1,151 research outputs found

    Subsystems for future access networks

    Get PDF
    Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks

    Performance of MB-OFDM UWB and WiMAX IEEE 802.16e converged radio-over-fiber in PON

    Get PDF
    Experimental results about the performance of converged radio-over- fiber transmission including multiband- OFDM UWB and WiMAX 802.16e wireless over a passive optical network are reported in this paper. The experimental study indicates that UWB and WiMAX converged transmission is feasible over the proposed distribution set-up employing a single wavelength. However, the results indicate that there is an EVM penalty of 3.2 dB for a UWB 10 km SSMF transmission in presence of WiMAX wireless

    Joint distribution of polarization-multiplexed UWB and WiMAX radio in PON

    Get PDF
    In this paper, the feasibility of the joint distribution of ultra-wideband (UWB) and WIMAX wireless using polarization multiplexing as a coexistence technique is proposed and experimentally demonstrated within the framework of passive optical networks (PON). Four single- and orthogonal-polarization multiplexing schemes are studied targeting to reduce the mutual interference when UWB and WiMAX are distributed jointly through standard single-mode fiber (SSMF) without transmission impairments compensation techniques and amplification. Experimental results indicate successful transmission up to 25 km, in SSMF exceeding the range in typical PON deployments. The radio link penalty introduced by optical transmission is also investigated in this paper

    Future broadband access network challenges

    Get PDF
    Copyright @ 2010 IEEEThe optical and wireless communication systems convergence will activate the potential capacity of photonic technology for providing the expected growth in interactive video, voice communication and data traffic services that are cost effective and a green communication service. The last decade growth of the broadband internet projects the number of active users will grow to over 2 billion globally by the end of 2014. Enabling the abandoned capacity of photonic signal processing is the promising solution for seamless transportation of the future consumer traffic demand. In this paper, the future traffic growth of the internet, wireless worldwide subscribers, and the end-users during the last and next decades is investigated. The challenges of the traditional access networks and Radio over Fiber solution are presented

    Distributed multi-user MIMO transmission using real-time sigma-delta-over-fiber for next generation fronthaul interface

    Get PDF
    To achieve the massive device connectivity and high data rate demanded by 5G, wireless transmission with wider signal bandwidths and higher-order multiple-input multiple-output (MIMO) is inevitable. This work demonstrates a possible function split option for the next generation fronthaul interface (NGFI). The proof-of-concept downlink architecture consists of real-time sigma-delta modulated signal over fiber (SDoF) links in combination with distributed multi-user (MU) MIMO transmission. The setup is fully implemented using off-the-shelf and in-house developed components. A single SDoF link achieves an error vector magnitude (EVM) of 3.14% for a 163.84 MHz-bandwidth 256-QAM OFDM signal (958.64 Mbps) with a carrier frequency around 3.5 GHz transmitted over 100 m OM4 multi-mode fiber at 850 nm using a commercial QSFP module. The centralized architecture of the proposed setup introduces no frequency asynchronism among remote radio units. For most cases, the 2 x 2 MU-MIMO transmission has little performance degradation compared to SISO, 0.8 dB EVM degradation for 40.96 MHz-bandwidth signals and 1.4 dB for 163.84 MHz-bandwidth on average, implying that the wireless spectral efficiency almost doubles by exploiting spatial multiplexing. A 1.4 Gbps data rate (720 Mbps per user, 163.84 MHz-bandwidth, 64-QAM) is reached with an average EVM of 6.66%. The performance shows that this approach is feasible for the high-capacity hot-spot scenario

    Intra and Inter-PON ONU to ONU Virtual Private Networking using OFDMA in a Ring Topology

    Get PDF
    Abstract—In this paper, we propose a novel WDM-PON architecture to support efficient and bandwidth-scalable virtual private network (VPN) emulation over both inter-PON and intra- PON. The virtual ring link for the VPN communications among ONUs is realized by using additionally low-cost optical passive components and OFDMA technology. Moreover, the downstream traffic wavelength is reused for the upstream traffic signal by using re-modulation technology. We report on a successful transmission of 10.7 Gbps OOK upstream and 10.7 Gbps DPSK downstream, together with 1.25 Gbps 16-QAM OFDM VPN traffic, over 20 km no-zero dispersion shifted fiber (NZDSF). In this paper, we propose a novel WDM-PON architecture to support efficient and bandwidth-scalable virtual private network (VPN) emulation over both inter-PON and intra-PON. The virtual ring link for the VPN communications among ONUs is realized by using additionally low-cost optical passive components and OFDMA technology. Moreover, the downstream traffic wavelength is reused for the upstream traffic signal by using re-modulation technology. We report on a successful transmission of 10.7 Gbps OOK upstream and 10.7 Gbps DPSK downstream, together with 1.25 Gbps 16-QAM OFDM VPN traffic, over 20 km no-zero dispersion shifted fiber (NZDSF)

    Green radio communication networks applying radio-over-fibre technology for wireless access

    Get PDF
    Wireless communication increasingly is becoming the first choice link to enter into the global information society. It is an essential part of broadband communication networks, due to its capacity to cover the end-user domain, outdoors or indoors. The use of mobile phones and broadband has already exceeded the one of the fixed telephones and has caused tremendous changes in peoples life, as not only to be recognised in the current political overthrows. The all-around presence of wireless communication links combined with functions that support mobility will make a roaming person-bound communication network possible in the near future. This idea of a personal network, in which a user has his own communication environment available everywhere, necessitates immense numbers of radio access points to maintain the wireless links and support mobility. The progress towards “all-around wireless” needs budget and easily maintainable radio access points, with simplified signal processing and consolidation of the radio network functions in a central station. The RF energy consumption in mobile base stations is one of the main problems in the wireless communication system, which has led to the worldwide research in so called green communication, which offers an environmentally friendly and cost-effective solution. In order to extend networks and mobility support, the simplification of antenna stations and broadband communication capacity becomes an increasingly urgent demand, also the extension of the wireless signal transmission distance to consolidate the signal processing in a centralised site. Radio-over-Fibre technology (RoF) was considered and found to be the most promising solution to achieve effective delivery of wireless and baseband signals, also to reduce RF energy consumption. The overall aim of this research project was to simulate the transmission of wireless and baseband RF signals via fibre for a long distance in high quality, consuming a low-power budget. Therefore, this thesis demonstrated a green radio communication network and the advantage of transmitting signals via fibre rather than via air. The contributions of this research work were described in the follows: Firstly, a comparison of the power consumption in WiMAX via air and fibre is presented. As shown in the simulation results, the power budget for the transmission of 64 QAM WiMAX IEEE 802.16-2005 via air for a distance of 5km lies at -189.67 dB, whereas for the transmission via RoF for a distance of 140km, the power consumption ranges at 65dB. Through the deployment of a triple symmetrical compensator technique, consisting of SMF, DCF and FBG, the transmission distance of the 54 Mbps WiMAX signal can be increased to 410km without increasing the power budget of 65dB. An amendment of the triple compensator technique to SMF, DCF and CFBG allows a 120Mbps WiMAX signal transmission with a clear RF spectrum of 3.5 GHz and constellation diagram over a fibre length of 792km using a power budget of 192dB. Secondly, the thesis demonstrates a simulation setup for the deployment of more than one wireless system, namely 64 QAM WiMAX IEEE 802.16-2005 and LTE, for a data bit rate of 1Gbps via Wavelength Division Multiplexing (WDM) RoF over a transmission distance of 1800km. The RoF system includes two triple symmetrical compensator techniques - DCF, SMF, and CFBG - to obtain a large bandwidth, power budget of 393.6dB and a high signal quality for the long transmission distance. Finally, the thesis proposed a high data bit rate and energy efficient simulation architecture, applying a passive optical component for a transmission span up to 600km. A Gigabit Optical Passive Network (GPON) based on RoF downlink 2.5 Gbps and uplink 1.25Gbps is employed to carry LTE and WiMAX, also 18 digital channels by utilising Coarse Wavelength Division Multiplexing (CWDM). The setup achieved high data speed, a low-power budget of 151.2dB, and an increased service length of up to 600km
    • 

    corecore