892 research outputs found

    Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    Get PDF
    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error)

    Intelligent signal processing for digital healthcare monitoring

    Get PDF
    Ein gesunder Gang ist ein komplexer Prozess und erfordert ein Gleichgewicht zwischen verschiedenen neurophysiologischen Systemen im Körper und gilt als wesentlicher Indikator fĂŒr den physischen und kognitiven Gesundheitszustand einer Person. Folglich wĂŒrden Anwendungen im Bereich der Bioinformatik und des Gesundheitswesens erheblich von den Informationen profitieren, die sich aus einer lĂ€ngeren oder stĂ€ndigen Überwachung des Gangs, der Gewohnheiten und des Verhaltens von Personen unter ihren natĂŒrlichen Lebensbedingungen und bei ihren tĂ€glichen AktivitĂ€ten mit Hilfe intelligenter GerĂ€te ergeben. Vergleicht man TrĂ€gheitsmess- und stationĂ€re Sensorsysteme, so bieten erstere hervorragende Möglichkeiten fĂŒr Ganganalyseanwendungen und bieten mehrere Vorteile wie geringe GrĂ¶ĂŸe, niedriger Preis, MobilitĂ€t und sind leicht in tragbare Systeme zu integrieren. Die zweiten gelten als der Goldstandard, sind aber teuer und fĂŒr Messungen im Freien ungeeignet. Diese Arbeit konzentriert sich auf die Verbesserung der Zeit und QualitĂ€t der Gangrehabilitation nach einer Operation unter Verwendung von InertialmessgerĂ€ten, indem sie eine neuartige Metrik zur objektiven Bewertung des Fortschritts der Gangrehabilitation in realen Umgebungen liefert und die Anzahl der verwendeten Sensoren fĂŒr praktische, reale Szenarien reduziert. Daher wurden die experimentellen Messungen fĂŒr eine solche Analyse in einer stark kontrollierten Umgebung durchgefĂŒhrt, um die DatenqualitĂ€t zu gewĂ€hrleisten. In dieser Arbeit wird eine neue Gangmetrik vorgestellt, die den Rehabilitationsfortschritt anhand kinematischer Gangdaten von AktivitĂ€ten in Innen- und Außenbereichen quantifiziert und verfolgt. In dieser Arbeit wird untersucht, wie Signalverarbeitung und maschinelles Lernen formuliert und genutzt werden können, um robuste Methoden zur BewĂ€ltigung von Herausforderungen im realen Leben zu entwickeln. Es wird gezeigt, dass der vorgeschlagene Ansatz personalisiert werden kann, um den Fortschritt der Gangrehabilitation zu verfolgen. Ein weiteres Thema dieser Arbeit ist die erfolgreiche Anwendung von Methoden des maschinellen Lernens auf die Ganganalyse aufgrund der großen Datenmenge, die von den tragbaren Sensorsystemen erzeugt wird. In dieser Arbeit wird das neuartige Konzept des ``digitalen Zwillings'' vorgestellt, das die Anzahl der verwendeten Wearable-Sensoren in einem System oder im Falle eines Sensorausfalls reduziert. Die Evaluierung der vorgeschlagenen Metrik mit gesunden Teilnehmern und Patienten unter Verwendung statistischer Signalverarbeitungs- und maschineller Lernmethoden hat gezeigt, dass die Einbeziehung der extrahierten Signalmerkmale in realen Szenarien robust ist, insbesondere fĂŒr das Szenario mit Rehabilitations-GehĂŒbungen in InnenrĂ€umen. Die Methodik wurde auch in einer klinischen Studie evaluiert und lieferte eine gute Leistung bei der Überwachung des Rehabilitationsfortschritts verschiedener Patienten. In dieser Arbeit wird ein Prototyp einer mobilen Anwendung zur objektiven Bewertung des Rehabilitationsfortschritts in realen Umgebungen vorgestellt

    Low Cost Inertial Sensors for the Motion Track-ing and Orientation Estimation of Human Upper Limbs in Neurological Rehabilitation

    Get PDF
    This paper presents the feasibility of utilizing low cost inertial sensors such as those found in Sony Move, Nintendo Wii (Wii Remote with Wii MotionPlus) and smartphones for upper limb motion mon-itoring in neurorehabilitation. Kalman and complementary filters based on data fusion are used to estimate sensor 3D orientation. Furthermore, a two-segment kinematic model was developed to estimate limb segment position tracking. Performance has been compared with a high-accuracy measurement system using the Xsens MTx. The experimental results show that Sony Move, Wii and smartphones can be used for measuring upper limb orientation, while Sony Move and smartphones can also be used for specific applications of upper limb segment joint orientation and position tracking during neurorehabilitation. Sony Move’s accuracy is within 1.5° for Roll and Pitch and 2.5° for Yaw and position tracking to within 0.5 cm over a 10 cm movement. This accuracy in measurement is thought to be adequate for upper limb orientation and position tracking. Low cost inertial sensors can be used for the accurate assessment/measurement of upper limb movement of patients with neurological disorders and also makes it a low cost replacement for upper limb motion measurements. The low cost inertial sensing systems were shown to be able to accurately measure upper limb joint orienta-tion and position during neurorehabilitation

    Smart Technology for Telerehabilitation: A Smart Device Inertial-sensing Method for Gait Analysis

    Get PDF
    The aim of this work was to develop and validate an iPod Touch (4th generation) as a potential ambulatory monitoring system for clinical and non-clinical gait analysis. This thesis comprises four interrelated studies, the first overviews the current available literature on wearable accelerometry-based technology (AT) able to assess mobility-related functional activities in subjects with neurological conditions in home and community settings. The second study focuses on the detection of time-accurate and robust gait features from a single inertial measurement unit (IMU) on the lower back, establishing a reference framework in the process. The third study presents a simple step length algorithm for straight-line walking and the fourth and final study addresses the accuracy of an iPod’s inertial-sensing capabilities, more specifically, the validity of an inertial-sensing method (integrated in an iPod) to obtain time-accurate vertical lower trunk displacement measures. The systematic review revealed that present research primarily focuses on the development of accurate methods able to identify and distinguish different functional activities. While these are important aims, much of the conducted work remains in laboratory environments, with relatively little research moving from the “bench to the bedside.” This review only identified a few studies that explored AT’s potential outside of laboratory settings, indicating that clinical and real-world research significantly lags behind its engineering counterpart. In addition, AT methods are largely based on machine-learning algorithms that rely on a feature selection process. However, extracted features depend on the signal output being measured, which is seldom described. It is, therefore, difficult to determine the accuracy of AT methods without characterizing gait signals first. Furthermore, much variability exists among approaches (including the numbers of body-fixed sensors and sensor locations) to obtain useful data to analyze human movement. From an end-user’s perspective, reducing the amount of sensors to one instrument that is attached to a single location on the body would greatly simplify the design and use of the system. With this in mind, the accuracy of formerly identified or gait events from a single IMU attached to the lower trunk was explored. The study’s analysis of the trunk’s vertical and anterior-posterior acceleration pattern (and of their integrands) demonstrates, that a combination of both signals may provide more nuanced information regarding a person’s gait cycle, ultimately permitting more clinically relevant gait features to be extracted. Going one step further, a modified step length algorithm based on a pendulum model of the swing leg was proposed. By incorporating the trunk’s anterior-posterior displacement, more accurate predictions of mean step length can be made in healthy subjects at self-selected walking speeds. Experimental results indicate that the proposed algorithm estimates step length with errors less than 3% (mean error of 0.80 ± 2.01cm). The performance of this algorithm, however, still needs to be verified for those suffering from gait disturbances. Having established a referential framework for the extraction of temporal gait parameters as well as an algorithm for step length estimations from one instrument attached to the lower trunk, the fourth and final study explored the inertial-sensing capabilities of an iPod Touch. With the help of Dr. Ian Sheret and Oxford Brookes’ spin-off company ‘Wildknowledge’, a smart application for the iPod Touch was developed. The study results demonstrate that the proposed inertial-sensing method can reliably derive lower trunk vertical displacement (intraclass correlations ranging from .80 to .96) with similar agreement measurement levels to those gathered by a conventional inertial sensor (small systematic error of 2.2mm and a typical error of 3mm). By incorporating the aforementioned methods, an iPod Touch can potentially serve as a novel ambulatory monitor system capable of assessing gait in clinical and non-clinical environments

    A methodology for the performance evaluation of inertial measurement units

    Get PDF
    This paper presents a methodology for a reliable comparison among Inertial Measurement Units or attitude estimation devices in a Vicon environment. The misalignment among the reference systems and the lack of synchronization among the devices are the main problems for the correct performance evaluation using Vicon as reference measurement system. We propose a genetic algorithm coupled with Dynamic Time Warping (DTW) to solve these issues. To validate the efficacy of the methodology, a performance comparison is implemented between the WB-3 ultra-miniaturized Inertial Measurement Unit (IMU), developed by our group, with the commercial IMU InertiaCube3ℱ by InterSense

    Pushing the limits of inertial motion sensing

    Get PDF

    Preparation of NiO catalyst on FeCrAI substrate using various techniques at higher oxidation process

    Get PDF
    The cheap nickel oxide (NiO) is a potential catalyst candidate to replace the expensive available platinum group metals (PGM). However, the current methods to adhere the NiO powder on the metallic substrates are complicated. Therefore, this work explored the development of nickel oxide using nickel (Ni) on FeCrAl substrate through the combination of nickel electroplating and oxidation process for catalytic converter application. The approach was started with assessment of various nickel electroplating process based on the weight gain during oxidation. Then, the next experiment used the best process in which the pre-treatment using the solution of SiC and/or Al2O3 in methanol. The specimens then were carried out to short term oxidation process using thermo gravimetric analysis (TGA) at 1000 o C. Meanwhile, the long term oxidation process was conducted using an automatic furnace at 900, 1000 and 1100 o C. The atomic force microscopy (AFM) was used for surface analysis in nanometer range scale. Meanwhile, roughness test was used for roughness measurement analysis in micrometer range scale. The scanning electron microscope (SEM) attached with energy dispersive X-ray (EDX) were used for surface and cross section morphology analysis. The specimen of FeCrAl treated using ultrasonic prior to nickel electroplating showed the lowest weight gain during oxidation. The surface area of specimens increased after ultrasonic treatment. The electroplating process improved the high temperature oxidation resistance. In short term oxidation process indicated that the ultrasonic with SiC provided the lower parabolic rate constant (kp) and the Al2O3 and NiO layers were also occurred. The Ni layer was totally disappeared and converted to NiO layer on FeCrAl surface after long term oxidation process. From this work, the ultrasonic treatment prior to nickel electroplating was the best method to adhere NiO on FeCrAl substrate

    Formulation of a new gradient descent MARG orientation algorithm: case study on robot teleoperation

    Get PDF
    We introduce a novel magnetic angular rate gravity (MARG) sensor fusion algorithm for inertial measurement. The new algorithm improves the popular gradient descent (ʻMadgwick’) algorithm increasing accuracy and robustness while preserving computa- tional efficiency. Analytic and experimental results demonstrate faster convergence for multiple variations of the algorithm through changing magnetic inclination. Furthermore, decoupling of magnetic field variance from roll and pitch estimation is pro- ven for enhanced robustness. The algorithm is validated in a human-machine interface (HMI) case study. The case study involves hardware implementation for wearable robot teleoperation in both Virtual Reality (VR) and in real-time on a 14 degree-of-freedom (DoF) humanoid robot. The experiment fuses inertial (movement) and mechanomyography (MMG) muscle sensing to control robot arm movement and grasp simultaneously, demon- strating algorithm efficacy and capacity to interface with other physiological sensors. To our knowledge, this is the first such formulation and the first fusion of inertial measure- ment and MMG in HMI. We believe the new algorithm holds the potential to impact a very wide range of inertial measurement applications where full orientation necessary. Physiological sensor synthesis and hardware interface further provides a foundation for robotic teleoperation systems with necessary robustness for use in the field
    • 

    corecore