265 research outputs found

    Green Cloud - Load Balancing, Load Consolidation using VM Migration

    Get PDF
    Recently, cloud computing is a new trend emerging in computer technology with a massive demand from the clients. To meet all requirements, a lot of cloud data centers have been constructed since 2008 when Amazon published their cloud service. The rapidly growing data center leads to the consumption of a tremendous amount of energy even cloud computing has better improved in the performance and energy consumption, but cloud data centers still absorb an immense amount of energy. To raise company’s income annually, the cloud providers start considering green cloud concepts which gives an idea about how to optimize CPU’s usage while guaranteeing the quality of service. Many cloud providers are paying more attention to both load balancing and load consolidation which are two significant components of a cloud data center. Load balancing is taken into account as a vital part of managing income demand, improving the cloud system’s performance. Live virtual machine migration is a technique to perform the dynamic load balancing algorithm. To optimize the cloud data center, three issues are considered: First, how does the cloud cluster distribute the virtual machine (VM) requests from clients to all physical machine (PM) when each computer has a different capacity. Second, what is the solution to make CPU’s usage of all PMs to be nearly equal? Third, how to handle two extreme scenarios: rapidly rising CPU’s usage of a PM due to sudden massive workload requiring VM migration immediately and resources expansion to respond to substantial cloud cluster through VM requests. In this chapter, we provide an approach to work with those issues in the implementation and results. The results indicated that the performance of the cloud cluster was improved significantly. Load consolidation is the reverse process of load balancing which aims to provide sufficient cloud servers to handle the client requests. Based on the advance of live VM migration, cloud data center can consolidate itself without interrupting the cloud service, and superfluous PMs are turned to save mode to reduce the energy consumption. This chapter provides a solution to approach load consolidation including implementation and simulation of cloud servers

    Resource Management in Virtualized Data Center

    Get PDF
    As businesses are increasingly relying on the cloud to host their services, cloud providers are striving to offer guaranteed and highly-available resources. To achieve this goal, recent proposals have advocated to offer both computing and networking resources in the form of Virtual Data Centers (VDCs). However, to offer VDCs, cloud providers have to overcome several technical challenges. In this thesis, we focus on two key challenges: (1) the VDC embedding problem: how to efficiently allocate resources to VDCs such that energy costs and bandwidth consumption are minimized, and (2) the availability-aware VDC embedding and backup provisioning problem which aims at allocating resources to VDCs with hard guarantees on their availability. The first part of this thesis is primarily concerned with the first challenge. The goal of the VDC embedding problem is to allocate resources to VDCs while minimizing the bandwidth usage in the data center and maximizing the cloud provider's revenue. Existing proposals have focused only on the placement of VMs and ignored mapping of other types of resources like switches. Hence, we propose a new VDC embedding solution that explicitly considers the embedding of virtual switches in addition to virtual machines and communication links. Simulations show that our solution results in high acceptance rate of VDC requests, less bandwidth consumption in the data center network, and increased revenue for the cloud provider. In the second part of this thesis, we study the availability-aware VDC embedding and backup provisioning problem. The goal is to provision virtual backup nodes and links in order to achieve the desired availability for each VDC. Existing solutions addressing this challenge have overlooked the heterogeneity of the data center equipment in terms of failure rates and availability. To address this limitation, we propose a High-availability Virtual Infrastructure (Hi-VI) management framework that jointly allocates resources for VDCs and their backups while minimizing total energy costs. Hi-VI uses a novel technique to compute the availability of a VDC that considers both (1) the heterogeneity of the data center networking and computing equipment, and (2) the number of redundant virtual nodes and links provisioned as backups. Simulations demonstrate the effectiveness of our framework compared to heterogeneity-oblivious solutions in terms of revenue and the number of physical servers used to embed VDCs

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques

    Replication and Caching Systems for the support of VMs stored in File Systems with Snapshots

    Get PDF
    Recently, in a relatively short timeframe, there were fundamental changes in the way computing power is used. Virtualisation technology has changed both the model of a data centre’s infrastructure and the way physical computers are now managed. This shift is a consequence of today’s fast deployment rate of Virtual Machines (VM) in a high consolidation environment with minimal need for human management. New approaches to virtualisation techniques are being developed at a surprisingly fast rate, leading to a new exciting and vibrating ecosystem of platforms and services. We see the big industry players tackling problems such as Desktop Virtualisation with moderate success, but completely ignoring the computation power already present in their clients’ infrastructures and, instead, opting for a costly solution based on powerful new machines. There’s still room for improvement in Virtual Desktop Infrastructure (VDI) and development of new architectures that take advantage of the computation power available at the user’s desk, with a minimum effort on the management side; Infrastructure for Client-Based Desktops (iCBD) is one of these projects. This thesis focuses on the development of mechanisms for the replication and caching of VM images stored in a local filesystem, albeit one with the ability to perform snapshots. In this work, there are some challenges to address: the proposed architecture must be entirely distributed and completely integrated with the already existing client-based VDI platform; and it must be able to efficiently cope with very large, read-only files, (some of them snapshots) and handle their multiple versions. This work will also explore the challenges and advantages of deploying such a system in a high throughput network, with both high availability and scalability while efficiently supporting a large number of users (and their workstations)
    • …
    corecore