

△
zni

1 z
mi

2 dz. (3.13)

The latter approximation is due to the approximation ofF by the discrete meshF△.
The integrals over the triangles are various geometric moments which can be computed
using efficient recursive formulas discussed hereafter.

2D Geometric Moments Calculation

Since many applications deal with 3D objects represented by a triangulated mesh surface,
the efficient calculation of geometric moments is well researched for 3D [81,80]. In the 2D
case, however, most of the works concentrate on the geometric moments of simple digital
planar shapes [84, 82, 83], and less work is addressing the case of triangulated 2D regions,
with the possibility to calculate the geometric moments over the triangles of the region.

Since in our method we have a specific case, where a 3D triangulated regionF△ is
projected onto the 2D image planeI, where we need to calculate integrals over the regions
D ⊂ I and[R|t]F△ ⊂ I, we can easily adopt the efficient recursive formulas proposed
for geometric moments calculation over triangles in 3D and apply them to our 2D regions:
Since our normalized image planeI is atZ = 1, theZ coordinate of the vertex points is
a constant1, hence the generic 3D formula for the(i, j, k) geometric moment of a surface
S [80] becomes a plain 2D moment in our specific planar case [Frohlich, Tamas, Kato,
2019]:

Mijk =

∫

S
xiyjzk dS =

∫

S
xiyj dxdy (3.14)

as the last term ofMijk will always be1 regardless of the value ofk. i andj are integers
such thati+ j = N is the order of the moment.

Let us now see how to compute the integral on the right hand side of (3.13).The
projected triangulated planar surface[R|t]F△ consists of trianglesT defined by vertices
(a,b, c) that are oriented counterclockwise. The integral over this image region is simply
the sum of the integrals over the triangles. Analytically, the integral over a triangle can be
written as [85, 81] ∫

T
zi

1z
j
2 dz =

2area(T )i!j!

(i+ j + 2)!
Sij(T ), (3.15)

where

Sij(T ) =
∑

(i1+i2+i3=i)

∑

(j1+j2+j3=j)

((i1 + j1)!

i1!j1!
ai1

1 a
j1

2

(i2 + j2)!

i2!j2!
bi2

1 b
j2

2

(i3 + j3)!

i3!j3!
ci3

1 c
j3

2

)
. (3.16)

Substituting (3.15) into (3.13), we get [Frohlich, Tamas, Kato,2019]

∑

∀T ∈[R|t]F△

∫

T
zi

1z
j
2 dz = 2

i!j!

(i+ j + 2)!

∑

T

area(T )Sij(T ) (3.17)

where the signed area of triangleT is calculated as the magnitude of the cross product of
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two edges:

area(T ) =
1

2
‖(b− a)× (c− a)‖ (3.18)

As shown by [80] and then by [81], the computational complexity of the termSij(T ) can be
greatly reduced from orderO(N9) to orderO(N3). Based on the final generating equations
proposed by [81], we can write our generating equations for 2D domain as [Frohlich, Tamas,
Kato,2019]

Sij(T ) =





0 if i < 0 or j < 0

1 if i = j = 0

a1Si−1,j(T ) + a2Si,j−1(T )

+Dij(b, c) otherwise

(3.19)

with

Dij(b, c) =





0 if i < 0 or j < 0

1 if i = j = 0

b1Di−1,j(b, c) + b2Di,j−1(b, c)

+ Cij(c) otherwise

(3.20)

and

Cij(c) =





0 if i < 0 or j < 0

1 if i = j = 0

c1Ci−1,j(c) + c2Ci,j−1(c) otherwise

(3.21)

Using only the equations (3.19)–(3.21), we can thus perform the exact computation of the
contribution of every triangle to all the geometric moments of the image region in a very
efficient way. The different quantitiesCij(c),Dij(b, c), andSij(T ) are computed at order
N from their values at orderN − 1 using the recursive formulas given above and they are
initialized to1 at order0. The resultingSij(T ) are then multiplied by the area of the triangle
T and summed up according to (3.17).

Initialization

As in Chapter 3.2.1, an initial rotationR0 is applied to ensure that the camera is looking at
the correct face of the surface followed by an optional rotationRz around the optical axis
of the camera, that brings the up looking directional vector parallel to the camera’s vertical
axis, then apply a translationtc to center the region in the origin. The initialization of the
parametersR andt is done in a similar way as in Chapter 3.2.1: first the translationt along
theZ axis is initialized such that the image regionD and the projected 3D region are of the
same size, thenR is the rotation that brings the centroid of the projected 3D region close to
the centroid of the corresponding image regionD [Frohlich, Tamas, Kato,2019].

The steps of the numerical implementation of the proposed method are presented in
Algorithm 3. Note that for non-coplanar regions, as in Algorithm 2, we first use a single
arbitrarily selected region for an initial pose estimation, then in a second step we solve the
system using all the available regions, which provides an optimal pose estimate.
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Algorithm 3 Absolute pose estimation algorithm for perspective cameras

Input: The calibration matrixK, 3D triangulated regionF△ and corresponding 2D region
D as a binary image.

Output: The camera pose.
1: Produce the normalized imageI usingK−1 as in (3.9)
2: Prealign the 3D regionF△ by rotating it first withR0 then withRz as described in

Chapter 3.2.2, then center the region in the origin usingtc.
3: Initialize t = [0, 0, tz]⊤ such that the area of the regions are roughly the same (see

Chapter 3.2.2).
4: Initialize R to ensure that the regions overlap inI as in Chapter 3.2.2.
5: Construct the system of equations (3.13) and solve it for(R, t) using theLevenberg-

Marquardtalgorithm.
6: The absolute camera pose is then given as the composition of the transformationsR0,

Rz, tc, and(R, t).

3.2.3 Experimental Validation

Evaluation on Synthetic Data

For the quantitative evaluation of the proposed method, we generated different benchmark
sets (of 1000 test cases each) using25 template shapes as 3D planar regions and their images
taken by virtual cameras. The 3D data is generated by placing1/2/3 2D planar shapes with
different orientation and distance in the 3D Euclidean space. Assuming thatthe longer side
of a template shape is1 m, we can express all translations in metric space. A set of 3D
template scenes are obtained with1/2/3 planar regions that have a random relative distance
of ±[1− 2] m between each other and a random relative rotation of±30◦.

Both in the perspective and omnidirectional case, a 2D image of the constructed 3D
scenes was taken with a virtual camera using the internal parameters of a real 3Mpx2376×

1584 camera and a randomly generated absolute camera pose. The random rotation of the
pose was in the range of±40◦ around all three axes. The random translation was given in
the range±[0.5− 2] m in horizontal and vertical directions and2− 6 m in the optical axis
direction for the perspective camera, while the omnidirectional camera was placed at half
the distance,i.e. 1 − 3 m in the direction of the optical axis, and±[0.5 − 1] m in theX
andY axis directions to obtain approximately equal sized image regions for both typeof
cameras.

In practice, we cannot expect a perfect segmentation of the regions, neither in the 3D
domain or on the 2D images, therefore the robustness against segmentation errors was also
evaluated on synthetic data (see samples in Fig. 3.2): we randomly added or removed
squares distributed uniformly around the boundary of the shapes, both inthe 2D images
and on the edges of the 3D planar regions, yielding different levels of segmentation error
expressed as the percentage of the original shape’s area. Using these images, we tested the
robustness against 2D and 3D segmentation errors separately. For all these robustness tests,
we show error plots for the maximum segmentation error levels where the medianrotation
error around any of the three axes was below1◦.

Theoretically, one single plane is sufficient to solve for the absolute pose,but it is clearly
not robust enough. We have also found, that the robustness of the 1-plane minimal case is
also influenced by the shape used: Symmetric or less compact shapes with smaller area
and longer contour, and shapes with elongated thin parts often yield suboptimal results.
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se: 0% 12% 20%

Figure 3.2. Examples of various amount of segmentation errors (se). First an omnidirec-
tional image withoutse, then the same test withse= 12%, lastly the same template from a
perspective test case withse= 20%.

However, such a solution can be used as an initialization for the solver with more regions.
Adding one extra non-coplanar region increases the robustness by more than4 times! We
also remark, that the planarity of the regions is not strictly required. In fact, the equations
remain true as long as the 3D surface has no self-occlusion from the camera viewpoint
(see [Frohlichet al., 2016] for a cultural heritage application). Of course, planarity guaran-
tees that the equations remain true regardless of the viewpoint.

Since the proposed algorithms work with triangulated 3D data, the planar regions of the
synthetic 3D scene were triangulated. For the perspective test cases a plain Delaunay trian-
gulation of only the boundary points of the shapes were used, thus the meshcontains less
but larger triangles, which are computationally favorable. For the spherical solver, however,
a higher number of evenly sized triangles is desirable for a good surfaceapproximation,
which was produced by thedistmesh2D function of [86] with the default parameters.

For a quantitative error measure, we used the rotation errors along the 3Dcoordinate
axes and the difference between the ground trutht and estimated̂t translation vectors as
‖t−t̂‖. Furthermore, as a region-based back-projection error, we also measured the percent-
age of non-overlapping area (denoted byδ) of the reference 3D shape back-projected onto
the 2D image plane and of the 2D observation image. The algorithms were implemented in
Matlab and all experiments were run on a standard six-core PC. A demo implementation is
available online2. The average runtime of the algorithm varies from1 − 3 seconds in the
perspective case to4− 7 seconds in the omnidirectional case, without explicit code or input
data optimization. Quantitative comparisons in terms of the various error plots are shown
for each test case.

Omnidirectional Cameras

The results with1, 2 and3 non-coplanar regions using omnidirectional camera are presented
in Fig. 3.3. In Fig. 3.3a - Fig. 3.3d, the rotation and translation errors for various test
cases are presented. In the minimal case (i.e. 1 region), errors quickly increase, but using
one more region stabilizes the solution: not only the error decreases but the number of
correctly solved cases is also greatly increased. Theδ error plot in Fig. 3.3e also confirms
the robustness provided by more regions, while it has to be noted that with more regions the
back-projection error does not improve in the way the pose parameter errors would imply,
since even a smaller error in the pose yields larger non-overlapping areabecause of the
longer boundary of the distinct regions.

2http://www.inf.u-szeged.hu/~kato/software/

http://www.inf.u-szeged.hu/~kato/software/
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While the perfect dataset is solved with median translation errors as low as2 mm (see
Fig. 3.3d), the error is increased by an order of magnitude, but still beingunder3 cm, for
regions corrupted with segmentation error. According to our previous experience [Tamas,
Frohlich, Kato,2014], a δ below5% corresponds to a visually good result. Combining this
metric with the rotation error limit of1◦, we conclude that our method is robust against
segmentation errors of up to≈ 12% if at least3 non-coplanar regions are used.
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Figure 3.3. (a-f) Omnidirectional rotation errors along theX, Y , andZ axis, translation,
δ error and runtime plots.m denotes median error,se2Dandse3Dstand for segmentation
error on the 2D and 3D regions respectively (best viewed in color).

We have experimentally shown that the size of the spherical regions is greatly influenc-
ing the performance of the solver. While placing the camera closer to the scene produces
larger spherical projections of the regions and the pose estimation becomesmore robust, we
aimed to use real world camera parameters instead, thus the camera-to-scene distance was
limited. In our test cases, the median area of the spherical projections for the1 and3 region
cases were0.07 and0.13 units respectively on the unit sphere.

For computing the spherical surface integrals, we compared two different approaches
for the area approximation of the spherical regions. Our earlier approach is using standard
numerical integration over the pixels projected onto the unit sphere [Tamas,Frohlich, Kato,
2014] as presented in Chapter 3.2.1 solving the system of equations in (3.4), whilethe more
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recent approach in Algorithm 2 is integrating over spherical triangles instead as shown in
(3.7). Theδ error and runtime of these numerical schemes are compared in Fig. 3.4, which
clearly shows that the CPU time of Algorithm 2 is an order of magnitude faster while the
precision remains the same as for the earlier scheme in [Tamas, Frohlich, Kato, 2014].
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Figure 3.4. Backprojection (δ) errors and runtime comparison for point and triangle based
spherical surface integral approximation on a1 plane dataset (best viewed in color).

The algorithm’s CPU runtime is shown in Fig. 3.3f, where the slightly increased runtime
of the 3D segmentation error test cases (noted byse3D) is due to the triangulation of the
corrupted planar regions, that increases the number of triangles around the edges and thus
the computational time. Practically our algorithm can solve the pose estimation problem of
an omnidirectional camera in≈ 5 seconds using2 regions.

Perspective Cameras

Pose estimation results using a perspective camera are presented in Fig. 3.5, including the
same test cases with1, 2 and3 non-coplanar regions and with segmentation errors as in the
omnidirectional case. The rotation and translation error plots in Fig. 3.5a - Fig. 3.5d clearly
confirm the advantage of having more non-coplanar regions. The mediantranslation error
(see Fig. 3.5d) on the perfect dataset is as low as2 mm, which increases by an order of
magnitude in the presence of20% segmentation error, but still being under5 cm in case of
3 regions. Theδ error plot in Fig. 3.5e also shows the robustness provided by the additional
regions. Obviously, the back-projection error also increases in the presence of segmentation
errors. However, as Fig. 3.5a - Fig. 3.5d shows, the actual pose parameters are considerably
improved and the robustness greatly increases by using1 or 2 extra non-coplanar regions.

The algorithm’s CPU time on perspective test cases is shown in Fig. 3.5f. Theincreased
runtime of the 3D segmentation error test cases (noted byse3D) is due to the triangulation
of the corrupted planar regions, that greatly increases the total number of triangles and thus
the computational time. Practically our algorithm can solve the pose estimation problem of
a perspective camera in around2.5 seconds using2 regions.

As mentioned in Chapter 3.2.2, a perspective camera can also be represented by the
spherical model developed in Chapter 3.2.3. However, as we have shown in the previous
section, this model’s main limitation is the small size of the spherical regions, because a
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Figure 3.5. Perspective pose estimation results: rotation and translation errors,δ error and
algorithm runtime plots.se2Dstands for observation segmentation error,se3Dfor template
side segmentation error andm for median values (best viewed in color).

perspective camera has a narrower field of view and has to be placed ata larger distance
from the scene, to produce the same size of regions on the image. The resulting spherical
projections of the planar regions in median are typically4 times smaller than in the omnidi-
rectional camera’s case. Thus solving the perspective case using the spherical solver yields
a degraded performance, as shown by theδ error plot in Fig. 3.6. Comparing the algo-
rithm’s runtime plot in Fig. 3.7 also shows that using the spherical solver for the perspective
camera greatly increases the computing time due to the calculation of surface integrals on
the sphere, which confirms the advantage of using the perspective solver proposed in Chap-
ter 3.2.2, instead of a unified spherical solver.

To thoroughly evaluate our method on real world test cases, we used several different
3D data recorded by commercial as well as a custom built 3D laser range finder with corre-
sponding 2D color images captured by commercial SLR and compact digital cameras with
prior calibration and radial distortion removal. Whatever the source of the 2D-3D data is,
the first step is the segmentation of planar region pairs used by our algorithm.There are
several automated or semi-automated 2D segmentation algorithms in the literature includ-
ing e.g.clustering, energy-based or region growing algorithms [87]. In this work, a simple
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Figure 3.6. Perspective pose estimationδ errors comparing the normalized image plane and
the spherical solutions.mstands for median values (best viewed in color).
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Figure 3.7. Runtime comparison on test cases without segmentation errors in theomni-
directional and perspective case, the latter using both the normalized image plane and the
spherical solution.mstands for median values (best viewed in color).

region growing was used which proved to be robust enough in urban environment [88].
As for 3D segmentation, a number of point cloud segmentation methods are available,e.g.
based on difference of normals [89] or robust segmentation [90]. Likein 2D, region grow-
ing based on surface normals gave stable results for extracting planar 3Dregions in our
experiments. Corresponding 2D-3D regions were simply selected during the seed selection
of region growing as a one-click user input. We remark, however, that afully automatic re-
gion correspondence could be implemented by detecting and extracting planar objects like
windows [91] (seee.g.Fig. 3.8) which are typically planar surfaces present in urban scenes.
If the segmented 3D region is a simple point cloud, the boundary of the regionis detected
using Alpha Shapes [92], which is then used for generating a triangular mesh (i.e.we do not
rely on the Lidar resolution after segmentation). As in the synthetic case, forthe omnidirec-
tional case the method of [86] generated a uniform mesh, while for the perspective case a
simple Delaunay triangulation was sufficient. The absolute pose obtained from Algorithm 2
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or Algorithm 3 was used to fuse the depth and RGB data by projecting the imagesonto the
3D point cloud.

In Fig. 3.8, we show the fusion of an RGB perspective camera image and a sparse
3D point cloud recorded by a custom built 3D laser range finder containing a tilted Sick
LMS200 ranger. The absolute pose of the camera was computed using Algorithm 3, which
was then used to back-project the RGB image onto the 3D point cloud. Despiteof the
relatively large displacement between the camera and the Lidar, the absolutepose was suc-
cessfully estimated.

Evaluation on Real Datasets

Figure 3.8. Pose estimation example with (left-right) central perspective camera and cus-
tom Lidar data: color 2D image (original frame) with corresponding regions(purple); 3D
data with the segmented regions (green); color information overlaid on 3D data using the
estimated camera pose (best viewed in color).

For the omnidirectional real data experiments we first tested the proposed method on 2D
fisheye camera images and a 3D triangulated building model obtained by registering a set
of sparse 3D laser scans recorded by a Velodyne HDL-64E mounted ona moving car [93]
with a depth resolution up to1 cm and an angular resolution up to0.5◦. The best results
were obtained by large non-coplanar regions. Such a test case is shown in Fig. 3.9, where the
fish-eye camera image was reprojected onto the 3D surface using the absolute pose obtained
by Algorithm 2. Note that in case of the omnidirectional cameras, even a relatively small
rotation or translation error in the pose yields large differences in the non-linear distortions
on the omnidirectional data. In spite of this sensitivity, Algorithm 2 proved to berobust
enough as the segmented regions in Fig. 3.9 overlap well even if the total area of selected
regions is relatively small compared to the whole image size.
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Figure 3.9. Pose estimation example with (left-right) central dioptric (fish-eye) and com-
mercial (Velodyne) Lidar images: color 2D image (original frame) with corresponding re-
gions (purple); 3D data with the segmented region (green); color information overlaid on
3D data using estimated pose parameters (best viewed in color).

Fusion result on a test case with a catadioptric-lidar camera pair is shown in Fig. 3.10.
The omnidirectional image is captured by a commercial SLR camera with a catadioptric
lens, while the 3D range data is provided by a custom built 3D laser range finder containing a
tilted Sick LMS200 ranger, similar to the one described in [94] with an angular resolution up
to half degree and a depth accuracy of1 cm. The internal parameters of the omnidirectional
camera were determined using the toolbox of [14]. The method proved to be robust against
the segmentation errors caused by the low resolution of the image and also the noise in the
3D data, but a sufficiently large initial overlap between the regions was required for better
results.

Finally, test cases with a high precision Riegl Lidar and different camerasare shown
in Fig. 3.11 and Fig. 3.12. The static Riegl scanner has a range of400 m with a depth
precision of less than0.5 cm and angular resolution up to0.003◦. In this dataset, the high
density precise 3D model also includes the 3D positions of marker points that were set up
on the building facade. Using these markers, we could evaluate the precision of our pose
estimation by the forward projection of each marker from the 2D image into 3D space and
then calculated the distance from their ground truth position.

For the omnidirectional case shown in Fig. 3.11, we used a full frame CanonEOS 5
DSLR camera with a8 mm fish-eye lens. Segmenting only two simple, relatively small
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Figure 3.10. Catadioptric and lidar images with segmented area marked in yellow,and the
fused images after pose estimation. (best viewed in color)

regions, the proposed Algorithm 2 estimated a precise pose with a forward projection mean
error measured in the marker points of only7 cm. The ground truth marker positions are
visualized in green while the projected markers in red. Note that the camera-to-scene dis-
tance was≈ 14 m in this case. For comparison, we also show in Table 3.1 the error of
the absolute pose obtained by the state of the art UPnP [30] method, which directly used
the ground truth marker positions as input 2D-3D point matches. In spite of working with
perfect point correspondences, UPnP achieved only2 cm better forward projection error
in those marker points than our method which used inherently imperfect segmented region
pairs.

For the perspective case in Fig. 3.12, we used a full frame Nikon DSLR camera with
a wide field of view20 mm lens, one of the typical RGB cameras that comes calibrated
with these Riegl scanners. The mean forward projection error of the proposed Algorithm 3
measured in the marker points was3 cm. The advantage of using multiple regions from
differently oriented surfaces is clearly visible here. In Table 3.1, we compare our results to
the factory calibration of the setup. It was interesting to find, that at18 m distance from
the wall, the factory calibration parameters produce20 cm mean forward projection error,
due to the interchangeable camera mounting system. Applying a marker based refinement
to the calibration in the scanners own software, this can be reduced to1.3 cm, which is only
slightly better than our marker-less result achieved purely using 3 segmented region pairs.

The proposed Algorithm 3 was also tested with images taken by a flying DJI Phantom 3
drone. As can be seen in Fig. 3.12, the viewing angle of such a camera is very different from
that of a ground level imaging device. Using two corresponding segmentedregions was
sufficient to estimate a correct pose with a mean forward projection error of 9cm, which is
a good result considering the extreme angle of the camera and the camera-to-scene distance
of ≈ 9 m. In comparison, the state of the art UPnP [30] and RPnP[29] methods using the
high precision marker points as input 2D-3D point correspondences produced2 cm and
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Figure 3.11. Pose estimation example with omnidirectional camera image and dense Li-
dar data (left to right): color 2D image and 3D triangulated surface with corresponding
segmented regions marked with purple and green respectively; lastly colorinformation pro-
jected onto 3D data using the estimated extrinsic parameters, green dots mark thereference
positions of the markers while red dots mark the projected positions (best viewed in color).

6 cm mean error, respectively.

The qualitative comparison of all the mentioned methods is presented in Table 3.1,
where n/a stands for not available, since factory calibration parameters were only available
in one case, and RPnP [29] cannot be used with omnidirectional cameras.Let us emphasize,
that all the point-correspondence-based methods (except the Riegl factory parameters) rely
on 2D-3D special markers, that were precisely measured in 3D and 2D. Thus to achieve
these results with UPnP and RPnP, a careful setup of special markers in required before
data acquisition, thus both 2D and 3D data capture must be performed at the same time. In
contrast, the proposed method does not require any special target or setup, hence images
recorded at different time can be fused as long as at least one planar region pair is available.

UPnP RPnP Riegl Riegl(fine) Prop.

Omni 5 n/a n/a n/a 7
Pers. HR 0.9 4 20 1.3 3

Pers. Drone 2.2 6 n/a n/a 9

Table 3.1. Comparisons on high resolution Lidar data in terms of the mean forward projec-
tion errors in marker points in cm. Note that results of UPnP [30], RPnP[29]andRiegl(fine)
all rely on markers.Rieglstands for factory calibration,Prop. for the proposed method, and
HR for high resolution full frame camera perspective test case.
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Figure 3.12. Pose estimation example with perspective cameras and dense Lidar data. First
row: color 2D image and 3D triangulated surface with corresponding segmented regions
marked with purple and green respectively. Second row: color information projected onto
3D data using the estimated pose, green dots mark the reference position of the markers
while red dots mark the projected position. Top case: wide field of view camera; bottom
case: normal field of view UAV camera. (best viewed in color).
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Figure 3.13. Pose estimation on the KITTI dataset, top: color 2D data with the selected
regions (purple); middle: 3D data with the corresponding regions (green); bottom: color
information overlaid on 3D data using the estimated camera pose.

transl. Rx Ry Rz δ(%) time(s)

Prop. 0.592 2.970 0.402 0.393 12.49 1.23
Norm. 0.441 0.522 4.740 0.745 74.01 166

Int. 0.397 3.254 4.826 1.543 46.77 147

Table 3.2. Comparative results with the proposed method (Prop), normal based
MI(Norm)[45] and intensity based MI (Int)[45] in terms of translation(m), rotation(deg)
andδ (for reference:δ for the ground truth pose is9.49%) errors.

Algorithm Evaluation on the KITTI Dataset

Comparison with other camera pose estimation methods from the main literature couldbe
performed only in a limited manner due to the fundamental differences of the proposed
algorithm with respect to existing ones presented in Chapter 3.1. Methods using artificial
markers like the ones described in [53, 57] were tested using the codes provided by the
authors. The detailed comparisons are presented in our previous work [77]. Due to the
limitations of [53, 57] on real datasets, we also tested the proposed method on the KITTI
dataset [95] with available ground truth information. In Fig. 3.13 the extrinsiccalibration
of a color camera and sparse 3D Lidar data from the KITTI drivenr = 5 is shown. Using3
segmented non-coplanar regions marked in purple and green in Fig. 3.13,the camera pose
was estimated with the precision shown in Table 3.2.

For comparison, we used the mutual information based method described in [45] work-
ing on 3D data with intensity and normal information. The algorithm of [45] was run on the
same 2D-3D data pair both in the normal based and intensity based configurations as pre-
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sented in Fig. 3.13. The comparative results of absolute errors are also shown in Table 3.2.
Note that while the algorithm of [45] is able to use multiple separate 2D-3D data pairs (if a
sequence of such data is available with a rigid Lidar-camera setup like the KITTI dataset)
to optimize the results, for a fair comparison we only provided the same single image frame
and point cloud pair as the one that the proposed method was tested on. Since [45] is non-
deterministic, the MI based results in Table 3.2 show the best ones out of 5 independent
runs of the algorithm.

The results of the proposed method proved to be comparable to the results of[45], the
normal based method being slightly better in the translation parameters, but worse in the
rotation errors. Nevertheless the registration result of the proposed method visually was
accurate, and the CPU implementation runtime was two orders of magnitude smaller than
the GPU implementation of the mutual information method of [45].

3.3 2D-3D Fusion for Cultural Heritage Objects

Figure 3.14. Workflow diagram of the proposed method.

In this chapter a workflow is proposed for 2D-3D data fusion, the diagram of which is
shown in Fig. 3.14. The input consists of a 3D triangulated mesh and a set of2D spec-
tral images of the cultural heritage object. These images go through a 4-stepprocessing
pipeline [Frohlichet al., 2016] in order to obtain a precise textured 3D model. We assume
that the 2D cameras are color calibrated and their internal projection parameters are known,
furthermore the acquired 3D point cloud has been preprocessed into a triangulated mesh
(this is typically done by the 3D device’s own software). In the following, wewill present
each processing step.

3.3.1 Segmentation (2D-3D)

As our method works with regions, we have to segment a corresponding set of regions both
in the 2D images and 3D data. Since every test case is unique, we have to choose the
segmentation method according to the surface properties. On the 2D images, any standard
segmentation method (e.g. [96]) could be used (in our experiments, we used theFuzzy
selection toolof the freeGimp software). For the 3D data as well, we can choose based
on the type of data that we have. When RGB information is available, we can simply use
color based segmentation methods as in 2D. If it is not available, we can use 3D region
growing, like the Minimum Covariance Determinant based algorithm [90] or interactive
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graph cut like [97]. Manual selection can also be used, for example in our experiments
the Z-painting tool of Meshlabhas been used for interactive selection of regions, which
works well regardless of the availability of RGB data. Let us emphasize, that no matter how
many regions we extract from the data, they only have to correspond as awhole, a pairwise
correspondence is not needed (even the number of regions can be different)! Hence, given a
corresponding set of 2D regions{Di}

N
i=1 and 3D regions{Fj}

M
j=1, they only have to satisfy

the following constraint:

D = PF , withD = ∪N
i=1Di andF = ∪M

j=1Fi (3.22)

whereP is the camera projection matrix.

3.3.2 Pose Estimation

Given a corresponding set of segmented 2D-3D regionsD andF , we propose an extension
of our plane-based Lidar-perspective camera pose estimation algorithm from Chapter 3.2
to the data fusion problem. While the method in Chapter 3.2 was used strictly on planar
regions, we show that it can be extended to curved (but smooth) surfaces. This way it can
be used in cultural heritage applications, since most of the objects, ceramicshave non-planar
but smooth regions.

Assuming that each of the segmented 3D regions{Fj}
M
j=i are smooth enough (i.e. they

satisfy (3.22)), let us express a 3D pointXW with its homogeneous world coordinates
XW = (X1, X2, X3, 1)T . The perspective camera sees the same world pointXW as a ho-
mogeneous pointx = (x1, x2, 1)T in the image plain obtained by the perspective projection

x̃ = K[R|t]X (3.23)

As shown in Chapter 3.2.2, if we consider a calibrated camera, the effect of K can be
inverted, resulting

x = K−1x̃ = [R|t]XW = PXW (3.24)

thus the only unknown parameters are the6 pose parameters (3 angles of rotation inR,
3 components of the translation int). Classical solutions would establish a set of 2D-3D
point matches (e.g.using special calibration targets or markers), and then solve for (R,t)
via a system of equation based on (3.24).

However, in many cultural heritage applications, it is not always possible toattach mark-
ers to the object’s delicate surface. Furthermore, the 3D scans and camera images might be
acquired at different times, using different lighting conditions for optimal results. Our pose
estimation method, based on the 2D shape registration approach presented in[77], pro-
poses a solution in these challenging situations. Instead of using (3.24) directly, individual
point matches are integrated out according to Chapter 3.2.2 yielding the following integral
equation: ∫

D
xdx =

∫

PF
zdz, (3.25)

whereD corresponds to the regions visible in thecameraimage andPF is the virtual image
of the3D regions projected byP. We can clearly see that the above integral equation stays
valid for curved, smooth surfaces as well [Frohlichet al., 2016], as long asD andF are
satisfying (3.22) (i.e. no self-occlusion of points takes place). There are 2 issues with the
above equation:
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1. it corresponds to a system of2 equations only, which is clearly not sufficient to solve
for all 6 parameters of the camera pose;

2. the evaluation of the right hand side requires the explicit projection of the3D regions
F , which might be computationally expensive.

To resolve 1), observe, that (3.24) remains valid when a functionω : R2 → R is acting on
both sides of the equation [77]

ω(x) = ω(PXW), (3.26)

and the integral equation of (3.25) becomes

∫

D
ω(x)dx =

∫

PF
ω(z)dz. (3.27)

Thus adopting a set of nonlinear functions{ωi}
ℓ
i=1, eachωi generates a new equation yield-

ing a system ofℓ independent equations. Hence we are able to generate sufficiently many
equations. The (R,t) parameters of the camera pose are then simply obtained as the so-
lution of the nonlinear system of equations (3.27). In practice, an overdetermined system
is constructed, which is then solved by minimizing the algebraic error in theleast squares
sensevia a standardLevenberg-Marquardtalgorithm.

To resolve 2), let us choose power functions forωi

ωi(x) = xni

1 x
mi

2 , ni ≤ 3 andmi ≤ 3, (3.28)

which yields the 2D geometric moments of the projected 3D regionPF , that can be com-
puted efficiently. SinceF consists of triangulated surface patches, their projection is a set
F△ of triangulated planar patches, thus the final form of the equations becomes the same
as in (3.13).

The integrals over the triangles are various geometric moments, which can be computed
using the closed form formula presented in [77]

2
p∑

k=0

q∑

l=0

(−1)k+l
(p

k

)(q
l

)
νkl

k + l + 2
z1

p−k
0 z2

q−l
0 (3.29)

where

νkl =
k∑

i=0

l∑

j=0

(k
i

)(l
j

)

k − i+ l − j + 1

(z10 − z11)i (z11 − z12)k−i (z20 − z21)j (z21 − z22)l−j (3.30)

with the notationz1i andz2i, i = 0 . . . 2 being the vertices of the triangle.
Alternatively we can also use the recursive formulas presented in Chapter 3.2.2 that

were adopted from the generic 3D formulas of [81] to 2D triangular regions.

3.3.3 ICP Refinement

In the previous step, we have obtained a camera pose by minimizing thealgebraic error
of the system in (3.13). Although this is already a good quality estimate, we can further
refine it by minimizing a relevantgeometric error. In the following, we will show how
a standard Iterative Closest Point (ICP) [98] algorithm can be used, ifcolor information,
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even if it is of poor quality, is also available at each 3D point. In our workflow, ICP is
used to align the 3D edge lines’ projection with the 2D edge map (denoted byxe) of the
camera image [Frohlichet al., 2016]. There are different approaches to detect edges in a
3D pointcloud based on geometric properties, but for our purpose, we have to rely solely
on the color information to be able to detect the same edges as in the 2D image. We have
tackled this by simply projecting the 3D data onto an image with the initial camera pose
using (3.23), then running Matlab’s edge detection function on that image, resulting the edge
points. The corresponding 3D pointsXe will be the detected 3D edge points. The algorithm
then iteratively projects the 3DXe edge points using the currentK[Rn|tn] camera matrix,
that has only the camera pose parameters(Rn, tn) changing between iterations, giving the
reprojected edge pointsze

n at iterationn:

ze
n = K[Rn|tn]Xe (3.31)

The ICP algorithm will align thisze
n projection toxe, the edge map of the 2D image. We

can clearly see that ICP will actually minimize thebackprojection errorthis way.

3.3.4 Data Fusion

The final step of the workflow is the data fusion itself. Using the estimated relative pose and
the calibration matrix of the camera, we can project (with (3.23)) the 3D points onto the 2D
image. Since these do not necessarily project to exact pixel coordinates, we can interpolate
the neighbouring pixels’ color to find the best RGB value for every projected point. If we
had multiple 2D input images, then we can fuse all images with the 3D data. For those 3D
points, that are visible in more camera images, we have to decide which camera has the best
view of it. For this purpose, let us calculate the normal vectorni for each 3D pointXi. In
our experiments, we have used Meshlab’sCompute normals for point setsfunction, which
fits a local plane to every point’s small neighborhood (10 neighbours). Then for every point
Xi we compute the angle of its normalni with the orientation vectorcj of each camera’s
optical axis as

cos θ =
cj · ni

‖cj‖‖ni‖
, (3.32)

and the camera imagej with maximalcos θ value is used to colorize the 3D pointXi [Frohlich
et al., 2016]. As a result, we get a good quality colored 3D model of the object. Since the
2D images are color calibrated, no color shift will appear, no transitions willbe visible
between regions that get RGB information from different images, if we assume a good uni-
form lighting was used when capturing the images. For easier examination of the results,
we only used a single camera image for fusion in the test cases shown in Fig. 3.19.

3.3.5 Evaluation on Synthetic Data

For a quantitative and qualitative evaluation of the proposed pose estimation algorithm in
Chapter 3.3.2, we have generated a benchmark set using16 different shapes (such as in
Fig. 3.15a). The 3D data was generated by projecting a 2D shape on a virtual spherical
surface (having a Gaussian curvature ofK = 1/r2 = 1/10000). The 2D image of such
an object was captured with a virtual camera having the intrinsic parameters of a standard
1Mpx camera and a random pose by rotating it with[−25◦ − 25◦] along all three axis and
translating it randomly along all three axis with the maximum possible translation being
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equal to the size of the object. A data set consists of100 such images.
The results are presented in Fig. 3.15b - Fig. 3.15f. To evaluate the precision of the

pose parameters, we backprojected the 3D points on the image plane, and calculated the
percentage of the non-overlapping area (δ error) between the projection and the original
observation. Ideally these should overlap perfectly, but experimentally we have found that
5% δ error or lower can be considered a correct result. We have also calculated the errors
of the 3 rotation angles, and the translation error (see Fig. 3.15c) as the distance between
reference and estimated position.

(a)

(b)

(c) (d)

(e) (f)

Figure 3.15. (a) Sample synthetic data, (b-f) error plots of the results on synthetic data (2D
sestands for 2D segmentation error,3D sefor segmentation error on the 3D data andm
stands for median value).

Since in real cases both the 2D and 3D regions are affected by segmentation errors, we
have also evaluated the robustness of our pose estimation method against such errors. For
this purpose we have generated two different data sets: one with synthetically generated
segmentation errors on 3D regions and another one with the 2D images being corrupted by
it. An example synthetic data pair is shown in Fig. 3.15a, on top the 3D curved surface
is shown, while below two images of the region, one with10% simulated segmentation
error. As we can see from the error plots in Fig. 3.15b - Fig. 3.15f, the method is more
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robust for 2D segmentation errors. The same medianδ error is achieved with10% 2D
segmentation error as with5% error in the 3D segmentation, but with the 3D case we see
more bad results. This also reflects on the rotation and translation error plots, while the
median values are similar for the two cases, the number of incorrect results ishigher in
the 3D case. Nevertheless a median delta error of below2% in using only a single curved
region, is considered satisfactory.

3.3.6 Real Data Test Cases

We have verified our workflow on different real data test cases, of which 2 are presented
in detail here: one using high precision data inputs, while the other using moreaffordable
acquisition solutions.

The Chinese Warrior Test Case

The object used for this test case is a small (18 cm tall) figurine. The 2D images were
taken with a calibrated Nikon D800 DSLR camera having a full frame 36 Mpx sensor,
while the 3D data has been produced with a high precision marker based Structure-from-
Motion software solution in strict laboratory conditions, giving us a perfect reference data
in this case. While usual software solutions use markers or keypoints to produce such
fused data, our method uses only the color images and a raw pointcloud (it doesn’t even
has to include RGB information!). In the first step of our workflow, we have to segment
a few regions in 2D and 3D. Since the test object has a more complex, rugged surface,
we have to concentrate on the smooth, well defined regions, where self-occlusion doesn’t
occur. Best choice in this case is segmenting the straps and bands on the clothes, since
these are smooth regions, raised from their neighbors, with clearly visible ends. In 2D, a
region growing segmentation tool was used, while in 3D an interactive selection method in
Meshlab was adopted. Using the segmented data pairs, the second step estimates the pose of
the camera relative to the 3D pointcloud with good precision. This is illustrated in Fig. 3.16
by backprojecting a few hand-picked 3D keypoints with the estimated camera pose to the
2D image (red dots) - which are close to their reference location (green dots). The measured
average error was around20 − 30 px, which translates to approx.1 mm real world error.
In case we don’t have access to intensity information in the 3D data, or if the object itself
does not have a rich texture on its surface, then this is the final result. Notethat if there is no
intensity information, using a commercial software solution to align such data would also
be challenging.

As in this test case we have color information too in the 3D input data, we can apply the
ICP refinement step proposed in our workflow. The algorithm refines therelative pose based
on the edge-map of the 2D image, and the projection of the 3D edge points. At thisstep,
edges detected on smooth, mostly planar surfaces are desirable. To measure the benefits of
using the ICP refinement step, we backprojected the same 3D keypoints andcalculated the
backprojection error. In Fig. 3.16, we can see that landmark points are projected closer to
their correct location, reducing the average distance to8px, equivalent to0.2mm projection
error. This can be considered good precision for most heritage applications. Final fused
result from only a single camera image can be seen in Fig. 3.19.
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Figure 3.16. Precision of the region based pose estimation’s results in firstrow, and results
of ICP refinement in second row. Green dots are the reference locations while red dots are
the back-projections of the 3D landmarks.

Ceramic Fragments Test Cases

The objects used in this test case are small fragments of ceramic bowls and vases. The
2D images were captured with a standard Canon 1000D DSLR camera, having 2.5Mpx
resolution. The 3D data was produced by a handheld Artec Spider scanner and its bundled
software. In this case, using a relatively cheap and easy to use scanner solution, we cannot
expect perfect 3D data. The software uses a keypoint based algorithm to align partial scans
and build the complete 3D model. Since the scanner only has a low resolution RGBcamera
built in, this process can get cumbersome in some situations. As we have found, even if the
software produces a visually pleasing, watertight 3D model, it may lack precision. Of course
a perfect alignment was not possible with these incorrect 3D data, but wehave shown, that
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in spite of the imperfect 3D model, our algorithm is robust enough to producea good fused
result. The segmented regions used for the pose estimation are shown in Fig.3.17. The
backprojection error of the two test cases can be seen in Fig. 3.18. The average error was
33px and28px respectively.

Figure 3.17. 2D segmentation example.

Figure 3.18. Final precision achieved using the ICP refinement step. Green dots are the
selected specific landmarks, red dots are the back-projection of the same landmarks in 3D.
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Figure 3.19. Final fusion results from single viewpoint, using the ICP refinement step. The
ceramics 3D data are available from the authors affiliated to the Maison de l’Orient et de la
Méditerranée.
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3.4 Large Scale 2D-3D Fusion with Camera Selection

In this chapter we will describe the steps of the proposed processing workflow for large
scale 2D-3D data fusion with optimal camera selection [Frohlichet al., 2018]. The steps of
the workflow are shown in Fig. 3.20 and detailed individually in the following.

Figure 3.20. Workflow of our processing pipeline. Light green shows the input data.

3.4.1 Data Acquisition

For 3D measurements, we used the Riegl VZ-400 Lidar scanner with a horizontal angle
resolution of0.01◦ and a vertical angle resolution of0.06◦. A complete scan with100◦

vertical and360◦ horizontal field of view takes about15 minutes, and produces a dense
point cloud of100 − 200 million points, with a nominal depth precision of less than5mm
at distances below400 m. Since a single scan only captures the surfaces visible from the
Lidar’s point of view, the whole surface of a complete building has to be scanned from
multiple viewpoints. Usually, interior scenes are more complex than exterior ones, so these
require a higher number of scans. For a more complex interior, a preliminary planning of
scan positions is needed to provide the best coverage of the scene.

For 2D imaging, a Canon EOS 5D Mark III DSLR camera has been used with vari-
ous optics. Actually, many Lidar manufacturers provide a solution to place a wide field of
view camera on a rigid frame over the scanner, and let the scanner control the 2D capturing
process as well. While this technique provides a reliable way to match 2D-3D data in sub-
sequent processing steps, the common viewpoint constraint yields limited resolution of the
2D imagery for distant surfaces. In a typical cultural heritage application, the archeologi-
cal site is far more complex, which cannot be captured in high detail from such a limited
number of positions using a wide angle lens. Due to the fact that the Lidar scanner has a
drastically higher range, being able to capture objects at up to400 m with high resolution,
it’s not necessary to place the scanner closer to capture the small details, but with 2D imag-
ing we can only produce high resolution images of small details (e.g.frescos) if we move
the camera closer and use longer focal lengths for better reach. In addition, a 2D camera
produces only sharp images of 3D objects located within itsdepth of fieldrange. Hence
for this reason it’s mandatory to separate the camera from the scanner andtake additional
images from different viewpoints capturing all the fine details of the scene.

Thus the 3D-2D acquisition procedure typically consists of 2 stages: 1) acquisition
of 3D Lidar scans together with a set of 2D images covering the complete360◦ field of
view from every scan position with a24 mm wide lens; 2) acquisition of 2D images of
all the important details from optimal viewpoints, using various focal lengths inthe 70 −
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200 mm range. These high detail images would then be used to enhance the color and
spatial resolution of the textured point cloud obtained from the wide angle images.

3.4.2 Point Cloud Alignment

The first step of 3D data processing is to register the Lidar scans into a common global
coordinate frame. Let us consider a scanner that observes a 3D worldpoint XW from
different positions. In the first positionS1, the scanner will record the positionX1 of the
point XW in the Lidar’s coordinate system that has its origin in the projection center of
S1. Moving the device to another positionS2 will measure positionX2 for the same point
XW in the coordinate system ofS2. The pointsX1 andX2 are related by a rotationR and
translationt:

X1 = RX2 + t (3.33)

Given a sufficient number of(X1,X2) point pairs, one can easily compute the aligning
rigid body transformation(R, t) between the scansS1 andS2. Actually the calculated
transformation brings the coordinate system ofS2 into S1. If we chooseS1 the global
coordinate system, then we can align eachSi scan in the same way, bringing all the data
into the same coordinate system, hence merging the partial scans into one singlepoint cloud.
For this task, we used the standard marker-based automatic registration algorithm available
in the Lidar’s software. As an alternative solution for outdoor scans, thesoftware can also
use the recorded GPS data instead of markers. If no markers nor GPS data is available, we
can still do a registration by manually selecting sufficiently many corresponding Xi point
pairs in the point clouds, but this will inherently be less precise.

3.4.3 Camera Pose Estimation

Next, we have to bring the 2D camera images into our world coordinate system established
in the previous step.

The internal parameters of the camera can be easily estimated prior to data acquisition
using standard camera calibration algorithms. Herein, we used theCaltech Calibration
Toolbox[99]. However, the absolute pose (discussed in Chapter 2.2) has to be estimated for
each image usinge.g.standard feature-based methods relying on correspondences between
a set ofXWi 3D points andxi pixels [15]. In our experiments, we simply used the Lidar’s
software to compute camera poses from a given set of 2D-3D point pairs.

For a particular camera image, point correspondences can be obtained ina semi-automatic
way using the markers detected in the point cloud and manually picking their corresponding
pixel positions in the image. Images taken by wide angle lenses are likely to contain such
markers detected in the Lidar scans, hence they can be reliably aligned this way. However,
fine details are captured by telephoto lenses with a narrow field of view where markers may
not be visible. Hence the selection of the corresponding points will become amanual task
in both domains. We solved this by following a two-step procedure: first widefield of view
images are processed in a semi-automatic way yielding a colorized point cloud.This data
enables us then to manually select color based feature points in the tele images and the
point cloud. As a result, we will have the pose for all images that capture different views
at different resolution of the scene, giving us various possibilities for colorizing the point
cloud.
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3.4.4 Point Cloud Colorization

At this point, we have a complete metric 3D point cloud of the scene and a lot of different
images taken from arbitrary viewpoints, but all registered with the global coordinate system.
Since a particular 3D pointX of the registered pointcloud may be seen by several cameras,
the question naturally arises: How can we project the color information fromthe images
onto the 3D points? In order to produce a high quality textured 3D model, several constraints
have to be satisfied: the image used to colorize a pointX should have asharpimage ofX
(i.e. it has to be within the camera’s depth of field); the camera has to see the pointX under
an optimal angle (i.e. as close as possible to a perpendicular viewing angle) as well as the
resolution aroundX should be as high as possible. Given a 3D pointX and its projection
in camerasC1 . . . Cn as pixelsx1 . . .xn, we can write the projection of the 3D pointX in
cameraCi using (3.23):

xi = Ki[Ri|ti]X (3.34)

where all the parameters are known by now. Thus the RGB color of the point X can be
transferred from a particular camera image by making use of the above equation.

The commercial software solutions provided with Lidar devices usually assume, that
the camera is used in a rigid setup with the scanner, having approximately the same view-
point. In case of overlapping image regions the colors are simply averagedout for the
corresponding 3D points. This approach is correct for this constrained setup, but becomes
unusable when we separate the camera from the scanner, and place it in completely different
positions, making the problem a more complex one. In this case every camera will have a
completely different relative pose that has to be estimated, while in the standard commercial
setup this is also reduced to only a change in the rotationR of the camera, which is directly
recorded by the rotating Lidar. The visibility of the points from the camera viewpoint also
has to be verified to avoid problems caused by occlusion. Using the commercial software
in this special case, the more images are used the results can get more blurrybecause of
the averaging of color information from cameras that had suboptimal view ofa surface (e.g.
camera at a bad angle, out of focus image region, camera too far away).

Therefore we propose a much more effective algorithm [Frohlichet al., 2018] to tackle
this problem, which will select for every 3D point one single camera that hasthe best view
of it, i.e. it is not occluded, captured sharply, from the best angle and with the best resolution.

Visibility

First, we have to detect if a pointX is visible from a camera or it is occluded. For this
purpose, we have adopted theHidden Point Removaloperator [100]. It relies on the obser-
vation, that extracting the points that reside on the convex hull of a spherically flipped point
cloud with respect to a given viewpoint, we get the visible points from that viewpoint. Let
us consider the point cloudPC and the camera positionC1 from whichPC is observed.
Considering a sphere with the origin inC1 and radiusr constrained to include all the points
of PC, spherical flipping will reflect all the pointsX ∈ PC with respect to the sphere by
applying the following equation:

X̂i = Xi + 2(r − ‖Xi‖)
Xi

‖Xi‖
(3.35)
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Visible points fromC1 are those that will reside on the convex hull of̂PC ∪ C1 whereP̂C
denotes the transformed point cloud ofPC [100]. Repeating this step for each cameraCi

will give us the set of cameras from which a particular 3D pointX is visible.

Sharpness

Next step is to verify if a point has a sharp image in the camera, only points thatfall in-
side thedepth of fieldof a cameraCi should be colorized from that camera image. The real
world focus distance of the camera is not easily retrievable using only the image, but instead
we can directly measure the upper and lower limits of the depth of field. Since for each im-
age pixel we have the corresponding 3D pointX and from the camera pose we can directly
compute the camera-to-point distance, we only have to find the image regions that are in
focus. For this purpose, we adopt the focus measure introduced by [101], which reflects the
statistical properties of the wavelet transform coefficients in different high frequency sub-
bands. Considering a 2D discrete wavelet transformation, in a single leveltransformation
we will have four coefficient blocks, each1/4 of the size of the original image. The one
noted withLH (Low High frequency) contains coefficients representing the vertical edges
in the image, while theHL block shows horizontal edges, and theHH block containing high
frequency components both in horizontal and vertical direction will represent the diagonal
edges in the image. Using a randomly positioned windoww over the original image, its
corresponding operator windows in the single level wavelet transformation’s LH, HL, and
HH subbands are denoted bywLH , wHL andwHH respectively, while the wavelet trans-
form images in the subbands are denoted byWLH , WHL andWHH . The focus measure
operator is defined using the standard deviation of the wavelet coefficients as:

M2
W T =

1

Nw
[
∑

(i,j)∈wLH

(WLH(i, j)− µLH)2+

∑

(i,j)∈wHL

(WHL(i, j)− µHL)2+

∑

(i,j)∈wHH

(WHH(i, j)− µHH)2]

(3.36)

whereNw is the number of pixels inw andµ is the expectation of the wavelet coefficients
in each subband denoted with the corresponding subscript. We selected the windowsws

that had the focus measureM2
W T above the experimentally determined threshold level of

1.1. We also experimentally determined an appropriate size for the windoww, as a square
window having200px width, since on a full frame camera’s 24Mpx image this is roughly
similar in size to the focus detection squares that the camera uses, while smaller windows
tend to often miss the sharp details on homogeneous regions.

Since the absolute pose of the cameraCi is known, we can simply calculate the average
distance between the camera and the 3D points visible in windowws as the average of the
Euclidean distances from point to camera. Having a physical metric distancevaluedist(ws)

assigned to each sharp window, let us create a histogram of the different distance values,
and take the5% and95% percentiles of the distribution of the values to filter out possible
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outliers. These values are an appropriate estimate for lowest and highestdistance limits.

lowest_dist =hist(dist(ws),@5%)

highest_dist =hist(dist(ws),@95%)
(3.37)

Points in this distance domain projected in cameraCi will have a sharp image. We apply
these limits to filter out the cameras that don’t see a given point sharply.

Viewing Angle

At this point, we have for each 3D pointX a set of cameras assigned in which it’s visible
and in focus. As a next step we have to choose the one that sees the pointfrom an optimal
viewing angle and at highest resolution. Let us first calculate the angle between the surface
normal nX in X and the projection rayoXi pointing from X into the optical center of
cameraCi. Since all the camera poses are known, the camera’s projection center coordinates
ci = (x, y, z)T are available. The surface normals in a point cloud can be calculated by
different methods, like fitting local planes over a small neighborhood of thepoints [102],
but these methods could have trouble detecting the correct orientation of thenormals in case
of large point clouds of complex scenes. Fortunately most Lidar scanners already provide
the raw scan data with the correct normals in it, so we used this instead. The angle of these
two vectors can be simply calculated using:

θ = arccos(
nX · oXi

‖nX‖ · ‖oXi‖
) (3.38)

with oXi = X − ci being the projection vector of pointX into theith camera. The angles
|θ| ∈ (0 . . . π/2) are the geometrically correct ones, as any other angle would mean that the
camera is looking at the back side of the surface. Of course a mostly perpendicular view
with small|θ| value is more favorable here.

Resolution

Next, we also check the projection resolution of the region, since a higher focal length
camera can produce higher level of detail even from a larger distance,or a lower focal
length camera from a closer position as well might have better resolution. We characterize
the resolution of the projection of pointXm in the ith camera asresmi = fi/Dmi, where
fi is the focal length of the camera andDmi is the distance of camerai from pointXm.

Selection

Then the final decision is taken by choosing the camera with the highest valueof

dcmi = resmi/θ
′ (3.39)

whereθ′is the scaled version of angleθ into θ′ ∈ [0 . . . 1) with 0 corresponding to the
perpendicular view and1 corresponding to theπ/2 angle. dcmi stands for the decision
value of cameraiwith respect to the 3D pointXm. The algorithmic overview of the method
is summarized in Algorithm 4. Examples of the colorization with this vertex based color
assignment can be seen in Fig. 3.22, Fig. 3.26 and Fig. 3.28.
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3.4.5 Texture Mapping

The above presented algorithm provides a point cloud that has the best color assigned to
each vertex point. In many applications it is desired to have good visual quality but with
reduced data size, suitable for online streaming, storing or mobile applications. This can
be achieved by using the triangular mesh that the scanner software provides us instead of
just the point cloud. This also allows us to simplify the model by reducing the number
of vertices defined, and visualizing surfaces instead. This also brings the benefit that we
can map texture files to each triangle of the mesh, so instead of using the points’assigned
color blended over the triangle face, what most software do when visualizing a colorized
mesh, we can map a patch of the high resolution texture on it. This technique obviously
will provide higher level of detail, and even on a reduced size data the apparent quality
is almost the same. The size of the 3D data itself can be efficiently reduced by decimation
algorithms [103], that will try to collapse multiple neighboring triangles on the samesmooth
surface into one single bigger triangle, reducing the necessary number of faces for smooth
regions, while trying to keep a higher vertex number in the parts that are geometrically more
complex.

Applying this to our proposed workflow we observe that for each pointX, we only
need to store the corresponding texture coordinate in each camera image instead of the
RGB value, so according to (3.34) we can extract the list of pixel coordinatesxi for each
cameraCi. After that, going through the camera selection steps, when we already have a
cameraCv assigned for each vertexv we can select for each faceFj = (va, vb, vc) the best
camera, simply by selecting the one that was commonly assigned to each vertex:

CFj = Cva iff Cva = Cvb = Cvc

But what happens if the three vertices don’t have a common camera assigned? This
naive approach will cause issues on the edges of texture maps when it’s the edge of the
texture image and also at the boundary line between two textures. As an example for the
latter, see Fig. 3.21, where on the left hand side we have a fresco that got textured from two
different cameras, and at the boundary line there is a string of triangles (shown explicitly
on the middle image) that didn’t get either of the cameras assigned, since theirvertices got
assigned to different cameras.

Dealing with all these situations may be cumbersome, instead we adopted a new ap-
proach [Frohlichet al., 2018] that iterates over all the trianglesF of the mesh instead of
the points. This way we are able to select different cameras for neighboring faces that have
common vertices, and we are not limited to one single camera assigned per vertex point.
The camera ranking steps presented in the previous section still remain valid and necessary,
we only have to adapt the final step of the algorithm, in this case iterating over facesF of
the mesh. For each face we look at the threeCvk camera ranking lists assigned to each
vertex, that contains the previously defineddc decision values for allCi cameras:

Cvk =dcki, wherek ∈ (a, b, c) andi ∈ (1..n) (3.40)

and select the cameraCi that got included in all threeCvk lists and has the highest values
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of dc. Assign this to faceFj :

CFj ∈ (Cva ∩ Cvb ∩ Cvc) wheredc = max dcki (3.41)

The single value assigned tocFj will be the camera index that was chosen for tha trian-
gle. The corresponding texture coordinates are already available for all three vertices of the
triangle, since we prepared them in the previous step. The data structure prepared this way
can easily be written out in an ASCII Wavefront OBJ file based on its standard specifications
[104]. The results obtained using the face based approach can be seen in Fig. 3.21 on the
right hand side image, where different image textures are seamlessly connected. The algo-
rithmic difference between the vertex based colorization and the face based texture mapping
can be seen in Algorithm 4.

Figure 3.21. Issue with texture mapping on the boundary of different texture images (left
and midle). Switching from vertex based to face based texture mapping the textures can
join seamlessly (right).

Algorithm 4 The proposed camera selection algorithm

Input: A point cloud / triangular mesh and a set of images registered to it.
Output: A list with one camera assigned to every 3D point / face.

1: Considering a 3D pointX, first filter the list of cameras by visibility using (3.35).
2: Then filter the list of cameras by their depth of field (3.37) domain and the camera to

point distance, keeping only those that have a sharp image of the pointX.
3: Using the remaining list of cameras, calculate for each the angle between the projection

vector and the surface normal in pointX using (3.38).
4: Also calculate each camera’s projection resolution with respect to their distance from

pointX and the focal length.
5: Rank the cameras for each vertexvk using (3.39), putting them in the listcvk .
6: Repeat steps 1-5 for all points of the point cloud.
7: CASE For vertex based colorization select the best camera fromcv for each vertex and

assign the color seen by that camera according to (3.34).
CASE For texture mapping iterate over all the facesFj = (va, vb, vc), and select the
camera that is best ranked in all three vertices’ camera listcvk according to (3.41).

3.4.6 Experimental Results

The efficiency of the proposed method has been demonstrated on two largecase studies.
First, the documentation of the Reformed church of Somorja (Šamorín), then the documen-
tation of the Reformed church in Kolozsnéma (Klížska Nemá), both of them located in
Slovakia.
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Reformed Church of Somorja

Somorja (Samaria, Sommerein, Zenthmaria) is a sacred edifice of great importance to the
Upper Great Rye Island region. It also ranks among the most significantmonuments of
Christianity in the whole Carpathian Basin, and is standing proof of the high standard and
prestige of medieval Hungarian Christian culture in Europe. A small chapelhad stood on
the site of the church sometime before the 11th century. The chapel was latercontinually
expanded from the 11th through the 20th centuries. By the 14th century, the building’s
construction was supported by the likes of King Saint Stephen, King Béla III, Emperor
Sigismund, King Matthias, King Wladyslaw II, and King Ludwig the Great.

The building had great sacred significance starting in the early Middle Ages, and con-
tributed to a large degree the development of the municipality. Archaeologicalfinds have
revealed that, by 1521, the church had undergone twelve separate phases of reconstruction.
The building’s oldest part is the foundation of the Romanesque altar, situated below the
current apse, which experienced continual additions since the 11th century. The tower has
been standing in its current form since the 13th century. It is made entirely of brick, from its
below-ground sections to the cap on the very top. The main nave’s vaulted ceiling was built
at the end of the 15th century in late Gothic style under King Wladyslaw II, in thestyle of
the Prague castle.

The majority of the painted depictions of the main nave have not yet been revealed.
Researchers have discovered that several ornate layers are still under the current plaster, the
earliest of which dates back to the 11th century. During the Romanesque and Gothic era,
i.e. in the 11th-12th and 14th centuries, the interior was completely covered withpaintings,
similar to Europe’s other significant churches. On the northern wall of theapse, the earliest
mural paintings appeared in a horizontal band depicting King Saint Stephen, King Béla III
and Saint Adalbert the Bishop of Prague. To the right of these three portrayals, the painter
depicted the most well-known scene from the life of Bishop Saint Martin when, as a Roman
soldier, he dismounted his horse and handed half of his cloak to a shivering beggar. In
a mural band under these images, the painter depicted the death of Mary. The imposing
frescoes are an eloquent testimony to the significance of the town of Somorjain the 13th
and 14th centuries. Few similar apse decorations have been preserved intact in Central and
Western Europe. The depiction’s intellectual message and iconographic statement praise a
scholar theologian. According to the celestial vision of John the Apostle, these glorify the
mysterious magnificence of the invisible God.

The pictures were covered by several layers of plaster for 600-700years. What we see
today is mostly the paintings’preparatory coating. The complete renovation ofthe exterior
of the Reformed church in Somorja was supported by the Ministry of Human Resources
of Hungary under Minister Zoltán Balog. Restoration work started in May 2014, and was
completed in September 2015.

In Fig. 3.22 partial views are shown of the interior 3D model of the church inŠamorín.
One of its invaluable heritages, the frescos on the sanctuary’s ceiling, are visible in Fig. 3.22
on the first image. We used this fresco, depicting the coronation of Maria, todemonstrate
the difference in resolution between an image taken with a telephoto lens, and awide field
of view image. In Fig. 3.23 we can see the region highlighted with red in Fig. 3.22be-
ing cropped from a70mm focal length (short telephoto lens) image and from a24mm fo-
cal length camera image that captured a wide angle overview of the whole sanctuary. In
Fig. 3.24 we can see the comparative results if we use these images for texture mapping on
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Figure 3.22. Two views of the model colorized with the proposed vertex based method
using a low number of images (24). The regions that were not sharply visibleon any of the
images are left white.

the triangular mesh. Regions that were not visible from any of the cameras are white.

Nevertheless, as we’ve shown previously, we need both types of images,to produce a
highly detailed model, since we can only do a complete colorization of the model using
wide field of view images, and when these already provide a color informationfor the
points, we can register the high resolution images of the small details. As we cansee in
Fig. 3.24 this second registration step is also performed with good precision,since the two
sides of the mesh are textured from the two images mentioned before, just forpresentation
purpose shown in a split way, and the transition between the regions is quite seamless. It
is also noteworthy that just by being able to move the camera freely, we can get much
higher resolution details even if using the same focal length lens by taking close up images.
Capturing such images may be more intuitive for the non-professionals and they can still
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Figure 3.23. Detail comparison of a wide and short telephoto image. On the left a crop of
the24mm camera image, on the right the same region as viewed by the70mm camera.

Figure 3.24. A wide and short telephoto image used for texturing the mesh, viewed in a split
way. The added detail of the tele image is clearly visible. White regions were not visible
from any camera’s point of view, therefore are not colorized.

provide an improvement to the 3D model’s level of detail, as shown in Fig. 3.25,where the
bottom of the pillar has been textured from a close up image, taken by the same camera that
provided the wide angle images that textured the rest of the visible walls.

All the above mentioned comparison images show that the registration of the datais
correct. Since our main interest was in the geometric registration and the camera selection
process for the colorization, we didn’t deal with color calibration in this work. Of course the
correct color representation in such a cultural heritage documentation application is also a
key factor, but standard solutions are available [105]. So instead we intentionally left all the
images uncorrected in the color and lighting sense, this way the colorized model can give
us a clue about which regions were colorized from different cameras,since these transitions
are not blended in any way. It is well visible in Fig. 3.22 on the walls and on thefloor
that these kind of visible errors are only caused by the constantly changing illumination of
the scene, the shadows, and the inhomogeneous lighting in some regions. Ifwe examine
closely the transitions between the different colorizations on the ground, we can see the
correct alignment of the cameras, since the edge lines of the bricks are well matched. In
Fig. 3.26 we can observe what improvements can be achieved by attempting to correct the
white balance and exposure of the images in post processing, done by anunexperienced
user. While the color tones are more similar between the different images, the most visible
issue caused by the constantly changing lights and shadows would only be avoidable by
using a controlled lighting setup during the acquisition.

One interesting use of a 3D model produced this way, is the possibility to illustrate
historical stages of the buildings, for example by removing completely the organ from the
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Figure 3.25. Model textured with distant images, while a close up image brings significant
improvement in resolution, as seen on the bottom part of the pillar. Green line marks the
texture boundary.

sanctuary (visible in Fig. 3.22), that was only added recently, we could visualize how the
sanctuary could have looked like centuries ago. This kind of depiction is only possible on
such 3D data. An example is shown in Fig. 3.27, it is noticeable how the windows, the walls
and the paintings behind the organ get visible on the second image.

Reformed Church of Kolozsnéma

There are two separate theories related to the foundation of the reformed church located in
the village of Kolozsnéma (Klížska Nemá). According to those theories the church could
have been a Turkish mosque or a Catholic chapel, however most likely in the reality the
church is a tower of a castle owned by the family Kolosfi, built approximately in 1375 at
the age of Ludwig the Great. It can be assumed that after the devastation ofthe castle the
church was built on its place and the crypt of Kolosfi’s can be still found under the building
keeping the possibility to perform an archaeological excavation in that area. A dream of the
people, living in Kolozsnéma, about the magnification of the church came trueduring the
ministry of Ferenc Borza (1784 to 1794). The congregation has renovated their church in
1819 and during the construction work a small window has been structuredat the western
part of the building in order to make the indoor part brighter. Due to the factthat the place
dedicated for the men was not big enough they have built a gallery at the western part and
in the same time 2 brand new windows have been constructed to keep the necessary level
of the natural brightness inside. Unfortunately a huge fire has destroyed all of the buildings
belonging to the congregation at the time of Albert Kőváry who was the last pastor of the
village living on site. In the fire almost all of the assets have been damaged likethe church,
the school, the bowles as well as both of the bells. The congregation was depressed by the
calamity, however they did not give up. The damaged church have been corrected on the
23rd of May 1858 and later in 1928 and 1929 the church has been renovated by the people
living in the village. The internal renovation of the church has been performed during the
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Figure 3.26. Overview of the colorized interior using the vertex based method. Some white
balance and exposure correction has been done on the camera images.

ministry of László Mikes at the second half of the 20th century (1951-1952) and finally in
the period of 2002 and 2004 the outer part of the building was renovated as well. In the
same time the roof was renewed and the slate used before have been replaced by shingle
respecting the strict rules regulating the renovation of the monuments. In the same time
period the mechanism of the bells have been automatized, the star on the top of the tower
was renovated, the pargeting was renovated as well as the doors and thewindows, further
the door located on the rotunda have been unfolded. In the past three years as a part of the
work to keep the consistency of the building the tower as well as the roof-structure made
from shingle has been repainted, the pulpit, the Chair of Moses, the galleryas well as the
benches have been renovated.

The exterior model of the church of Kolozsnéma is presented in Fig. 3.28. This exam-
ple illustrates well how only a reduced number of images can be sufficient to colorize the
complete model of such a building: we only used21 images in this case with good results.
Of course for a more complex structure more images will be needed to cover every part
without occlusion, and if important details have to be documented in higher resolution then
again the number of images will increase. In this scenario, we faced a similar issue as with
the organ in the sanctuary of the other church. The tombstones around thechurch did not
allow for capturing images of the walls without occlusion, so to be able to correctly colorize
the building without projecting the image of the tombstones on it, we had to make surethat
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Figure 3.27. Illustrating the sanctuary with and without the organ on a textured model.

Figure 3.28. Exterior model of the Kolozsnéma church. Point cloud colorized from only21
images using the vertex based method.
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these objects are also included in the 3D scans, and we kept them in the 3D model while
processing the data, simply to obstruct the parts that are not visible from a given camera’s
viewpoint. After the colorization is finished, these tombs can easily be removedif necessary
from the model.

3.5 Summary

In this chapter, a generic, nonlinear, explicit correspondence-less pose estimation method
was proposed. The absolute camera pose estimation is based on the 3D-2D registration
of a common Lidar-camera planar patch. The proposed method makes use ofminimal
information (plain depth data from 3D and radiometric information from 2D) andis general
enough to be used both for perspective and omnidirectional central cameras. The State-of-
the-Art performance of the proposed method was confirmed both on largesynthetic data sets
as well as on various real data experiments using different depth sensors, perspective and
omnidirectional cameras. The method could be further extended to handle internal camera
parameter estimation as well.

Since most of the current comparable point-based methods usually heavily rely on RGB
information, and struggle with surfaces having homogeneous color, or toomuch reflection,
our method has a clear advantage by not relying on 3D color information to solve the prob-
lem. As cultural heritage is becoming a field that frequently relies on digital methods in the
documenting processes, we proposed a workflow for the 2D-3D visualdata fusion based on
our region-based method, extended with a pose refinement step. The method enables us to
fuse color-calibrated high resolution information into the 3D model, by relying on at least
a single smooth region visible in both 3D and 2D domains, but it also makes use ofany
low quality 3D RGB information that might be available, to enhance the pose estimation re-
sults. Furthermore, since we are not directly using the RGB color values, the method works
with infrared, or even with hyperspectral images, that are widely popularimaging methods
amongst cultural heritage experts.

As we have found, another popular cultural heritage task is to create precise, metric,
laser scanned models of buildings or excavation sites both for analyzing and reconstruction
purpose. 2D-3D visual data fusion is still a major step of these processes, thus we proposed
a workflow, that this time relies on the data captured and registered using the dedicated
commercial software, and focuses more on the camera selection problem that is more chal-
lenging in such a large scale case. The pose estimation step of course couldbe replaced with
the region-based method propose in this chapter, at any time. While most of thecommercial
solutions can give good results in the generic setup, we deal with a different, more complex
case, when the camera is not attached to the scanner, this way being able to produce higher
level of detail, that is necessary for the heritage applications. The proposed method chooses
for every point the camera with the best view of that point based on different parameters.
We also presented a texture mapping step that takes advantage of the full resolution of the
captured images, and even enables us to create a reduced size model foronline visualization.
We have shown that the detail level of such a colorized 3D model can greatly be increased
from what we might get with a camera mounted on the scanner, by capturing high resolution
images of the important details by moving the camera closer and using higher focal length
lenses if necessary.





Chapter 4

Planar Homography, Relative Pose
and 3D Reconstruction

4.1 State of the Art Overview

Homography estimation is essential in many applications including pose estimation [106],
tracking [108, 107], structure from motion [109] as well as recent robotics applications
with focus on navigation [110], vision and perception [111]. Efficient homography esti-
mation methods exist for classical perspective cameras [15], but these methods are usually
not reliable in case of omnidirectional sensors. The difficulty of homography estimation
with omnidirectional cameras comes from the non-linear projection model yielding shape
changes in the images that make the direct use of these methods nearly impossible.

For the geometric formulation of omnidirectional cameras multiple models have been
presented in Chapter 2.1. When the camera is calibrated, which is typically the case in
practical application, then image points can be lifted to the surface of a unit sphere provid-
ing a unified model independent of the inner non-linear projection of the camera. The big
advantage of such a generic model is that many concepts from standard projective geome-
try (in particular homographies or stereo triangulation techniques) remain valid for central
omnidirectional cameras. For example, homography can be estimated using these spherical
points [108, 107]. Of course, pose estimation must rely on the actual imagestaken in a real
environment, hence we cannot rely on the availability of special calibration targets.

4.1.1 Related Work

Recently, region-based methods have been gaining more attention [111, 112], in particu-
lar affine invariant detectors [113]. Patch-based scene representation is proved to be ef-
ficient [114] and consistent with region-based correspondence-search methods [115]. A
classical solution is to establish a set of point matches and then estimate homography based
on these point pairs. For this purpose classical keypoint detectors, such as SIFT [116], are
widely used [109, 107] for omnidirectional images.

Unfortunately, big variations in shape resolution and non-linear distortion challenges
keypoint detectors as well as the extraction of invariant descriptors, which are key com-
ponents of reliable point matching. For example, proper handling of scale-invariant fea-
ture extraction requires special considerations in case of omnidirectionalsensors, yielding
mathematically elegant but complex algorithms [117]. In [118] a new computationof de-
scriptor patches was introduced for catadioptric omnidirectional cameras which also aims to
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reach rotation and scale invariance. In [109], a correspondence-less algorithm is proposed
to recover relative camera motion. Although matching is avoided, SIFT features are still
needed because camera motion is computed by integrating over all feature pairs that satisfy
the epipolar constraint. Epipolar geometry of omnidirectional camera pairs have also been
studied [119], which can be used to establish dense stereo matches. A number of works
discuss the possibility of featureless image matching and recognition (most notably [120]),
but with limited success. Our region-based homography estimation method is not affected
by any of these issues, since the strong non-linear distortion of the cameracan be eliminated
simply by working with normalized spherical patches instead, that are suitablefor solving
the homography estimation problem. We will show in this chapter that camera posecan be
directly factorized from the estimated planar homography of [Frohlich, Tamas, Kato,2016].

The importance of piecewise planar object representation in 3D stereo hasbeen rec-
ognized by many researchers. There are various solutions in case of standard perspective
cameras, many of them are making use of the plane induced homography: Habbecke and
Kobbelt used a small plane, called ’disk’, for surface reconstruction [122, 121]. They proved
that the normal is a linear function of the camera matrix and homography. By minimizing
the difference of the warped images, the surface is reconstructed. Furukawa proposed using
a small patch for better correspondence [114], then The surface is grown with the expansion
of the patches. The piecewise planar stereo method of Sinhaet al. [123] uses shape from
motion to generate an initial point cloud, then a best fitting plane is estimated, and finally
an energy optimization problem is solved by graph cut for plane reconstruction. Combin-
ing the work by Furukawa and Sinha [114, 123], Kowdleet al. introduced learning and
active user interaction for large planar objects [124]. Hoanget al.also started from a point
cloud [125] which was subsequently used for creating a visibility consistent mesh. In our
approach, planes are directly reconstructed from image region(s) rather than a point cloud.
Fraundorferet al. [126] used MSER regions to establish corresponding regions pairs. Then
a homography is calculated using SIFT detector inside the regions. Planar regions are then
grown until the reprojection error is small. Zhouet al. assumed the whole image is a pla-
nar object, and proposed a short sequence SfM framework called TRASAC [127]. The
homography is calculated using optical flow. Although the role of planar regions in 3D re-
construction has been noticed by many researchers, the final reconstruction is still obtained
via triangulation for most State-of-the-Art methods. Planar objects are onlyused for better
correspondences or camera calibration. Our approach in contrast provides direct solution
for the plane reconstruction problem, only relying on the planar homography estimated be-
tween image regions [Molnáret al., 2014].

Multi-view 3D reconstruction also has an important role in image-based urbanHDR
mapping and scene reconstruction [128]. New industrial applications aregaining ground
in the domain of street level mapping [129], maintenance, autonomous navigation and self
localization [130]. A key component in such applications is the simultaneous and efficient
solution of 3D reconstruction and pose estimation. Particularly the planar reconstruction of
objects like facades, walls, tables, traffic signs is an important task in many applications.
Numerous methods already exist for the extraction ofe.g. traffic signs using CNN [131]
and recognition using Deep Learning [132] or facade elements extractionusing RNN and
MRF [133]. Unfortunately feature-point matching on these surfaces is hard, thus classical
reconstruction approaches based on sparse point correspondences [15] will struggle. How-
ever, it is well known that a planar homography between a pair of image regions contains
information about both the camera relative pose and the 3D plane parameters, thus plane re-
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construction is possible from such a homography [134, 15, 112]. Based on this observation,
we will present a novel direct solution for the simultaneous relative pose estimation and
plane reconstruction formulated through a planar homography estimation problem between
corresponding image regions [Frohlich, Kato,2018].

4.1.2 Contributions

In this chapter, multiple homography estimation algorithms are proposed, that work directly
on segmented planar patches. As a consequence, our methods do not need extracted key-
points nor keypoint descriptors. In fact, we do not use any photometric information at all,
hence our methods can be used even for multimodal sensors. Since segmentation is required
anyway in many real-life image analysis tasks, such regions may be available or straightfor-
ward to detect. In our experiments, we have used simple interactive segmentations but au-
tomatic detection ofe.g.windows (which are quite common planar regions in urban scenes)
is also possible [135]. Furthermore, segmentation is less affected by non-linear distortions
when larger blobs are extracted. The main advantage of the proposed method is the use of
regions instead of point correspondences and a generic problem formulation which allows
to treat several types of cameras in the same framework. We reformulate homography es-
timation as a shape alignment problem, which can be efficiently solved in a similar way as
in [78]. We show in the first application how such a homography can be decomposed to find
the relative pose of the cameras in case of a general setup, and also in case of a well known
urban scene constraint, theweak Manhattan worldassumption. Quantitative evaluation on
synthetic datasets proved the methods robustness and efficiency.

Then we present a variational calculus based method for calculating the planar surface
parameters in a closed form solution only from the homography estimated between spheri-
cal cameras. Quantitative evaluation on a large set of synthetic data confirms the real-time
performance, efficiency and robustness of the proposed solution.

In the last application we present a direct method for simultaneous pose estimation and
3D plane reconstruction formulated as a homography estimation problem. The proposed
solution works directly on segmented planar patches, and is solved in a similar way as
in [78]. The main advantage of the proposed method is the generic problem formulation
which allows to treat several planes and multi-view camera systems in the same framework.
The method has been quantitatively evaluated on synthetic data and also on real data from
the KITTI dataset.

4.2 Homography Estimation for Omni Cameras

Given a scene planeπ, let us formulate the relation between its imagesD andF in two
omnidirectional cameras represented by the unit spheresS1 andS2. The mapping of plane
pointsXπ ∈ π to the camera spheresSi, i = 1, 2 is governed by (2.1), hence it is bijective
(unlessπ is going through the camera center, in which caseπ is invisible). Assuming
that the first camera coordinate system is the reference frame, let us denote the normal
and distance ofπ to the origin byn = (n1, n2, n3)T andd, respectively. Furthermore,
the relative pose of the second camera is composed of a rotationR and translationt =

(t1, t2, t3)T , that gives the transformation bringing a point given in the coordinate system
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Figure 4.1. Homography acting between omnidirectional cameras represented as unit
spheres.

of the second cameraC2 into the reference frame of the first cameraC1, as shown in Fig. 4.1

XC1 = RXC2 + t

thus projecting from sphereS2 to S1 is simply done by applying the same transformation,
then normalizing the transformed point onto the unit sphere:

xS1 =
RXS2 + t

‖RXS2 + t‖

Because of the single viewpoint, planar homographies, as defined in (2.12) stay valid for
omnidirectional cameras too [107].

4.2.1 Planar Homography for Central Omnidirectional Cameras

From our point of view,Φ provides an equivalentspherical imageby backprojecting the
omnidirectional image ontoS and the planar homographyH simply acts between these
spherical images [Frohlich, Tamas, Kato,2016], as shown in Fig. 4.1. Basically, the ho-
mography transforms the rays asxS1 ∝ HxS2, hence the transformation induced by the
planar homography between the spherical points is also bijective.H is defined up to a scale
factor, which can be fixed by choosingh33 = 1, i.e. dividing H with its last element, as-
suming it is non-zero. Note thath33 = 0 iff H(0, 0, 1)T = (h13, h23, 0)T , i.e. iff the origin
of the coordinate system in the first image is mapped to the ideal line in the secondimage.
That happens only in extreme situations,e.g.whenZ2 ⊥ Z1 andO2 is onZ1 in Fig. 4.1,
which is usually excluded by physical constraints in real applications. Thus the pointXπ

on the plane and its spherical imagesxS1, xS2 are related by

Xπ = λ1XS1 = λ2HXS2 ⇒ XS1 =
λ2

λ1
HXS2
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HenceXS1 andHXS2 are on the same ray [Frohlich, Tamas, Kato,2016] yielding

XS1 =
HXS2

‖HXS2‖
≡ Ψ(XS2) (4.1)

4.2.2 Homography Estimation

Given a pair of omnidirectional cameras observing a planar surface patch, how to estimate
the homography between its images, the spherical regionsDS ∈ S1 andFS ∈ S2? First,
let us formulate the relation between a pair of corresponding omni image pointsx1 andx2.
The corresponding spherical points are obtained by applying the camera’s inner projection
functionsΦ1, Φ2, which are then related by (4.1):

Φ1(x1) = XS1 =
HXS2

‖HXS2‖
= Ψ(Φ2(x2)) (4.2)

Any corresponding point pair(x1,x2) satisfies the above equation. Thus a classical solution
is to establish at least4 such point correspondences{(xi

1,x
i
2)}Ni=1 by standard intensity-

based point matching, and solve forH. However, the inherent non-linear distortion of
omnidirectional imaging challenges traditional keypoint detectors as well as the extraction
of invariant descriptors, which are key components of reliable point matching. Therefore
we are interested in a solution without finding point matches.

We will show that by identifying a single planar region in both omni images (denoted by
D andF , respectively),H can be estimated without any additional information [Frohlich,
Tamas, Kato,2016]. Since we do not have established point pairs, we cannot directly use
(4.2). However, we can get rid of individual point matches by integratingboth sides of (4.2)
yielding a surface integral onS1 over the surface patchesDS = Φ1(D) obtained by lifting
the first omni image regionD andFS = Ψ(Φ2(F)) obtained by lifting the second omni
image regionF and transforming it byΨ : S2 → S1. To get an explicit formula for these
integrals, the surface patchesDS andFS can be naturally parameterized viaΦ1 andΨ ◦Φ2

over the planar regionsD ⊂ R
2 andF ⊂ R

2:

∀XS1
∈ DS : XS1

= Φ1(x1),x1 ∈ D

∀ZS1
∈ FS : ZS1

= Ψ(Φ2(x2)),x2 ∈ F ,

yielding the following integral equation:

∫∫

D
Φ1(x1)

∥∥∥∥
∂Φ1

∂x11
×
∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =

∫∫

F
Ψ(Φ2(x2))

∥∥∥∥
∂(Ψ ◦ Φ2)

∂x21
×
∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22 (4.3)

where the magnitude of the cross product of the partial derivatives is known as the surface
element. The above integrals can be regarded as component-wise surface integrals of scalar
fields, yielding a set of 2 equations. Since the value of a surface integralis independent of
the parameterization, the above equality holds because both sides contain anintegral onS1,
parameterized throughΦ1 on the left hand side and throughΨ ◦ Φ2 on the right hand side.
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4.2.3 Construction of a System of Equations

Obviously, 2 equations are not enough to determine the8 parameters of a homography. In
order to generate more equations, let us remark that the identity relation in (4.2) remains
valid when a functionω : R3 → R is acting on both sides of the equation [78]. Indeed, for
a properly chosenω

ω(xS1
) = ω(Ψ(Φ2(x2))). (4.4)

We thus obtain the following integral equation from (4.3) and (4.4)

∫∫

D
ωi(Φ1(x1))

∥∥∥∥
∂Φ1

∂x11
×
∂Φ1

∂x12

∥∥∥∥ dx11 dx12 =

∫∫

F
ωi(Ψ(Φ2(x2)))

∥∥∥∥
∂(Ψ ◦ Φ2)

∂x21
×
∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ dx21 dx22 (4.5)

The basic idea of the proposed approach is to generate sufficiently many independent equa-
tions by making use of a set of nonlinear (hence linearly independent) functions{ωi}

ℓ
i=1.

Eachωi generates a new equation yielding a system ofℓ independent equations. Note how-
ever, that the generated equations contain no new information, they simply impose new
linearly independent constraints. Although arbitraryωi functions could be used, power
functions are computationally favorable [78]. In our experiments, we adopted the following
functions:

ωi(xS) = xli
1 x

mi

2 xni

3 ,

with 0 ≤ li,mi, ni ≤ 2 andli +mi + ni ≤ 3 (4.6)

These functions provide an overdetermined system of15 equations of the form of (4.5),
which can be solved in theleast squares sensevia a standardLevenberg-Marquardt(LM)
algorithm. The solution to the system directly provides the parameters of the homography
H.

The computational complexity is largely determined by the calculation of the integrals
in (4.5). Since both cameras are calibrated,Φ1 andΦ2 are known, hence the integrals on the
left hand side are constant which need to be computed only once. However, the unknown
homographyH is involved in the right hand side throughΨ, hence these integrals have to be
computed at each iteration of the LM solver. Of course, the spherical pointsXS2

= Φ2(x2)

can be precomputed too, but the computation of the surface elements is more complex.
First, let us rewrite the derivatives of the composite functionΨ◦Φ2 in terms of the Jacobian
JΨ of Ψ and the gradients ofΦ2:

∥∥∥∥
∂(Ψ ◦ Φ2)

∂x21
×
∂(Ψ ◦ Φ2)

∂x22

∥∥∥∥ =

∥∥∥∥JΨ
∂Φ2

∂x21
× JΨ

∂Φ2

∂x22

∥∥∥∥

Since the gradients ofΦ2 are independent ofH, they can also be precomputed. Hence
only Ψ(Φ2(x2)) andJΨ(Φ2(x2)) have to be calculated during the LM iterations yielding a
computationally efficient algorithm [Frohlich, Tamas, Kato,2016].

Normalization and Initialization

Since the system is solved by minimizing the algebraic error, proper normalization is critical
for numerical stability [78]. Unlike in [78], spherical coordinates are already in the range
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of [−1, 1], therefore no further normalization is needed. However, theωi functions should
also be normalized into[−1, 1] in order to ensure a balanced contribution of each equations
to the algebraic error. In our case, this can be achieved by dividing the integrals with the
maximal magnitude of the surface integral over the half unit sphere. We caneasily compute
these integrals by parameterizing the surface via points on the unit circle in thex− y plane
asf(x, y) = (x, y,

√
1− x2 − y2)T ,∀‖(x, y)‖ < 1. Thus the normalizing constantNi for

the equation generated by the functionωi is

Ni =

∫∫

‖(x,y)‖<1

|ωi(f(x, y))|

√
1

1− x2 − y2
dxdy (4.7)

To guarantee an optimal solution, initialization is also important. In our case, a good
initialization ensures that the surface patchesDS andFS overlap as much as possible. This
is achieved by computing the centroids of the surface patchesDS andFS respectively, and
initializing H as the rotation between them.

We have developed a homography estimation algorithm in this chapter, which is inde-
pendent of the camera’s internal projection functionsΦ1 andΦ2. However, the knowledge
of these functions as well as their gradient are necessary for the actual computation of the
equations in (4.5). The pseudo code of the proposed method is presentedin Algorithm 5.

Algorithm 5 The proposed homography estimation algorithm

Input: A pair of 2D omnidirectional images with the same planar region segmented
Output: HomographyH between the spherical images of the region

1: Back-project the 2D images onto the unit spheres usingΦ1 andΦ2.
2: Construct the system of equations of (4.5) using the polynomialωi functions in (4.6).
3: Normalize the equations using (4.7)
4: Initialize the homography matrixH with the rotation between the centroids of the

shapes on the sphere.
5: Solve the normalized nonlinear system of equations using the Levenberg-Marquardt

algorithm.

4.2.4 Homography Estimation Results

A quantitative evaluation of the proposed method was performed by generating a total of9
benchmark datasets, each containing100 image pairs. Images of24 different shapes were
used as scene planes and a pair of virtual omnidirectional cameras with random pose were
used to generate the omnidirectional images of 1MP. Assuming that these800× 800 scene
plane images correspond to5× 5 m patches, we place the scene plane randomly at around
1.5 m in front of the first camera with a horizontal translation of±1 m and±[5◦−10◦] rota-
tion around all three axes. The orientation of the second camera is randomlychosen having
±5◦ rotation around theX andY axis, and±10◦ around the verticalZ axis, while the lo-
cation of the camera center is randomly chosen from the[45− 55] cm, [100− 200] cm, and
[200 − 500] cm intervals, providing the first three datasets for 3 different baseline ranges.
The alignment error (denoted byδ) was evaluated in terms of the percentage of non over-
lapping area of the omni images after applying the homography.
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Figure 4.3. Alignment error (δ) on the synthetic dataset with various baselines (m is the
median, best viewed in color).

Figure 4.2. Alignment (δ) error of the homography for various internal projection models
(Scaramuzza [9, 14], Geyer and Daniilidis [6], and mixed;m stands for median).

Based on our experimental results, we concluded that aδ error below 5% corresponds to
a correct alignment with a visually good matching of the shapes. For the synthetic datasets,
error plots are shown in Fig. 4.2, Fig. 4.3, Fig. 4.5, and Fig. 4.7. Note that each plot rep-
resents the performed test cases sorted independently in a best-to-worst sense. In Fig. 4.2,
we present a quantitative comparison of homography estimation with each of the camera
models described in Chapter 2.1; as well as a test case with mixed cameras, where the first
camera uses the Scaramuzza’s polynomial representation and the secondadopts the general
catadioptric model. As expected, the quality of homography estimates is independent of
the internal projection functions, both models perform well, error plots almost completely
overlap. Therefore in all other test cases, we will only use Scaramuzza’s model from Chap-
ter 2.1.2.

The median value ofδ was0.60%, 0.72% and1.17% for the different baselines. In the
first 2 cases, with baselines having values under200 cm, we can say that only1% of the
results were above5% error, while in the case of the biggest baselines200 − 500 cm still
84% of the results are considered good, havingδ error smaller than5%. The wrong results
are typically due to extreme situations where the relative translation from the first camera
to the second camera’s position is in such a direction from where the image plane can be
seen under a totally different angle resulting a highly different distortion of the shape on the
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input image pair δ = 0.5%

input image pair δ = 2.6%

Figure 4.4. Typical registration results for the test cases with unfavorable camera pose. First
row shows a test case with big translation in thez, while the second row contains a test case
with region falling on the periphery of the image.

omni image.

Figure 4.5. Alignment error (δ) on the synthetic datasets with unfavorable camera poses (m
is the median, best viewed in color).

We have also tested the robustness of our method in some cases with unfavorable camera
poses. One such situation is when the image of the actual planar region gets captured on
the periphery of the omnidirectional image. It is well known, that these cameras have a
much higher distortion in these regions. For this purpose we generated another synthetic
dataset, making sure that all the regions fall on the periphery of the omnidirectional image.
Another situation is when the relative camera pose has a much higher translation along
theZ axis, resulting a considerable size difference of the regions on the omnidirectional
images. For this experiment a new synthetic dataset was generated with a bigger translation
along theZ axis (in the range of±1 m). The alignment errors of these two test cases are
shown in Fig. 4.5. As we can see, the differences in the size of the regionsthat occur when
having translation along theZ axis are well tolerated by the algorithm, a homography can
be estimated with almost the same precision. On the other hand, the higher distortion at the
periphery of the images results in considerable loss of resolution, hence the homography
estimation also looses some precision, but the median of theδ errors are still below2%.
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0% 5% 10% 15% 20%

0.72% 2.69% 4.17% 5.37% 6.79%

Figure 4.6. Typical registration results for various level of segmentation error. First row
shows the first image and the amount of segmentation error while the second row contains
the overlay of the transformed first image over the second image with theδ error (best
viewed in color).

Figure 4.7. Alignment error (δ) on the synthetic dataset with various levels of boundary
error (m is the median, best viewed in color).

In summary, these results demonstrate that the method is robust against both unfavorable
situations.

In practice, the shapes are segmented from real world images subject to various degree
of segmentation errors. Therefore robustness against segmentation errors was also evaluated
on simulated data. For this we used the dataset having the typical base distances of1− 2 m
and we generated segmentation error by randomly adding and removing squares uniformly
around the boundary of the shapes in one of the image pairs. A total of four datasets were
produced from5% up to20% of boundary error. Samples from these datasets can be seen
in Fig. 4.6, while Fig. 4.7 shows error plots for these datasets. Obviously, the median ofδ
error increases with the segmentation error, but the method shows robustness up to around
15% error level. In particular,80% and60% of the first two cases are visually good, while
only 44% and30% of the cases are below the desired5% δ error for larger segmentation
errors.

The algorithm was implemented in Matlab and all benchmarks were run on a standard
quad-core desktop PC, resulting a typical runtime of 5 to 8 seconds withoutthe code being
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Original image pair Registration result

Figure 4.8. Homography estimation results on real omni image pairs. Segmentedregions
are overlayed in lighter color, while the result is shown on the right as the transformed green
contours from the first image region over the second image.

optimized.

The real images, used for validation, were taken by a Canon 50D DSLR camera with
a Canon EF 8-15mm f/4L fisheye lens and the image size was 3MP. In our experiments,
segmentation was obtained by simple region growing (initialized with only a few clicks)
but more sophisticated and automatic methods could also be used. The extracted binary
region masks were then registered by our method and the resulting homography has been
used to project one image onto the other. Three such examples are illustratedin Fig. 4.8,
where the first two images are the input omni image pairs, showing the segmented region
in highlight, and the third image contains the transformed edges overlayed. Wecan observe
that in spite of segmentation errors and slight occlusions (e.g.by the tree in the first image
of Fig. 4.8), the edges of the reprojected region and the edges on the base image are well
aligned. We should also mention that while slight occlusions are well tolerated,our method
does not handle the occlusion of bigger parts of the region.

In the next sections we will show two applications that rely on such estimated homo-
graphies to retrieve the relative pose of the two cameras, and even the 3D reconstruction of
the planar surface used for the homography estimation.
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Figure 4.9. Homography factorization results showing theδ error(%) of the homography,
the rotation error and the translation error as the angle between the reference and factorized
translation vectors (m is the median).

4.3 Relative Pose from Homography

If we consider again that the homographyH is composed as in (2.12) from a rotationR, the
ratio t/d of the translation to the distance of plane and the normaln of the plane, we can
express the pose parameters as described in [136] using the singular value decomposition
(SVD) of H. Of course as thed distance of the plane is unknown, we can only express the
translationt up to a scale factor. We fixed this scale factor by choosing the last elementh33

of H to be1.

The parameters that we obtain by the decomposition method can easily be verified in
case of synthetic data, since we have the reference parameters saved during the dataset
generation. The error in the relative translation can be characterized byeither verifying the
angle between the estimated and reference translation vectors, or by scaling up the estimated
translation vector with the length of the reference translation and computing theEuclidean
distance between them. Here we have chosen to show the former one. The results can be
seen in Fig. 4.9, where test cases are sorted by increasingδ error. We can observe that on a
set of150 test cases the estimated homography is really good, theδ error was below2% in
all cases, and its median is less than0.6%. From a good input like this, the relative rotation
and translation of the cameras can be factorized with high precision, only0.19◦ median
error in the rotation, and0.51◦ in the direction of the translation vector.

The results show, that except a few test cases, the relative pose is determined with high
stability. These few test cases (the spikes on Fig. 4.9) can be better explained by looking at
Fig. 4.10 which shows only the factorized pose parameters for all test cases, sorted by the
rotation error. The plot confirms a clear correlation between these values, more visible on
the second half of the plot, where the rotation and translation error increases together. This
can be caused by the rare appearance of some specific camera configurations, where these
errors in the parameters can compensate each other’s effect, resulting inan overall good
overlap (hence a lowδ error) but spikes on Fig. 4.9.

Since theδ error of the homography in the previously mentioned dataset was consider-
ably low (0.57% of median error), we have also tested the factorization on the datasets with
simulated segmentation error used in Chapter 4.2.4, where the homography errors span on
a larger scale. The rotation error can be observed in Fig. 4.11. The effect of the worse ho-
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Figure 4.10. Homography factorization results showing the rotation error and the translation
error as the angle between the reference and factorized translation vectors, sorted by the
rotation error (m is the median).

Figure 4.11. Factorized rotation error with respect to different levels ofsegmentation error.
Test cases sorted independently (m is the median).

Figure 4.12. Factorized translation error with respect to different levelsof segmentation
error. Test cases sorted independently (m is the median).
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mographies can obviously be seen on the factorized rotation, but still, at10% segmentation
error, which resulted aδ error of4.17% for the dataset (see Fig. 4.7), the rotation error is
well below4◦ in median.

For the characterization of the translation errors in this case, we’ve expressed the Eu-
clidean distance between the scaled up translation and the reference translation vector. The
effect of the biggerδ error of the homographies in the different datasets can be observed in
this case as well, visible in Fig. 4.12. The median of approximately13 cm in the case of
the10% segmentation error can be considered a reasonably good result, since our regions
represent approximately5× 5 m surfaces in the scene.

4.3.1 Manhattan World Assumption

Manhattan worldassumption is quite common when working with images of urban or in-
door scenes [137, 138]. Although this is a strong restriction, yet it is satisfied at least
partially in man-made structures. A somewhat relaxed assumption is theweak Manhat-
tan world[110] consisting of vertical planes with an arbitrary orientation but parallel to the
gravity vector and orthogonal to the ground plane. Following [110], we can also take advan-
tage of the knowledge of the vertical direction, which can be computede.g.from an inertial
measurement unit (IMU) attached to the camera. While [110] deals with perspective cam-
eras, herein we will show that homographies obtained from omnidirectionalcameras can
also be used [Frohlich, Tamas, Kato,2016] and then we conduct a synthetic experiment to
evaluate the performance of the method.

Let us consider a vertical planeπ with its normal vectorn = (nx, ny, 0)T (z is the
vertical axis, see Fig. 4.1). The distanced of the plane can be set to 1, becauseH is
determined up to a free scale factor. Knowing the vertical direction, the rotation matrixR

in (2.12) can be reduced to a rotationRz around thez axis, yielding

H = Rz − (tx, ty, tz)(nx, ny, 0)T

=




cos(α)− nxtx − sin(α)− nytx 0

sin(α)− nxty cos(α)− nyty 0

nxtz nytz 1


 (4.8)

=



h11 h12 0

h21 h22 0

h31 h32 1




The estimation of such aweak Manhattanhomography matrix is done in the same
way as before, but the last column ofH is set to(0, 0, 1)T , yielding 6 free parameters
only [Frohlich, Tamas, Kato,2016]. In order to quantitatively characterize the performance
of our method, 2 synthetic datasets withweak Manhattan worldassumption were gener-
ated: first the 3D scene plane is positioned vertically and randomly rotated around the
vertical axis by[−10,+10] degrees, followed by a translation in the horizontal direction by
±[400 − 800] pixels, equivalent to[2 − 4] m such that the surface of the plane is visible
from the camera. For the second camera position we used a random rotationof [−10,+10]

degrees around the vertical axis followed by a horizontal translation of±[50 − 100] cm.
The second dataset only differs in the vertical position of the 3D scene plane: in the first
case, the plane is located approximately150 cm higher than in the second case. Fig. 4.13
shows the registration error for these datasets. As expected, having less free parameters
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Figure 4.13. Alignment error (δ) on the synthetic dataset withweak Manhattan constraint
(only vertical surfaces and horizontal camera rotation allowed).

Figure 4.14. Horizontal rotation error in relative pose (m is the median).

increases estimation accuracy (alignment error is consistently under2.5%) and decreases
computational time (typically 2-3 sec.).

Based on the above parametrization,H can be easily decomposed in the rotationα
and the translationt = (tx, ty, tz)T parameters of the relative motion between the cam-
eras [Frohlich, Tamas, Kato,2016]. For example, using the fact thatn2

x + n2
y = 1,

tz = ±
√
h2

31 + h2
32 (see [110] for more details).

Following the decomposition method of [110], the horizontal rotation angle of the cam-
era can be determined with a precision of around0.6 degrees, which means a precision of
slightly above 5% of the total rotation (see Fig. 4.14). As for the translationt, it can be
also recovered with an error of less than5 cm in the camera position. Note that the scale
of t cannot be recovered fromH, but during the generation of our synthetic dataset we also
stored the length of the translation, hence we can use it to scale up the unit direction vec-
tor obtained fromH and compare directly the distance between the original and estimated
camera centers. This is shown in the plots of Fig. 4.15.

Of course, classical homography decomposition methods could also be used. As an
example, we show the pose estimation results obtained on the same dataset usingthe SVD-
based factorization method from [106]. Fig. 4.14 and Fig. 4.15 show the rotation and trans-
lation errors for both methods. Although the differences are not big, onecan clearly see the
increased stability of [106].
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Figure 4.15. Translation error in relative pose (m is the median).

4.4 Plane Reconstruction from Homography

Returning to the equation that connects the projection rays of the two spheres through func-
tion Ψ,

XS1 =
HXS2

‖HXS2‖
= Ψ(XS2) (4.9)

we can clearly see, that the functionΨ is fully determined by the homographyH, hence
estimating the homography parameters usinge.g.the algorithm of [Frohlich, Tamas, Kato,
2016] provides the bijective mappingΨ between the spherical points of the omnidirectional
camera pair. We now present a simple, closed form solution [Molnáret al., 2014] to recon-
struct the normal vector of a 3D planar surface patch from the planar homography between
a pair of corresponding image regions and known omnidirectional cameras, that was vali-
dated using the homography estimation method presented in Chapter 4.2. Once the normal
vectorn is determined,d can be easily computed based on (2.12) as showne.g.in [15].

4.4.1 Normal Vector Computation

Although differential geometric approaches were used to solve various problems in projec-
tive 3D reconstruction, the approach proposed in [Molnáret al., 2014] is unique for omnidi-
rectional cameras to the best of our knowledge. For example, [139, 140] are about generic
surface normal reconstruction using point-wise orientation- or spatial frequency disparity
maps. Unlike [139, 140], which considers only projective camera and uses a parametriza-
tion dependent, non-invariant representation; [Molnáret al., 2014] uses a general omnidi-
rectional camera model and avoids point correspondences and reconstructs a planar surface
from the induced planar homography between image regions.

The notations in this section are widely used in classical differential geometry. For vec-
tors and tensors we use bold letters and italics for the coordinates. Standard basis is defined
by three orthonormal vectorse1, e2, ande3. 3D pointsX ∈ R

3 are identified with their
coordinates in the standard basisX = X1e1 + X2e2 + X3e3 or X = Xkek using the
summation convention (repeated indices in superscript and subscript position mean sum-
mation). Considering the visible part of the scene object as a reasonably smooth surfaceS
embedded into the ambient 3D space,S is represented by the general (Gauss) coordinates
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u1 andu2 as

S
(
u1, u2

)
= X1

(
u1, u2

)
e1 +X2

(
u1, u2

)
e2+

+X3
(
u1, u2

)
e3 = Xk

(
ul
)

ek (4.10)

The tangent space to surfaceS at a surface point
(
u1, u2

)
is spanned by the local (co-

variant) basis vectorsSk = ∂S
∂uk , Sk = Sk

(
u1, u2

)
, k ∈ {1, 2}. The corresponding con-

travariant basis vectorsSl, l ∈ {1, 2} are defined to satisfy the identitySl · Sk = δl
k, where

δl
k ,l ∈ {1, 2}, k ∈ {1, 2} is the Cronecker delta and the scalar product is denoted by dot.

The normal vector of the surface is defined by the cross productN = S1 × S2. Surface
area element is defined by the triple scalar product|nS1S2|

.
= n · (S1 × S2) wheren = N

|N|

is the unit normal vectorof the surface. The cross-tensor of the normal vectorN× =

S2S1 − S1S2 is a difference of two dyadic products of the local basis vectors. Dyadic
(direct) products are denoted by a simple sequence of the constituent vectors.

The dot product between dyads and vectors is defined such thatuv · w = (v ·w) u.
From this, using the triple product expansion formulaN× · v = N× v for any vectorv.

As usual, for the representation of vectors and second order tensorspurely with their co-
ordinates we use row vectors and two dimensional matrixes. The coordinaterepresentation
of a non-scalar quantityQ is denoted by[Q].

Camera Model Independent Correspondence Equations

Let us now have a closer look at the relation between a 3D pointX and its 2D images
(x1

i , x
2
i ) and(x1

j , x
2
j ) in a pair of camerasi andj. This has been studied in [141] for es-

tablishing an affine transformation between the images of a known surface using known
projection functions. First we briefly overview the derivation of this relation and then we
will show how to use it for computing normal vectors of planar surface patches from corre-
sponding image regions.

An image of the scene is basically a 3D→2D mapping given by two smooth projection
functions, the so called coordinate functions:x1

(
X1, X2, X3

)
andx2

(
X1, X2, X3

)
with

(x1, x2) being the 2D image coordinates. [Molnáret al., 2014] doesn’t assume any special
form of these coordinate-functions except their differentiability w.r.t. the spatial coordinates
X1, X2, X3. If the projected points are on the surface (4.10) too, the image coordinates
depend on the general parameters as well:

x1 = x1
(
X1

(
u1, u2

)
, X2

(
u1, u2

)
, X3

(
u1, u2

))

x2 = x2
(
X1

(
u1, u2

)
, X2

(
u1, u2

)
, X3

(
u1, u2

))
(4.11)

The mapping in (4.11) can be considered bijective in a small open disk around the point(
u1, u2

)
. Assuming that both the projection functions and the surface are smooth, these are

the conditions for differentiability and local invertibility. The differential[du] =
[
du1 du2

]T

represents a point shift on the surface with its effect on the image beingdx ≈ J · du where

[dx] =
[
dx1 dx2

]T
and the JacobianJ of the mapping is invertible [Molnáret al.,

2014].

Now consider a camera pair, distinguishing them with indicesi and j (note thati, j
indices used in subscript position doesn’t stand for “covariant” quantities). SinceJi is
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invertible, we can establish correspondences between the images taking thesame point shift
du ≈ Ji · dxi:

dxj = Jj · J
−1
i · dxj = Jij · dxj (4.12)

whereJij is the Jacobian of thexi → xj mapping. Now consider the derivative of a
composite functionf

(
X l
(
uk
))

, l ∈ {1, 2, 3}, k ∈ {1, 2}:

∂f

∂uk
=
∂X l

∂uk

∂f

∂X l
= Sk · ∇f, (4.13)

where∇f is the gradient w.r.t. the spatial coordinates andSk is the local basis vector along
the parameter lineuk. Applying this result to the projection functions, the components of
the Jacobians take the following form [Molnáret al., 2014]:

[Ji] =

[
S1 · ∇x

1
i S2 · ∇x

1
i

S1 · ∇x
2
i S2 · ∇x

2
i

]
,

[Jj ] =

[
S1 · ∇x

1
j S2 · ∇x

1
j

S1 · ∇x
2
j S2 · ∇x

2
j

]
(4.14)

Substituting (4.14) into (4.12), the products of the components of (4.14) enter into Jij .
For example, the determinant becomes

det [Ji] = ∇x1
i ·
(
S1 · ∇x

1
i

) (
S2 · ∇x

2
i

)
−
(
S2 · ∇x

1
i

) (
S1 · ∇x

2
i

)
(4.15)

which can be expressed by dyadic products equivalent to the surfacenormal’s cross tensor
as

det [Ji] = ∇x1
i · (S1S2 − S2S1) · ∇x2

i

= −∇x1
i ·N× · ∇x

2
i = − |N|

∣∣∣∇x1
i n∇x2

i

∣∣∣ , (4.16)

where|N| is the absolute value (length) of the surface normal vector [Molnáret al., 2014].
The components of the JacobianJij are then [141]:

[Jij ] =
1

|∇x1
i n∇x2

i |

[
|∇x1

jn∇x2
i | |∇x

1
i n∇x1

j |

|∇x2
jn∇x2

i | |∇x
1
i n∇x2

j |

]
(4.17)

The above quantities are all invariant first-order differentials: the gradients of the projections
and the surface unit normal vector. Note that (4.17) is a general formula: neither a special
form of projections, nor a specific surface is assumed here, hence it can be applied for any
camera type and for any reasonably smooth surface.

In [Molnár et al., 2014] it was shown how to use the above formula for computing the
normal vectorn, when both the projection functions and the JacobianJij are known. Let
us write the matrix components estimated either directly with affine estimator or taking the
derivatives of an estimated planar homography1 as:

[Jij ]est =

[
a1

1 a1
2

a2
1 a2

2

]
(4.18)

To eliminate the common denominator we can use ratios, which can be constructed

1The derivatives of a planar homography provides exact affine components.
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using either row, column, or cross ratios [Molnáret al., 2014]. Without loss of generality,

the equation for the 3D surface normal can be deduced using cross ratios a1

1

a2

2

and a1

2

a2

1

. After

rearranging equation[Jij ]est = [Jij ] we obtain:

n ·
[
a2

2

(
∇x2

i ×∇x
1
j

)
− a1

1

(
∇x2

j ×∇x
1
i

)]
=0

n ·
[
a2

1

(
∇x1

j ×∇x
1
i

)
− a1

2

(
∇x2

i ×∇x
2
j

)]
=0 (4.19)

Here we have two (known) vectors, both perpendicular to the normal:

p =n ·
[
a2

2

(
∇x2

i ×∇x
1
j

)
− a1

1

(
∇x2

j ×∇x
1
i

)]

q =n ·
[
a2

1

(
∇x1

j ×∇x
1
i

)
− a1

2

(
∇x2

i ×∇x
2
j

)]
(4.20)

Thus the surface normal can readily be computed as

n =
p× q

|p× q|
. (4.21)

In the remaining part of this section, we will show based on [Molnáret al., 2014], how to
compute the coordinate gradients∇xl

k, k = i, j; l = 1, 2 w.r.t. spatial coordinates andJij

in (4.17) for an omnidirectional camera pair.

Computing Coordinate Gradients for the Spherical Camera Model

The Jacobian (4.17) includes the coordinate gradients w.r.t. spatial coordinates. These quan-
tities were derived in [Molnáret al., 2014] for the general spherical camera model presented
in Chapter 2.1.2. For the sake of simplicity, the calculations are done in the camera coordi-
nate system, but coordinate gradients calculated below can be easily transformed into any
world coordinate system by applying the rotation between that world coordinate frame and
the camera.2

As described in Chapter 2.1.2, the functionΦ is fully defined by the internal cam-
era parameters(a0, a2, a3, a4). Therefore the unit projection sphereS can be naturally
parametrized by the omni image coordinatesx =

(
x1, x2

)
. Spatial pointsX ∈ R

3 are
identified by the unit sphere points (i.e. the directions) denoted byXS , whereXS ·XS ≡ 1,
and their distance from the projection sphere’s center denoted byx3 ≡ ‖X‖ such that

X = x3XS . (4.22)

Note that the above equation follows from (2.1) and it is a non-Cartesian parametrization of
R

3 from which the gradients of the first two parameters
(
x1, x2

)
are required. The identity

δl
k =

∂X

∂xk
·
∂xl

∂X
= gk · ∇x

l (4.23)

is the basic differential geometry relation between the covariantgk = ∂X
∂xk and contravariant

∇xl = gl basis vectors of the parametrization [Molnáret al., 2014]. Applying (4.23) to

2Gradients are constructed by derivation, hence the translation to any other world coordinate system cancels
out from the formulae.
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(4.22), we have:

gk =
∂X

∂xk
= x3 ∂Φ

∂xk
, k ∈ {1, 2}

g3 =
∂X

∂x3
= XS . (4.24)

From this, the metric tensor componentsgkl = gk · gl, k, l ∈ {1, 2, 3} are

gkl = glk =
(
x3
)2 ∂Φ

∂xk
·
∂Φ

∂xl
, k, l ∈ {1, 2}

gk3 = g3k = 0, k ∈ {1, 2} (4.25)

g33 = XS ·XS = 1 .

Note that the second line of (4.25) follows from the derivation of the constraint XS ·

XS ≡ 1. Using the basic result from differential geometrygl = glkgk, whereglk are
the components of the inverse metric tensor, and observing that the metric tensor has the

special form

[
[glk] 0

0T 1

]
, the first two contravariant basis vectors (the sought coordinate

gradients) can be independently expressed [Molnáret al., 2014] from the third vector such
that

[
∇x1

∇x2

]
=

[
g11 g12

g12 g22

]−1 [
g1

g2

]

=
1

x3

[
∂Φ
∂x1 ·

∂Φ
∂x1

∂Φ
∂x1 ·

∂Φ
∂x2

∂Φ
∂x1 ·

∂Φ
∂x2

∂Φ
∂x2 ·

∂Φ
∂x2

]−1 [ ∂Φ
∂x1

∂Φ
∂x2

]
. (4.26)

In the above equation, coordinate gradients are expressed purely with the unit sphere’s local
basis vectors̃gk = ∂Φ

∂xk induced by the image coordinates and the distance between the
observed point and the center of the projection spherex3. Note thatx3 cancels out from the
normal calculation in (4.21) by division. Once the normal is determined, any component of

(4.17) provides an equation forx3

i

x3

j

.

Computing the Jacobian Components

Let us now see how to construct the elementsak
l of the Jacobian matrix in (4.18) acting

directly between the omnidirectional images. Denoting the Cartesian coordinates w.r.t. the

centers of the unit spheres representing the camerasi andj by [xi] =
[
z1

i z2
i z3

i

]T
and

[xj ] =
[
z1

j z2
j z3

j

]T
. These spherical points are related by the bijective mappingΨ

as derived in Chapter 4.2.1, which can be directly estimated by estimating the homography
between the cameras,e.g.with the method presented in Chapter 4.2.2. Its JacobianJΨ,

composed of the partial derivativeshk
l

.
=

∂zk
j

∂zl
i

, associates coordinate differentials from the

sphere pointsi to the sphere pointsj:



dz1

j

dz2
j

dz3
j


 =



h1

1 h1
2 h1

3

h2
1 h2

2 h2
3

h3
1 h3

2 h3
3






dz1

i

dz2
i

dz3
i


 (4.27)
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This Jacobian can be translated to the Jacobian that acts between image coordinatesxk
j and

xl
i, k, l ∈ {1, 2}. According to [Molnáret al., 2014], the condition expressing that two

nearby points are constrained to a sphere can be written as

(
z1 + dz1

)2
+
(
z2 + dz2

)2
+
(
z1 + dz3

)2
=
(
z1
)2

+
(
z2
)2

+
(
z3
)2
, (4.28)

hence

z1dz1 + z2dz2 + z3dz3 = 0 . (4.29)

From (4.29), the third differential is

dz3 = −

(
z1

z3
dz1 +

z2

z3
dz2

)
. (4.30)

This differential constraint reduces the DoF of the Jacobian in (4.27) byone. Only two
lines remain linearly independent. Choosing the first two lines and replacingdz3

i by the
right hand side of (4.30), the equations between the coordinate differentials become

[
dz1

j

dz2
j

]
=



h1

1 −
z1

i

z3

i

h1
3 h1

2 −
z2

i

z3

i

h1
3

h2
1 −

z1

i

z3

i

h2
3 h2

2 −
z2

i

z3

i

h2
3



[
dz1

i

dz2
i

]
. (4.31)

According to (2.6), image pointsxl, l ∈ {1, 2} and sphere pointszk, k ∈ {1, 2} are related
by the bijective mappingΦ on the whole domain of estimation. Therefore the differentials
are related by [

dz1

dz2

]
=

[
∂z1

∂x1

∂z1

∂x2

∂z2

∂x1

∂z2

∂x2

] [
dx1

dx2

]
,

hence the Jacobian that maps image differentialsdxj = Jij · dxj is as follows:

[Jij ] =




∂Φ1

j

∂x1

j

∂Φ1

j

∂x2

j

∂Φ2

j

∂x1

j

∂Φ2

j

∂x2

j




−1 

h1
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Φ1

i
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i
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3 h1
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Φ3

i

h1
3

h2
1 −
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∂x1

i

∂Φ1

i
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 . (4.32)

Like the coordinate gradients, (4.32) contains only the components of unit spheres’ local
basis vectors∂Φi

∂xk
i

k ∈ {1, 2} and ∂Φj

∂xl
j

l ∈ {1, 2}. Since both cameras are calibrated,Φi and

Φj are known. Furthermore, the homographyH acting between the (spherical) regionsD
andF corresponding to the scene planeπ has been computed using [Frohlich, Tamas, Kato,
2016], Ψ is also know, henceJij is fully determined.

In summary, given a pair of corresponding regionsF andD in a pair of calibrated
omnidirectional cameras with known projection functionsΦi, Φj , the 3D scene planeπ can
be reconstructed through the following steps:

1. Estimate the homographyH acting between the corresponding spherical regionsF

andD (usinge.g.[Frohlich, Tamas, Kato,2016]), which givesΨ.

2. Estimate the relative pose(R, t) between the cameras. GivenH, this can be done by
homography factorization method,e.g. [106], [Frohlich, Tamas, Kato,2016].

3. Compute the normaln of π using the direct formula (4.21), and thend by a standard
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Figure 4.16. Homography error for the synthetic datasets (test cases sorted byδ error).

Figure 4.17. Distance error and normal error plot for the synthetic datasets (test cases sorted
on thex axis based on distance error, normal error values are scaled with the factor of 0.3
for better visualization).

method based on (2.12) [15].

4.4.2 Reconstruction Results

The proposed method was tested on3 datasets, each having approximately100 image pairs.
Images of24 different shapes were used as scene planes and a pair of virtual omnidirectional
cameras with random pose were used to generate the omni image pairs. Assuming that a
800 × 800 pixels scene corresponds to a5 × 5 m patch, we positioned the virtual cameras
at distances from the45− 55 cm,100− 200 cm, and200− 500 cm intervals respectively,
resulting 3 datasets with different camera base distances. The first step of our algorithm is
estimating a homography between the omnidirectional cameras. For this purpose, we use
the region-based method presented in Chapter 4.2. For reference, we show the homography
error on our synthetic dataset in terms of the percentage of non overlapping area (δ error)
sorted in increasing order in Fig. 4.16. The produced homographies have less than2% error
for about 256 examples. This is important as it directly affects the reconstruction accuracy
of our method.

Once the planar homography between the corresponding region pair is estimated, we
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Figure 4.18. Reconstruction results from a pair of synthetic omni images (red: recon-
structed, green: original 3D planar patch)
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Figure 4.19. Comparative normal error plot on our synthetic dataset with the method from
[15] (test cases sorted independently for the two methods)

Figure 4.20. Comparative distance error plot on our synthetic dataset withthe method from
[15] (test cases sorted independently for the two methods).

can compute the 3D surface normal and distance using the proposed closed form formula.
Sample 3D reconstructions for synthetic data is shown in Fig. 4.18. The green surface
is the ground truth surface and the red one is the recovered surface. Fig. 4.17 shows the
correlation of the error plots for the whole synthetic dataset. It is clear thatdistance error
plot runs together with the normal error, hence our method provides reliable reconstructions
for most test cases, giving low error rates for both surface parameters.

It is worth mentioning that the reconstruction algorithm’s runtime is only8 ms running
in Matlab on an Intel i7 3.4 GHz CPU with 8GB memory. This means it can reach real-time
speed due to the closed form solution adopted.

Comparison with a Classical Solution

We have performed an experimental comparison of our method with a well known classi-
cal plane from homography method described by Hartley and Zisserman [15] (the Matlab
code used is vgg_plane_from_2P_H.m3) and quantitatively demonstrated the performance
of our method with respect to that algorithm. The purpose of this experiment isto compare

3http://www.robots.ox.ac.uk/~vgg/hzbook/code/

http://www.robots.ox.ac.uk/~vgg/hzbook/code/
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Figure 4.21. Distance error rates (scaled with a factor of0.1 for better visualization) corre-
sponding to the homography error (test cases sorted by the homographyerror)

our direct method derived via differential geometric considerations with a classical direct
methods derived via projective geometric considerations, as a basis. Results show that our
method is significantly better in determining the correct normal vector. The error shown in
Fig. 4.19 is computed as the angle in degrees between the calculated and the ground truth
normal vectors: mean value of our method was only0.66◦, while the classical plane from
homography method produced4.32◦ error on average. We remark that an error above5◦ can
be considered a completely wrong result. The relative distance error of thereconstructed
plane is shown in Fig. 4.20. On these plots we can see that the precision of thetwo methods
is almost identical, because both approaches use a similar way to computed, giving a mean
value of4.0% and4.7% respectively, Hartley’s being the better.

Robustness

As we mentioned before, the precision of the estimated homography is crucialfor 3D re-
construction. As we can see in Fig. 4.21 the distance error of the reconstruction is low, until
the homography error is below2 − 3% but then with bigger homography error it increases
exponentially. We can observe the same behavior in the normal vector calculation as shown
in Fig. 4.22.

The accuracy of the proposed method depends not only on the quality of the homog-
raphy estimation, but also on the determined camera pose parameters. Obviously, normal
estimation is only affected by the rotation matrix, while distance calculation depends on
both rotation and translation. To characterize the robustness of our methodagainst errors in
these parameters, we added various percent of noise to the original values and quantitatively
evaluated the reconstruction error on our synthetic dataset. Table 4.1 andTable 4.2 show
that both distance and normal estimation are sensitive to rotation errors in the camera pose,
being robust up to2◦ degree of rotation error, and distance estimation can tolerate up to
5% translation error as well (see Table 4.3). Normal estimation is more sensitive torotation
error around theZ axis, while distance errors increase more with rotation errors around the
X axis.
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Figure 4.22. Normal error rates (scaled with a factor of0.1 for better visualization) corre-
sponding to the homography error (test cases sorted by the homographyerror)

Table 4.1. Normal error(deg) w.r.t. rotation error added in different axes

Noise(deg) 0 0.5 1 2 4
x 0.55 0.85 1.46 1.89 4.14
y 0.55 0.78 1.21 1.80 3.36
z 0.55 1.23 1.66 3.09 5.59

Table 4.2. Distance error(%) w.r.t. rotation error added in different axes

Noise(deg) 0 0.5 1 2 4
x 2.59 2.71 4.56 4.92 7.71
y 2.59 2.73 2.98 3.01 3.36
z 2.59 2.94 3.11 3.36 4.67

Table 4.3. Distance error(%) w.r.t. added translation error

Noise(%) 0 2 5 10 15
2.59 3.24 5.41 8.73 14.97

Baseline is another important parameter of 3D reconstruction. Three different datasets
(as described at the beginning of this section) were used to test the effect of short, medium
and large baselines on reconstruction precision. Fig. 4.23 shows the distance error while
Fig. 4.24 shows the normal error with respect to each baseline. Of course, shorter base-
line has higher error rate, which is a well known fact for stereo reconstruction. However,
homography errors are smaller in case of short and medium base distances (see Fig. 4.25),
hence overall reconstruction performence is better for these datasets.
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Figure 4.23. Distance error plots w.r.t. different baselines (test cases sorted independently,
m is the median of errors).

Figure 4.24. Normal error plots w.r.t. different baselines (test cases sorted independently,
m is the median of errors).
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Figure 4.25. Homography error w.r.t. different baselines (test cases sorted independently,
m is the median of errors).

4.5 Simultaneous Relative Pose Estimation and Plane Recon-
struction

In contrast to the methods presented in the previous sections, where a plane induced ho-
mography was first estimated between image regions, then the relative pose of the cameras
was factorized, finally being able to calculate the parameters of the plane based on these
estimated values, here we present a simultaneous solution for all the above problems for
perspective cameras.

4.5.1 Methodology

Starting from the absolute pose of perspective cameras, as described inChapter 3.2.2, we
can work directly with the normalized images (3.9)

x = K−1x̃ ∼= [R|t]XW . (4.33)

Let us formulate the relation between a given scene planeπ and its imagesD0 andD1 in two
normalized cameras (see Fig. 4.26). Assuming that the first camera coordinate systemC0 is
the reference frame, let us representπ by its unit normaln = (n1, n2, n3)⊤ and distance
d to the origin. Furthermore, the relative pose of the second camera frameC1 is a 3D rigid
body transformation(R1, t1) : C0 → C1 composed of a rotationR1 and translationt1,
acting between the camera framesC0 andC1. Thus the image in the first and second camera
of any homogeneous 3D pointX of the reference frame is given by

xC0

∼= [I|0]X and xC1

∼= [R1|t1]X. (4.34)

The mapping of 3D plane pointsXπ ∈ π into the camerasCi, i = 0, 1 is governed by the
same equations, giving rise to a planar homographyH1

π : D0 → D1 induced byπ = (n, d)

between the image regionsD0 andD1. H1
π is bijective (unlessπ is going through the
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camera center, in which caseπ is invisible), composed up to a scale factor as

H1
π ∝ R1 −

1

d
t1n⊤. (4.35)

Thus for any pointXπ ∈ π, we have the following relation between the corresponding
normalized image pointsxC0

andxC1
:

xC1

∼= H1
πxC0

∼= (R1 −
1

d
t1n⊤)xC0

. (4.36)

The classical solution is to find at least4 such point matches and solve forH1
π, then fac-

torizeR1, t1, andn from H1
π (d cannot be recovered due to the free scaling factor) [134].

However, the extraction of point correspondences in urban environment can be challenging
due to repetitive structures and textureless facades, while planar regions are easier to seg-
ment and matching between frames is not affected by repetitive structures iflimited camera
movement is assumed. Therefore our region-based approach [Frohlich, Kato, 2018] can
robustly recover the alignment of non-linear shape deformations via the solution of a spe-
cial system of equations without established point correspondences. In particular, we will
show that by identifying a pair of planar regions in two camera images, the relative pose
as well as the 3D plane parameters can be solved up to scale without establishing any fur-
ther correspondences between the regions. Of course, this is just the necessary minimal
configuration. The more such regions are available, a more stable solution isobtained. Fur-
thermore, when more cameras are available, then a special region-basedbundle adjustment
can be constructed within the same algebraic framework.

Following the idea of [78] we can avoid the need of working with point correspondences
by integrating out both sides of (4.36), yielding the following integral equation:

∫

D1

xC1
dxC1

=

∫

D0

H1
πxC0
|JH1

π
(xC0

)|dxC0
, (4.37)

where the integral transformationxC1
= H1

πxC0
, dxC1

= |JH1
π
(xC0

)|dxC0
has been ap-

plied. SinceH1
π is a3×3 homogeneous matrix with only8 DoF, we will set its last element

to 1. Note that the above equality is true for inhomogeneous point coordinatesxCi
, which

are obtained by projective division. The Jacobian determinant|JH1
π
| : R2 → R gives the

measure of the transformation at each point [78].

The above equation corresponds to a system of2 equations only, which is clearly not
sufficient to solve for all parameters. As it has been previously shown in[78], applying
an appropriate set of functions on both sides of an equalitya = b it remains valid for
f(a) = f(b), thus enabling us to construct new equations. Indeed, (4.36) remains valid
when a functionω : R2 → R is acting on both sides of the equation, yielding the integral
equation ∫

D1

ω(xC1
) dxC1

=

∫

D0

ω(H1
πxC0

)|JH1
π
(xC0

)|dxC0
. (4.38)

Adopting a set of nonlinear functions{ωi}
ℓ
i=1, eachωi generates a new equation yielding

a system ofℓ independent equations. Hence we are able to generate sufficiently many
equations. According to [78], power functions are computationally favorable, thus in our
experiments, we adopted the following functions up to powero:

ωi(x) = xmi

1 xni

2 , with 0 ≤ mi, ni ≤ o (4.39)
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Figure 4.26. Projection of a 3D planeπ in a multi-view camera system.

The unknown relative pose(R1, t1) and 3D plane parameters(n, d) are then simply ob-
tained as the solution of the nonlinear system of equations (4.38).H1

π has8 degree of
freedom (DoF), becausen is a unit vector with2 DoF andt/d can only be obtained up to
scale, so it has only3 DoF. Thus we need8 equations which can be constructed usingωi

functions from (4.39) with0 ≤ mi, ni ≤ 2 andmi + ni ≤ 3. In practice, however, an
overdetermined system is constructed, which is then solved in theleast squares senseby
minimizing the algebraic error via a standardLevenberg-Marquardtalgorithm.

Reconstruction of Multiple Regions

Let us now investigate the case, when a pair of cameras is observing multiple 3Dscene
planes. Each planeπi generates a homographyH1

πi
between the corresponding image re-

gionsD0
i andD1

i . While (4.36) and (4.38) remain valid for each of these homographies,
note that the relative pose(R1, t1) of the cameras is the same for allH1

πi
, they only differ

in the 3D plane parameters(ni, di). Hence for all{πi}
N
i=1, we have

xC1

∼= H1
πi

xC0

∼= (R1 −
1

di
t1n⊤

i )xC0
, with xC0

∈ D0
i andxC1

∈ D1
i (4.40)

and (4.38) becomes a system ofN equations [Frohlich, Kato,2018] in terms of the common
camera pose(R1, t1) and the parameters(ni, di) of the 3D planes{πi}

N
i=1:

∫

D1

i

ω(xC1
) dxC1

=

∫

D0

i

ω(H1
πi

xC0
)|JH1

πi
(xC0

)|dxC0
, 1 ≤ i ≤ N (4.41)

For a givenω function, the above equations provideN constraints on the relative pose
parameters, but only1 constraint for each planeπi, having a total ofN equations. Note
also, that we have one free scaling factor for the whole system in (4.41),because a relative
di parameter for the planes need to be determined, only one of them can be setfreely.
Therefore the minimal number of equations needed to solve for2 cameras andN ≥ 1

planes isE = 6 + 3N − 1. In terms of the necessary powers ofωi functions in (4.39),o
should satisfy1 + o(o+ 2) ≥ E.
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Multi-view Reconstruction

When multiple cameras are observing the scene planes, then we can construct a system of
equations which contains multiple constraints not only for the camera relative poses but
also for each 3D plane. This way, we obtain a region-based bundle adjustment, where all
camera pose parameters and all 3D plane parameters are simultaneously solved [Frohlich,
Kato, 2018]. Let us have a closer look at these equations. First of all, a reference camera
frameC0 is chosen, which provides the reference coordinate system of the wholecamera
system: each camera’s relative pose is determined w.r.t.C0 and all planes are reconstructed
within C0. Assuming that all scene planes{πi}

N
i=1 are visible in every camera{Ck}

M−1
k=0 ,

each planeπi generates a homographyHk
πi

between the corresponding image regions in the

reference cameraD0
i and thekth cameraDk

i :

∀1 ≤ k ≤M − 1 : xCk
∼= Hk

πi
xC0

∼= (Rk −
1

di
tkn⊤

i )xC0
. (4.42)

Hence each camera provides a new constraint on the scene plane parameters(ni, di), yield-
ing a total ofM − 1 constraints for reconstructingπi. If a particular plane is not visible in
all other cameras, then the number of these constraints is reduced. As longas a particular
planeπi is visible in the reference camera and at least one other camerak, then it is possible
to reconstruct it using the equations constructed from the above homography, just like in the
minimal case discussed in Chapter 4.5.1.

A particular camera pair(C0, Ck) providesN equations in terms of the common camera
pose(Rk, tk) and the parameters(ni, di) of the 3D planes{πi}

N
i=1, yielding a system ofN

equations similar to (4.38). Therefore we get

∫

Dk
i

ω(xCk
) dxCk

=

∫

D0

i

ω(Hk
πi

xC0
)|JHk

πi
(xC0

)|dxC0
,

1 ≤ i ≤ N and1 ≤ k ≤M − 1 (4.43)

For a givenω function, the above equations provideN constraints on each relative pose
(Rk, tk), andM − 1 constraints for each planeπi, having a total ofN(M − 1) equations.
The minimal number of equations needed to solve forM ≥ 2 cameras andN ≥ 1 planes
isE = 6(M − 1) + 3N − 1. In terms of the necessary powers ofωi functions in (4.39),o
should satisfy1 + o(o+ 2) ≥ E.

Algorithmic Solution

The algorithmic summary of the proposed method for an arbitrary(M ≥ 3) multi-view
camera system is presented in Algorithm 5. The first part of the algorithm is tosolve for
each neighboring camera pair, that will provide the initial parameters for thesecond part.
This step does not require any specific initialization of the parameters, except thatdi = 0

should be avoided. Since plane distance is expressed as the distance from the plane to the
origin along the surface normal vector’s direction, it is a positive number ifthe origin is on
the same side of the plane as the normal, thus it can be initialized with an arbitrary positive
value, in our tests we used the initializationdi = 7. Since plane normal is of unit length,
it has only2 DoF, the third parameter is always calculated with the criteria that the normal
should point towards the camera. Since each pairwise solution provides a reconstruction in
one of the cameras, these have to be transformed into the common referenceframe ofC0,
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Algorithm 6 The proposed multi-view simultaneous algorithm

Input: M ≥ 3 2D image masks withN ≥ 1 corresponding planar regions
Output: Relative pose of the cameras w.r.t.C0, reconstruction(ni, di) of theN planes

1: Pairwise step:For eachM − 1 neighboring camera pair:
2: Initialize pose parameters with[I|0] and plane parameters withn = (0, 0,−1)T , d = 7

3: ConstructHπ using (4.40) and divide it by its last element
4: Construct and solve the system of equations of (4.41)
5: Multi-view step: Choose reference cameraC0

6: Write up relative poses w.r.t.C0 as (4.45) and transform reconstruction(ni, di) param-
eters intoC0 reference frame using (4.44)

7: Initialize reconstruction based on the filtered camera pairs
8: Write upHk

πi
(devided by its last element) for each camera pair(C0, Ck) using (4.42)

9: Construct and solve the system of equations of (4.43) forM cameras andN planes
simultaneously

that is practically chosen the middle camera. Plane parameters(n0
i , d

0
i ) are obtained from

(nk
i , d

k
i ) as

ni
0 = RkT nk

i and d0
i = dk

i + (nk
i )T tk (4.44)

Relative poses also have to be expressed in theC0 reference frame. For any cam-
eraCl that has a relative pose(Rk,l, tk,l) defined to its neighborCk, whose relative pose
(R0,k, t0,k) w.r.t. C0 is already known, then the relative pose ofCl in the reference frame
will be

(R0,l|t0,l) = (Rk,l|tk,l)(R0,k|t0,k), (4.45)

where(R|t) denote the homogeneous4× 4 matrix constructed fromR andt.

Since multiple camera pairs will provide alternative initializations for the reconstruc-
tion, and some pairs might be solved less precisely than others, we have to filter the camera
pairs. Comparing the algebraic error of the pairwise reconstructions we filter out the pair
with the highest error if it’s above the experimentally determined threshold of5e−9, and if
it’s bigger than3 times the median errors of the camera pairs. The reconstruction param-
eters of the remaining pairs are simply averaged out and together with the relative poses
expressed w.r.t.C0 (4.45) provide the input for the multi-view step.

For the numerical implementation of the equations we also included the alternative
forms of the equation using the inverse transformation and the reverse integral transfor-
mation as described in [78]. These mathematically redundant forms don’t provide extra
constraints for the parameters, but increase the numerical stability of the method.

4.5.2 Experimental Synthetic Results

For the quantitative evaluation of the proposed approach, a benchmark dataset is generated
with a greatly simplified real world urban environment in mind. The synthetic datais not
metric, but we can interpret it as having the planar shapes in the 3D scene represent1× 1 m
regions, which scales everything into a metric interpretation for easier understanding. A
scene was created by placing3 different planar shapes in 3D space having±20◦ relative
rotation around the vertical or horizontal axis and translated by1 − 2 m in the horizontal
and vertical direction, while1 − 3 m in depth. The scene is then captured by a 1Mpx
virtual camera placed at the initial distance of4 m from the middle plane, then moved into
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Figure 4.27. Comparison to homography estimation method of [78] in terms ofδ error of
the projections, and relative camera pose and plane parameters (factorized fromH by [78],
provided directly by proposed). (m stands for median).

5 different random positions, in such a way that the resulting positions forma movement
trajectory (see Fig. 4.26). Between each frame there is a random relativemovement of
up to0.5 m and a rotation of±5◦ around the vertical axis, and±2◦ around the other two
axes. The binary images captured by the camera are the input parameters of our algorithm,
having the correspondence between the regions provided. Practically there is no limitation
on the size difference of the projections. The results were quantitatively evaluated in the
pose and reconstruction parameters, as well as in terms of the aligning homography, which
is characterized by the percentage of the non-overlapping areas between the aligned regions
(denoted asδ error).

Minimal Case

The minimal case consists of one plane seen by two cameras, where we haveto estimate
a single homography aligning the planar image regions. First of all, we compared our
method to the homography estimation method of [78] that solves a similar system of equa-
tions but it is parametrized in terms of8 elements ofH1

π, while our method uses theR1,
t1, n, d parametrization. In Fig. 4.27, the first plot shows that despite having a different
parametrization, the stability of the proposed method remains similar. All synthetic plots
are sorted based on the error values. We have to highlight here that whilethe first method
only estimates a homography matrix with8 DoF, the proposed method estimates the param-
eters of the relative poseR1, t1, the 3D plane reconstructionn, d, as well as the composed
aligning homographyH1

π simultaneously, up to a scale factor.

Of course, we can decompose the homography matrix computed by the method of [78]
in terms of(R, t) and (n, d) using the standard decomposition of [134] which uses the
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Figure 4.28. Bundle adjustment refinement over5 cameras compared to a pairwise solution,
both with3 regions (m stands for median).

singular value decomposition (SVD) of the homography. In Fig. 4.27, we compare these
decomposed parameters with our results. We can observe that while the pose parameters
are obtained with similar precision, the plane reconstruction has slightly highererror in me-
dian, but also shows increased robustness in the last part of the plots. These results match
well with the slightly higherδ errors shown on the first plot in Fig. 4.27. We should high-
light here, that while this was a fair comparison to the baseline method [78], our method’s
advantage is the ability to handle multiple regions and camera images, since it will pro-
vide an optimized solution for the camera group with a common scale, instead of having
independent solutions for each region and camera pair.

Multi-View Reconstruction

As it was shown in Chapter 4.5.1, multiple cameras theoretically provide more constraints
for the reconstruction, while more planes on the pose parameters. To confirm this, we eval-
uated the proposed method with5 cameras in two different setups: First solving a pairwise
reconstruction for each neighboring camera pair, then in the second setup solving for all5
cameras, using the full algorithm as presented in Algorithm 6. In both cases, 3 planes were
used and the results were compared to the synthetic reference values, that were also used to
correctly scale the translation and plane distance parameters that are estimated only up to a
scale factor. The relative pose parameters are evaluated as absolute errors in the rotation an-
gles, and the difference in the total translation (see first row of Fig. 4.28). We can observe,
that the relevant improvement of the multi-camera setup is not necessarily visible in the
median error levels, but more so in the number of correct solutions. The number of camera
pairs solved with a relative pose error lower than0.5◦ in rotation and5 cm in translation is
increased from75% to above90%.
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Figure 4.29.5 camera results with1 region compared to3 regions evaluated in terms of the
pose errors (first row) and reconstruction parameters (second row), that were evaluated on
the same regions for the1 and3 region test cases.

Since the4 camera pairs in each test case were used separately in the 2-camera pairwise
setup, the reconstruction they provide will be4 different ones for the same plane, thus in
the second row of Fig. 4.28 we show both the minimum and average(n, d) errors of these
for each test case. In contrast, the bundle adjustment multi-view setup provides one single
reconstruction in the reference camera frame. We can see, that the bundle adjustment step
greatly reduces the mean errors that the pairwise solution had, approaching to the minimal
errors. Note thatd is evaluated as the difference of the scaled result and the reference
distance, expressed as a percentage of the ground truth.

Single Plane Reconstruction

An interesting scenario is a multi-view setup with only one plane available, therefore the
method was evaluated for theM = 5 andN = 1 setup. Results were compared to those
obtained on the full dataset using3 planar regions in each test case, to evaluate the improve-
ments given by the higher number of planes. As can be seen in the first rowof Fig. 4.29, the
rotation and translation parameters of the relative pose are greatly improveddue to multiple
different planes. In more than90% of the cases, all rotation errors were well below0.5◦ in
the3 region setup, while in the single region case the errors are below1◦ in half of the test
cases only. The translation parameters show the same improvement: from a median error
of 8 cm reducing errors to below5 cm in88% of the cases.

The reconstruction error plots in the second row of Fig. 4.29 show the errors in the
normal vector angle, and the plane distance. While in the first row on the horizontal axis,
the number of camera pairs were depicted which (having a reference dataset of150 test
cases each with5 consecutive frames of a scene with3 regions) consists of a total of600
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Figure 4.30. Segmentation error test results in terms of pose and reconstruction parameter
errors both in the case of perfect regions and regions with simulated segmentation errors of
2% and 5%.δ error measured on the perfect regions.

relative poses; in case of the reconstruction parameters we only have to refer to the separate
test cases since in each test case multiple cameras estimate one common reconstruction of
the scene. According to the plots in Fig. 4.29, we can observe that the planenormal is less
affected by the reduced number of planes, while the plane distance parameter is affected in
a quantity comparable to the pose parameters, which is expected, since up to apoint these
parameters are able to compensate each other if not enough constraints are given. But using
only two extra regions, the results can drastically improve: in85% of the test cases, the
distance of the plane is estimated with a relative error less then2% instead of10%.

Robustness Against Segmentation Errors

In order to evaluate the robustness of the proposed algorithm against theinevitable errors
occuring in image segmentation, we simulated segmentation errors by randomly changing
pixels around the contour of the regions by an amount of2% and5% of the size of the
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region. Herein, all tests were run in theM = 5 cameras andN = 3 planes setup.

The errors in the estimated relative pose on these specific datasets can be seen in the
first row of Fig. 4.30, where first the rotation errors of all the relative poses are plotted,
grouped by the axes, then the translation errors are shown next. All plotsare sorted in a
best to worst sense by each parameter separately, and the results are compared to the base
dataset which uses perfect segmentations. In the second row of Fig. 4.30, the reconstruction
errors are shown, that were estimated simultaneously with the relative pose by the proposed
algorithm. Both plane normal and distance errors are evaluated in light of the segmentation
errors.

Analyzing the pose and reconstruction parameters at the same time, one can observe
that the segmentation errors have a similar impact on all the parameters, but stillthe median
rotation errors don’t exceed0.5◦ except the rotation around the verticalX axis in the5%

segmentation error case. Based on the relative pose results,5% segmentation error could be
acceptable in many applications, where10 cm translation errors are acceptable, but due to
the reconstruction being more sensitive to these, a segmentation error of less than2% would
be desirable in most applications. On the last plot in Fig. 4.30, theδ errors are shown. We
can see that in about66% of the cases, aδ error of less than3% is achieved even in the
presence of segmentation error. Based on our previous experiences, in many applications a
δ error of up to5% is considered a correct solution.

4.5.3 Real Data Experiments

In the first real data test case, we present the results on a high resolution 2D-3D dataset,
that contains ground truth pointcloud data captured by a precise Lidar scanner, 4K resolu-
tion UAV video frames and also the reference 3D positions of special markers placed in the
scene, which enabled the calculation of reference camera poses with UPnP [30] for each
camera frame, resulting a median forward projection error of the markers of only 1− 2 cm.
In urban environments the automatic segmentation of planar structures, windows, doors,
facades or boards could be solved with different methods [135], but inour tests the segmen-
tation of the corresponding planar regions on each frame was performedin a semi-automatic
way using region growing segmentation method available in commercial image editingpro-
grams, requiring only a few clicks of user intervention. The segmented2 regions are shown
in Fig. 4.31, marked with red on the first and last image frame. We used5 frames of the
video sequence, at1− 2 seconds distance from each other. The estimated parameters were
compared to the ground truth values (plane parameters were calculated from the point cloud
data). The relative camera pose rotations were estimated with a mean error of0.72◦, 0.2◦,
0.59◦ around theX,Y, Z axes, the maximum rotation errors being below1◦. The relative
translation was evaluated as the difference of the reference value and the correctly scaled up
estimated translation, that can be interpreted as a position displacement in the metric space.
These errors are between12 cm and33 cm. The error in the orientation of the estimated
plane normals was2◦ and2.95◦ respectively, while the error of the plane distance from the
origin was0.38 m and0.77 m. For a different perspective over the plane distance parame-
ter, we also calculated the distance from the camera to the center of the reference 3D region
and the reconstructed 3D region, since this might be more useful in many applications. At
camera-to-surface distances of14.1 m and21.4 m these errors represent3% and7% differ-
ences, respectively. These results comply with the synthetic test results shown in Fig. 4.30,
where we found that with higher segmentation error the plane distance error can go above
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Figure 4.31. Top: first and last image of the sequence, with the2 segmented corresponding
regions marked in red. Bottom: the reference camera positions (green), the estimated cam-
era positions (red) and the reconstructed 3D planar regions are shown(also including a side
view of both).

Figure 4.32. Results on the same sequence as in Fig. 4.31 but with 6 regions. The reference
camera positions (green), the estimated camera positions (red) and the reconstructed 3D
planar regions are shown (including close-up views from the side). Notethe improvement
in the relative camera poses!
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7%. Increasing the number of regions by using all the segmentable regions in thesame
sequence (see Fig. 4.32) the mean pose errors were reduced to0.12◦, 0.18◦, 0.13◦ rotation
and2.7− 16 cm translation; and the median reconstruction errors were5◦ and65 cm, thus
we considered test cases with less regions are more interesting to show, since more regions
obviously increase the stability of the algorithm.

Comparison on KITTI Dataset

To test the applicability of the proposed method to urban road-scene applications we used
the KITTI [142] dataset. Having a camera attached to a car that is only capable of forward
motion and turns is a more challenging problem for pose estimation and reconstruction. A
region based plane reconstruction method could be applied in such an environment for ex-
ample for the reconstruction of traffic signs as planar objects. Unfortunately in the KITTI
dataset not all traffic signs are visible in the 3D pointclouds, due to their different height
and the position and orientation of the Velodyne scanner. We found that from higher dis-
tances these traffic signs were visible for the 3D scanner, thus we combined a sequence of
pointclouds using the ground truth poses and segmented traffic signs on these combined
pointclouds. Then selecting all the cases where this 3D segmentation was succesful, we
had from the KITTI Visual Odometry training video sequences41 different test cases. In
each test case the segmented traffic signs on5 consecutive frames were extracted using the
tool described in the previous section, while automatic segmentation of these objects is also
a well researched topic with many solutions,e.g. [131] also provides the boundary of the
signs.

The proposed method was tested both on the minimum number of3 frames, and on
5 frames per test case (using only one small segmented region from each frame) where
the latter showed slightly better reconstruction results, the individual relative poses showed
similar median errors but more robustness for the3 camera setup. This is caused by the
traffic signs moving out of the frame too fast, thus the more frames we try to use, the
more segmentation error we have on the extra images. Median errors on the dataset using
5 frames were of0.12◦, 0.24◦, 0.098◦ and0.088 m in the relative poses, and10.14◦ with
0.55 m the normal vector error and object distance of the reconstructions on the 41 testcases.
Nevertheless,80% of the cases were solved with reconstruction errors below20◦ in normal
vector, and1 m in the object center’s distance with5 frames.

Evaluating our results in a similar way as the official KITTI Visual Odometry bench-
mark, only on the above described test cases with reconstruction errorsbelow 20◦ and
1 m, using5 frames, we get a median translation error of5.28% and rotation error of
0.2126(deg/m), that is comparable to the published benchmark results of State-of-the-Art
methods (e.g.VISO2-M [143] is only better in rotation [T= 11.94%, R=0.0234(deg/m)],
but it cannot reconstruct traffic signs).

A direct comparison with feature based multi-view reconstruction methods canonly be
performed using the full images as inputs instead of just the segmented trafficsigns, since
those typically wouldn’t provide enough image features. For this we used the State-of-the-
Art Structure from Motion and multi-view reconstruction library COLMAP [144, 145] that
was recently rated the best of the tested15 reconstruction methods by [146]. We used the
C++ implementation with CUDA and reconstructed each test case from the same5 frames.
The median errors of the estimated camera poses and the reconstructed plane parameters
are given in Table 4.4. Note that COLMAP fails to find good initial image pairs in13 cases,
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Table 4.4. Quantitative results of the proposed method and COLMAP [144, 145] on the
KITTI dataset, evaluated only on test cases where reconstruction was inside the reference
bounding box

solved inBB norm.(◦) obj_d(m) R(◦/m) T(%) time

COLMAP 28/41 11/28 11.07 0.46 0.13 2.35 46
Proposed 41/41 34/41 8.63 0.47 0.17 4.53 15

Figure 4.33. Comparative results of the propsed method and COLMAP[144, 145]: Cam-
era poses (left) and a traffic sign reconstruction (right) shown in green(ground truth), red
(proposed), and blue (COLMAP).

thus providing no solution at all, while less then half of the solved cases provided a correct
reconstruction of the traffic sign that can be identified inside the1 m bounding box of the
reference. For a fair comparison we only evaluated the test cases where the traffic sign
was reconstructed inside the bounding box. The proposed algorithm notonly runs faster
with a native Matlab implementation, but it solves all test cases and reconstructs inside the
bounding box in34 test cases. An example result of frame220 of Sequence03 is shown in
Fig. 4.33.

4.6 Summary

In this chapter, a new homography estimation method has been proposed forcentral omni-
directional cameras. Unlike traditional homography estimation approaches,we work with
segmented regions corresponding to a 3D planar patch, hence our algorithm avoids the need
for keypoint detection and descriptor extraction. In addition, being a purely shape-based ap-
proach, our method works with multimodal sensors as long as corresponding regions can be
segmented in the different modalities. The parameters of the homography aredirectly ob-
tained as the solution of a system of non-linear equations, whose size is independent of the
input images. Furthermore, the method is also independent of the internal projection model
of the camera as long as the projection function and its gradient are known.The algorithm
is computationally efficient, allowing near-real time execution with a further optimized im-
plementation. We have presented different applications for the use of such estimated planar
homographies, first, for relative pose factorization assuming some real world scene con-
straints and the availability of the camera’s vertical direction, then for the reconstruction
of the planar region. These being closed form solutions, they run in real-time which can
be particularly useful for mobile and embedded vision systems. We have alsoproposed
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a novel simultaneous reconstruction, relative pose and homography estimation method for
perspective cameras. It constructs a system of non-linear equations,whose solution directly
provides the relative poses of the cameras, the reconstruction of the 3D planes, as well as
the aligning planar homographies between the image regions. It has been shown that with
more than two cameras, a special region-based bundle adjustment provides robust results
in a multi-view camera system. Quantitative evaluation on various synthetic datasets con-
firms the performance and robustness of the methods. We have also demonstrated, that the
accuracy of our homography estimates allows reliable estimation of extrinsic camera pa-
rameters and reconstruction of planar region of superior performancew.r.t. a classical plane
reconstruction algorithm. The simultaneous multi-view method was extensively validated
and compared with recent methods on the KITTI dataset, where it proved State-of-the-Art
performance.





Chapter 5

Conclusions

This thesis work presented the author’s research on three important computer vision topics,
namely pose estimation, 3D reconstruction and planar homographies. Since most of the
current solutions rely on the extraction and matching of point-wise features, the unusual
region-based registration formulation of the presented methods brings a novel approach to
these problems. Since large field of view omnidirectional cameras are getting preferential
in many modern applications, such as robotics, navigation or autonomous driving, most
of the region-based methods were presented using a general spherical camera model that
is valid for several types of dioptric and catadioptric cameras, and can also be applied for
the special case of traditional perspective cameras. The presented work intended to pro-
vide alternative solutions for well researched computer vision problems. The presented
region-based absolute pose estimation brings multiple advantages. Besides the fact that the
use of point features is completely avoided, in many real world scenes with homogeneous
untextured surfaces large smooth surfaces might be easier to identify thanrobust point fea-
tures, since such corresponding regions are easily detectable acrossdifferent modalities,
even in 3D without intensity information. This holds a large potential in many applications
in fields where multispectral, hyperspectral or IR imaging is used in combinationwith depth
data, such as cultural heritage, for which the thesis proposed two new 2D-3D data fusion
methods. Homography estimation is also mainly solved using well selected corresponding
points, thus the presented region-based homography estimation brings an alternative solu-
tion with the advantages mentioned above. Since many applications rely on a segmentation
of the input images, such planar regions may already be segmented out in a processing
pipeline (e.g. industrial production line surveillance, urban traffic signs or building facade
detection), thus the homography estimation can be straightforward, not needing any manual
user input, or extra feature detection that could fail due to the non-linear distortion of om-
nidirectional cameras. Based on the well known relation between the homography, relative
pose and inducing plane parameters [15], multiple solutions are presented for estimating
the relative pose between cameras, and reconstruction of the plane, bothby factorization
from an estimated general homography, and by parameterizing the homography estimation
problem itself through these parameters to have a direct solution of the problem.

The first topic of the thesis addressed a novel registration framework for the absolute
pose estimation of a camera with respect to a reference 3D coordinate frame, without us-
ing explicit point correspondences. The solution relies solely on segmented 2D-3D planar
patches. As little as one such segmented region pair is enough to estimate the extrinsic
parameters of the camera, but more regions increase the robustness andprecision of the

105



106 5. CHAPTER. CONCLUSIONS

method. The proposed method is general enough to be used both for perspective and omni-
directional central cameras. The method was validated on large synthetic datasets, and on
various real data test cases. Two applications were proposed focusing on cultural heritage,
first a pose estimation based on the extension of the method to non-planar regions, then a
2D-3D visual data fusion method, that described a full pipeline in which the proposed pose
estimation step can be included, but focused more on the problem of visual data fusion and
correct camera selection in case of large number of camera images. The pipeline was tested
on the large scale dataset of two Reformed churches.

The second topic addressed a region-based homography estimation methodvalid for
central cameras, that works with segmented regions corresponding to thesame 3D pla-
nar patch, hence it avoids the use of keypoints. Being a purely shape-based approach, the
method works with multimodal sensors as long as corresponding regions canbe segmented
in the different modalities. The method is computationally efficient, and independent of the
internal projection model of the camera as long as the projection function andits gradient
are known. Two applications based on closed form solutions were proposed that rely on
planar homographies estimated this way, one for the factorization of the cameras’ relative
pose, another for the reconstruction of the planar region. Quantitative evaluation on various
synthetic datasets confirms the performance and robustness of the methods, reconstruction
of planar regions showed superior performance w.r.t. a classical planereconstruction al-
gorithm. A novel simultaneous reconstruction, relative pose and homography estimation
method was also proposed, that relies on the construction of a system of non-linear equa-
tions, whose solution directly provides the relative pose of the cameras, the3D planar re-
construction of the region, as well as the aligning planar homographies between the image
regions. This method also relies on the 2D segmentation of planar regions, buta special
region-based bundle adjustment setup is applied, thus it can handle more than two cameras
in an optimal way. Validated on the KITTI dataset, the method proved State-of-the-Art
performance.



Appendix A

Summary in English

Computer visionis the scientific field that aims at analyzing and interpreting digital images
to gain higher-level understanding through the use of various computational tools. One of
the fundamental tasks is to determine the position and orientation of a camera in theworld,
i.e. estimate its absolute pose relative to a reference coordinate frame. Having at least two
images with known pose in a common coordinate frame directly enables us to reconstruct
the missing depth information of the scene, practically in the same way as the humanvisual
system does. The pose estimation is a vital step of any computer vision algorithm,while
3D reconstruction is also often needed in real world applications. Since our goal was to
propose novel region-based solutions for different problems, we could also make use of
planar homographies to gain a different approach of the problems. This work presents my
research on developing solutions for various problems related to pose estimation and 3D
reconstruction.

A.1 Key Points of the Thesis

In the following, I summarized my results into two main thesis groups. In the first one, I
present my findings on 2D-3D absolute pose estimation and visual data fusion, while in the
second one my results on planar homography estimation and 3D reconstruction are shown.
In Table A.1., the connections between the thesis points and the corresponding publications
are displayed.

I. Absolute Pose Estimation and Data Fusion
Inspired by the 2D registration framework of [78], [77] proposed a novel formulation
of the absolute pose estimation of a perspective camera with respect to a 3D depth
data as a general 2D-3D registration that works without the use of any dedicated cal-
ibration pattern or explicit point correspondences. This idea can be extended into a
general framework for the absolute pose estimation of central sphericalcameras, and
applied for different visual data fusion tasks. The basic idea is to set upa system
of non-linear equations whose solution directly provides the parameters ofthe align-
ing transformation. This thesis group summarizes my results on the absolute pose
estimation topic and two data fusion applications.

(a) I experimentally tested the performance of the absolute pose estimation algo-
rithm of omnidirectional cameras introduced in [Tamas, Frohlich, Kato,2014]
on synthetic data. For a common registration framework for central camerasI
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implemented the proposed spherical surface integral calculation that reformu-
lates [Tamas, Frohlich, Kato,2014] to work with triangles of a mesh represen-
tation, and I deducted an efficient 2D geometric moments calculation scheme
for the surface integrals of perspective cameras presented in [77]. Iproposed an
initialization step of the rotation and translation parameters for both spherical
and perspective cameras, that works automatically using the projection of the
corresponding 2D-3D regions. Through quantitative evaluation of the method, I
proved its performance, I compared it to previous point-wise spherical integral
approximation approach [Tamas, Frohlich, Kato,2014] on large scale synthetic
data, while also comparing the spherical and classical models applied for the
perspective camera. I also demonstrated the performance and usability ofthe
method on multiple real data test cases with different cameras and 3D sensors.

(b) For the first visual data fusion application for cultural heritage objects, I adapted
our region-based registration method [Tamas, Frohlich, Kato,2014] extending
it to non-planar, smooth surfaces. As part of the workflow, I proposed an ICP
refinement step based on intensity data edges, and a simple solution for the
multi-camera fusion problem based on the cameras’ orientation. I experimen-
tally proved that despite the change to non-planar surfaces, the robustness of
the method remains the same, while also conducting real tests on collected data
of cultural heritage objects. The second application focuses on the selection of
views from large number of cameras. I implemented a more complex camera
selection algorithm, to fully benefit from the different focal length, resolution
and position of cameras, based on multiple criteria, like visibility, sharpness,
viewing angle and resolution. Visualizing the fusion results required a solution
for the correct texture mapping between the 3D model and hundreds of texture
image files, thus I proposed a technical solution that can easily use the original
images as textures, without the need to create specially baked texture files. I
validated the proposed pipeline on the acquired 2D-3D large scale datasetof
two Reformed churches.

II. Planar Homography Estimation and 3D Reconstruction
The 2D registration framework of [78] can also be extended for estimating planar
homographies between spherical cameras. Practically the homographies would act in
this case between the spherical projections in the two cameras, representing the image
of the same planar region. In general, relative pose parameters, as wellas the normal
and distance of the inducing plane can be factorized from such a planar homography,
but due to the inherent parametrization of a planar homography, direct approaches
for solving the problem are also possible, avoiding the factorization step completely.
This thesis group summarizes my results on the planar homography estimation and
3D reconstruction topics.

(a) I experimentally validated the proposed region-based homography estimation
method for omnidirectional cameras using two of the most commonly used
models. Following [110] I deducted the decomposition of relative pose pa-
rameters from homographies assuming a weak Manhattan world constraint,
then proved its comparable performance to the standard factorization method
of [136] on synthetic data. If relative pose is available, one can also calculate
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the parameters of the inducing planar patch from the homography. I validated
the proposed differential geometric approach for the computation of the nor-
mal vector, using the homographies estimated by our method [Frohlich, Tamas,
Kato, 2016]. Through comparative evaluation on synthetic data, I proved, that
the proposed method outperforms the classical method of [15], and it is robust
against noise in the rotation and translation parameters.

(b) Taking a different approach on the homography estimation problem withper-
spective cameras, a standard parametrization of the homography was applied
through the relative pose and plane parameters. Each camera pair and each
available region pair defines a new homography, thus I deducted the homogra-
phy equations in a multi-camera multi-region setup through the common pose
and plane parameters, and validated the algorithm both in a minimal case setup,
and various configurations of cameras and regions. For the multi-camera setup
I built a bundle adjustment to simultaneously estimate all the unknown param-
eters of the system. I experimentally proved the method’s performance on syn-
thetic and on real data with precise Lidar pointcloud and marker based measure-
ments as reference, and also on the KITTI benchmark dataset where it proved
State-of-the-Art performance in comparison to the point-based multi-view re-
construction method of [144, 145].
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Summary in Hungarian

A számítógépes látásaz a tudományterület, melynek célja a digitális képek elemzése által,
különböz̋o számítási eszközöket felhasználva, magasabb-rendű információkhoz jutni. A te-
rület egyik alapvet̋o feladata egy kamera világhoz képesti pozíciójának és orientációjának a
meghatározása, vagyis egy referencia koordináta rendszerben kifejezett abszolút pose becs-
lése. Ha rendelkezésünkre áll legalább két kamera-kép és azok helyzete egy közös koordi-
náta rendszerben, lehetőségünk van direkt módon a képekről hiányzó mélységi információ
rekonstruálására, hasonló elv alapján, mint ahogy az emberi látás érzékeli a mélységet. A
pose becslés elengedhetetlen lépése bármely számítógépes látás algoritmusnak, míg a 3D
rekonstrukció is gyakran használt lépés valós alkalmazásokban. Mivel a kutatásom célja az
volt, hogy újszerű régió-alapú megoldásokat javasoljak az egyes alapvető problémákra, sík-
homográfiák használata által egy újfajta megközelítésre is lehetőségem nyílt. A dolgozatban
összefoglaltam a pose becsléssel és 3D rekonstrukcióval kapcsolatos kutatási eredményeim.

B.1. Az eredmények tézisszerű összefoglalása

A dolgozat eredményeit két fő téziscsoportban foglaltam össze, ahol az elsőben abszolút
pose becslésével és vizuális adatok fúziójával foglalkozom, míg a másodikban kamerák kö-
zötti síkhomográfia becsléssel és 3D síkrekonstrukcióval. A téziscsoportok és az elfogadott
publikációim közötti kapcsolatot a B.1 táblázatban prezentálom.

I. Abszolút pose becslés és adatfúzió

A [78] által bemutatott 2D regisztrációs módszer által inspirálva, [77] egy újféle ré-
gió alapú abszolút pose becslő megoldást javasolt, amely perspektív kamerák egy
3D tér-adathoz képesti helyzetét képes meghatározni egy általános 2D-3D regiszt-
rációs megoldással, mindenféle kalibrációs minta vagy explicit pontmegfeleltetések
használata nélkül. Ez az alap ötlet kibővíthet̋o egy általános abszolút pose becslési
keretrendszerré centrális szférikus kamerák számára, amely különböző, vizuális adat-
fúziós feladatokra alkalmazható. Az alap ötlet egy nem-lineáris egyenletrendszer
konstruálása, melynek a megoldása direkt módon adja meg a keresett transzformáció
paramétereit. Ez a tézis csoport az abszolút pose becslési és adat-fúziós témákban
elért eredményeimet foglalja össze.

(a) Kísérleti úton kimutattam az omnidirekcionális kamerák számára [Tamas, Froh-
lich, Kato, 2014] által bevezetett régió alapú abszolút pose becslő algoritmus
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teljesítményét. A centrális kamerák számára bemutatott általános regisztrációs
keretrendszerhez validáltam a gömbfelszíni háromszöghálón dolgozó integrál
számolót. A perspektív kamerák felszíni integráljainak számolására egy haté-
kony, 2D geometriai momentumok rekurzív felírásán alapuló számolási mód-
szert vezettem be. A forgatási és eltolási paraméterek inicializálására egy au-
tomatikus megoldást javasoltam perspektív és omni kamerák számára. A mód-
szert kvantitatív kiértékeltem szintetikus adathalmazokon, összehasonlítva ako-
rábbi pont-alapú integrál közelítéses megoldással, és vizsgálva a perspektív ka-
merák esetében a szférikus és klasszikus modell használatát. A módszer hasz-
nálhatóságát különféle kamerákkal és 3D szenzorokkal rögzített valós adatokon
is igazoltam.

(b) A kulturális örökségvédelmi objektumok vizuális-adat fúziójához adaptáltam a
régió-alapú regisztrációs módszerünket [Tamas, Frohlich, Kato,2014], kiter-
jesztve azt nem-sík, de sima régiókra. A javasolt munkafolyamat részeként egy
intenzitás információból kinyerhető élekre támaszkodó ICP alapú finomítási lé-
pést javasoltam, míg a több kamerából történő fúzióra egy egyszerű megoldást
a kamerák orientációja alapján. Kvantitatív kiértékelés alapján bizonyítottam,
hogy a módszer nem-sík felületekre kiterjesztve is robusztus marad, míg valós,
kulturális örökségvédelmi szempontból érdekes tárgyakon is helyes eredménye-
ket kaptam. A második alkalmazás egy nagyméretű kulturális örökségvédelmi
objektumok (például templomok) dokumentálására szolgáló fúziós munkafo-
lyamat, melyhez megoldást javasoltam a nagy mennyiségű nézőpont esetében
felmerül̋o kamera szelekciós kérdésre, ami figyelembe veszi az egyes kamerák
rálátását, élességét, betekintési szögét és felbontását. Az eredményekvizualizá-
ciójára javasoltam egy olyan technikai megoldást, amely képes nagy mennyisé-
gű, különálló textúra-kép kezelésére. A munkafolyamatot két református temp-
lomról rögzített 2D-3D nagyméretű adathalmazon validáltam.

II. Síkhomográfia becslés és 3D rekonstrukció
A [78] 2D regisztrációs megoldás kiterjeszthető szférikus kamerák között ható síkho-
mográfiák becslésére is. Lényegében ez esetben a homográfiák az azonos sík régiónak
megfelel̋o gömbfelszíni vetületek között értelmezhetőek. Általánosságban elmondha-
tó, hogy a relatív pose paraméterek és az indukáló sík paraméterei különböző mód-
szerekkel faktorizálhatóak ki az így meghatározott homográfiából, de asíkhomográfia
eredend̋o paraméterezésének köszönhetően direkt megoldásokra is lehetőség nyílik,
ezáltal kikerülhet̋o a faktorizálás, annak minden velejáró bizonytalanságával. Ez a
tézis csoport a síkhomográfia becslés és 3D síkrekonstrukció témákban elért eredmé-
nyeimet foglalja össze.

(a) Kísérleti úton igazoltam az omnidirekcionális kamerák között ható síkhomográ-
fiák becslésére javasolt módszert, többféle szférikus modellt felhasználva. [110]
által inspirálva bemutattam egy megoldást a relatív pose faktorizálására síkho-
mográfiából, amely vertikális irány ismeretében és egyManhattan világfel-
tételezés mellett a [136] standard módszerhez mérhető pontosságot produkált
szintetikus adatokon. Ha már a relatív pose paraméterei rendelkezésre állnak,
az indukáló sík paramétereit is meghatározhatjuk a homográfiából. A bemu-
tatott módszerünk [Frohlich, Tamas, Kato,2016] által becsült homográfiákkal
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igazoltam a sík normálvektorának a kiszámolására javasolt differenciál geomet-
riai megoldást. Szintetikus adathalmazon végeztem összehasonlító kiértékelést,
melyben a klasszikus [15] módszernél jobb teljesítményt értünk el, és a forga-
tási és eltolási paraméterekben levő hibákra is kell̋oen robusztusnak bizonyult a
módszerünk.

(b) A homográfia becslés az egyenletek megfelelő átparaméterezésével akár direkt
módon is megadhatja a kamerák relatív pose-át és a sík paramétereit, ezzel ki-
küszöbölhet̋o a homográfia faktorizálás és az azzal járó bizonytalanságok. Mi-
vel minden kamera pár és minden régió egy újabb homográfiát határoz meg,
ezek egyenleteit felírtam a közös paraméterek függvényében egy több kamerás
több régiós rendszerben, és validáltam az algoritmust úgy a minimális megoldá-
si esetben, mint több különböző konfigurációban is. A több kamerás esetre egy
kötegelt behangolási megoldást is javasoltam, mely szimultán módon egyszerre
finomítja az összes keresett paramétert. Az algoritmus teljesítményét kiértékel-
tem szintetikus és többféle valós adaton is: pontos Lidar pontfelhővel és marker
alapú referencia mérésekkel rendelkező saját adathalmazon, továbbá a KITTI
publikus adathalmazon is, ahol a módszerünk a legjobb pont-alapú általános
rekonstrukciós módszernél [144] jobban teljesített.
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