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ABSTRACT: 

This paper presents a methodology for a reliable comparison among Inertial Measurement Units or 

attitude estimation devices in a Vicon environment. The misalignment among the reference 

systems and the lack of synchronization among the devices are the main problems for the correct 

performance evaluation using Vicon as reference measurement system. We propose a genetic 

algorithm coupled with Dynamic Time Warping (DTW) to solve these issues. To validate the 

efficacy of the methodology, a performance comparison is implemented between the WB-3 ultra-

miniaturized Inertial Measurement Unit (IMU), developed by our group, with the commercial 

IMU InertiaCube3™ by InterSense. 
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1   Introduction  

In the last years, the interest on motion capture systems has increased in many 

application fields. Medical applications, for example, paid a growing attention to 

human motion caption systems to obtain more efficient rehabilitation therapies 

[1], [2], and to build monitoring networks for patients and elderly people in the 

hospitals and in their own homes [3], [4]. In the game industry, the market trend is 

toward active game platforms, where a smart wearable motion capture suit could 

expand the capability of this kind of games and open total virtual reality scenarios, 

at the edge of the augmented reality [5], [6]. 

The human body can be modeled as a set of links, or limb segments, arranged in a 

tree-like structure in which each individual limb segment can be treated as rigid 

body. Specifying the posture of this model involves the descriptions of the 

orientation and position of each segment [7]. The nature of the relationships 

between the links in the structure determines whether the positions and 

orientations of the segments are described individually or they are specified in 

relation to the others. The formalisms chosen have the following important 

effects: ability to represent orientations without problems of singularity; 

computational efficiency; storage requirements; and transmission bandwidth 

requirements. 

Several motion capture technologies have been developed in the past years, such 

as optical, image-based [8], mechanical [9], magnetic[10], [11], and acoustic [12]. 

In particular, the optical motion capture systems are preferred in the computer-

animation community, in the film industry and in medical contexts [13], [14], 

because they offer a reliable and accurate way to record the motions of complex 

systems. However, this approach is expensive and poor in portability. These 

systems compute the exact locations of markers from the images recorded by the 

surrounding cameras using triangulation methods; therefore, they can be used 

only in a structured environment [15]. Furthermore, the markers must be always 

in the field of view of the camera to have reliable measurements. 

A very promising frontier on the wearable and reliable Motion Capture system is 

based on Inertial Measurement Unit (IMU) that can be virtually used everywhere. 
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Many studies of human motion tracking using these inertial sensors have been 

performed [16–19]. A simple approach to inertial orientation tracking might 

involve the integration of angular rate data to determine the attitude. However, 

this solution would be prone to drift over time due to bias and drift errors. In order 

to avoid the drift, inertial tracking systems make use of additional complementary 

sensors. Commonly, these sensors include triads of accelerometers and 

magnetometers for referencing respectively the gravity and the magnetic field 

vectors. The use of accelerometers allows the estimation of the attitude in respect 

to the horizontal plane, measuring the gravity vector in the sensor coordinate 

frame. However, when the sensor module is rotated around the vertical axis, the 

projection of the gravity vector on each of the principal axes of the accelerometer 

triad will not change. Magnetometers are used to measure the local magnetic field 

vector in the sensor coordinates, and allow the determination of orientation 

relative to the vertical rotation. 

Data from these incorporated sensors are normally integrated by different sensor 

fusion algorithms to estimate the orientation, such as Kalman filter, particle filter 

and complementary filtering algorithms [20–24]. Among these algorithms, the 

Extended Kalman Filter (EKF) is the most used because of its high accuracy on 

the attitude estimation and model simplicity [25]. Additionally, the computational 

efficiency of the EKF is suitable for real time applications [26]. 

Most of the commercial IMUs do not explain the detail of the attitude estimation 

algorithm implemented and it is quite difficult to compare the performance among 

them. The embedded sensors specifications on the attitude evaluation often are not 

clearly stated and the performances among them are hardly comparable. 

Additionally, there is the necessity to find a reliable method for the comparison 

among different types of motion capture systems that are not necessarily 

synchronized [27]. Therefore, this paper aims at presenting a methodology for a 

reliable comparison among Inertial Measurement Units, or other devices for the 

attitude measurement, in a Vicon environment as reference truth [15]. A genetic 

algorithm coupled with the Dynamic Time Warping (DTW) allowed us to 

correctly synchronize the data series and compare the attitude obtained by 

different measurement systems.  
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The proposed methodology is applied to the WB-3 Ultra-miniaturized IMU [28], 

developed by our group, with the commercial IMU InertiaCube3™ by InterSense 

[29], considering the Vicon motion capture system [15] as ground truth.  

The Section II of the paper, titled “Materials”, describes the devices used for the 

verification of the comparison methodology and the steps to make the data 

homogeneous. Firstly, the Vicon system and the marker position are described in 

details. Following, the WB-3 sensors and the algorithm implemented for 

retrieving the attitude are explained. The WB-3 IMU algorithm is a modification 

of the quaternion based EKF based on the estimation of the measurement 

covariance matrix (R-Adaptative Algorithm) [30]. Finally, the commercial 

InertiaCube3™ is presented focusing on its main characteristics. 

Section III, titled “Methods” focuses on the main idea of the paper. A general 

method for the reliable comparison of the data acquired from different sensors is 

described. 

Section IV, titled “Experimental Validation”, describes the experiments conducted 

and discusses the results obtained applying the proposed methodology for the 

comparison. 

Finally, Section V summarizes the results obtained and proposes possible 

application for the proposed methodology in the robotics field. 

2   Materials  

2.1   Vicon  

Optoelectronics systems that enable three-dimensional analysis of human 

movements with automatic digitizing and data processing have vastly reduced the 

time needed to gain results on the human motion analysis. A Vicon motion system 

uses high-resolution digital strobe technology cameras, which are interfaced 

directly with a microcomputer, to enable the light to be reflected from “passive 

markers” on the subject into the camera. The markers are spherical or 

hemispherical, and covered in retro reflective paper. Through pattern recognition, 

the shape of the detected light source is compared with the expected shape. The 

Vicon 612, used in our experiments, has powerful and automated software that 

allows eight cameras to be used contemporarily. The VCam cameras has 

selectable frame rate 100/119.88/150/200 Hz and a resolution of 648x493 pixels. 
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Data are processed in pipeline enabling the acquisition, the elaboration, and the 

data storage in a single step. Vicon system can reach accuracy level of less than 

±0.1mm. Still, the accuracy depends on many factors, e.g. number of cameras, 

camera placement, markers placement. The accuracy of the reconstructed 3D 

position of a marker also depends on the operator that performs the system 

calibration. A good calibration increases the quality of the linear transformation of 

a marker’s 2D coordinates on the video to its 3D location in the space [31]. 

An L-frame with four passive markers, which is used also for the static 

calibration, was installed on a tripod for determine the attitude on the space of the 

object inside the Vicon environment (Figure 1). On the L-Frame, we fixed also 

the WB-3 IMU and the Intersense sensor (Figure 2) that will be described in detail 

on the following sections. 

The markers V0, V2 and V3 are used for the attitude calculation, the marker V1 

was used to clearly differentiate between V2 and V3 during the experiment. 

Reflective	
  
Markers

 
Figure 1: L-frame with reflective markers, InertiaCube3™ and WB-3. 
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Figure 2: WB-3 and InertiaCube3™ detail. 

 

If ],,[
zyx iii VVV  i=0...3 indicates the coordinates of the marker Vi in the Vicon 

reference frame, then the direction cosine of the frame ( 1X̂ , 1Ŷ , and 1Ẑ ) in respect 

to the Vicon reference system can be calculated as follows:  
1

0303030303031
ˆ -

zzyyxxzzyyxx
-V,V-V,V-VV]-V,V-V,V-V[VX =  

1

020202020202
ˆ -

Aux zzyyxxzzyyxx
-V,V-V,V-VV]-V,V-V,V-V[VY =  

AuxYXZ ˆˆˆ
11 ×=  

111
ˆˆˆ XZY ×=  

(1) 

The rotation matrix of the L frame in the Vicon reference system is the follow: 
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⎢
⎢
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After, we define the quaternion [ ]
3210

,,, VIVIVIVI
LF

VIVI
LF
VI qqqqq =  as the attitude of the 

L-Frame (LF leading superscript) measured by the Vicon (VI subscript) in the 

reference system of the Vicon (VI leading subscript) [32]. 

VI
LF
VI q  can be computed using the conversion equations from rotation matrix to 

quaternion. 
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2.2   WB-­3  Inertial  Measurement  Unit  

Our group developed an ultra-miniaturized IMU named WB-3, which is very 

compact and lightweight (size 26x20x8 mm and weight 2.9 g without housing; 

size 27x23x11 mm and weight 6 g with housing). A picture of the IMU is showed 

in Figure 3. The communication of WB-3 with the PC is performed using the 

CAN Bus interface at 1 Mb/s. The firmware of the microcontroller can be updated 

by using the JTAG interface. One user LED is employed on the IMU for 

operating mode indication. The configuration block diagram of the WB-3 IMU is 

showed in Figure 4. 
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Figure 3: WB-3 Inertial Measurement Unit. 
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Figure 4: WB-3 block diagram. 

 

The WB-3 is primarily composed of a microcontroller and the following sensors: 

3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer. 

1)   Gyroscope: to measure 3-axes angular velocity, a 2-axis gyro IDG300 

(InvenSense) and a 1-axis gyro LISY300AL (STMicroelectronics) were 

employed. The LISY300AL is a miniaturized 7.0x7.0x1.9 mm z-axis gyro 

sensor. Its full-scale is ±300 Deg/s with a Bandwidth of 88 Hz and a 

sensitivity of 3.3 mV/Deg/s. The IDG300 size is 6.0×6.0×1.5 mm, the 

measurement range is ±500 Deg/s and the sensitivity is 2.0 mV/Deg/s. The 

mixed configuration of two gyroscopes allows the IMU to obtain all the 

three axis of angular velocity in one planar layer. The output of both 

gyroscopes is analog signal filtered by a first order low-pass analog filter 

at cutting frequency 40 Hz. 

2)   Accelerometer: The 3-axis accelerometer LIS3LV02DL 

(STMicroelectronics) is a small size (4.4x7.5x1.0 mm) and high 

performance MEMs accelerometer. The resolution with a full-scale ±2 G 

and Bandwidth of 40 Hz is about 1 mG, with noise level of about 0.005 

m/sec2, less than one bit. The accelerometer transmits the data to the 

microcontroller by using I2C communication. 

3)   Magnetometer: The 3-axis magnetometer HMC5843 (Honeywell), whose 

size is 4.0x4.0x1.5 mm is used to measure the local magnetic field. Its full 

scale is ±4 Gauss with a noise level less than two bits. The communication 

between the magnetometer and microcontroller is performed by I2C. 
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4)   Microcontroller: WB-3 contains a 32-bit microcontroller of STM32 

(STMicroelectronics) Cortex series for sensor data acquisition, data 

elaboration and data transmission to PC. In our design, we chose the 

STM32F103CBT6 with the package LQFP48 (7.0x7.0x1.4 mm). The 

STM32F103CBT6 incorporates a high performance ARM® Cortex™-M3 

32-bit RISC core operating up to 72 MHz, and high-speed embedded 

memories (Flash memory 128 Kbytes).  

The characteristics of the WB-3 sensors are all summarized in Table I. 

The size, the sensor bandwidth and range of WB-3 are compatible with the normal 

requirements of the human motion analysis both for the upper limbs [33],[34], and 

the lower limbs [35],[36] . WB-3 IMU has already been successfully applied for 

the analysis of the human body movements in medical application[37–40]. 

 

Table I Main characteristics of the WB-3 sensors. 
 LIS3LV02DL IDG300 LISY300AL HMC5843 

Category Accelerometer Gyroscope Gyroscope Magnetometer 
Axis 3-Axis 2-Axis 1-Axis 3-Axis 

Range ±2 G / ±6 G ±500 Deg/s ±300 Deg/s ±4 Gauss 
Resolution 12bit 12 bit 12 bit 12 bit 
Bandwidth 40 Hz 140 Hz 88 Hz 40 Hz 
Linearity ±2% <1% ±0.8% ±0.1% 

Noise Level <1 bit <2 bit <2 bit <2 bit 
 

2.2.1   Attitude  estimation  algorithm  

In the IMUs, the main problem is that the orientation is computed by the 

integration of the gyro signals including any superimposed sensor drift and noise. 

Additional sensors such as accelerometer and magnetometer can bound the 

orientation drift errors resulting from gyroscope output errors, by using an 

Extended Kalman Filter (EKF). For example, the earth’s gravitational field 

vectors in the body frame can be obtained with their known representation in the 

absolute reference frame [41]. In the WB-3 algorithm, a state augmentation 

technique is applied in the process model, and the state vector is composed by 

orientation and gyro bias [42]. Quaternions are used to represent space orientation 

to improve computational efficiency and avoid singularities [43]. The EKF-

computed quaternion can be translated into Roll, Pitch and Yaw angles through 

transformation equations (Section 3.1). 
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The continuous-time, non-linear system equations for the IMU are:  

wxfx += ),( ω!  (4) 

vxhy += )(  (5) 

where ],[ ωbqx WB
WB
GL=  represents the state of the system composed by: the 

quaternion [ ]
3210

,,, WBWBWBWB
WB

GLWB
WB
GL qqqqq =  measured by the WB-3 for the 

rotation from the global reference frame GL, identified by the magnetic north and 

the gravity vector, to the sensor frame of the WB-3 (WB) [32]; and the rate gyro 

bias ],,[
zyx

bbbb ωωωω = . ],,[ zyx ωωωω =  is the angular rates vector; [ ]may ,=  

is the measurement vector composed by the acceleration measurements 

],,[ zyx aaaa = and the magnetometer measurements ],,[ zyx mmmm = . 

Finally,w  and v are the additive state noise and measurement noise respectively. 

The state and measurement noise are Gaussian and white noise sources with 

covariance matrix Q and R respectively. 

In a strap-down inertial navigation system, the rigid body angular motion is 

described by the following differential equation:  

[ ] WB
WB
GL

T

WB
WB
GL qq ⎥

⎦

⎤
⎢
⎣

⎡

×−

−
=

ωω

ω0
2
1!  (6) 

where [ ]×ω  is the cross product of the angular velocity  

[ ]
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0

0
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xz
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ωω
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with the assumption that ||q|| =1 

Using the sensor model described in [44], in quasi static condition, the 

acceleration acting on the body is negligible compared to the gravity acceleration 

as described by: 

grg vbG ++= ωωω  

a
WB
GLa vgCGa +⋅= )(  

m
WB
GLm vHCGm +⋅= )(  

(8) 

where Gg, Ga, and Gm are respectively gyroscope, accelerometer, and 

magnetometer gain, supposed constant; vg, va, and vm are respectively gyroscope, 

accelerometer and magnetometer noise; ω is vector of the gyroscope raw data; 

CWB
GL  is the direction cosine matrix in terms of orientation quaternion, that 
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represents the coordinate transformation from the absolute coordinate systems 

(GL), identified by the magnetic north and the gravity vector, to the sensor frame 

of the WB-3 (WB): 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−−−+

++−+−−

−++−−

=
2222

2222

2222

321032213120

302132103210

312032103210

)(2)(2
)(2)(2
)(2)(2

WBWBWBWBWBWBWBWBWBWBWBWB

WBWBWBWBWBWBWBWBWBWBWBWB

WBWBWBWBWBWBWBWBWBWBWBWB
WB
GL

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

C  
(9) 

Tg ]1,0,0[=  is the gravity vector (measured in G), T
zx HHH ],0,[=  is the local 

magnetic field in the inertial frame. The local magnetic field has the y component 

equal to zero because we assume the magnetic north direction orthogonal to the y 

axis of the absolute coordinate system. The gravity vector has the x and y 

components equal to zero because we assume that the absolute coordinate system 

has the z axis aligned with the gravity vector (in the same direction). 

The non-linear functions and h(x) can be explained as:  

⎥
⎦

⎤
⎢
⎣

⎡
=

HC
gC

xh WB
GL

WB
GL)(  (10) 

The estimation step of the EKF uses the angular rate to make a prediction of the 

state. Furthermore, the acceleration data is used to correct Roll and Pitch angles in 

the “Roll-Pitch Update” block as showed in the Figure 5. The correction of the 

yaw angle "Yaw Update" can be performed using the magnetometer (Magnetic 

North). Magnetic interference is also a major concern when using magnetometers 

in environments containing changing or distorted magnetic fields, but adaptive 

compensation for external magnetic effects is not performed in this work. The 

problems and limitations of the magnetic correction in the EKF are under further 

investigation from the authors and several other researchers [45–48]. 

Gyro

Acc

Prediction Roll-­Pitch  
Update

R-­Adaptive  
algorithm

Yaw  Update

Mag

],[ ωbqWB
WB
GL

a

ω

m

R

 
Figure 5: Block diagram of the EKF algorithm implemented for WB-3. 
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2.2.2   R-­Adaptive  algorithm  

The main limitation of the algorithm described in the previous section is related to 

the “quasi-static condition”, in which the linear accelerations are negligible 

compared to the gravity acceleration. In the case of human motion tracking (i.e. 

during walking or running), often this condition is not verified. For example, if the 

IMU is positioned on the foot, during the swing phase of human walking a linear 

acceleration from 2G to 5G is quite common [49]. 

To overcome the problems related to the correction of the attitude using the data 

from the accelerometer, several techniques have been previously used [50], [51]. 

Some other techniques monitor the angular rate and the module of acceleration to 

determine quasi-static conditions. If a quasi-static condition is detected, the 

Update phase of the EKF is performed, otherwise it is just skipped. These 

techniques solve quite efficiently the drawback of the EKF, however the threshold 

that discriminates between the dynamic and static conditions must be chosen 

carefully. Furthermore, it is difficult to set the coefficients of the measurement 

covariance matrix (R). Not only the measurement noise, but also the error due to 

the linear accelerations should be considered for a correct evaluation. To 

overcome these problems, the R-adaptive algorithm has been implemented by the 

authors [30]. 

R is assumed to be in this form:  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
2

2

2

00
00
00

z

y

x

R
σ

σ

σ

 

(11) 

where 2
xσ , 2

yσ , and 2
zσ  are the standard deviations of the measurements for the 

x, y and z axis of the acceleration sensors respectively. 

Considering the sensors axis with the same noise characteristics 

( 2222 σσσσ === zyx ), 2σ  can be estimated dynamically in a temporal window 

with the following formula:  

∑
−=

−
+

=
k

Nki
ik a

N
22 )1(

1
1

σ  (12) 

where N is the number of samples of the temporal window; 2σ k  is the estimated 

variance at step k; ia  is the module of the acceleration measured by the 

accelerometer (in G) at the step i. 
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The equation (16) is a good approximation of the variance for the following 

reasons. In static conditions, for ∞→N , the calculated variance is exact. 

Furthermore, in dynamic conditions, it provides a variance value, which measures 

the dispersion of the acceleration module in respect to the gravity. The authors 

heuristically fixed the temporal windows at N=30 samples (@200Hz) and N=15 

samples (@100Hz) because these values provides a good approximation of the 

variance in static conditions and give a fast response on the dynamic conditions in 

the case of human movements. 

2.3   InertiaCube3™  

The InertiaCube3™ is an inertial measurement system that provides full 360° 

source-less tracking in all axes. The InertiaCube3™ integrates nine discrete, 

miniature-sensing elements with proprietary advanced Kalman filtering algorithm. 

The sensor can be connected to a host PC by using USB interface. 

Heading calibration software compensates for static magnetic field distortions 

when the InertiaCube3™ is deployed in adverse environments. 

The InertiaCube3™ has size 26.2x39.2x14.8 mm and weight 17.0 g (with 

housing). On the Table II, the main characteristics of the InertiaCube3™ are 

showed. 

 

Table II Main characteristics of the InertiaCube3™. 
Degrees of Freedom 

(angle representation) 3 (Yaw, Pitch and Roll) 

Maximum Angular Rate 1200°/s 
Minimum Angular Rate 0°/s 

RMS Accuracy* 1° in yaw, 0.25° in pitch & roll at 25°C 
RMS Angular Resolution* 0.03° 

InterSense USB Update Rate 180 Hz 
USB Interface Minimum 

Latency 2 ms for USB direct (Host & OS dependent) 

Operating Temperature Range 0° to 70° C 
*In static conditions 

The WB-3 and Vicon system have a selectable sample rate up to 200 Hz, which is 

enough for the majority of the applications in the human body movement analysis 

[51]. The commercial IMU (InertiaCube3™) samples internally the sensors at 180 

Hz but the sample rate of the attitude angle output by the sensor acquired with a 

HP Pavilion dv6600 (Intel Core 2 Duo T7250 – RAM 2GB) on the OS Windows7 

was quite variable with a main sample frequency of about 40 Hz (every 25 ms). 

As shown in Figure 6, the sample rate for the WB-3 is very stable, 100% of the 
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samples were transmitted with a sample time of 5 ms (@200Hz). InertiaCube3™ 

instead transmits only 77% of the data every 25 ms, and a significant percentage 

of the data, more than 12%, were sent with a sampling rate over 80 ms. The data 

of the InertiaCube3™ have been re-sampled in post-elaboration at the same 

frequency of the Vicon for an effective comparison with the other systems. 
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Figure 6: Histogram of the Sample Time WB-3 and InertiaCube3™. 

 

The InertiaCube3™ provides the attitude data using an ZYX Euler representation 

also known as Roll, Pitch, Yaw (RPY). 

The conversion equations from Roll ( ICθ ), Pitch ( ICφ ), Yaw ( ICψ ) to the 

correspondent quaternion ],,,[
3210 ICICICIC

IC
GLIC

IC
GL qqqqq = were used to make the 

angle representation homogeneous for the algorithm of data synchronization and 

frame alignment. The equations used for the conversion are:  
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3   Methodology  

3.1   The  methodology  for  the  performance  comparison  

The main purpose of the proposed methodology is to evaluate the performance of 

several attitude sensors comparing them with the attitude provided by the Vicon 

motion system. The methodology is quite general and can be applied for any kind 

of sensor that gives information about the attitude of an object on the space. In 

this paper, we focused on the performance evaluation of the WB-3 IMU and the 

commercial IMU, InertiaCube3™. A preprocessing stage is needed for each 

sensor, as described in the previous sections, to obtain the attitude data in a 

quaternion representation. The data of the sensors are re-sampled at the same 

sample rate of the Vicon considered as ground truth. The data processing flow 

diagram for the performance comparison is showed in Figure 7. All the errors are 

expressed in terms of Euler angles because it is visually more intuitive to compare 

the error in terms of angle rather than quaternion.  

If we indicate with ],,,[ 3210 qqqqq =  the generic quaternion, the conversion 

equations used to obtain Roll (θ ), Pitch (φ ), Yaw (ψ ) are the following:  

))(21),(2(2tan 2
3

2
20321 qqqqqqa ++−+=φ  

))(2arccos( 2031 qqqq −−=θ  

)(21),(2(2tan 2
3

2
03210 qqqqqqa ++−+=ψ  

(14) 

Attitude	
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Vicon InertiaCube3

Data  synchronization  
and  frame  alignment

Data  synchronization  
and  frame  alignment

Quaternion  to  RPY

WB-­‐3
Error

Sensor
Error

Data  synchronization  
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+

+

+

Quaternion  to  RPY

 
Figure 7: Data processing flow diagram for the performance comparison 

among attitude sensors (WB-3, InertiaCube3™, and so on). The reference truth 

is the Vicon systems. 
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3.2   Data  Synchronization  and  frame  alignment  

The fundamental stage for the coherent performance comparison among the 

different systems is the data synchronization and frame alignment. The Vicon and 

the IMUs data cannot be compared unless they are perfectly synchronized. There 

are not synchronization issues between sensors that are captured on the same 

computer if it is possible to evaluate embedded timestamps for the respective 

hardware [52]. Unfortunately, more often the sensors allow only a software 

timestamp that recognize only when the data is received, not when the data is 

acquired, introducing errors due to a random network delay. The IMUs and Vicon 

data cannot be synchronized by direct comparison for two main reasons. Firstly, 

different computers collected the data from the sensors, and the reference systems 

are different, IMUs measure the attitude in the global frame (GL) while the Vicon 

measure the attitudes with respect its global frame (VI). A genetic algorithm 

coupled with Dynamic Time Warping (DTW), as shown in Figure 8, was 

implemented overcome the misalignment issues among the reference systems 

(Vicon and IMUs) and the synchronization problem. 

Genetic  
Algorithm

Rotation DTW
IMU

IMU
GL q IMU

LF
VI q ( )IMU

LF
VI qDTW

VI
LF
VI q

 
Figure 8: Data synchronization and frame alignment block diagram. 

The inputs of the algorithm are the angles expressed in quaternion VI
LF
VI q  and 

IMU
IMU
GL q , where IMU is either WB ( 3−WB ) or IC ( InertiaCube3™). 

The output of the algorithm is )( IMU
LF
VI qDTW  which is the attitude of the L-

Frame measured by the IMU in the reference frame of the Vicon synchronized 

using the DTW algorithm. The rotation matrix is adapted by the Genetic 

Algorithm to minimize the error between the )( IMU
LF
VI qDTW  and the VI

LF
VI q . The 
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rotation matrix obtained by the genetic algorithm is then used to obtain IMU
LF
VI q , 

the attitude of the L-Frame measured by the IMU in the reference frame of the 

Vicon.  

3.3   Dynamic  Time  Warping  

The DTW algorithm is a powerful algorithm that allows the comparison of time 

series for a proper synchronization. 

Normally, the Euclidean distance is an efficient distance measurement that can be 

used to determine similarity between synchronized time series. Unfortunately, if 

two time series are identical, but one is shifted slightly along the time axis due to 

a no-perfect synchronization or variation of the sampling time, then Euclidean 

distance may consider them very different from each other. In Figure 9, the effect 

of the synchronization problem is clearly visible. The signal )2cos( tπ  is 

compared with the unsynchronized signal. We added a fix delay of 0.1s and a 

random delay signal uniformly distributed in the range [-0.01s 0.01s]. Even the 

two signals are originally the same, the error calculated as simple difference is 

very large (with peaks of ±0.6) especially when the two signals change rapidly. 

0 0.5 1 1.5 2
-1

0

1

2

t
 

 

cos(2πt)
cos(2π(t-0.1+0.01*rand[-1,1]))
Signal difference

 
Figure 9: Effect of the synchronization issues for the comparison of signals. 

To overcome this kind of problem and give intuitive distance measurements 

between time series, the Dynamic Time Warping (DTW) algorithm has been 

introduced in [53]. DTW algorithm scales the time dimension reducing the 

problems of both global (fix delay) and local shifts in the time (random changes 

on the sample frequency). DTW has earned popularity to be extremely efficient to 

find similarities among time series. Given two time series ),...,,( 21 aU
aaaa sssS =  

with ℵ∈aU  and ),...,,( 21
bbbb sssS =  ℵ∈bU , the DTW algorithm minimizes 
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the effects of shifting and time distortion allowing “elastic” transformation of time 

series to detect similar shapes with different phases. If the time series are taking 

values from a feature space Φ , then a local distance measure d is defined to 

compare the two different sequences Θ∈ba SS ,   

0: ≥ℜ→Φ×Φd  (15) 

d  is called “distance” or “cost” function, and it has small values when the 

sequences are similar and large when they are different. 

The DTW builds a distance matrix ba UU ×ℜ∈Ψ , named also local cost matrix that 

represents all the pair wise distances between aS  and bS . 

j
a

i
a

ji
UU ssba −=ℜ∈Ψ ×

,:α  (16) 

with [ ]aUi :1∈ , [ ]bUj :1∈ . 

Once the matrix is built, the DTW finds the alignment path, or warping path, that 

defines the correspondences i
as  to j

as . The alignment path is a sequence of 

points ),...,( 21 kpppP =  with ]:1[]:1[),( bajil UUppp ×∈=  for [ ]kl :1∈  

which satisfies the following criteria: 

1)   Boundary condition: )1,1(1 =p  and ),( bak UUp =  

2)   Monotonicity: k
aaa sss ≤≤≤ ...21  and k

bbb sss ≤≤≤ ...21   

3)   Step size condition: this criterion limits the warping path from long jumps 

(shifts) while aligning sequences. 

To find the optimal path, the algorithm should calculate all the possible paths and 

select only the best one. This method is computational heavy because it needs a 

complete search all over the possible paths.  

The DTW employs the dynamic programming to keep the complexity to only 

O(UaUb). The dynamic programming is based on the accumulated cost matrix and 

the optimal path can be found by backtracking from ),( bak UUp =  to )1,1(1 =p  

following the greedy strategy [54]. 

3.3   Genetic  algorithm  

The Genetic algorithm used a population of two rotations. The first rotation 

represents the transformation between the Global reference system (GL) and the 

Vicon reference system (VI). Furthermore, a second rotation is necessary to align 

the IMU reference frame (IMU) and the L-frame reference frame (LF). 
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A couple of unit quaternion can represent the two rotations sequences as follows: 

),( qq LF
IMU

VI
GL  (17) 

Because of the quaternion representation, we need to search in a domain of only 

eight parameters for the optimal succession of rotations. The fitness function used 

to find the optimal solution is the follow: 

))(( IMU
LF
GLVI

LF
GL qDTWqRMSfitness −=  (18) 

The fitness function is the root mean square (RMS) of the norm of the quaternion 

error between the attitude estimation of the Vicon and the warped data of the 

IMU. It is important to notice the following equations that indicate the relation 

with the misalignment of the reference system: 

qqq LF
IMUIMU

IMU
GLIMU

LF
GL =  

qqq LF
VIVI

VI
GLVI

LF
GL =  

(19) 

In the present work, we used a population of 500 couples of quaternions 

performing 200 iterations of generation. Half of the population is chosen among 

the best fitting individuals; the other half is obtained breeding new individuals 

through crossover. 

4   Experimental  Validation  

We validated the comparison methodology performing two types of experiments 

at different sampling rate, 100Hz and 200Hz. 

For each sample rate, we rotated the L-Frame at different speeds. It is important to 

observe that the sensors are not placed on the rotation center of the L-Frame. 

Therefore, the sensors are also subjected to linear accelerations that depend on the 

rotation speed of the L-frame. 

We validated the proposed methodology measuring the performance of the IMUs 

using the following four experiments: 

•   Acquisition of the Vicon data at 100Hz 

o   Experiment A: 45 rotations around the X1 (Roll) at different speeds, 

for a total of 100 seconds of continuous acquisition; 

o   Experiment B: free rotations for a total of 50 seconds of continuous 

acquisitions at 100Hz. 

•   Acquisition of the Vicon data at 200Hz 
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o   Experiment C: 18 rotations around X1 at different speeds, for a total 

of 40 seconds of continuous acquisition; 

o   Experiment D: 17 rotations around the Y1 at different speeds, for a 

total of 40 seconds of continuous acquisition; 

During these movements, the orientation data are computed by the WB-3, 

InertiaCube3™, and the Vicon. All the data are logged and off-line compared. 

The resulting average RMS errors for the Roll and Pitch are presented in Tables 

III-VI. Both, WB-3 and InertiaCube3™ sensors measure the attitude relatively 

well. The maximum RMS error for the InertiaCube3™ was respectively 5.92 Deg 

for the Pitch angle, obtained in the experiment B conducted at 100 Hz, and 6.57 

Deg for the Roll angle, obtained in the experiment C conducted at 200 Hz. 

Therefore, we can say that, in the case of the InertiaCube3™, the angle accuracy 

of the InertiaCube™ of the system can be reasonable considered about 6.6 Deg. 

These results are not in contrast to the specifications provided by the sensor maker 

because the values of accuracy provided in Table II are related to static conditions 

while we performed experiments in dynamic conditions. 

The maximum RMS error for the WB-3 was respectively 2.69 Deg for the Pitch 

angle, obtained in the experiment D conducted at 200 Hz, and 3.32 Deg for the 

Yaw angle obtained in the experiment B. In this case, we could reasonably claim 

that the angle accuracy of the WB-3 is about 3.4 Deg. 

InertiaCube3™ had better performance than WB-3 for the Roll and Pitch angles 

estimation in the Experiment D. Although WB-3 IMU had worse performance 

than InertiaCube3™ in the specific experiment, it still had reasonable dynamic 

performance, consistently with the other trials. 

The resulting angles for the experiment B related to the free rotation (Roll and 

Pitch angles) are presented in Figure 10. The WB-3 angles fit better the Vicon 

angles. Furthermore, the WB-3 angles are smoother than the InertiaCube3™ that 

presents some glitches that might be due to the linear acceleration during the 

movement. 

Figure 11 shows the reconstructed Roll angles for the experiment C. The figures 

clearly show better dynamic performance of WB-3. InertiaCube3™ had bigger 

errors compare to the WB-3 at the peaks of the signal, which were the turning 

moments of the rotation movements. At these turning points, there were strong 

changes of angular velocity, which will result in big variance of centripetal 
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acceleration. This effect might affect the performance of “Roll-Pitch Update” in 

the EKF. WB-3 could adapt to this condition better by taking advantage of the R-

adaptive algorithm. 

It is also important to notice that, the attitude reconstruction algorithm of 

InertiaCube3™ does not work if the pitch angle is around 90 Deg. because of 

singularity problems due to the Euler angle representations. The WB-3 algorithm 

is not affected by this problem because of the quaternion-based representation of 

the angles. 

 

Table III: Performance evaluation at 100 Hz (Experiment A). 

 RMS Roll Error 
[Deg] 

RMS Pitch Error 
[Deg] 

RMS Yaw Error 
[Deg] 

WB-3 IMU 1.23 0.9 2.80 
InertiaCube3™ 2.25 1.07 2.52 

 

Table IV: Performance evaluation at 100 Hz (Experiment B). 

 RMS Roll Error 
[Deg] 

RMS Pitch Error 
[Deg] 

RMS Yaw Error 
[Deg] 

WB-3 IMU 1.06 2.54 3.32 
InertiaCube3™ 2.07 5.92 2.90 

 

Table V: Performance evaluation at 200 Hz (Experiment C). 

 RMS Roll Error 
[Deg] 

RMS Pitch Error 
[Deg] 

RMS Yaw Error 
[Deg] 

WB-3 IMU 2.22 0.63 1.80 
InertiaCube3™ 6.57 2.94 4.52 

 

Table VI: Performance evaluation at 200 Hz (Experiment D). 

 RMS Roll Error 
[Deg] 

RMS Pitch Error 
[Deg] 

RMS Yaw Error 
[Deg] 

WB-3 IMU 1.88 2.69 1.32 
InertiaCube3™ 1.06 1.53 1.40 
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Figure 10: Experiment B - WB-3 and InertiaCube3™ Roll angle (TOP) and 

Pitch angle (BOTTOM) compared with Vicon in the range 0 – 12 s during free 

rotations. 

 



23 

0 10 20 30 40
-30
-15

0
15
30
45
60
75
90

105
120

Time [s]

R
ol

l [
de

g]

 

 

Vicon
WB-3
InertiaCube3TM

19.5 20 20.5 21 21.5
-30
-15

0
15
30
45
60
75
90

105
120

Time [s]

R
ol

l [
de

g]

 

 

Vicon
WB-3
InertiaCube3TM

 
Figure 11: Experiment C - WB-3 and InertiaCube3™ roll angle compared with 

Vicon for the full experiment (TOP) and a zoom of the signal in the range 19.5 - 

21.5 s (BOTTOM). 

 

5   Conclusion  and  Future  Work  

In this paper, we presented a methodology for a reliable comparison among 

Inertial Measurement Units, or other devices for the attitude measurement, in a 

Vicon environment as reference truth.  

We solved the major issues of data synchronization and alignments of the 

reference frames by using an original algorithm based on the coupling of a DTW 

and genetic algorithm. 

The proposed methodology has been successfully applied for the performance 

comparison between the WB-3 and the InertiaCube3™. In particular, the 
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experimental results showed that the performances of WB-3 are superior to the 

InertiaCube™. Furthermore, WB-3 provides a good attitude reconstruction in 

respect to the Vicon system that is actually the basic tool for the body movement 

analysis in clinic environment. 

Another, important application of the proposed synchronization method is on the 

data synchronization between the sensors embedded on mobile robot and the 

environment where the robot navigates. In the case of Micro-Aerial vehicle, in 

which the reduced size of the robot does not allow to embed many sensors on-

board [27], [55], [56]; the use of synchronized environmental data might improve 

the localization and navigation capabilities [27]. Still, these data are not captured 

in the same computer and the use of the timestamp methodologies might not be 

reliable enough for fast control. The proposed methodology has been 

demonstrated enough reliable for the comparison of attitude data of an object on 

the space from different data sources. 
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