
Luís Miguel Teixeira da Silva

Bachelor of Science

Replication and Caching Systems for the support
of VMs stored in File Systems with Snapshots

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Paulo Lopes, Auxiliar Professor,
NOVA University of Lisbon

Co-adviser: Pedro Medeiros, Associate Professor,
NOVA University of Lisbon

Examination Committee

Chairperson: Prof. Carmen Pires Morgado
Raporteur: Prof. Carlos Jorge de Sousa Gonçalves

Member: Prof. Paulo Orlando Reis Afonso Lopes

November, 2018

Replication and Caching Systems for the support of VMs stored in File Sys-
tems with Snapshots

Copyright © Luís Miguel Teixeira da Silva, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

The work presented in this document would never see the light of day if not for the

collaboration of several people to whom I wish to manifest my profound gratitude and

recognition.

First I would like to thank my advisors and members of the iCBD Project, Professors

Paulo Lopes, Pedro Medeiros and Nuno Preguiça, for there advice, always supporting this

work and the countless hours spent trying to find the better course of action especially

when I would see myself lost and overwhelmed.

It is necessary to give a special thanks to Engineer Miguel Martins from Reditus S.A,

to whom I had the pleasure of work closely for more than a year. Who taught me a lot,

not only from his vast knowledge of computer systems, backed by countless years of

experience in the IT world and without who this work would not be possible but also for

the many conversations we held in the realms of Physics, Economics and History. I will

always admire how a person can keep such a large body of knowledge and a passion for

sharing it.

I also like to extend my recognition to Dr. Henrique Mamede and Engineer Sérgio

Rita, also from Reditus S.A., for the opportunity given, constant support and the warm-

hearted welcome in my year-long stay with SolidNetworks. And, to Luís Anjos from the

Divisão de Infraestruturas Informáticas da FCT NOVA (Div-I FCT NOVA) for all his help in

resolving issues related to FCT NOVA’s internal network.

Finally, my very heartfelt gratitude to my family and friends for their unconditional

support, for putting up with my grumbles when work problems went home with me,

being always there with a kind word and some crazy plan to make me forget work for a

couple of hours and enjoy their friendship and time spent together.

I also would like to acknowledge the following institutions for their hosting and

financial support: Departamento de Informática da Faculdade de Ciências e Tecnologia of the
Universidade NOVA de Lisboa (DI - FCT NOVA); the NOVA Laboratory of Computer Science
and Informatics (NOVA LINCS) in particular the Computer Systems group; SolidNetworks
– Business Consulting, Lda of the Reditus S.A. Group; and the funding provided through the

COMPETE2020 / PORTUGAL2020 program for the iCBD project (POCI-01-0247-FEDER-

011467).

v

Abstract

Recently, in a relatively short timeframe, there were fundamental changes in the way

computing power is used. Virtualisation technology has changed both the model of a

data centre’s infrastructure and the way physical computers are now managed. This shift

is a consequence of today’s fast deployment rate of Virtual Machines (VM) in a high

consolidation environment with minimal need for human management.

New approaches to virtualisation techniques are being developed at a surprisingly fast

rate, leading to a new exciting and vibrating ecosystem of platforms and services. We see

the big industry players tackling problems such as Desktop Virtualisation with moderate

success, but completely ignoring the computation power already present in their clients’

infrastructures and, instead, opting for a costly solution based on powerful new machines.

There’s still room for improvement in Virtual Desktop Infrastructure (VDI) and devel-

opment of new architectures that take advantage of the computation power available

at the user’s desk, with a minimum effort on the management side; Infrastructure for

Client-Based Desktops (iCBD) is one of these projects.

This thesis focuses on the development of mechanisms for the replication and caching

of VM images stored in a local filesystem, albeit one with the ability to perform snapshots.

In this work, there are some challenges to address: the proposed architecture must be

entirely distributed and completely integrated with the already existing client-based VDI

platform; and it must be able to efficiently cope with very large, read-only files, (some

of them snapshots) and handle their multiple versions. This work will also explore the

challenges and advantages of deploying such a system in a high throughput network,

with both high availability and scalability while efficiently supporting a large number of

users (and their workstations).

Keywords: VDI, Btrfs File System, Snapshots, Replication Middleware, Cache Servers.

vii

Resumo

Nos últimos anos tem-se assistido a mudanças fundamentais na forma como a capaci-

dade computacional é utilizada - com o grande aumento da utilização da virtualização,

tanto a forma como são geridas as máquinas físicas como os modelos de infraestruturas

num centro de dados sofreram grandes alterações. Estas mudanças são o resultado da

procura por uma forma de disponibilizar rapidamente VMs num ambiente altamente

consolidado e com necessidades mínimas de intervenção humana na sua gestão.

Estão a ser desenvolvidas novas abordagens às técnicas de virtualização a um ritmo

nunca visto, o que leva à existência de um ecossistema altamente volátil com novas pla-

taformas e serviços a serem criados a todo o momento. É possível apreciar o esforço de

grandes empresas da indústria das tecnologias de informação relativamente a problemas

como a virtualização de desktops - com algum sucesso, mas ignorando completamente

o poder de computação que está presente nos Personal Computers (PCs) instalados, op-

tando por uma via de custo elevado, baseada em máquinas poderosas. Existe ainda espaço

para melhores soluções e para o desenvolvimento de tecnologias que façam uso das ca-

pacidades de computação que já se encontrem presentes nas organizações, mantendo a

simplicidade da sua configuração.

Esta tese foca-se no desenvolvimento de mecanismos de replicação e caching para

imagens de máquinas virtuais armazenadas num sistema de ficheiros local que tem a fun-

cionalidade (pouco habitual) de suportar snapshots. A arquitectura da solução proposta

tem de ser distribuída e integrar-se na solução client-based VDI já desenvolvida no projecto

iCBD; tem de suportar eficientemente ficheiros com vários GB (alguns deles resultantes

da criação de snapshots) acedidos em leitura, e manter destes múltiplas versões. A solução

desenvolvida tem ainda de oferecer desempenho, alta disponibilidade, e escalabilidade

na presença de elevado número de clientes geograficamente distribuídos.

Palavras-chave: VDI, Sistema de Ficheiros Btrfs, Snapshots, Middleware de Replicação,

Servidor de Caching.

ix

Contents

List of Figures xiii

List of Tables xv

List of Listings xvii

Acronyms xix

1 Introduction 1

1.1 Context . 1

1.2 Motivation . 2

1.3 Project Presentation . 3

1.3.1 iCBD Project . 3

1.3.2 Previous Work . 4

1.4 Problem Stating and Main Contributions 5

1.4.1 Replication and Caching - The Problem 5

1.4.2 Main Expected Contributions . 6

1.5 Document Structure . 6

2 Research Context 9

2.1 Virtualisation . 10

2.1.1 Hypervisors . 10

2.1.2 Virtual Desktop Infrastructure . 12

2.1.3 Virtual Machine Image Storage . 16

2.2 Storage . 18

2.2.1 Storage Challenges . 18

2.2.2 File Systems . 19

2.2.3 Snapshots . 20

2.3 Caching . 21

2.4 Replication . 22

3 iCBD - Infrastructure for Client-Based Desktop 23

3.1 The Concept . 24

3.2 The Architecture . 24

xi

CONTENTS

3.2.1 iCBD Machine Image . 25

3.2.2 Boot Services Layer . 28

3.2.3 Administration Layer . 29

3.2.4 Client Support Layer . 31

3.2.5 Storage Layer . 31

4 Implementation of the iCBD-Replication and Cache Server 33

4.1 Motivation and System Architecture . 34

4.2 Implementation of a Replication Module 35

4.2.1 Requirements . 35

4.2.2 System Overview . 37

4.2.3 Communications between nodes 39

4.2.4 Name Server . 43

4.2.5 Image Repository . 43

4.2.6 Master Node . 46

4.2.7 Replica Node . 49

4.3 Deploying an iCBD Platform with a Cache Server 51

4.3.1 The iCBD infrastructure at DI - FCT NOVA 51

4.3.2 Roles in the Platform . 53

4.3.3 Installing iCBD Core Services . 55

5 Evaluation 59

5.1 Experimental Setup . 60

5.2 Metodology . 61

5.3 Replication Service Benchmark . 62

5.4 Cache Server Performance Benchmark . 64

6 Conclusions & Future Work 71

6.1 Conclusions . 71

6.2 Future Work . 72

Bibliography 73

I iCBD-Replication Documentation 79

II iCBD Installation Guide 105

III Bug on Btrfs affecting CoreUtils tool 123

III.1 Bug Report . 123

III.2 Resolution . 124

IV iCBD Cluster Rack Diagram 127

xii

List of Figures

2.1 Virtualization architecture with type 1 and type 2 hypervisors 11

2.2 An exemple of a Virtual Desktop Infrastructure, adapted from AppDS 13

2.3 Conceptual overview of DaaS architecture, adapted from Intel 16

3.1 iCBD Layers View . 25

3.2 iCBD Machine Image Files . 26

3.3 iMI Life Cycle inside the iCBD Platform . 27

4.1 iCBD Replication and Caching Architecture (high-level) 34

4.2 iCBD iMI Snapshots Structure . 36

4.3 iCBD Replication Modules and Communications 37

4.4 iCBD Replication Module help output . 47

5.1 iCBD Nodes and Networking Setup . 61

5.2 Mean Boot Time of five workstations using iSCSI (Sequential Boot Scenario),

comparing iMI provider and network speed 66

5.3 Mean Boot Time of five workstations using NFS (Sequential Boot Scenario),

for different iMI providers and network speeds 66

5.4 System metrics for iCBD-imgs on one run of the five workstations sequential

boot scenario test . 67

5.5 System metrics for iCBD-Cache02 on one run of the five workstations sequen-

tial boot scenario test . 68

5.6 System metrics for one run on the iCBD-Cache02 in a boot storm scenario . . 69

5.7 Boot Time of fifteen workstations simultaneously (Boot Storm Scenario) for

different iMI providers and network speeds 69

IV.1 iCBD Cluster Rack Diagram . 128

xiii

List of Tables

4.1 Specifications of one HP ProLiant DL380 Gen9 host 52

4.2 Specifications of the HPE MSA 2040 SAN Storage 52

4.3 Specifications of all Networks . 53

4.4 Specifications of the virtual hardware of the iCBD machines 54

4.5 Specifications of the Physical Cache Server . 55

5.1 Specifications of the Laboratories Workstations 60

5.2 Physical infrastructure of the FCT NOVA and SolidNetworks sites 60

5.3 Time spent and data transmitted on transferring a complete iMI from Master

to Replica . 63

5.4 Time spent and data transmitted on transferring a delta between v1 and v2 of

an iMI from Master to Replica . 64

5.5 Total data received in the user workstation after booting, depending on boot

protocol and iMI providers . 65

5.6 Comparison of boot times in a boot storm situation in both providers (iCBD-

imgs and iCBD-cache02) . 68

xv

List of Listings

1 Dependences of the iCBD-Replication module bundled in a Pipfile 40

2 Starting procedure of a Name Server . 44

3 Example of the information stored in the icbdSnapshot object. 45

4 iCBD-Replication REST API Route Mapping 50

5 Strace of the cp --reflink=always command 125

6 Btrfs patch on a/fs/btrfs/super.c . 126

xvii

Acronyms

API Application Programming Interface.

BIOS Basic Input/Output System.

CLI Command Line Interface.

CoW Copy-on-Write.

CPU Central Processing Unit.

DaaS Desktop as a Service.

DC Data Centre.

DHCP Dynamic Host Configuration Protocol.

FAT File Allocation Table.

FS File System.

HTTP Hypertext Transfer Protocol.

IaaS Infrastructure as a Service.

iCBD Infrastructure for Client-Based Desktop.

iMI iCBD Machine Image.

IP Internet Protocol.

iSCSI Internet Small Computer Systems Interface.

IT Information Technology.

KVM Kernel-based Virtual Machine.

LAN Local Area Network.

NFS Network File System.

NTFS New Techology File System.

xix

ACRONYMS

NVRAM Non-Volatile Random-Access Memory.

OS Operating System.

PC Personal Computer.

PXE Preboot Execution Environment.

RAID Redundant Array of Independent Disks.

RAM Random-Access Memory.

RCS Replication and Caching Service.

RDP Remote Desktop Protocol.

RDS Remote Desktop Services.

REST Representational State Transfer.

RFB Remote Framebuffer Protocol.

RPC Remote Procedure Call.

SSH Secure Shell.

TCP Transmission Control Protocol.

TFTP Trivial File Transfer Protocol.

UDP User Datagram Protocol.

VDI Virtual Desktop Infrastructure.

VLAN Virtual Local Area Network.

VM Virtual Machine.

VMM Virtual Machine Monitor.

xx

C
h
a
p
t
e
r

1
Introduction

1.1 Context

The concept of virtualisation, despite all the recent discussion and hype, isn’t new: the

technology has been around since the 1960s [11], but it was not until it was available for

the x86 architecture [2] and, later on, further developed with the introduction of Intel

VT [47] and AMD SVM [24] in the 2000s, that virtualisation has entered the mainstream

as a must-have technology for server deployment across any production environments.

With efficient techniques that take advantage of all available resources, and continu-

ously lowering price points on hardware, an opportunity for the advance in application

architecture and a revamp in the supporting infrastructure was at hand.

However, companies realised that the cost to run an in-house, fully fledged data centre

(DC) may be, in some cases, unreasonable, and that building and managing it is also a

cumbersome task. And, cost is high - not as a consequence of hardware costs, but when

factoring in all other parcels: cooling systems that extract the heat generated by servers,

storage and networking, physical security to protect the DC, fire suppressing systems

and, the largest factor, cost of manpower to maintain the infrastructure; when all these

parcels are added together, the result is a high value for OPEX (operational expenditures).

To further aggravate costs, demand for instantaneous access to information coupled

with an ever-increasing amount of data to handle also demands a level of resources that

continues to grow every day.

This created an opportunity for the Infrastructure as a Service (IaaS) [38] cloud model

that, in the case of public clouds, outsources all the resource provisioning to third parties,

which are (must be) experts in maintaining very large data centres, geographically dis-

persed across the globe (for high availability), and can benefit from high discounts from

suppliers (hardware, energy, etc.).

1

CHAPTER 1. INTRODUCTION

With major industry players building their own, very large DCs, and offering both

public and hybrid cloud services, supporting more and more types of services with an

increasing number of customers, new ways to store data have emerged, and distributed

object storage is the platform that supports other storage paradigms – files, databases,

key-value stores, etc. – that exhibit high degrees of reliability, consistency, performance,

scalability, all essential to a broad range of applications with different workloads.

But, as always, there’s no one size fits all solution, and clouds are no exception: some

environments have peculiarities – such as low latency, and the cost to keep it under

control – that dictates that computing resources must be close to the user; one of these

environments is Desktop Virtualisation. VDIs, i.e., Virtual Desktop Infrastructures, are

computing infrastructures that provide their users with a virtual desktop: when the

user pics his/her workstation (usually PC or laptop) and interacts with it, the desktop

application (e.g., Windows Desktop, CentOS Gnome, Ubuntu Unity) displayed at the

device’s screen is not running natively on the user’s workstation. It is running in a Virtual

Machine (VM).

This is the umbrella (context) of our thesis/project: an infrastructure that runs VMs

that act as the user’s “personal computer” and that he/she can access anywhere where a

network is available (subject, naturally, to security and performance constraints), using

another computer for that task. The remainder of this chapter will provide more details

but, for now, we want to add that previous work was researched and developed a VDI,

named iCBD, that is running and functionally “complete”. Our task is to provide features

that will bring fault-tolerance, high-availability and scalability to the solution (with an

eye on cost).

1.2 Motivation

Virtualisation is the pillar technology that enabled the widespread availability of IaaS

cloud providers, benefiting of economies of scale. These cloud providers, such as Amazon

AWS [7], Microsoft Azure [39] and Google Cloud Platform [20], manage thousands of

physical machines all over the globe, with the vast majority of their infrastructures being

multi-tenant oriented.

The sheer magnitude of those numbers leads to an obvious problem, i.e., how to store

all this data efficiently. And, not only there is the need to store customer’s generated data

but also to manage all the demands of the infrastructure and the multitude of services

offered. One approach taken by these companies was the development of their proprietary

storage solutions. For instance, Google uses BigTable distributed storage system [12], to

store application-specific data, and then serve it to users. This system relies on the Google

File System underneath to provide a robust solution to store logs and data files and was

designed to be reliable, scalable and fault tolerant.

One characteristic in particular that stands out and is present in many of today’s very

large storage infrastructures is the use of snapshots with copy-on-write (CoW) techniques.

2

1.3. PROJECT PRESENTATION

The adoption of such mechanisms allows for quick copy operations (a.k.a. cloning) of

large data sets while saving resources and, at the same time, providing transparent con-

current operations as read-only versions of the data always ready for use – e.g., to perform

backups - while applications simultaneously execute write operations on their snapshots.

But large storage infrastructures are distributed; hence, the other important mechanisms

are replication, and data distribution: the duplication of records across multiple ma-

chines, serves not only as a “security net”, in case of a fault (as duplication removes

the single point-of-failure characteristic), but can also be used to take advantage of net-

work bandwidth (as one can spread a single access across multiple servers, i.e., accessing

several “duplicate segments”).

While the above discussion was focused on distributed storage systems, some of these

features, namely snapshots, are also available in non-distributed file storage implemen-

tations. One of these recently developed systems that has a significant adoption in the

Linux community is Btrfs [48].

Btrfs, whose name derives from B-tree data structures, was designed with two goals:

support snapshots and maintain excellent performance in a comprehensive set of condi-

tions. We, bounded by the iCBD’s project goals, claim that the combination of Btrfs with

replication and partitioning techniques opens up the way to a more advanced solution

that serves the needs of an up-to-date storage system, and be easily integrated into an

existing platform, serving a vast number of clients and presenting very good performance.

1.3 Project Presentation

This dissertation work was performed in the context of a more comprehensive project,

named Infrastructure for Client-Based Desktops (iCBD) [36]. The iCBD project is being

developed in collaboration between the NOVA LINCS Research Center, hosted at DI - FCT
NOVA, and SolidNetworks – Business Consulting, Lda., a subsidiary of Reditus S.A..

The project’s primary objective is to develop a winning VDI product that separates

itself from the current solutions (that we have dubbed server-based VDI), which execute

the virtual desktops in large, resource-heavy, servers. iCBD’s approach, which we dubbed

client-based VDI, supports the execution of both native (Linux only) and virtual desktops

(any “virtualisable” OS) on the user’s physical computer, in a nonintrusive way.

1.3.1 iCBD Project

There are some leading-edge aspects of the Infrastructure for Client-Based Desktop

project which sets it apart from other existing ones such as the adoption of a diskless

paradigm with a remote boot, the way the platform stores Virtual Machine images, and

the support for virtualised or native execution on the target workstation 1, depending on

1In this document workstation is a user’s desktop PC, laptop, etc., any PC compatible computing device
with a recent enough architecture that support modern hypervisors.

3

CHAPTER 1. INTRODUCTION

the user’s choice. [35]

The remote boot of the user’s workstation requires the cooperation of HTTP, TFTP,

DHCP and the image repository servers - the ones that store both read-only VM templates

and writable space for running instances started from those templates. Communication

between workstations and the platform is over the HTTP protocol, providing both flexi-

bility and efficiency. [3, 35, 37]

In short, the primary objectives of the project are:

• Offering a work environment and experience of use so close to the traditional one

that there is no disruption for the users when they begin to use this platform.

• Enabling centralised management of the entire infrastructure, including servers, in

their multiple roles, storage and network devices, all from a single point.

• Completely decouple users and workstations in order to promote mobility.

• Support disconnected operation of mobile workstations.

When all these objectives are taken into account, there is a clear distinction from other

solutions currently (and previously) available. As far as we know, no other solution is so

comprehensive in the use of the resources offered by the physical workstations whether

they are PCs, laptops or similar devices.

1.3.2 Previous Work

The iCBD project started about two years ago, and there has been a lot of work in that

period, namely by DI - FCT NOVA students. Previous work was focused on the creation of

the instances of virtual machines, using either the storage system’s snapshot mechanisms

(for those where native snapshots were available) or the hypervisor’s own mechanism.

These studies resulted in two MSc dissertations, one carrying out a more in-depth study

of Btrfs (and other file systems) while the other focused itself in object-based storage,

particularly on the Ceph (RADOS) product.

These two avenues, file system and object-storage system, proved themselves well

suited for the iCBD project, and resulted in the next step, namely on how to support a

multi-node, scalable, and failure-tolerant iCBD infrastructure, one where nodes may be

geographically dispersed.

4

1.4. PROBLEM STATING AND MAIN CONTRIBUTIONS

1.4 Problem Stating and Main Contributions

This dissertation aims to build upon the previous contributions, deeply study the core of

the iCBD platform, and tackle the next set of questions, mainly:

• In a geographically dispersed, multi-server iCBD infrastructure, how do we keep the VM
templates consistent and available even on the presence of network faults?

• How do we keep a simple management interface in a distributed platform?

• How to scale the platform in order to handle a large number of clients and maintain or
even enhance its performance?

1.4.1 Replication and Caching - The Problem

To address the previous questions, we start with a known fact: providing high availability

for data requires redundancy, and the simplest way to provide redundancy is to have

replicas. Therefore, building a replication mechanism is clearly our starting point. With

that in mind, we tackle a second part of the problem: if we want to provide to the iCBD

clients (workstations) fast access to the data, that data must be moved, or cached, near

those clients. Now, if our cache stores the full data objects that the client needs, and not

just parts of those objects, caching becomes just a side-effect from replication.

Establishing Goals Providing a mechanism that ensures the correct replication of data

between nodes of the platform is of paramount importance; but other objectives, such

as achieving the best performance possible on data transfer operations – that is, transfer

speed must be maximised, and the amount of data moved around should be minimised,

and the process should not be computationally intensive – are also important. Another

goal is ease of integration of the replication process with multiple technologies: the iCBD

storage layer is open to different storage backends – we already mentioned Btrfs and

Ceph. So, the design of the replication module should strive for an API that eases the in-

tegration with different backend technologies, as long as these do provide a snapshotting

mechanism.

As far as caching is concerned, two problems must be addressed: how to plan the

number and location of cache (i.e., replica) servers, and which platform services are fun-

damental for running images on the user’s workstations and how can they be integrated

with the replication and caching infrastructure in order to deliver the best possible expe-

rience to the highest number of clients.

To summarise, the following list expresses the key requirements that must drive the

architecture, design, planning and execution of (the rest of) our work:

• The iCBD platform needs to be always available and maintain top-notch perfor-

mance in multiple locations, while serving a considerable number of clients.

5

CHAPTER 1. INTRODUCTION

• There are two main reasons for data replication: fault-tolerance (replicas represent

backups) and moving data closer to the clients.

• Taking for granted that data is close to the consumer, devise ways to deliver that

data (to the client) as efficiently as possible.

• Booting a client should require the smallest number of platform functionalities

possible, simplifying the boot process near the consumer.

1.4.2 Main Expected Contributions

The main expected contributions are:

• Perform a thorough analysis of the iCBD platform layers and modules that are

already implemented, in order to understand its internals, to document it and allow

an efficient planning of the remaining of our work.

• Study, develop, and evaluate an implementation of a distributed and replicated

storage platform to support VMs, built on top of Btrfs.

• Implement a client-side caching solution in order to increase availability, improve

response time, and enable better management of resources.

• Integrate the solutions described above with the previous work and the existing

infrastructure.

• And, finally, carry out a series of tests that a) allow us to assert that our replication

and caching system is functionally complete and stable enough for production use,

b) allows us to draw meaningful conclusions about its performance, and c) provide

us with hints for future enhancements of the iCBD platform.

1.5 Document Structure

The rest of the document is structured as follows:

• Chapter 2 Research Context - This chapter presents existing technologies and theo-

retical approaches which were studied; examples include storage systems and their

features, and details on virtualisation techniques and hypervisors.

• Chapter 3 iCBD - Infrastructure for Client-Based Desktop - In this chapter, we

present the iCBD platform: we start with an overview of the solution, describe the

multiple layers and explains the conceptual and architectural decisions that were

made. This chapter is essential to the understanding of the bigger picture and where

our work fits in.

6

1.5. DOCUMENT STRUCTURE

• Chapter 4 Implementation of the iCBD-Replication and Cache Server - We start

with an in-depth view of the implementation of the iCBD Replication module,

detailing the architectural decisions and the implemented components. Then, a

description is given on the efforts to build, on the FCT NOVA campus, a server

infrastructure exclusively dedicated to the iCBD project. Then we explain how to

build and deploy the iCBD Cache Server software for a node that will support a

student’s computer lab with 15 workstations in the Computer Science Department.

• Chapter 5 Evaluation - In this chapter, we present the evaluation process employed

to validate our Implementation, with an emphasis on the analysis of the results we

obtained and a comparison with the baseline values.

• Chapter 6 Conclusions & Future Work - This chapter concludes the dissertation;

we provide the answers to the questions we raised in the Introduction, summarise

the results achieved in the evaluation process, and recall some ideas for further

improvements, ones that were formulated during the implementation process, and

we believe are a good starting point for future work.

7

C
h
a
p
t
e
r

2
Research Context

The focal point of this dissertation is the implementation of a scalable and coherent

distributed data store on top of a set of local (and independent) file systems. The file

systems, however, are not used for “general purpose” work: in our deployment, they store

VMs - (1) their read-only base images (or templates) and / or (2) their running instances

backstores and / or (3) their “support files” (VM specifications, Non-Volatile Random-

Access Memory (NVRAM) / Basic Input/Output System (BIOS) images, etc). Furthermore,

the target file systems are those which are able to natively provide snapshots and, for the

purpose of this dissertation our choice was Btrfs.

Moreover, our work should integrate smoothly into a broader infrastructure illus-

trated in detail in Section 3. In this chapter, we start with a survey of core concepts

directly associated with the thesis and compliment with some analysis on the state-of-art

in the relevant fields. The organisation of this chapter is as follows:

Section 2.1 overviews virtualisation as a core concept, describing significant properties

and the inner works of hypervisors and finishes with a comprehensive discussion

about the multiple VDI models.

Section 2.2 studies the principal challenges for a storage system in a VDI context and

makes a survey of the multiple types of file systems which are currently prevalent

in a data centre environment.

Section 2.3 talks about the problem of the locality of the data, and how that fact can

influence the performance and scalability of a system.

Section 2.4 expands on the fact that storing data in a single location is not enough for

compliance with current requirements, such as high availability, fault tolerance and

performance standards in critical systems.

9

CHAPTER 2. RESEARCH CONTEXT

2.1 Virtualisation

Most of today’s machines have such a level of performance that allows the simultaneous

execution of multiple applications and the sharing of these resources by several users. In

this sense, it is natural to have a line of thought in which all available resources are taken

advantage of efficiently.

Virtualisation is a technique that allows for the abstraction of the hardware layer

and provides the ability to run multiple workloads on a shared set of resources. Nowa-

days, virtualisation is an integral part of many IT sectors with applications ranging from

hardware-level virtualisation, operating system-level virtualisation, and high-level lan-

guage virtual machines.

A Virtual Machine, by design, is an efficient, isolated duplicate of a real machine [44],

and therefore should be able to virtualise all hardware resources, including processors,

memory, storage, and network connectivity.

For the effort of managing the VMs, there is a need for a software layer that has specific

characteristics. One of them is the capability to provide an environment in which VMs

conduct operations, acting both as a controller and a translator between the VM and the

hardware for all IO operations. This piece of software is known as a Virtual Machine

Monitor (VMM).

In today’s architectures, a modern term was been coined, the Hypervisor. It is common

to mix both concepts (VMMs and Hypervisors), as being the same, but in fact, there are

some details that make them not synonymous. [2]

2.1.1 Hypervisors

The most important aspect of running a VM is that it must provide the illusion of being

a real machine, allowing to boot and install any Operating System (OS) available for the

real hardware. It is the VMM which has that task and should do it efficiently at the same

time providing this three properties [44]:

Fidelity: a program should behave on a VM the same way or in much the same way as if

it were running on a physical machine.

Performance: the vast majority of the instructions in the virtual machine should be exe-

cuted directly by the real processor without any intervention by the hypervisor.

Isolation: the VMM must have complete control over the resources.

A hypervisor is, therefore, both an Operating System and a Virtual Machine Monitor.

It can be deployed on top of a standard OS, such as Linux or Microsoft Windows, or in a

bare metal server.

To start a VM, the hypervisor kernel spins up a VMM, which holds the responsibility

of virtualising the architecture and provide the platform where the VM will lie. Thus,

10

2.1. VIRTUALISATION

since the VM executes on top of the VMM, there is a layer of separation between the VM

and the hypervisor kernel, with the necessary calls and data communications taking place

through the VMM. This feature confers the necessary degree of isolation to the system.

With the hypervisor kernel taking care of host-centric tasks such as CPU and memory

scheduling, and network and storage data movement, the VMM assumes responsibility

to provide those resources to the VM.

An hypervisor can be classified into two different types [8], depicting two virtualisa-

tion design strategies, as shown in Figure 2.1:

Figure 2.1: Virtualization architecture with type 1 and type 2 hypervisors

Type 1 hypervisor: Sometimes referred as a bare-metal hypervisor, since there is no need

to rely on a host operating system, as it runs directly on the hardware. Moreover,

it is the only program executed by the CPU in its most privileged mode. As there

isn’t any layer between the hypervisor and the resources, this type of hypervisor

presents a more efficient solution than the Type 2.

In addition to the improved performance provided by the sharing or partitioning

of devices between the several guest VMs, this architecture provides the benefit of

supporting the execution of real-time OSs. The low-level nature of these hypervisors

with the broad access to the hardware has proven useful for use-cases that need to

deploy a multiplicity of operating systems even in mission-critical circumstances.

11

CHAPTER 2. RESEARCH CONTEXT

Recognising all the facts above, we can point that there are also some disadvantages.

Any drivers needed to support different hardware platforms must be covered by the

hypervisor package.

Type 2 hypervisor: This second variant of the hypervisor model relies on an already in-

stalled operating system and acts very similarly to any conventional process. Here,

the hypervisor layer is a union of a host operating system with specialised virtu-

alisation software, including extensions to that OS kernel, that will manage the

guest VM. In this case, the hypervisor makes use of the services provided by the OS,

which leads to a more significant memory footprint when compared to Type 1 but

is integrated seamlessly with the remainder of the system. An excellent illustration

of this kind of paradigm is Oracle VirtualBox and VMware Workstation/Fusion [2].

In this architecture, the host operating system retains ownership of the physical

components, with each VM having access to a confined subset of those devices, and

the virtual machine monitor providing an environment that emulates the actual

hardware per VM.

All the above culminates in some advantages: Type 2 hypervisors are regularly

deployed on desktop and laptop class of hosts, allowing: simulation of a rather com-

plex testing virtualised systems without the expense and complexity of managing

dedicated hardware; seamless integration with a graphical environment; host-guest

file and print sharing.

Either way, the challenge lays in the fact that the hypervisor needs to provide to guest

OS a safe execution environment and at the same time create different machine configu-

rations to each one of them. These characteristics, such as the number and architecture

of virtual CPUs (vCPU), the amount and type of memory available (vRAM), the allowed

space to store files (vDisk), and so on, are user configurable but it is the job of the hyper-

visor to do all the resource management. The settings of these individual components

reside in a VM configuration file. In the case of VMware hypervisors, the file has the .vmx

extension,[45, 60] while in a KVM environment, that configuration is stored in a .xml

file. [13]

With a virtualised infrastructure there is an opportunity for a substantial reduction

in the number of servers which, in turn, diminishes the setup time as those VMs are, in

a broad manner, created simply by cloning techniques. Software updates can be hugely

simplified and made available to all VMs at once if those VMs are created on-demand

from up-to-date templates at the beginning of a user session.

2.1.2 Virtual Desktop Infrastructure

It is common to find in a typical midsize corporate infrastructure hundreds of servers

and thousands of workstations. All in a diverse ecosystem counting with many hardware

12

2.1. VIRTUALISATION

Linked
Clones

Centralized
Virtual DesktopsEntreprise

Services

Master
Image

Administration

Clients

Storage

Switch

Blade
PCs

Terminal
Servers

Physical
PCs

Figure 2.2: An exemple of a Virtual Desktop Infrastructure, adapted from AppDS [9]

configurations, different OSs and applications needs. Probably even supporting several

versions of the same software is required for the day to day operations.

Organisations struggle daily with the traditional problem of installing software in

local workstations disks one-by-one (even if employing an automated process). This task

tends to be daunting as a company escalates in size and leads to some other predicaments:

• A Systems Administrator and IT Staff burden with significant infrastructure admin-

istration responsibilities and technical skills.

• A delay on the installation or reinstallation of new software and recovery from

breakdowns or administration mistakes, which in large installations such interven-

tion could take days.

• Installation processes may consume much of the available bandwidth in a network,

so if this job is to be executed simultaneously on several workstations, it tends to be

scheduled to off work hours to avoid disturbances.

• Periodical software updates (such Microsoft’s famous Patch Tuesdays [42]) are or-

dinarily released in the morning’s first boot of a workstation, which can bloat the

traffic and render useless the workstation for the remainder of the update period.

• If an update proves to be undesirable, by introducing some unexpected behaviour,

it is quite difficult to reverse this situation, which may even demand a new configu-

ration infrastructure-wise.

One solution to the unpleasant situations outlined above is to minimise the footprint

of installed software and reduce its managing needs. It is possible to conceive all the

13

CHAPTER 2. RESEARCH CONTEXT

software required to run a workstation (Operating System and applications) packaged

in a single unit like a Virtual Machine. This mechanism allows for the virtualisation

of a workstation that can be executed either locally on a typical PC / Laptop, or on a

server. The most relevant approach and with more expression at the moment is the

Virtual Desktop Infrastructure (VDI).

The concept encompasses a series of techniques, providing on-demand availability of

desktops, in which, all computing is performed employing virtual machines [25]. Typi-

cally this solution offers a centralised architecture, where users desktops run in VMs, the

user’s environment resides on a server in a data centre, as shown in Figure 2.2. However,

other components are required, such as storage for the users and VMs data and a network

capable of moving large data blocks quickly, all in a perspective where from the user’s

viewpoint there can’t be any apparent difference between a virtual desktop and a local

installation.

There are two antagonistic approaches to the architecture, one focused on the server-

side and the other on the client-side but both solutions are in an in-house paradigm were

all configurations, management and storage needs are the responsibility of the business IT

staff. A third approach emerged in recent years, with the peculiarity of being cloud-based,

coined Desktop as a Service. In this section, we present a summary of the technologies

above-mentioned.

Server-based VDI This is the most common approach, in which the VM runs remotely

on a server through a hypervisor. In this model, the images for the virtualised

desktops remain deposited in a storage system within a Data Centre. Then, when

the times comes for the execution of such VM, a server that is running a hypervisor

provisions the VM from storage and puts it into action. Featuring such benefit, as

the fact that only a low-performance thin client with support for a protocol such as

Remote Desktop Protocol (RDP) [46] or the Remote Framebuffer Protocol (RFB) [55]

is required to interact with the virtual desktop.

The downside involves the costs necessary to maintain the service. Highly capa-

ble support infrastructure is needed (computing, storage, networking and power).

With the additional requirement, of a need in some use cases, for adding high-end

graphics processors to satisfy the workflow of customers using multimedia tools.

We can still observe that the totality of the computing capacity of the hardware

already present in the premises of a client prevails not harnessed. Of course, the

machines already present can continue to be used, since they naturally have the

resources to use the tools mentioned above, but the non-use of their full potential

makes for all past investment made in hardware that pointless.

There are plenty of commercial solutions that use this principle, with the three

most significant players being VMware’s Horizon platform [58], XenDesktop from

Citrix [62] and Microsoft with Microsoft Remote Desktop [41].

14

2.1. VIRTUALISATION

Client-based VDI In this model, the VM that contains the virtual desktop is executed

directly on the client’s workstation. This machine makes use of a hypervisor that

will wholly handle the virtual desktop.

Since all computing work predominates on the client side, the support infrastruc-

ture (as far as servers are concerned) in this model as a much smaller footprint,

having only as a general task to provide a storage environment. Alternatively, all

the data could be already locally present in the hard drives of the clients, almost

disowning the servers to sheer administration roles and the maintenance of other

services.

The advantages remain close to the previous solution, with the added benefit of

a reduced need for resources and the possibility of using some already present in

the infrastructure. Although this approach presents itself as significantly more cost

restrained, there isn’t a notable adoption by software houses in developing products

in this family. Reasons for this fact can be attributed to the implementation of

such solutions that required a more complicated process, sometimes claiming the

complete destruction of locally stored data on workstation hard disks. [14]. An

example is a previously existing solution by Citrix, the XenClient [62].

Desktop as a Service The third, and most modern, concept incorporate the VDI archi-

tecture with the made fashionable cloud services. In some aspects shows some

astonishing similarities to the server-based method, where servers drive the compu-

tation, but here, the infrastructure, the resources and the management efforts are

located in the midst of a public cloud. An example of this design pattern is shown

in Figure 2.3.

The points in favour are some: There is good potential for cost reduction in the field

of purchase and maintenance of infrastructure since those charges are imposed on

third parties. Every subject related to data security is also in the hands of the plat-

form providers. Enables what is called zero clients, an ultrathin client, typically in

a small box form factor, which the only purpose is to connect the required periph-

erals and rendering pixels onto the user’s display. [63] With the added benefit of

presenting very competitive costs per workstation when compared to other types of

clients (thick and thin clients) and a reasonable saving on energetic resources.

However, in contrast, the downsides are also a few. Since the data location fre-

quently is in a place elsewhere from its consumption, some bandwidth problems

can arise, limiting the ability to handle a large number of connections. Adding to

this mix is the issue of the unavoidable latency, a result of the finite propagation

speed of data, which tends to escalate with the distance required to advance. Also,

there is the jitter factor, caused by latency variations, which are observed when

connections need to travel great lengths through multiple providers with different

congestion rates. All these facts not only may lead to a cap on the numbers of clients

15

CHAPTER 2. RESEARCH CONTEXT

that are able of connecting simultaneously but also can be a motive in a diminished

experience and quality of service provided, when in comparison to the previously

presented solutions.

Cloud

Figure 2.3: Conceptual overview of DaaS architecture, adapted from Intel [30]

In this new field, a multitude of solutions is emerging with public cloud providers

leading the way. Amazon in its AWS portfolio delivers Amazon Workspaces [6],

and Microsoft implements the RDS features [40] on the Azure product line. Nev-

ertheless, there are also some smaller contenders, as an example, Workspot [61] (a

company founded by ex-Citrix employees) makes use of the Microsoft Azure Cloud

to provide there take on cloud-native Virtual Desktops.

2.1.3 Virtual Machine Image Storage

The data storage is one of the focal points to address in this work. Therefore, it is mean-

ingful to understand how a virtual machine is composed and how is translated to a

representation in a storage device.

The basic anatomy of a Virtual Machine encompasses a collection of files that define

the VM settings, store the data (i.e. Virtual Disks) and save information about the state

of its execution. All of these data and metadata need to be deposited on storage devices

of whatever type.

VMware Architecture Given the architecture presented by VMware software [60],

the main files required for the operation of a VM are:

• The VM configuration file - The .vmx file holds the primary configuration options,

defining every aspect of the VM. Any virtual hardware assigned to a VM is present

here. At the creation time of a new virtual machine, the configurations regarding

the guest operating system, disk sizes, and networking are appended to the .vmx

16

2.1. VIRTUALISATION

file. Also, whenever an edit occurs to the settings of a virtual machine, this file is

updated to reflect those modifications.

• The virtual disk files - Embodying multiple .vmdk, which stores the contents of the

virtual machine’s hard disk drive and a small text disk descriptor file. The descriptor

file specifies the size and geometry of the virtual disk file. Also includes a pointer

to the full data file as well as information regarding the virtual disks drive sectors,

heads, cylinders and disk adapter type. The virtual disk actual data file is conceived

while adding a virtual hard drive to a VM. The size of these files will fluctuate based

on the maximum size of the disk, and the type of provisioning employed (i.e. thick

or thin provisioning)

• The file that stores the BIOS - The .nvram file stores the state of the virtual machine’s

BIOS.

• The suspended state file - The .vmss contains the state of a suspended virtual ma-

chine. This file is utilised when virtual machines enter a suspended state giving the

functionality of preserving the memory contents of a running VM so it can start up

again where it left off. When a VM is returned from a suspend state, the contents

of this file are rewritten into the physical memory of the host, being deleted in the

event of the next VM Poweroff.

• Log files - A collection of .log files is created to log information about the virtual

machine and often handled for troubleshooting purposes. A new log file is created

either during a VM power off and back on process, or if the log file stretches to the

maximum designated size limit.

• The Swap file - The vswp file warehouses the memory overflow in case the host

cannot provide sufficient memory to the VM, and Ballooning technique cannot be

employed to free memory [27]

In addition to the records described above, there may be some more files associated

with the use of snapshots. More concretely, a .vmsd file and multiple .vmsn. The first is

a file with the consolidation of storing and metadata information about snapshots. The

other one, represents the snapshot itself, saving the state of the virtual machine in the

moment of the creation of the snapshot.

The implementation of snapshots mentioned above applies to a specific implemen-

tation of VMware and takes form as follows: first, the state of the resource is stored in

the form of an immutable and persistent object. Then, all modifications that transform

the state of the resource are gathered in a different object. The diverse snapshotting

techniques are addressed in a more comprehensive sense in the Section 2.2.3.

17

CHAPTER 2. RESEARCH CONTEXT

2.2 Storage

As stated in previous sections, the main problem to be addressed in this work is the

storage concerning virtual machines. That could be either images, snapshots, files or data

structures that are needed to support the execution of a VM.

When applied to the VDI concept some demands appear in the form of specific care

needed at planning the storage system architecture, as well as the supporting infrastruc-

ture: the hardware picked, network topology, protocols used, and software implemented.

At the end of the day, the idea is to present a solution that offers an appropriate cost

to performance ratio, and that with little effort can scale when the need emerges.

2.2.1 Storage Challenges

I/O Storms In a typical data centre application, with a well-designed infrastructure

and in normal conditions, the storage system is steadily used but isn’t being stressed

continuously with I/O requests that directly affect the system performance. However,

that postulate is no longer valid when talking about the storing of VM files for use in

a VDI environment. In this type of context, some events can cascade in I/O storms

that eventually introduce degradations in storage response time, which diminishes the

performance of the overall system and in turn leads to a lower satisfaction level for the

users of said system. From several events that influence a storage system we can point

out some that have more expression in a VDI setting:

Boot Storm It may happen, on the occasion of the starting a work shift; with several

users simultaneously arriving at their desk and booting their workstations. In this

circumstance, all VMs are simultaneously performing multiple read and write oper-

ations on the storage system, which translates into poor response times and a long

wait for the end of the boot process.

Login Storm Right after the booting an OS, the workstations are not entirely operational

users have to log in to access a desktop, including applications and files. This pro-

cedure, results in a considerable number of concurrent I/O requests from multiple

VMs in a short time, as the system attempts to load quite a few files related to the

user’s profile.

Malware and Anti-Virus Software Scanning Usually scans for unwanted files and un-

trusted applications, are scheduled to execute at a time when they cause the least

possible impact taking into consideration the load of the machine. However, it is

not uncommon to observe a behaviour where this kind of software starts a scan

right after boot. Alternatively, the unfortunate case where different machines de-

cide to start that examination at the same time, causing a negative impact on every

machine.

18

2.2. STORAGE

Big Applications Needs Some applications can be very I/O intensive, like loading a

project in an IDE with numerous libraries and dependencies that need to be re-

viewed at startup. Also, we can envision a scenario where multiple users simultane-

ously open the same very resource intensive application, for instance, in a classroom,

the teacher asks the students to start a particular application, the I/O requests to

the storage system will most likely be simultaneous.

Operating System Updates Similarly to Malware and Anti-Virus Software Scanning, the

update process of an Operating System will most likely be tied to a schedule that

is based on the current load of a machine. Yet, multiple systems may decide to

perform an update in the same space of time thus leading to the bottleneck problem

of concurrent access to the storage system.

2.2.2 File Systems

The traditional and perhaps most common way of storing files and, in turn, VMs is the

use of file systems. This kind of system is used to manage the way information is stored

and accessed on storage devices. A file system can be divided into three broad layers,

from a top-down perspective we have:

• The Application Layer is responsible for mediating the interaction with user’s ap-

plications, providing an API for file operations. This layer gives file and directory

access matching external names adopted by the user to the internal identifiers of the

files. Also, manages the metadata necessary to identify each file in the appropriate

organisational format.

• Then the Logic Layer is engaged in creating a hardware abstraction through the

creation of logical volumes resulting from the use of partitions, RAID volumes,

LUNs, among others.

• The last one is the Physical Layer. This layer is in charge with the physical opera-

tions of the storage device, typically a disk. Handling the placement of blocks in

specific locations, buffering and memory management.

There are many different types of file systems, each one boasting unique features,

which can range from security aspects, a regard for scalability or even the structure

followed to manage storage space.

Local file systems: A local filesystem can establish and destroy directories, files can be

written and read, both can move from place to place in the hierarchy but everything

contained within a single computing node. Good performance can be improved in

certain ways, incorporating caching techniques, read ahead, and carefully placing

the blocks of the same file close to each other, although scalability will always be

19

CHAPTER 2. RESEARCH CONTEXT

reduced. There are too many file systems of this genre to be here listed. Neverthe-

less, some of the most renowned may be mentioned. As the industry-standard File

Allocation Table (FAT), the New Technology File System (NTFS) from Microsoft, the

Apple’s Hierarchical File System Plus (HFS+) also called Mac OS Extended and the

B-tree file system (Btrfs) initially designed by Oracle.

Distributed file system: A distributed file system enables access to remote files using

the same interfaces and semantics as local files, allowing users to access files from

any computer on a network. Distributed file systems are being massively employed

in today’s model of computing. They offer state-of-the-art implementations that are

highly scalable, provide great performance across all kinds of network topologies

and recover from failures. Because these file systems carry a level of complex-

ity considerably higher than a local file system, there is a need to define various

requirements such being transparent in many forms (access, location, mobility, per-

formance, scaling). As well as, handle file replication, offer consistency and provide

some sort of access-control mechanisms. All of these requirements are declared and

discussed in more detail in the book “Distributed Systems: Concepts and Design” by

George Coulouris et al. [15] We can give as example of file systems the well-known

Network File System (NFS) [52] originally developed by Sun Microsystems, and the

notable Andrew File System (AFS) [53] developed at Carnegie Mellon University.

There are numerous types of additional file systems not mentioned since they are not

in the domain of this work. Still, it is important to note the existence of an architecture

that is not similar to the traditional file hierarchy adopted in file systems, which is the

object-based storage.

This structure, as opposed to the ones presented above, manages data into evenly

sized blocks within sectors of the physical disk. It is possible to verify that it has gained

traction leading to the advent of the concept of cloud storage. There are numerous imple-

mentations of this architecture, whether in small local deployments or large-scale data

centres supporting hundreds of petabytes of data. This type of file system is being studied

in the context of a parallel thesis but inserted in the same project already presented.

It is worthwhile to enumerate some examples such as CephFS [59], OpenStack Swift [54],

and in a IaaS flavour the Amazon S3 [4] and Google Cloud Storage [18].

2.2.3 Snapshots

In this work, the snapshot functionality of the file system itself is a valuable asset. This

technique is present in some of the most recently designed file systems, such as the

Btrfs. As the name implies, a snapshot is an image at a given instant of the state of a

resource, we are particularly interested in snapshots of volumes (logical disks), and of

files (individually or grouped, for example, in a directory).

20

2.3. CACHING

The implementation of a snapshot can be described as follows: a) the state of a re-

source is saved in the form of a persistent and immutable “object”; b) changes to the

state of the resource forces the creation and storage of another object. Consequently, it is

possible to return to any previous state, as long as, the object corresponding to that state

is available. Snapshots are especially interesting in virtualised environments because the

hypervisor can take snapshots of the most critical features of a VM: CPU, memory, and

disk(s).

In this work, we propose to use the snapshot functionality of the file system itself,

present in some of the most recently designed file systems, such as the Btrfs. This way

the creation of linked-clones is handled by the file system capabilities as an alternative

to linked-clones created by virtualisation software itself.

In order for multiple snapshots, do not take up space unnecessarily, data compression

techniques are applied when implementing snapshots. So, the new object created to

register the sequence of new changes of a resource only registers the modifications made,

keeping unchanged the state in the initial (parent) object. This phenomenon (i.e. the

changes between the current snapshot and the previous one) is called a “delta” connecting

snapshots.

2.3 Caching

A cache can be defined as a store of recently used data objects that is nearby one client

or a particular set of clients than the objects themselves. The inner works of one of these

systems are rather simple. When a new object is obtained from a server, it is added to

the local cache, replacing some existing objects if needed. That way when an object is

requested by a client, the caching service first checks the cache and supplies the object

from there if an up-to-date copy is available. If not, an up-to-date copy is fetched, then

served to the client and stored in the cache.

Caching often plays a crucial role in the performance and scalability of a file system

and is used extensively in practice.

Caches may be found beside each client or they may be located on a server that can be

shared by numerous clients.

Server-side Cache: Server side caching is when the caching data occur on the server.

There is no right way to the approach of caching data; it can be cached anywhere

and at any point on the server assuming it makes sense. It is common to cache

frequently used data from a Database to prevent connecting to the DB every time

some data is requested. In a web context, it is common to cache entire pages or page

fragments so that there is no need to generate a web page every single time a visitor

arrives.

Client-side Cache: Maintaining the analogy to the Web environment, caches are also

used on the client side. For instances, Web browsers keep a cache of lately visited

21

CHAPTER 2. RESEARCH CONTEXT

web pages and other web resources in the client’s local file system. Then when the

time comes to serve a page that is stored in the cache, a special HTTP request is

used to check, with the corresponding server, if the cached page is up-to-date. In a

positive response the page is simply displayed from the cache, if not, the client just

needs to make a normal request.

2.4 Replication

At the storage level, replication is focused on a block of binary data. Replication may

be done either on block devices or at the file-system level. In both cases, replication

is dealing with unstructured binary data. The variety of technologies for storage-level

replication is very extensive, from commodity RAID arrays to network file system. File-

based replication works at a logical level of the storage system rather than replicating at

the storage block level. There are multiple different methods of performing this. And,

unlike with storage-level replication, these solutions almost exclusively rely on software.

Replication is a key technology for providing high availability and fault tolerance in

distributed systems. Nowadays, high availability is of increasing interest with the current

tendency towards mobile computing and consequently the appearance of disconnected

operation. Fault tolerance is an enduring concern for does who provide services in critical

and other important systems.

There are several arguments for which replication techniques are widely adopted;

these three are of significant importance:

Performance improvement: Performance improvement: Replication of immutable data

is a trivial subject, is nothing more than a copy of data from one place to another.

This increases performance, sharing the workload with more machines with little

cost within the infrastructure.

Increased availability: Replication presents itself as a technique for automatically keep-

ing the availability of data despite server failures. If data is replicated in additional

servers, then clients may be able to access that data from the servers that didn’t

experience a failure. Another factors that must be taken into account are network

partitions and disconnected operation.

Fault tolerance: There is the need o maintain the correctness guarantees of the data in

the appearance of failures, which may occur at any time.

22

C
h
a
p
t
e
r

3
iCBD - Infrastructure for Client-Based

Desktop

The acronym iCBD stands for Infrastructure for Client-Based (Virtual) Desktop (Com-

puting), a platform being developed by an R&D partnership between NOVA LINCS, the

Computer Science research unit hosted at the Departamento de Informática of Faculdade de
Ciências e Tecnologia of Universidade NOVA de Lisboa (DI - FCT NOVA) and SolidNetworks
– Business Consulting, Lda, a subsidiary of Reditus S.A. group.

iCBD’s primary goal is to implement a client-based VDI, a specialized form of VDI

where all computing chores – from graphical display to application execution – are per-

formed directly on the user’s workstation (PC/laptop, etc.) hardware as opposed to per-

formed on big and expensive servers, as it goes with mainstream VDI implementations

such as the ones from Citrix, Microsoft or VMware, to name the most relevant ones. Fur-

thermore, iCBD, while using the workstation’s hardware, does not touch the disk – either

to load software or as a temporary scratch device: it runs diskless. And, however, it does

offer a simple and centralised administration of the infrastructure, even when it spans

multiple sites.

This chapter will address the project’s central concepts and associated technologies:

Section 3.1 overviews the project’s core concepts and address note peculiarities and lim-

itations of mainstream implementations in contrast with our approach.

Section 3.2 studies the main architectural components of the platform, with emphasis

on the different layers and how they act together to serve the end-user.

23

CHAPTER 3. ICBD - INFRASTRUCTURE FOR CLIENT-BASED DESKTOP

3.1 The Concept

iCBD, as a project, aims to research an architecture that leads to the development of a

platform that we call client-based VDI, while maintaining all the benefits of both client-

based and server-based VDI. Additionally, it should be deployable as a Cloud Desktop as

a Service (DaaS) without any of the drawbacks of current DaaS offerings.

In short, our aim is to preserve the convenience and simplicity of a fully centralised

management platform for Linux and Windows desktops, instantiating those in the users’

physical workstation from virtual machine templates (VMs) kept in repositories. We will

further address this subject in Section 3.2.

To summarise the iCBD platform should be able to:

• Within the boundaries of the proposed architecture, adapt to a wide range of server

configurations.

• Provide an user experience so close to the traditional one, that users should not be

able to tell it from a PC standard (local) install.

• Simplify installation, maintenance and platform management tasks for the entire in-

frastructure, including servers in their multiple roles, storage and network devices,

all from a single point of administration.

• Allow for a highly competitive per-user/workstation cost.

• Maintain an inter-site solution to support efficiently, e.g., a geographically disperse

multi-site organisation.

3.2 The Architecture

The iCBD platform encompasses the use of multiple services; to achieve a better under-

standing of its inner workings, we can group these services in four major architectural

blocks, as seen in Figure 3.1.

iCBD Machine Image (iMI) embodies the required files to run a iCBD platform client;

this nomenclature was borrowed and adapted from Amazon Web Services’ AMI [5].

An iMI includes a VM template (with an operating system, configurations and

applications), the iCBD boot package (a collection of files needed for the network

boot and tailored to the operating system) and an assortment of configurations for

services like PXE and iSCSI.

Boot Services Layer responsible for providing the initial code that supports network

boot of client machines, the transfer a bespoke follow-up package (OS, ramdrive,

initial scripts), using services such as PXE, DHCP, TFTP and HTTP.

24

3.2. THE ARCHITECTURE

Client Side Platform Layers

Administration Layer

Storage Layer

iMI

Boot Services Layer
DHCP
TFTP
HTTP

Client Support Layer

NFS
iSCSI
AD
OBS

Figure 3.1: iCBD Layers View

Client Support Layer provides support for client-side operations including, e.g., authen-

tication, read/write storage space for client instances (since iMIs run on ‘diskless”

workstations) and access to the users’ home directories.

Administration Layer maintains platform users and the full iMI life cycle, from creation

to retirement. Currently, administration is based on a custom set of scripts.

Storage Layer maintains the repository of iMIs and provides essential operations such as

version control of the VM image files. Our work is fundamentally focused on this

layer, extending it in such a way that a single repository abstraction can be built

on top of the local/individual repositories through replication and caching. These

local repositories are implemented on Btrfs or Ceph and may be exported to clients

using NFS, iSCSI, REST and other suitable protocols.

In the next subsections, we will provide a more detailed description of each of the

above-mentioned layers.

3.2.1 iCBD Machine Image

In its essence, an iCBD Machine Image is an aggregation of everything that is needed to

run an Operating System within the iCBD platform – kernel, binaries, data and configu-

ration files. For the sake of simplicity, we categorise iMI files into three main groups:

25

CHAPTER 3. ICBD - INFRASTRUCTURE FOR CLIENT-BASED DESKTOP

VM Files

Services Configuration Files
(NFS, iSCSI, PXE, ...)

Boot Package Files
(init, rc0, rc1)

Machine Image

Figure 3.2: iCBD Machine Image Files

VM Template files The main component of this group is the virtual machine template

in the form of a read-only image. As described in Section 2.1.3, the anatomy of a

template follows the standard VMware and KVM formats either with multiple files

(i.e., Virtual Disk Files like .vmdk or .qcow) or a raw storage format (a disk image).

iCBD Boot Package files In a network boot environment, such as the one used, there is

a need to keep a set of files that manage the boot process of the user’s workstation;

these files can be included in the initial ramdisk or transferred over HTTP later on,

when needed. Included in the boot package are: a BusyBox tool, an init file, and

at least two Run Control Script files (rc0 and rc1) that are responsible for starting

network services, mount all file systems, and ultimately bring the system up into

the single-user level. With BusyBox (a single executable file with a stripped-down

set of tools), a basic shell is available during the boot process to fulfil all the required

steps.

Service Configuration files The iCBD platform uses several services, and some do re-

quire particular settings in the configuration files. As an example, the ‘NFS exports”

configuration file should reflect which file systems are exported, which networks

a remote host can use, as well as a myriad of options that NFS allows; the same

happens to iSCSI, where an iSCSI target needs to refer to a backing store for the

storage resource where the image resides.

26

3.2. THE ARCHITECTURE

iMI Life Cycle The life cycle of an iMI encompasses all stages that take it throughout

its course within the platform; Figure 3.3 shows the major ones, from creation, through

deployment, when in use by multiple clients and, finally, its retirement and placement in

to temporary or cold storage.

Created

Decommission

Creation

Administration

In
Administration

Staging

Published

Deployment

Marked for
Decommission Retire

Update

Boot Package Creation

Testing
&

Figure 3.3: iMI Life Cycle inside the iCBD Platform

When an iMI completes a full cycle, a new version is created; so, every new update

made to an iMI will spawn a new version. The creation of a new version is a rather

straightforward and computationally light operation, thanks to the snapshotting features

available at the storage layer.

During its life in the platform, an iMI can be in one of the following four main states:

Created After being inserted into the platform, an image is not instantaneously ready to

be served to clients and booted in a workstation; it must pass through a number of

administration steps for the generation of the appropriate boot package.

In Administration An iMI goes through this phase in two moments: the first one, de-

scribed above, when an image has just been injected (created) into the platform; and

the second, and most frequent case, when an image needs to be updated or, in any

way, modified. The iMI will stay in this state as long as it is being managed, which

can take from a few minutes to hours; at the end this process the boot package is

automatically created.

27

CHAPTER 3. ICBD - INFRASTRUCTURE FOR CLIENT-BASED DESKTOP

Not Published This is the status of an image that is ready but isn’t yet published, and

is therefore not visible to platform users. This phase is of particular interest for

testing it for correctness of the boot process, and to ensure that the modifications

were, in fact, applied. Only after testing should an iMI made available for general

use.

Published This state corresponds to the deployment of an iMI into production and is the

one where the iMI is expected to spend most of its time. iMIs in this stage have their

entries displayed at the user’s workstation screen at boot time, and all the necessary

support for their execution is available at the Boot Services Layer. So, if the user

chooses one of those iMIs, no matter what device (e.g., PC or laptop) he/she is using,

the image is expected to boot to completion, and the user should be able to login

and work just as if the boot was from a local disk.

When an iMI completes a cycle and undergoes an update process, the old version is

retired and set to a new state, named Marked for Decommission, which is comparable

to a stay in limbo. First, because when the administration process was initiated clients

could be using that same image, so it must be available for them (or else a disruption

would happen). And, when the administration process finishes, clients may still be using

the old version. Therefore, Decommission is only triggered when the last client “closes”

its session. At that moment, the old version can be removed entirely from the platform

or, more wisely, stored as a backup e.g., to allow the administrator to retrieve an older

state of the image (for example, a newly installed update breaks some application).

3.2.2 Boot Services Layer

From an end-user perspective, the only layer that is visible and requires interaction, is

the boot layer – one that displays the set of images the user is allowed to boot, and waits

for his/her choice. However not every single aspect is noticeable: while this happens in

the workstation’s screen, in the background multiple services cooperate to run the chosen

iCBD Machine Image.

The iCBD platform provides two distinct ways to remote boot an iMI: one instantiates,

from an iMI, a native Operating System that runs on the workstation’s “bare metal”

just like a standard diskless network boot of, say, Linux does; the other uses the above

mechanism to start a minimal OS with an embedded hypervisor installed, then runs the

hypervisor, and finally launches another iMI, one chosen from those available in the

platform. Both approaches are entirely transparent to the user and, users who are not

knowledgeable about virtualisation technologies will be completely unaware of whether

they are running a native or virtualised OS.

The first part of the boot process runs like any other network boot: a series of DHCP

requests are used to provide suitable network parameters - particularly the location

(IP address) of the TFTP server and, then, a small network boot manager program, is

28

3.2. THE ARCHITECTURE

transferred, loaded and executed. Using the standard PXE boot environment, a friendly

looking, tailored graphical menu, displays an assortment of choices that announces the

different iMIs ready to boot.

Booting an iMI in a Workstation After the selection, in the PXE [22] boot menu, of one

of the available iMIs , the second-stage boot kicks in, using PXELINUX as a bootloader.

That provides us with the capability of transferring a compressed Linux Kernel (vmlinuz)

and an initial ramdisk (initramfs) [23] using either TFTP or HTTP. In this step, a number

of parameters needed for proper operation are set with their appropriate values based on

the requirements of the chosen image. After loading everything into memory (RAM), the

second-stage bootloader runs the kernel image which, after initialisation, starts the first

user-space application – usually, the init program.

In the iCBD platform init starts a chain of execution of two custom files, rc0 and rc1;

these Run Control scripts configure every single aspect in the OS according to the hard-

ware characteristics of physical machine that is booting. The first step is to reconfigure

the network interface card and obtain IP connectivity. Then, a check is performed to see

if there is a need of getting more files to complete the boot process and, if necessary, those

files are transferred. The next script, deals with data volumes and mounting operations

– R/W space, user home directories, etc.. If the image’s OS is just the platform to run

another iMI in virtualisation mode, more configuration steps are performed, e.g., a check

is made to determine if the base OS file system happens to be Btrfs: if true, seeding must

be used in order to create a R/W instance from an R/O iMI. Alternatively, or if the iMI

OS is not Btrfs, an overlay filesystem is used to create the R/W instance.

After these configuration steps, the switch root command is executed moving the

(already mounted) filesystems /proc, /dev, /sys, /tmp and /run to a new root and turning

it into the new root filesystem, performing some housekeeping, namely erasing all files

not in use in the initramfs root, releasing any unused memory.

Finally, the remaining configuration steps include setting of the current time with

the NTP service and logging some statistics such as the elapsed time and the bandwidth

consumed by the boot process as a whole.

3.2.3 Administration Layer

One of the most important features provided by the platform is the ability to perform ad-

ministration operations on an iMI, a task accomplished with the help of an administration

tool which enables an iCBD administrator (or architect, if we draw a parallel with a role

commonly found in private cloud infrastructures) in an organisation to make the changes

he/she deems necessary (e.g., update the OS and applications, add or remove software,

and modify configurations) and then publish the new image (version) for widespread use.

29

CHAPTER 3. ICBD - INFRASTRUCTURE FOR CLIENT-BASED DESKTOP

The Administration Process The administration tool consists of a main script, adm,

which then calls a series of others, depending on the task at hand. Calling adm with the

name of one iMI as an argument starts an administration appliance - a VM with a custom-

tailored base image that will support the administration process. Usually, the VM guest

OS will be Linux, with several distributions supported: openSUSE Leap 42.2, Fedora 27,

CentOS 7 and Ubuntu 16.04 LTS. The whole administration process makes extensive use

of the snapshotting capabilities of the Storage Layer (whether using Btrfs or Ceph), with

no (predictable) performance degradation on the other iCBD platform services.

For each iMI, there is a snapshot with an index number that relates to its version

and age (i.e., higher numbers represent more recent versions); that index is used as the

name of a directory, and the snapshot (and related files) are kept inside that directory.

So, creating a new linked clone from the latest version of a VM becomes a very simple

process.

When booted, the administration VM will start a hypervisor (VMware Workstation,

VMware Player or KVM) and the hypervisor will be instructed to boot a linked clone

created on-the-fly from the VM version (i.e., the iMI) that the administrator wishes to

update. Thus, this process will, if executed in the iCBD administration server itself,

use nested virtualisation [16] to achieve its goal, which may result in some performance

degradation (even considering the use of a Type 1 hypervisor, such as KVM). However,

in theory, nothing prevents the administrator from using his/her workstation in native

mode or a server with a bare-metal hypervisor and run the administration VM using only

one level of virtualisation.

In this step, the (newly created) snapshot being managed is in a temporary directory,

one whose lifetime is the duration of the procedure. This method serves two purposes:

first, all clients using the iMI version that is undergoing changes can keep using it; and,

last, one may quickly discard all changes made in the working directory version if one

wishes so.

When all modifications have been made to the temporary image, the administrator is

given the option whether to commit or discarding them; if one commits, the temporary

(working) directory is used to create a new linked clone (of the temporary snapshot), but

one that follows the naming rules, and may, therefore, be used as the name of the new

directory.

Creating the boot package After completion of the above-described steps, the iMI is

not yet ready to be published, as there are no files to support the boot process; the next

step is, therefore, the creation of a boot package. This is the responsibility of the mki

script, one that, depending on the type of the iMI, may be called immediately when the

Administration Process is over by the adm tool.

The procedure is different for Windows or Linux iMIs: while sharing a common set of

steps, Linux iMIs require an additional number of customisation steps because iMIs for

Linux have two sub-types – one for iMIs intended to run natively on a workstation, and

30

3.2. THE ARCHITECTURE

the other for iMIs that serve as hosts for other images. The first type requires the creation

of custom initramfs and vmlinuz files, the addition of a subset of the image’s Kernel

drivers and firmware (namely for all available network interfaces and the filesystems

used during the boot process), and the customisation of Run Control scripts (rc0 and rc1)

that start the network services with a suitable configuration, compatible with the iCBD

platform, and mount the correct remote file systems. At the end of this process, a script

called runvm is also added; that script is instrumental in starting a virtualised iMI, as

well as in configuring the hypervisor parameters in order to take advantage of the client’s

hardware.

However, the job of the mki script is not yet complete: for the two types of iMIs, the

configuration of both the iSCSI targets (to reflect the new iMI version) and the pxelinux
(to reflect the new paths to the files that will be served to the clients) must be updated.

3.2.4 Client Support Layer

The Client Support Layer is the most fluid of all layers, containing an aggregation of

services (most of them originated outside the platform) working together to provide

the environment that is required for a client workstation to operate correctly. Another

essential service provided by this layer is its relation with storage layer, one which, using

protocols such as NFS and iSCSI, allows the client to provide the necessary data for the

boot process and obtain read/write space to support the changes made to the client’s

storage instance (derived from the iMI). Moreover, these protocols are the ones that

provide access to the user home directory and other volumes, if supported.

It is important to note that there are other services that are essential to the correct

operation of clients in the iCBD platform, such as DNS and NTP. And there are also

services that, while not directly related to the iCBD platform, are nevertheless need

to support clients; as an example, in a medium/large organisation Microsoft’s Active

Directory plays a paramount role – therefore it is necessary for the iCBD platform to

coexist with this type of service, and Windows iMIs can be prepared in a way that, when

an instance is booted, it will “automatically” join the organisation’s AD.

3.2.5 Storage Layer

The most significant part of our work will focus on this layer, which is responsible for

storing all platform data, whether they are iMIs, virtual disks (.vmdk) for VMs such as the

administration VM and others that support platform services, databases that preserve in-

formation and configuration data for those services, code repositories, etc.. In its essence,

the Storage layer consists of a set of file systems (or, if OBS-based, of object stores) each

with its own purpose.

To keep this document short, we will only focus on file systems that provide storage

for iMIs. Given the uniqueness of this type of data, the file system must have the right

set of features, and of particular importance is the support for snapshots; as we have

31

CHAPTER 3. ICBD - INFRASTRUCTURE FOR CLIENT-BASED DESKTOP

previously referred, our choice is Btrfs. It is important to mention that this is not the

only solution that supports snapshots – object stores such as RADOS (from Ceph) are

particularly well suited to store very large objects, such as virtual disks, but that avenue

is being researched in another project.

The Btrfs features that are heavily used in the iCBD platform are: sub-volumes; snap-

shots; cloning of both sub-volumes and snapshots; Btrfs seeding; and incremental back-

ups, just to name a few. These features are used achieve several goals: multiple sub-

volumes are used to store different parts of the platform data, snapshots are widely used

to create (a kind of) version control for iMIs (allowing us to access any version at any

moment) and to backup the entire iCBD platform. Btrfs seeding is another important

feature, as it provides a mechanism that allows multiple read-only mounts of the same

Btrfs file system, thus enabling multiple clients to use the same iMI.

One must remember that, while this work is focused on Btrfs, from the point of view

of the remaining layers the type of store - filesystem or object-based - should be entirely

transparent to the other layers, which will interface iCBD “data objects” through standard,

widespread protocols such as NFS or iSCSI.

Therefore, when dealing with the problem of data replication across multiple file

systems transparency, as an attribute, is fundamental. We will discuss in detail the repli-

cation and caching topics in the next chapter, and we will provide, then, an explanation

of the decision-making process and a discussion on the implementation issues.

32

C
h
a
p
t
e
r

4
Implementation of the iCBD-Replication and

Cache Server

This chapter is about the core of this thesis: the iCBD-Replication and Cache Server, a

middleware system that provides replication features in an integrated way to the iCBD

platform. Naturally, the first subsection provides a detailed description of the motiva-

tion, architecture and design aspects while the second subsection concentrates on the

implementation. Finally, the last subsection deals with the process of building the Repli-

cation and Cache Server: that is, how the modules are installed and deployed in an iCBD

infrastructure.

Section 4.1 begins by explaining the motivation for the implementation of a replication

module within the iCBD platform, as well as explaining the need to include a new

role in the platform with the creation and deployment of a cache server near the

clients. Concluding with the overall architecture of the system and how both topics

complement each other.

Section 4.2 overviews the implementation of the middleware dubbed iCBD-Replication.

Beginning the journey through the initial architectural process and then showing

the implemented components and their interaction with the several layers of the

platform.

Section 4.3 shows how the complete iCBD platform was installed in the NOVA Univer-

sity cluster. Then, a description of the work performed to include a client-side

caching server directly connected to the final clients.

33

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

4.1 Motivation and System Architecture

One of the key objectives of iCBD is to provide a platform that can stretch from a fully

hosted, on-site architecture to one where an important part of its services is cloud-based.

Naturally, in-the-middle solutions are also interesting, such as one where, e.g., both

the administration and storage of “golden” iMIs are cloud-based, while the rest is on-

premises. Therefore, it becomes evident that data locality is an important subject, and

thus one must study how data flows between the components of the iCBD platform – a

complex, data-intensive platform, boasting multiple storage devices and many different

networks, accessed by multiple consumers demanding data at any given time.

All these factors, allied to the desire of having a distributed and scalable platform

architecture, result in the need to design a new service whose mission is to ensure that

data is correctly replicated in the appropriate places, and consistency of the various

versions of the iCBD Machine Images stored is maintained. This led to the high-level

architecture of Figure 4.1.

iMI Provider

Replica Node
Module

Cache Server

Master Node
Module

REST API

CLI

Workstations

Sys Admin

Admin Script

Replica Node
Module

Cache Server

Workstations

La
rg
e

St
or
ag
e

iMI

Storage

iM
I

Storage

iM
I

Figure 4.1: iCBD Replication and Caching Architecture (high-level)

34

4.2. IMPLEMENTATION OF A REPLICATION MODULE

4.2 Implementation of a Replication Module

When our project started, iCBD was already available; therefore, our Replication and

Caching Service (from now on, RCS) had to be integrated with the existing architecture

and support (and enhance) the previous work. This influences the choices available for the

RCS implementation and could, in a worst-case scenario, severely limit them. Fortunately,

that was not the case.

iCBD was designed from the start based on the assumption that the storage layer

where iMIs live was built on top of a storage system which supports snapshots. In the

first prototype, Btrfs was chosen for the storage layer but, in theory, any storage system

that supports snapshots can be used in the platform. That is, in fact, the case with a

parallel work being developed in another dissertation, where the focus is the use of an

object-based storage system, Ceph.

4.2.1 Requirements

Btrfs is a modern file system based on the concept of copy-on-write (CoW): it is capable

of creating lightweight copies of filesystem structures – files, directories, volumes. We

already detailed the importance of this trait in Section 3.2.5. Therefore, a mandatory step

was to investigate Btrfs-provided tools that could help us to achieve our primary goal:

being able to move information (“base” iMIs and their snapshots) around, from “master”

to “secondary” nodes, while consuming the minimum bandwidth – one must not forget

that, while a typical Linux iMI is less than 10 GB, a Windows 10 iMI is circa 40 GB. We

found that Btrfs has incremental backup capabilities, and therefore we set out to explore

those.

So, Btrfs’s incremental backup capabilities are a good starting point; however, their

purpose is to help in data transfer; but that is not enough. Preservation of consistency

of the iMIs is also a concern, as one has to assure that iMIs cached in the RCSs are

up-to-date, and when a new iMI is created its distribution will start “immediately”, to

ensure high availability in case of faults. Moreover, the locality of the data should be

taken into account, since data transfer endpoints may be located within the same data

centre, or at, e.g., geographically disperse regions in the world. Bandwidth use and

data encryption become essential, requiring the study of compression algorithms and

encryption techniques.

Btrfs Incremental Backup feature A first step is trying to understand the most effi-

cient way to transfer this unique kind of data (i.e. an iMI). Given the fact that we are

working with a file system with snapshots capabilities, we want to take advantage of this

functionality and minimise the amount of data roaming the network.

Btrfs has a set of userspace utilities to manage Btrfs filesystems, called btrfs-progs;

these include a pair of commands, btrfs send [34], and btrfs receive [33], that pro-

vide the capability to transport data via a stream and apply differences from/to a remote

35

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

filesystem. The send command simplifies the process of generating a stream of instruc-

tions that describe changes between two subvolume snapshots. Also available is the

ability to use an incremental mode, where given a parent snapshot that is available in

both the send and receive sides, only the small delta between snapshots (e.x. V2 and

V2-1 in Figure 4.2) is going to integrate the stream. This feature considerably reduces

the amount of information that needs to be transferred to reconstruct a snapshot in the

receiving end. The send-side operations occur in-kernel, beginning by determining dif-

ferences within subvolumes and, based on those differences, the kernel generates a set of

instructions in a custom-formulated stream.

iMI

V0

V1

∆1

V2

∆3

∆2

V3

V0

∆1

V1

V2

Send(V1, V2)

Receive(∆2)

VM Files

Figure 4.2: iCBD iMI Snapshots Structure

On the remote end, the receiving command accepts the stream generated by the send

and uses that data to recreate one or more snapshots. Contrary to the send command,

receive executes in user space, replaying the instructions in the stream one by one; the

set of instructions includes the most relevant calls found in a Virtual File System, such

as create(), mkdir(), link(), symlink(), rename(), unlink(), and write(), along with

others [32].

36

4.2. IMPLEMENTATION OF A REPLICATION MODULE

4.2.2 System Overview

iMI Provider

Name Server
Module

Keep Alive
Module

Image
Repository

Image
Repository

Replica Node
Module

Ca
ch
e
Se
rv
er

Master Node
Module

REST API

CLI

Sys Admin

Admin Script

Workstations Workstations

Comms
Lib

Comms
Lib

Image
Repository

Replica Node
Module

Ca
ch
e
Se
rv
erComms

Lib

Pyro4

TCP / SSH

La
rg
e

St
or
ag
e

iMI

Storage

iM
I

Storage

iM
I

Figure 4.3: iCBD Replication Modules and Communications

Since the replication module interacts with different tools and utilities, e.g., bash

scripts and command line tools and some OS calls, we think that the most suitable

approach was to create a Python distributed middleware layer using a master-replica

paradigm.

Python, as a programming language, enjoys some idiosyncrasies, functioning as an

object-oriented language, possessing an extensive standard library and enjoying a big com-

munity delivering packages with a wide range of functionality; all these facts contribute

to make it the most appropriate programming language to bind everything together in

37

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

our iCBD platform.

Our middleware is composed of several modules and includes all the necessary func-

tionalities that allow a node to behave as a Master or as a Replica, where each maintains its

individual Image Repository. A number of libraries were also developed: to interface with

some tools, such as Btrfs send/receive and with SSH, to build wrappers for compression

algorithms, and even to provide a REST API.

An overview with a small description of the functionality of each component of the

RCS system, displayed in Figure 4.3, follows:

Master Node This node acts both as a controller to the replication system and an inter-

face to interact with a client whether through a CLI or REST API. This node shall

reside on an iCBD Administration machine since it must deliver changes made to

iMIs to all replicas. It is also responsible for communicating with the Name Server

to gather information about which nodes are present on the platform, or what is

their status; even instruct the Replica Nodes to execute certain operations.

Replica Node Its main task is to maintain the list of subscribed iMIs that are not up-to-

date, receive the updates as soon as the Master Node sends them, and store them

locally. Upon request, the Replica Node can deliver the list of iMIs that are locally

stored and their version numbers, and subscribe (or unsubscribe) for new iMIs.

Name Server This service lives in the same machine as the Master Node, holds records

about nodes in the replication system, in a phone book type simple database. Nodes

register themselves in the name server during the startup process (and leave on

shutdown) and can, at any moment, query about the location of other nodes.

Keep Alive It’s a Master Node thread that periodically checks if Replica Nodes are still

operating correctly. When it identifies that a Replica Node is no longer responding,

it immediately sends a request to the for the removal of the dead node from the

Name Server’s directory.

Image Repository This module is a custom-made data structure that holds a (large) set

of iCBD Snapshot objects in a key:value store. In addition to storing these objects,

it has an interface that provides quick answers to queries that ask which iMIs are

stored in the node’s repository. Every node in the platform (i.e. Master or Replica)

must necessarily hold one repository.

All the previously described components interact with a number of “objects”, so it is

not a surprise that a sizeable amount of code that we have created has been packed into a

number of libraries:

Btrfs Lib The Btrfs library holds two classes: the first one, called Btrfs Tool, is a Python

wrapper for btrfs-progs, described in section 4.2.1; the other class, designated

BtrfsFsCheck implements functions that validate if a given path transverses a Btrfs

38

4.2. IMPLEMENTATION OF A REPLICATION MODULE

filesystem and, if it does, verifies if in that path a subvolume also exists. Addition-

ally, a method is provided to discover all snapshots in a directory.

Compression Lib Since multiple compression algorithms are used, it makes sense to

create a library that encapsulates multiple wrappers, one for each algorithm; these

wrappers only contain code that provides compression and decompression of data

streams, no other operations are present.

Serialiser Lib Some communication operations between nodes require the transmission

of objects; therefore a library containing serialisation and deserialisation methods

for those objects has been implemented.

SSH Lib This library implements a wrapper for the SSH command, allowing the creation

of tunnels so that data can be funnelled through a secure connection between nodes.

REST API Lib To comply with one of the objectives of the replication module, a REST

API should be provided. That is precisely what this library does, providing the

endpoints to interact with the system, and enabling an easy way to expand that

interaction to other platform modules.

The libraries we created to implement the common set of functionalities required for

the replication module, do require more libraries, implemented by the Python community.

An inventory with the library dependencies is presented in Listing 1. These are necessary

to handle communication between nodes, algorithms for data compression, and secure

data transmission; the most relevant ones are described through the remaining text in

this section.

4.2.3 Communications between nodes

To coordinate the multiple modules and their activities, an abstraction of a network-

shared communication channel must be supported. The remote procedure call (RPC) was

chosen to support the inter-process communication, allowing a procedure running on a

system to invoke an operation in a process running in a different location, most likely on

a remote system.

As seen in figure 4.3, multiple processes are running in different machines any given

time, and these processes need to continually send and receive information: operations

that must be executed, metadata updates, monitoring if a process is compliant with its

expected behaviour or is in a faulty state, etc. Managing nodes is just the right case for

the Pyro 4 library, one that gives an holistic view of the system and allows triggering

operations in a node.

Pyro4 Library Pyro4 [29] is a library that enables the development of Python applica-

tions where objects can talk to each other over the network through the use of RPCs. It is

39

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

[[source]]
url = "https://pypi.python.org/simple"
verify_ssl = true
name = "pypi"

[packages]
"pyro4" = "==4.62"
serpent = "==1.23"
"py-lz4framed" = "==0.10.0"
python-snappy = "==0.5.1"
Sphinx = "==1.6.6"
sphinx_rtd_theme = "==0.2.4"
flask = "==0.12.2"
Flask-Jsonpify = "==1.5.0"
Flask-RESTful = "==0.3.6"

[dev-packages]

[requires]
python_version = "3.6"

Listing 1: Dependences of the iCBD-Replication module bundled in a Pipfile

designed to be very easy to use and integrate in projects while having a considerable flex-

ibility. This library can be imagined as a glue that easily integrates various components

of a heterogeneous system.

Some Pyro4 core features are used in the iCBD replication module including (but not

limited to):

Proxy This object acts as a substitute for the real one, intercepting the calls to a given

method of that object. Then, through the Pyro library, the call is sent to the actual

object - one that will probably reside in a remote machine – and will return the

resulting data (very useful, considering that the function that performs the call

does not need to know if it is dealing with a local or remote object).

Pyro object A Pyro object is a regular Python object that goes through a registration

process with Pyro in order to facilitate remote access to it. Objects are written just

as any other piece of code, but the fact that Pyro knows their existence allows other

programs to place calls.

Pyro daemon This component listens for remote method calls done to a proxy, dispatches

them to the real object, collects the result of the call, and returns it to the caller.

Name Server It keeps track of the object’s actual locations in the network so that they can

move around freely and transparently. Similarly to a yellow-pages book, provides a

way to lookup objects based on metadata tags.

40

4.2. IMPLEMENTATION OF A REPLICATION MODULE

Automatic reconnecting Provides an automatic retry mechanism to handle the fault that

arises when a client (in our case a Replica Node) becomes disconnected from the

server (Master Node) as a result of a server crash or communications error.

Secure communication Pyro, in itself, does not encrypt by default the data it sends over

the network. Still, Pyro RPCs communications can travel over a secure network

(VPN, SSL/SSH tunnel) where the encryption is performed outside the library. Al-

ternatively, it is also possible to enable SSL/TLS in the Pyro library itself, securing

all communications with custom cert files, private keys, and passwords.

Serialisation Pyro supports the transformation of objects into streams of bytes that flow

over the network to a receiver that reconstructs them back into the original format.

This process is essential to ensure the delivery of all data that remote method calls

receive as arguments, as well as the corresponding responses they return.

TCP Sockets and Secure Shell Protocol (SSH) Coordination of system activities is

only a part of the work that “loads” the network; the other, and more important part, is

carrying large volumes of data (as a result of transferring GB-sized iMIs) to perform the

replication tasks that keep VM images consistent across RCS nodes. The Pyro4 library

allows secure communications, but only for method calls (arguments and responses)

within replication nodes.

The delivery process of iMIs throughout nodes follows one out of two principles: in

the first scenario, we consider the case where the iMI does not leave the same trusted local

network (i.e. communications within the walls of one organisation); the second covers

the transport of data across external networks, including the Internet.

When discussing intranet environments, it’s safe to assume that there are some se-

curity measures already in place (e.g. VLANs) so, in this regard, we assume that data

security is already catered for. That allows us to use a simple Stream Socket [21], which

does provide a connection-oriented flow of data with error detection, in our case imple-

mented on top of TCP. This option, when paired with non-encrypted communications,

delivers the best performance possible for the transfer of an iMI.

In the second case, which involves data travelling through external networks, an

extension of the previous solution is employed: we used the same type of socket, but

transport data through an SSH tunnel deployed between nodes.

This, in addition to solving the issue of ensuring data security in the transferal process,

has the benefit of being a modular solution that allows future changes in the way data

is encrypted without needing significant modifications to the code base. But, while we

do not believe that this is a perfect security model, and there is room for improvement,

we will not pursue that avenue because this is not the focal point of this work. However,

the current solution does provide the level of security we deemed enough to conduct

functional tests linking geographically separated data centres.

41

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

Data Compression As noted in the section where requirements were discussed, our

implementation should aim for a reduction in the bandwidth used by operations in the

iCBD platform, and that includes the replication of iMIs. Part of it is already addressed

in the Storage Layer since the images, by default, are transparently stored in Btrfs com-

pressed with zlib [31]. However, the replication process using the Btrfs send and receive,

as explained in section 4.2.1, does not send an iMI itself, but an “instruction” stream

(which includes the data to be transferred) which, in itself, is an excellent candidate to

compression.

Given the design of the send/receive features, is unthinkable to hold in memory all the

stream waiting to be compressed, or store that information in a file, compress it, and then

send it, without creating a huge bottleneck and introducing a delay on the replication

process. To expedite the process of transmitting a compressed stream immediately, only

compression algorithms that provide a framing format (i.e. allow decompressing without

having to hold the entire stream in memory) were chosen.

In this work, we included three algorithms that implement the framing format feature

and were found to be widely used, while maintaining a modular code base in order to

support the future inclusion of other algorithms.

LZ4 is a lossless data compression algorithm that belongs to the LZ77 family [64] of

byte-oriented compression schemes and is focused on maximizing compression and

decompression speeds. Its reference implementation is in C and was initially im-

plemented by Yann Collet. There are ports and bindings in various languages such

as Java, C#, Python, and Go, among others. In this work, we use a multithreaded

Python version developed by Iotic Labs called py-lz4framed [28].

zlib is a widely used, and kind of a de facto standard, library of lossless data compression

that uses an abstraction of the DEFLATE compression algorithm (also a variation of

LZ77). The algorithm version written by Jean-loup Gailly and Mark Adler provides

good compression on a wide variety of data sets and environments with the minimal

use of system resources [1]. Written in C, it can be found in a wide diversity of

platforms: in the Linux Kernel in multiple modules, and in multimedia libraries,

databases, version control systems, and others. In the replication module, we use

the zlib library [17] included in Python, which then provides an interface to the zlib

C library.

Snappy is a compression / decompression library, created by Google [19], that contrary

to other algorithms, strives for very high speeds at reasonable compression rates,

not maximum compression. The library is written in C++ but has several bindings

for the most popular languages. In order to interface with Python, we used the

Python binding [43] for the snappy C++ compression library provided by Andrés

Moreira.

42

4.2. IMPLEMENTATION OF A REPLICATION MODULE

4.2.4 Name Server

In a distributed systems environment, nodes need to know how to communicate with each

other, uniquely identify themselves and be able to refer to their locations. The mechanism

that addresses this problem is commonly referred to as Naming [56].

The iCBD Replication module implements a Naming Server, where each node is identi-

fied by a tuple with three elements: Node Name, Node URI, and Tag. Tuples are registered

in the name server and operation include locating a node by its name, or retrieving a set

of nodes that are marked with the same tag.

The name server is a module that consists of a continuously running thread and a

local SQLite database. It uses the aforementioned Pyro4 Name Server, but instead of

being launched from a console, it leverages the “launch on your code” feature provided

by the library to seamlessly integrate with the remaining modules and starts up together

with other modules of the Master Node. The name server initialisation process, using this

feature can be seen in Listing 2.

Consider the scenario where a node wants to contact another node and does not have

its location: a request (which includes the name of the target node) must be made to the

name server, expecting in return a URI for the target node. If the requesting node already

knows the location (IP and Port) of the name server, it directly addresses it; however,

if the node does not know how to contact the name server, it resorts to a simple UDP

network broadcast to locate it.

Methods in the Name Server API The Pyro Name Server presents an extensive API but,

for the purpose of our work, only the subset presented below is used:

locateNS() Get a proxy for a name server somewhere in the network.

register() Enrol an object in the name server, associating the URI with a logical name.

list() List all objects registered in the name server; the results will be filtered if a prefix

is provided.

lookup() Looks for a single name registration and returns the corresponding URI.

remove() Removes an entry, created by registering an object with the exact given name,

from the name server.

4.2.5 Image Repository

Each Replica Node in the platform can subscribe to an independent set of iMIs that will

be replicated to its local storage, with the Master Node holding the entire collection. To

represent this relation between nodes and to facilitate the process of knowing which

image is present in each node, we implemented an Image Repository.

43

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

class NameServer(Thread):

def __init__(self, config):
Thread configs

Thread.__init__(self, name="Thread-NameServer")
self.ns_ip = config["ip"]
self.ns_port = config["port"]
self.ns_db = config["dbFile"]

Pyro name server
self.nameserver_uri,
self.nameserver_daemon,
self.broadcast_server = Pyro4.naming.startNS(host=self.ns_ip,

port=self.ns_port,
storage=self.ns_db)

self.nameserver_daemon.combine(self.broadcast_server)

def run(self):
This is triggered in the thread.start() call
try:

self.nameserver_daemon.requestLoop()
finally:

clean up
self.broadcast_server.close()
self.nameserver_daemon.close()

Listing 2: Starting procedure of a Name Server

The Image Repository sub-module is present in every node (Master and Replicas) and

plays a central role in the replication process, not only because it acts as a backbone for

the subscription of images, but also because it tracks all iMI versions available in the

platform in a way similar to that of a versioning system. As described before, the iCBD

platform stores multiple versions of one iMI as snapshots, that materialise as directories

in the local filesystem. The information stored by the Image Repository is backed in

persistent storage in the form of an SQLite database, similarly to what happens in the

Name Server.

The interface that the Image Repository provides is very simple, and consists of a

handful of mutator methods (get and set functions) that populate one main data structure,

based on the Python built-in Dictionary, thus providing an unordered set of key:value

pairs, where the key is the name of the iMI and the value is a List of several icbdSnapshot
objects, one for each version.

44

4.2. IMPLEMENTATION OF A REPLICATION MODULE

iCBD Snapshot Object Structure (iMI) Inside the replication module the iMI, as pre-

sented in Section 3.2.1, is treated as a first-class citizen, being represented by the class

icbdSnapshot. This object stores the relevant metadata and properties of an iMI that are

essential to unequivocally identify the multiple images present in the system; but it does

not hold actual data.

In that sense, from this lightweight object, we can get hold of: the name of the iMI, its

version number, the full path to the VM files in the filesystem, the location of the boot

package associated with that particular version, and the configuration file for the iSCSI

target.

Since the data stored in this object is appended at creation and is immutable, the object

only provides get functions to retrieve its values. Given that all the relevant data is stored

locally in a node (i.e. the actual VM file, the boot package, and the iSCSI configuration

files) the icbdSnapshot object only needs to maintain paths to that data with regard to

the local filesystem, leading to a clean and straightforward interface that can be seen in

Listing 3.

class icbdSnapshot(object):
def __init__(self, mount_point: str,

image_name: str,
snapshot_number: str,
creation_time: float,
icbd_boot_package_path: str,
iscsi_target_folder: str):

Path to the FS where the VM Files are stored
self.mount_point = mount_point
Name of the iMI
self.image_name = image_name
Version number
self.snapshot_number = snapshot_number
Moment the iMI was added to the platform
self.creation_time = creation_time

iMI Boot Package
self.icbd_boot_package_path = icbd_boot_package_path

iMI iSCSI target
self.iscsi_target_folder = iscsi_target_folder
self.iscsi_target_name = "{}-{}_flat.conf".format(self.image_name,

self.snapshot_number)

Listing 3: Example of the information stored in the icbdSnapshot object.

45

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

4.2.6 Master Node

The architecture and design of the replication process dictate that managing the subscrip-

tion of iMIs, disseminating new versions and, finally, providing an interface to interact

with these services is fundamental.

Given those requirements, the Master Node resides in an iCBD Administration Ma-

chine allowing it to hold a global view of all components of the system and a holistic view

of the state of the platform (i.e., identify all the nodes present in the platform, list all iMIs

in catalogue, maintain a list of all relations between iMIs and nodes - the subscriptions).

And, furthermore, the Master Node also acts as a gateway, providing two methods to

interface with the platform: a Command Line Interface (CLI) and an REST API.

Besides having a central role in managing and overseeing the different aspects of the

replication platform architecture, the Master Node holds the responsibility of sending

new versions of an iMI as soon as they are created, using the Btrfs Incremental Backup

feature (in this case, the send operation).

Sending a Snapshot to a Replica Node (Cache Server) The overall process follows

these steps: when the task of administrating an iMI is finished, the Master Node is notified

that a new version (of that iMI) is available; a new entry for that version is then created

and stored in the local Image Repository; afterwards, the main replication procedure

starts.

The replication procedure proceeds as follows: first, the list of nodes that have sub-

scribed to that iMI is gathered; then one obtains the last version available in the Replica’s

Image Repository and that “value” will be used to determine if the new version can be

sent immediately, or if it is necessary to transfer some intermediate versions. In any

case, only the differences between versions are sent, not the whole iMI. Assuming that

only the last delta (the most recent changes) will be shipped, it is now necessary to decide

whether the transfer will occur using a plain or encrypted communication channel and/or

whether some compression algorithm will be applied to the data before being sent. This

information is also conveyed to the receiving side so that it is ready to accept the data.

Only after completion of the above-described process, will the data transfer be carried

out, using the btrfsLib, compressionLib and sshLib libraries. The process of receiving an

iMI can be found in Section 4.2.7.

Keep Alive When the Pyro4 platform was presented, we mentioned that this library

allows the automatic reconnection of clients to the Master Node. However, the opposite

is not provided, i.e., in case of failure of a Replica Node, the Name Server is not automati-

cally informed of that failure; in fact, this event would only be noticed when a connection

with that node was attempted and failed. Since we want the Master Node view to be

always consistent with the status of the platform, it is essential that the Name Server is

always up-to-date; so, we implemented this module.

46

4.2. IMPLEMENTATION OF A REPLICATION MODULE

The Keep Alive module is started along with the Master Node and runs its own thread,

making the execution flow independent of any other sub-module (as with the Name

Server). Its main task is to verify the activity status of all Replica Nodes indexed by the

Name Server, in a quite simple manner: it gathers the list of all Replica Nodes and, with

a period of about ten seconds, each node is sent a message and must deliver a response.

If there is no response, two further attempts to contact that node are performed, and if

those fail too, it is assumed that something wrong happened and that node is declared

inactive. Then, the Name Server is notified that a node entered a failed state, and should

be excluded from the “database”.

4.2.6.1 CLI Interface

One of the methods to interact with the iCBD replication platform is through a Command

Line Interface provided by the Master Node; the CLI is nothing more than a program that

is started on a terminal window and recognises a simple vocabulary that includes a few

verbs (command words), arguments and options, executes them, and returns its result.

Figure 4.4: iCBD Replication Module help output

Following we demonstrate the functions provided by this interface (the help output

of the CLI is exhibited in Figure 4.4) and the effects produced on the platform:

List Replicas - At any time it is possible to consult which nodes are registered in the

platform, this command allows to list the replicas registered in the Name Server

and indicates which URI is used to make a connection.

47

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

Force Update Name Server - As previously explained, when a replica node stops re-

sponding, that node is deleted from the records held by the Name Server. However,

this process may not be immediate because of the timeout implemented. So this

feature forces an update to the Name Server list by contacting all the nodes and

determining if they are working correctly.

List Subscribed iMIs - This command receives as a parameter a replica node and shows

a list of which iMIs that node is interested in receiving. It should be noted that a

replica node may not subscribe to an iMI but still make it available to its client (was

previously subscribed and the data was not deleted), it just will not be receiving

new versions as they are being produced.

Subscribe iMI - Like the previous operation, this receives some arguments (a replica

node and an iMI), then, registers the interest of the replica node in a given iMI.

After this procedure, this node will be able to receive versions of this iMI.

Unsubscribe iMI - When a replica node ceases to be interested in a given image present

on the platform, this operation marks that new versions of the iMI should not be

transferred to that node. However, all versions that have already been sent persist

on the node and in order to be deleted them an appropriated operation must be

used.

List iMI available versions - It is usual for a given node to contain multiple versions

of an iMI (for example, the Master Node contains all versions of all iMIs that can be

distributed). Thus, given an iMI, this operation allows the listing of which versions

a node stores.

Send iMI Snapshot - Possibly the most significant operation in this module. It is respon-

sible for sending the respective versions of an iMI to the intended node. Always

verifying which versions are present on the target node since only the differences

between versions should be sent. This command also supports the application of

a compression algorithm from those provided by the platform, since it may be the

case of transferring a version for the first time with a very significant data volume,

or the changes between versions possess a high compression rate thus making the

compression of these data advantageous.

Send iMI Snapshot Secure Connection (SSH) - This functionality is similar to the one

presented above. In particular case, they share a large portion of the code, because

they carry out the same operations. They only differ in the method of sending the

data, which in this instance are transmitted in an encrypted fashion through an SSH

tunnel. This functionality is sure to add some overhead to the transfer process, but

the encryption of the data is essential in situations where the nodes are in separate

networks, where there is no control wheresoever to the data security.

48

4.2. IMPLEMENTATION OF A REPLICATION MODULE

Delete iMI version - Finally, it is necessary to provide a way to delete versions of a given

iMI in a node. Either because no longer is desired to make an iMI available or for

reasons of proper management the storage space on a replica node. It is important

to note that because of the way different versions of iMIs are stored in the platform,

deleting older versions may not result in a space release equal to the size of the full

iMI, since newer versions probably will still need this data.

4.2.6.2 REST API

In order to complement the Comand-Line Interface previously presented and creating a

more straightforward, more ubiquitous way of interacting with the replication platform,

a Rest API has been introduced. Aiming to provide the same functionalities as the CLI

but trying to create the roots of a component that deals well with platform scaling and

the introduction of new features or components.

In order to integrate this component with the remaining replication platform, we

employ one of the most used frameworks for creating web platforms in Python, the Flask

micro-framework [49].

Flask Started as an April’s Fool’s Day joke to become the second most popular web de-

velopment frameworks. Flask is a Python micro web framework designed with simplicity

in mind, enabling quick deployment of applications and at the same time providing the

ability to scale for complex environments. Such library enables the development of web

applications without having to worry with more low-level aspects like network proto-

cols and thread management. This framework began its development in 2010 by Armin

Ronacher as a wrapper of two of his libraries: Werkzeug [51] and Jinja [50].

Our use of this framework has focused only on its ability to quickly provide an en-

vironment for creating a REST API and connecting it with the rest of the replication

platform. Next, in Listing 4, we present the endpoints through which it is possible to

interact with a master node.

4.2.7 Replica Node

The replica node introduces a lightweight module that is responsible for facilitating the

process of transferring and updating the iMIs that are closest to the clients. This module

responds to the question of how to simplify the process of making available iMIs closer to

the client. Complementing the remaining modules of the iCBD platform, here the focus

is on implementing the logic of receiving snapshots, as well as providing a way to manage

which iMIs are subscribed with their different versions. With these features, we have all

the components to build a cache server, something that will be explained in detail in the

section 4.3.

49

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

GET /api/replicas - list all Replicas in the system

GET /api/replicas/{replica}/imis - list of the iMis present in a Replica

GET /api/replicas/{replica}/imis/subscribe/{imi} - Replica subscribe to iMI

GET /api/replicas/{replica}/imis/unsubscribe/{imi} - Replica unsubscribe to iMI

GET /api/replicas/{replica}/imis/{imi}/versions - list the versions of iMI present
in Replica

GET /api/replicas/{replica}/imis/{imi}/versions/{version}/delete - delete a ver-
sion of iMI in Replica

GET /api/master/imis/ - list the iMIs present in Master

GET /api/master/imis/{imi}/versions - list versions of iMIs present in Master

GET /api/master/send?imi={imi}&version={version}&replica={replica} - send ver-
sion of iMI to Replica

Listing 4: iCBD-Replication REST API Route Mapping

Contrasting with the Master Node, it is not possible to interact directly with a replica;

all operations will always be conducted through a Master who then is in charge of com-

municating with the Replica, asking him to perform those actions. This fact is more than

an architectural design choice, this way we meet one of the requirements that define that

a cache server should be as light as possible leaving the platform management element

to a centralised location not needing to know anything concerning the overall platform

state. However, there are parts in common. Similarly to the Master Node one of the

components present is an Image Repository, which in this case, manages locally the iMIs

and respective versions.

Receiving a Snapshot By far, this functionality is the reason for the existence of this

module. The process of receiving a version of an iMI is complementary to the send pro-

cess explained in Section 4.2.6 even though much more straightforward. As explained,

the send() operation needs some computation resources since it has to calculate all the

differences between versions to transfer, and after that step create a stream of operations

that when executed recreate precisely the differences between versions. So, on the receiv-

ing side of this stream (in this case the Replica Node), the receive() operation only is

only required to receive the stream, decode the operations to administer to the file system

and execute them.

Documentation for all this project was generated using a tool called Sphinx [10] and

can be consulted in Annex I.

50

4.3. DEPLOYING AN ICBD PLATFORM WITH A CACHE SERVER

4.3 Deploying an iCBD Platform with a Cache Server

Once the process of creating a mechanism to support the replication of iMIs has been

completed, we have reached a stage where we must tackle the set of problems that may

arise when supporting a large number of clients. A short list is: limited bandwidth

between the central repository and distant (in terms of latency, but also bandwidth)

workstations; high latencies and jitter resulting from network congestion events and/or

configuration errors in the network equipment. We believe that bringing the iMIs closer

to the workstations is a way to solve all these problems at once.

When our work started, there was already an iCBD infrastructure in place at DI - FCT

NOVA; however, all iCBD support services were deployed in a single VM, with limited

resources (when we took into account that the infrastructure had a lot more resources)

and tests were run on a couple of VMs that were used as a (virtual) replacement for

the user’s physical workstations. And the software versions were both quite old, when

compared with the iCBD development infrastructure held at SolidNetworks, and missing

important features that were then available at the development site.

Those limitations originated from the fact that iCBD project had no dedicated infras-

tructure, it was sharing the same already scarce resources with other research projects and

services at DI. Fortunately, that situation changed with the acquisition of new equipment

dedicated solely to this project, and that created the perfect opportunity to re-evaluate the

architecture of the iCBD services and carry out a fresh installation of the whole platform.

4.3.1 The iCBD infrastructure at DI - FCT NOVA

The core of the iCBD infrastructure at DI - FCT NOVA is a two-node cluster based on HPE

ProLiant DL380 Gen9 servers interconnected via an HPE Flexfabric 5700 managed switch

with 10Gbps links with external storage provided by an HPE MSA 2040 SAN Storage Disk

Array. For the “remote” nodes, i.e., the replication and cache servers, the project proposal

that was submitted for funding had low-end/low-cost servers in mind; in our tests, a

desktop PC that was disposed from another research project was reconditioned, and we

upgraded the amount of RAM and added a second hard disk.

Finally, the workstation/client testbed was provided by two student laboratories at

DI (Labs. 110 and 112), each containing 15 modern PCs (CPU - Intel Core i3-7100 @

3.90GHz; RAM - 8 GB; Gigabit Ethernet). An important feature was the i3 CPU, which

supports Intel VT and is able to run hypervisors.

The detailed specifications of all these components can be found in the tables 4.1, 4.2

and 4.5.

51

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

CPU 2x Intel Xeon E5-2670 v3 @ 2.30GHz
Memory 128 GB
Controller Type 12Gb/s SAS
Ethernet 2 ports at 10 Gbps plus 4 ports at 1 Gbps
Hypervisor VMware ESXi, 6.5.0, 4564106

Table 4.1: Specifications of one HP ProLiant DL380 Gen9 host

Controllers 2 MSA 2040 SAS
Total Capacity 7.2 TB
Disks 12 HP SAS 600GB 10k Rpms
Host interface 8 12Gb/sec SAS ports (4 per controller)
Ethernet 2 ports at 1 Gbps (1 per controller)

Table 4.2: Specifications of the HPE MSA 2040 SAN Storage

iCBD Networking iCBD must be able to coexist with other services and be integrated

into existing networks; therefore, we studied all types of traffic generated by the platform

in order to be able to segregate it into different logical (or physical, if the need arises)

networks thus preventing it from “interfering” with other services in the organisation.

At the topmost level we can subdivide the traffic in two groups: internal, restricted to

the platform, which is generated by the different iCBD services when they communicate

between them; and external, which can be further subdivided into general Internet access,

intra-net traffic, between the core platform and remote servers or workstation clients in

the labs – for example, for iMI transfer.

The iCBD core cluster runs the VMware vSphere suite, which provides advanced

network virtualisation features. One of those is the Distributed vSwitch (DVS) which is

a single virtual switch that spans all (or a subset of) nodes in the cluster and acts as a

single point of administration for the creation of “port groups” that share a common set

of characteristics (such as VLAN ID), and to whom VMs connect.

The iCBD infrastructure uses two DVSs:

DI DVS - This virtual switch, dedicated to external traffic, holds five port groups: two of

them handling traffic to the two student labs, and the rest supporting the (logical)

networks used by various services of the department with differentiating levels of

access (students, teachers, public).

iCBD DVS - This virtual switch, dedicated to internal cluster traffic, has port groups that

differentiate the various types of traffic: management; administration of iMIs; mon-

itoring (of traffic generated in platform tests); and, finally, traffic for the Replication

and Caching System.

52

4.3. DEPLOYING AN ICBD PLATFORM WITH A CACHE SERVER

DI Distributed VSwitch iCBD Distributed VSwitch
Port Group VLAN Port Group VLAN

DMZ-PRIV-DI DMZ-PRIV-DI iCBD-Adm-Net VMWARE_VMOTION_DI
DMZ-PUB-DI DMZ-PUB-DI iCBD-Ceph VMWARE_VMOTION_DI
LAB-DI-110 LAB-DI-110 iCBD-Net VMWARE_VMOTION_DI
LAB-DI-112 LAB-DI-112 iCBD-Rep VMWARE_FT_DI
R-ENSINO-PRIV-DI R-ENSINO-PRIV-DI

Table 4.3: Specifications of all Networks

Table 4.3 lists the relationship between the VDS port groups and the FCT NOVA

VLANs (which are managed by an external entity – the Divisão de Infraestruturas Infor-
máticas).

4.3.2 Roles in the Platform

As previously reported, from the beginning of the project, the entire platform was sup-

ported by a single VM that centralised all the services – and that is still the case in the

SolidNetworks site. But, taking advantage of the new hardware, we set out to distribute

the different platform services to distinct servers (physical and virtual), using the notion

of roles. The current version has the following roles/servers:

iCBD-imgs This server can be considered the core of the iCBD platform, as it fulfils three

iMI roles: administration (it handles the iMI administration process), storage of iMIs

(in the platform storage backends), and the deployment of iMIs (to workstations).

With the creation of the replication system, one more service was added to this

server, since it is here that the Master Node, which manages the replication of iMIs,

will run.

For the deployment of the iCBD-imgs role, a VM with 4 vCPUs, 32GB vRAM and 2

Hard Disks (OS and Data) was created in the iCBD cluster.

iCBD-rw This server’s key role is to make temporary read/write space available to clients,

during the boot process; clients see (mount) it as a directory and, while they are

running, changes that both users and system apply are saved, but only for the

duration of the session; once the session is over, that data is deleted.

One of the reasons for separating this functionality from those provided by the

iCBD-imgs machine was to offer a simple way to visualise the load that results from

multiple clients booting iMIs at the same time, separating that usage from reads

and writes that occur during “normal” operation. Since the server’s only task is the

provision of iSCSI and NFS servers that offer r/w space, we think that we can lower

the RAM usage when compared with iCBD-imgs and deploy a VM with 4 vCPUs,

8GB vRAM and 2 Hard Disks (OS and Data).

53

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

vCPU vRam Hard Disks Interfaces OS
iCBD-imgs 4 32 GB 16 GB + 600 GB 5 CentOS 7
iCBD-rw 4 8 GB 16 GB + 300 GB 4 CentOS 7
iCBD-home 4 8 GB 16 GB + 100 GB 4 CentOS 7
iCBD-cache 4 32 GB 16 GB + 600 GB 2 CentOS 7
iCBD-client 4 8 GB Diskless 1 Network Boot

Table 4.4: Specifications of the virtual hardware of the iCBD machines

iCBD-home This is an optional role, for an NFS-based service that handles access to user

home directories, which makes sense in an environment where a large community

uses Linux. The iCBD-home server will either host the storage itself or consume

it from a storage backend; in any case it will hold the user’s home directories and

export them to the user’s workstations in a secure way, in a straightforward process:

each user has a home directory under the iCBD-home server’s /home; then, when the

user boots his/her workstation from a Linux iMI, that directory is exported by NFS

and mounted in the workstation’s /home, thus enabling the user to log in and access

its contents. The iCBD-home could also, in theory, act, in a Windows environment,

as a gateway to a CIFS server; however, support for this type of “remote storage” for

Windows clients was not implemented in our project.

The specifications for the iCBD-home VM are very similar to those of iCBD-rw, with

the exception of the size of the second, “data”, disk - which could be zero, if that

storage was provided by an external storage server, to the amount deemed suitable

for the particular iCBD installation.

iCBD-cache This was the service (a.k.a. Cache Server) that we have architected, designed,

implemented and deployed in this thesis. From the client’s point-of-view, it is

indistinguishable from the iCBD-imgs service that provisions iMIs to workstations

but, with the introduction of RCS, each Cache Server also runs the Replica Node

service (introduced in Section 4.2.7), aiming to reduce the latency and increase the

transmission rate between the image server and the workstations, thus improving

the user’s experience. It may be implemented, as it was the case with the other roles,

on physical or virtualised hardware.

On the DI - FCT NOVA site, two types of cache servers were set up: a virtual

machine, because it was easier to deploy and test the correctness of its operation;

and, later on, a physical server that was connected directly to one of the students’

labs and was responsible for delivering the iMIs to that lab’s workstations. Both

configurations can be seen in the tables 4.4 and 4.5, respectively.

iCBD-admin_iMI This is a special role created specifically for the administration of iMIs.

The process of administering an iMI is triggered and managed by scripts that run

within the iCBD-imgs server, but since administration always involves the need to

run a VM based on the iMI we want to manage, this process can be carried out in

54

4.3. DEPLOYING AN ICBD PLATFORM WITH A CACHE SERVER

two different ways: in the iCBD-imgs server itself, in nested virtualisation mode; or,

running the iCBD-admin_iMI VM as yet another VM running in the iCBD cluster.

Nested virtualisation mode Here the iCBD-admin_iMI VM is executed under a

VMware Workstation (or Player) Type II hypervisor, i.e., an hypervisor that exe-

cutes as a OS process in a CentOS (our default choice) or another suitable hosting

OS. Running in nested virtualisation mode has a moderate-to-high decrease in

performance.

Standard virtualisation mode Here the iCBD-admin_iMI VM is executed directly

on the VMware vSphere Type I (a.k.a. native, or bare-metal) hypervisor, i.e., an

hypervisor that executes directly on the server’s hardware.

Whatever our choice is, the iCBD-admin_iMI VM is created dynamically by the

administration process and works in a similar way to a client, with a difference:

changes made to the iMI may be committed and used to create a new version of that

iMI.

iCBD-client The platform client is the simplest of roles. Again, there are two cases,

depending on whether the client is a physical workstation or a VM: we can create a

diskless virtual machine, and connect it to a network where an image server (iCBD-

imgs or iCBD-cache) is located (visible) and boot the VM using a network boot

process – the result is an iMI being provided to that to that VM, the TFTP will

transfer the kernel,. . . , (as was largely described in section 3.2.2) and the client

will end running the chosen OS. Naturally, the same process can be used for a

workstation provided that the physical network has connectivity to the appropriate

iCBD networks. Furthermore, other ways to boot an iMI on a workstation, such

as creating a bootable USB drive that connects the workstation to an image server,

without using DHCP or PXE, are possible.

CPU Intel Core i5-650 @ 3.20GHz
Memory 12 GB
Storage 2x SATA 80 GB + SATA 160 GB
Ethernet 2 ports at 1 Gbps
OS CentOS 7 3.10.0-514

Table 4.5: Specifications of the Physical Cache Server

4.3.3 Installing iCBD Core Services

As one may deduce from the number of roles described above and the complexity of their

interactions, deploying the iCBD platform (services), even with the enormous benefits

brought by virtualisation, is not a trivial task. First, the networking infrastructure con-

nections must be made, and then the configuration must be deployed. Deploying the

55

CHAPTER 4. IMPLEMENTATION OF THE ICBD-REPLICATION AND CACHE SERVER

network configuration is a slow process because it involves many interactions with the

Faculty group that is responsible for networking infrastructures at the university campus.

The VLANs, security/firewall policies, etc., all must be defined and “negotiated”, as the

iCBD switches must be managed by that same group (that is understandable because if

they were managed by any other group – ourselves included – the opportunity for “break-

ing the rules” / “violating the policies” would be there). New policies had to be defined

so that the iCBD servers could “tap” into the student’s labs, for PXE booting, TFTP and/or

HTTP image transfer, and NFS or iSCSI mounting all were transparently handled without

jeopardising the labs normal operation.

The installation process was carried out in three phases. In the first phase, VMs for

the various services (roles) - iCBD-imgs, iCBD-rw, and iCBD-home – were created from a

vSphere template with a minimal CentOS 7 installation. Then, for each VM, the CentOS

packages and other software that was necessary to support the role were installed and

configured. Finally, some iMIs that were already available in the SolidNetworks site were

transferred and prepared to operate in the DI site. At the end of the first phase, VMs

posing as workstations could be started inside the cluster and boot the available iMIs.

The creation of multiple virtualised Cache Servers constitutes the second phase. The

creation of these VMs was an easy step because the iCBD-imgs was used as a base VM

from which the first Cache Server VM was created, through the use of a full cloning

procedure. Then, the unnecessary functionalities (with regard to the new role) were

removed, and the modules that provide the Replication service were added. This step

was crucial to create a test environment for the replication modules, which before this

phase, had not been tested with production iMIs.

The last phase was the installation of a single physical Cache Server as close as possible

to one of the labs, and that was accomplished by plugging it directly to the switch that

interconnected all the lab workstations. So, we successfully reached a point where we

had two setups with access to the iCBD platform: one, where the lab’s 15 PCs were able

to get their iMIs from a (physical) Cache Server; the other, where the lab’s 15 PCs had to

get their iMIs from the iCBD-imgs virtual machine hosted in the cluster.

The process of creating a single VM for the iCBD platform is, obviously, quite cum-

bersome (despite the short description we gave when discussing the first phase) and with

some significant details that must be addressed. So, we have provided in Annex II a

document that was produced when the installation process of the iCBD DI platform was

carried out. The document provides, we believe, a detailed and clear explanation of all

steps needed to create the VM, and then install and configure each iCBD service.

Btrfs bug found in CentOS 7 Kernel As a curiosity, during the process of building

the iCBD-imgs VM, we found a bug in a fundamental component of the coreutils tool

delivered with the CentOS 7 kernel version 3.10.0-693.5.2: the cp command, when used

with option --reflink=always, failed with the error message “failed to clone ‘someFile’:

Operation not supported”. This behaviour was reported to both CentOS and Red Hat

56

4.3. DEPLOYING AN ICBD PLATFORM WITH A CACHE SERVER

and was eventually fixed. A more in-depth description of this process can be found in

Annex III.

57

C
h
a
p
t
e
r

5
Evaluation

This chapter reports the experimental work performed in order to study both the func-

tionality and performance of the Replication and Caching Service. We start by laying

out the test plan followed by the results that we collected. We then analyse those results,

always trying to co-relate them with other events observed in the platform.

The chapter is divided into the following sections:

Section 5.1 begins by showing how it was applied and what changes were needed to

the infrastructure described in the previous chapter, in order to carry out all the

measurements that we propose to evaluate.

Section 5.2 overviews the two procedures applied for the evaluation of the Replication

and Caching Service, both for functional validation and performance analysis.

Section 5.3 shows how was developed the benchmark for the performance test of the

replication module, then presents the results of those tests, and ends with a com-

parative analysis.

Section 5.4 finally details the performance tests conducted to the inclusion of a cache

server in the iCBD platform, taking into account the boot time of the workstations

and the provenience of the iMIs.

59

CHAPTER 5. EVALUATION

CPU Intel Core i3-7100 @ 3.90GHz
Memory 8 GB
Storage 275GB SSD
Ethernet 1 Gbps

Table 5.1: Specifications of the Laboratories Workstations

5.1 Experimental Setup

As discussed in the previous chapter, the DI (Computer Science Department) provided

two laboratories (Lab 110 and Lab. 112) fully equipped with fifteen desktop PCs each (the

general specifications of those machines can be seen in the table 5.1), for the validation

of the caching solution both at the functional and performance levels.

To ensure the correct execution of all the tests we had planned, some adjustments to

the iCBD platform were necessary. From the infrastructure point-of-view, we deployed

two more virtual cache servers (raising their number to a total of three). From a functional

point-of-view, the iCBD-rw and iCBD-home VMs were moved to the same networks

(VLANs) of these labs, and their interfaces configured with the appropriate static IPs.

Then, a vNIC (Virtual Network Interface Card) of the iCBD-imgs VM was connected

to the Lab. 110 VLAN and assigned the appropriate fixed IP. This restructuring also

required changes in the iCBD configuration files to allow the lab’s workstations to access

iMIs. The Physical Cache Server also had one of its NICs configured in the Lab. 112

VLAN, and similar configurations were necessary in order to allow the server to provide

iMIs to the lab’s workstations.

FCT NOVA SolidNetworks (Development)
Servers 2x HPE ProLiant DL380 Gen9 2 x HPE ProLiant DL380 Gen9
Switch HPE Flexfabric 5700 jg898a HPE Flexfabric 5700 jg898a
Disk Array HPE MSA 2040 SAN Storage N/A - (Storage on the Server)
Networking 10 Gbps (between servers) 10 Gbps (between servers)

Table 5.2: Physical infrastructure of the FCT NOVA and SolidNetworks sites

Finally, two more (but important) aspects should be referred: first, the Physical Cache

Server and the Lab. 112 workstations were attached to the same switch, so the traffic

flowing between them was internal to the device, whereas all communications between

workstations (of the two labs) and the iCBD VMs had to cross a few switches in the

faculty’s network and therefore may suffer from adverse network conditions that were

entirely out of our control; the second aspect is link speeds - all connections are 1 Gbps

links, including the physical interfaces of the servers and virtual interfaces of the VMs. A

simplistic schematic of all connections can be found in Figure 5.1.

60

5.2. METODOLOGY

Laboratory 110 Laboratory 112

iCBDImgs VM

iCBDRW VM

iCBDHome VM iC
BD
 C
lu
st
er

Disk Array

iMI

Storage

iM
I

iCBCcache02

Commodity Hardware Server

FCT NOVA Network

Lab 112 VLAN

Lab 110 VLAN

Figure 5.1: iCBD Nodes and Networking Setup

5.2 Metodology

The analysis of the RCS was performed in two distinct moments: in the first moment,

we addressed the functional validation of RCS (we covered both components, replication

and caching), after being integrated into the iCBD platform - the tests were to assert

its correct operation; in the second moment, our focus was on the performance of both

components in a production environment.

Functional validation In order to test the functional correctness of the replication mod-

ule in a multi-node environment, the Master Node was started in the iCBD-imgs VM and

three Replica Nodes were also started, one in each Cache Server (virtual: iCBD-cache01

and iCBD-cache03; physical - iCBD-cache02). We observed that the Replica Nodes had

registered themselves on the Name Server, as expected, and that the communications be-

tween the Master Node and Replicas also performed as expected. Next, were repeatedly

carried out two types of tests: one focused on sending a full iMI version (one that was

not present in the Replicas’ Image Repository), forcing the data to be copied over the

network. Furthermore, we wanted to verify that, when the transfer completed, the local

Image Repository reflected the addition of the new iMI. This scenario is likely to occur

the first time that a replica subscribes to a new iMI.

The second type of test addressed the process of sending iMI versions that were newer

than those already available at Replica nodes. This test simulates the case where, after the

61

CHAPTER 5. EVALUATION

administration of an iMI, the new, updated version should be distributed to the Replicas

with conservation of bandwidth, i.e., where only the data differences were transferred. At

the end of each test, a calculation of an MD5 hash was performed with the md5sum tool, in

order to ensure that the received data was being reliably transferred and the replica was

identical to the original.

Functional testing of Cache Servers was performed with iCBD-cache02, the physical

Cache Server, mostly because it was connected directly to one of the labs and thus allow-

ing for immediate testing of a workstation’s iMI boot. Given the degree of integration

of the iCBD platform with the remaining network services and policies of FCT NOVA, a

considerable iterative process of experimentation was required, tuning some parameters

of a few iCBD services until we arrived at a fully functional configuration. In the end, it

was confirmed that it was indeed possible to boot the workstations with iMIs delivered

by the Cache Server.

Performance Benchmarking In this second phase of our tests, the goal was to ascer-

tain the performance of RCS in a production environment. In the case of the replication

module, we compared the results obtained from multiple configurations of our imple-

mentation (transfers performed with or without compression and over secure or plain

communication channels) and the rsync tool; we measured both the time spent on the

transfer as well the amount of data transmitted between nodes.

Another important metric that we observed was the time spent on the boot process

of a workstation, and we compared the results obtained in the case where the iMI was

transferred from the Cache Server against those gathered when it was transferred by

the iCBD-imgs VM hosted at the cluster (this one was provided with more resources –

vCPUs and vRAM). The time spent on the boot process was computed as the elapsed

time between the start of the kernel loading operation, to the moment when the initiali-

sation of all user-space services was finished. The utility that gathered these events was

systemd-analyze.

Finally, unless otherwise stated, all tests were executed five times; the best and worst

results were then removed, and the final result is the average of the remaining values.

The results of the benchmark are laid out in the following sections.

5.3 Replication Service Benchmark

Let’s just briefly recall the two tests that we set out to perform: one, focused on sending a

full iMI version (one that was not present in the Replicas’ Image Repository), forcing the

data to be copied over the network; the other focused on sending iMI versions that were

newer than those already available at Replica nodes, which should receive only receive

the differences (deltas) associated with the new version.

For these tests, a Linux iMI containing an Ubuntu Desktop 16.04 LTS distribution

(with quite a few “extras”, such as OpenOffice) was chosen, and two consecutive versions,

62

5.3. REPLICATION SERVICE BENCHMARK

v1 and v2 were used. These versions were created as follows: v1, the base version of this

iMI, occupies 38.60GB; we started an administration VM and performed a full update

with the apt tool (an apt-get update followed by an apt-get upgrade), and committed

the results to the new version, v2.

Using the btrf-progs package we issued the command btrfs filesystem df /path/

to retrieve Btrfs’ view about the differences between versions v1 and v2, which the utility

reported as being 4.45 GB.

For both test scenarios, we created four different settings for the transfer tests:

Rsync Transfer of an iMI using the rsync tool 1 with the options -r (recurse into directo-

ries); -t (preserve modification times); -p (preserve permissions); -l (copy symlinks

as symlinks) and -u (skip files that are newer on the receiver).

iCBD-Rep - I Use the iCBD-Replication platform services to transfer the iMI using the

standard Python sockets, and no compression.

iCBD-Rep - II Use the iCBD-Replication platform services to transfer the iMI using the

standard Python sockets , with compression using the LZ4 algorithm over the data

stream.

iCBD-Rep - III Use the iCBD-Replication platform services to transfer the iMI over an

SSH tunnel, without compression.

Sending a complete version of an iMI This test that sends a complete iMI, that is, all

its 38.60GB of data; we observed that our iCBD replication module performs similarly

on the three tests (I to III), but lags when compared to rsync; the results are shown in

Table 5.3. It also shows that the rsync transfer process is faster than our Python-plus-

btrfs-send code; however, using rsync has a drawback: after the transfer is complete, we

have to use the Btrfs tools to recreate the versioning structure, and that takes time (which

we have not measured).

Time Data Sent (MB)
Rsync 12m23s 39543
iCBD-Rep - I 17m21s 38947
iCBD-Rep - II 20m35s 35572
iCBD-Rep - III 22m55s 39412

Table 5.3: Time spent and data transmitted on transferring a complete iMI from Master
to Replica

The tests also indicate that the iMI is compressible, with savings at around 8.6%. Com-

pression, when applied to a btrfs-send stream, is applied to both data and instructions

generated by the send operation.
1It should be noted that the rsync tool is not aware of a Btrfs subvolume, so the times presented only

relate to data transmission, but more operations would be needed to make the iMI functional within the
iCBD platform.

63

CHAPTER 5. EVALUATION

Sending only the delta between version of an iMI We now present the results for the

test cases where just the differences between the two versions of the iMI were transferred.

From the outset, one can see, as expected, a drastic reduction on the amount of data

transmitted over the network. The results are shown in Table 5.4.

Time Data Sent (MB)
Rsync 10m15s 5964
iCBD-Rep - I 1m47s 4864
iCBD-Rep - II 2m15s 4713
iCBD-Rep - III 2m55s 4902

Table 5.4: Time spent and data transmitted on transferring a delta between v1 and v2 of
an iMI from Master to Replica

Our solution using Btrfs send and receive operations shows it to be far superior to

rsync’s performance on the same data set. Even in the cases where the compression or

cypher options were used, the results did not change dramatically. Here, our conclusion

for the staggering difference between rsync and our solution(s) is that rsync takes an

enormous amount of time computing the differences (with block-by-block comparisons)

and “deciding” on what to send.

5.4 Cache Server Performance Benchmark

The last benchmark we have developed evaluates the behaviour of the introduction of a

Cache Server in a production environment. In order to obtain relevant metrics, two types

of tests were carried out: the first is a scenario where five workstations are sequentially

booted; the second experiments with the extreme case where all the machines in a lab-

oratory are “powered up” at the same time, a situation known as boot storm. For each

scenario, we measured the boot time of each workstation, and with the netdata [57] tool

we monitored the server’s behaviour as the iMIs are transferred to the clients. All tests

were performed at both 100 Mbps and 1 Gbps: on the tests where clients access the Cache

Server, the interface that serves the Lab. 112 was configured at the slower speed; on the

tests where clients get their images from the VM that serves the Lab. 110, iCBD-imgs, the

type of virtual interface card used did not allow us to change its speed, so we resorted to

the Traffic Shaping feature of the Distributed vSwitch, and limited the bandwidth of the

entire PortGroup that supports this laboratory.

Although a single iMI was used for all tests, the Linux iMI with the Ubuntu 16.04 LTS

distribution we have mentioned before, the iCBD platform allows it to be run in three

very distinct ways, as explained below.

Linux Server VDI In this case, the iMI is loaded and runs in a diskless VM, on one of

the cluster nodes (as opposed to in the user’s workstation), simulating a traditional

VDI environment, using the iCBD platform’s network boot. This variant was born

64

5.4. CACHE SERVER PERFORMANCE BENCHMARK

due to its versatility during the development of the platform, since we can connect

this VM to any of the networks (internal or labs) and perform tests on its operation.

Linux iCBD Native Here we are addressing the boot of an iMI that runs natively in a

physical workstation: the Linux OS runs natively on top of the hardware, with no

virtualisation whatsoever.

Linux iCBD VM This is an interesting case, since it makes use of two iMIs. In a first

phase, an openSUSE 42.2 2 is booted just like we described above; this iMI has

a VMware Player package installed and serves as a foundation to the next phase.

When the openSUSE iMI boot process ends, the iMI Ubuntu 16.04 is loaded by

VMware Player and is then run on a virtual machine - all this happens without the

user noticing that he/she is accessing a virtual machine running on a different OS.

It is important to note that tests were also performed with Windows 7 and Windows

10. We decided not to include the results gathered with any of the Windows iMI tests

because we found in the FCT NOVA infrastructure an issue that led the boot process

to be abnormally slow, something that did not happen on the SolidNetworks site. The

networking at the FCT NOVA site is very complex, and includes VLANs and firewall rules

that are managed outside our department, so we had not enough time to meet with the

Network Administrators to sort out this issue.

iMI iCBD-imgs iCBD-Cache02

Linux Server VDI
iSCSI 453.5 MB 454.3 MB
NFS 703.0 MB 702.1 MB

Linux Client Native
iSCSI 456.3 MB 453.6 MB
NFS 704.2 MB 703.8 MB

Linux Client VM
iSCSI 834.1 MB 836.8 MB
NFS 950.5 MB 952.8 MB

Table 5.5: Total data received in the user workstation after booting, depending on boot
protocol and iMI providers

Benchmark Sequential Boot In this case, two parameters were used - link speed (1

Gbps and 100 Mbps) and protocol used (iSCSI and NFS). It has been found that by

changing the protocol by which workstations boot, the amount of data that is transferred

from the repository (iCBD-imgs or iCBD-cache02) is different as shown in the Table 5.5.

We can attribute this variation to the fact that the NFS protocol is a bit more resource

hungry, resulting in the need to transfer a larger amount of data and therefore using NFS

leads to longer boot times, as seen in Figures 5.2 and 5.3.

As for tests with different link speeds, a significant degradation can be observed, with

the workstations taking much longer in the boot process when the link speed was set at

100 Mbps - with the Linux iCBD VM boot type being the worst as it passes the minute

mark. Finally, we can observe that workstations booting from the iCBD-cache02 spend

65

CHAPTER 5. EVALUATION

Figure 5.2: Mean Boot Time of five workstations using iSCSI (Sequential Boot Scenario),
comparing iMI provider and network speed

Figure 5.3: Mean Boot Time of five workstations using NFS (Sequential Boot Scenario),
for different iMI providers and network speeds

66

5.4. CACHE SERVER PERFORMANCE BENCHMARK

more time in this process than the ones that boot from iCBD-imgs, although latency in

the first case is theoretically lower. We can attribute these results to the fact that iCBD-

cache02 has much lower specifications than iCBD-imgs, this leading us to believe that

the solution is vertically scalable. Metrics regarding the behaviour of both servers during

one of these tests can be observed in Figures 5.4 and 5.5.

Figure 5.4: System metrics for iCBD-imgs on one run of the five workstations sequential
boot scenario test

Benchmark in a Boot Storm condition Finally, we present the results of a test carried

out in a boot storm scenario. Some simplifications have been made for this: first, no

tests were performed using the Linux Server VDI boot type, so all values result from the

measurement of boot time of the 15 workstations in both laboratories.

On the other hand, these tests were also performed only with the link speed of 1

Gbps2, mainly because the test setup logistics are tremendous. For this reason, we only

performed each test once, i.e., we recorded one boot time per iMI (Linux iCBD Client

Native and Linux iCBD Client VM) and per protocol (iSCSI an NFS) and we present those

results in Table 5.6.

Under the above-described conditions, we can still see encouraging results. In Fig-

ure 5.7, we show all the boot times of all 15 workstations when using the iSCSI protocol,

achieving little variation in the times measured between all the machines; also the server

2Although we believe that we would obtain interesting results with tests at 100Mbps, the boot times
would be unacceptable if we strive for a good user experience.

67

CHAPTER 5. EVALUATION

Figure 5.5: System metrics for iCBD-Cache02 on one run of the five workstations sequen-
tial boot scenario test

iMI iCBD-imgs iCBD-Cache02

Linux iCBD Client Native
iSCSI 20.035 s 23.020 s
NFS 23.248 s 28.156 s

Linux iCBD Client VM
iSCSI 42.627 s 52.952 s
NFS 44.734 s 54.840 s

Table 5.6: Comparison of boot times in a boot storm situation in both providers (iCBD-
imgs and iCBD-cache02)

load experienced by the machine that serves the iMIs is low, even when booting 15 work-

stations simultaneously, as shown in Figure 5.6.

68

5.4. CACHE SERVER PERFORMANCE BENCHMARK

Figure 5.6: System metrics for one run on the iCBD-Cache02 in a boot storm scenario

Figure 5.7: Boot Time of fifteen workstations simultaneously (Boot Storm Scenario) for
different iMI providers and network speeds

69

C
h
a
p
t
e
r

6
Conclusions & Future Work

6.1 Conclusions

In this dissertation, we have architected, designed, implemented and benchmarked a

distribute Replica and Cache System (RCS) to be integrated in the iCBD platform, which,

in our perspective, satisfies all the goals we set out to achieve.

Our implementation was conducted with Btrfs in mind, but our modular design fol-

lows the well-known publish-subscribe model that, we believe, allows for an easy ex-

tension to other suitable storage platforms, even those which are based on a distinct

paradigm, e.g., object-based storage.

We have shown that our implementation of a replication system for iMIs based on

a Master - Replica model provides an efficient process for sending iMIs to their target

locations in a geographically dispersed, multi-server environment, and guarantees some

degree of fault-tolerance to the users of the iCBD platform. As for the RCS’ control layer,

it simplifies the entire process maintaining the state of the nodes.

We have documented the complete installation process of the iCBD platform, right

from the start, in the DI - FCT NOVA site, and we overcome the challenges we faced;

most of these challenges can also be found in a typical SME, so we believe that the

information in the manual is applicable to other environments, outside academia. All

this work culminated in an “Installation Manual” and has demonstrated the feasibility of

integrating a Cache Server into the iCBD platform.

Finally, we evaluated both the Replication and the Cache components through a com-

prehensive functional validation, and we designed a benchmark to assess the performance

of both the replication and the caching systems. In our opinion, the results clearly demon-

strate the benefits of the proposed solutions.

In the replication system, we saw that the solution presented satisfies the requirements

71

CHAPTER 6. CONCLUSIONS & FUTURE WORK

and has a level of performance that is in line with what was expected.

In the case of the physical Cache Server, results consistently show a considerable

increase in the boot time when compared to booting from a virtual one (VM) which was

granted with far more resources. In our opinion, this is an excellent result, as it shows

that if Cache Server nodes are vertically scalable (i.e., more resources translate to higher

performance levels) and, as the service is already horizontally scalable by design, we have

a solution that is scalable in all dimensions. Obviously, the poor result of the physical

Cache Server used in the benchmark is a consequence of: a) utilising a PC and not a server

and, b) on top of that the amount of RAM and number of CPUs was below par.

In the end, all our work validates the main ideas behind iCBD: it is, by design, an

horizontally scalable architecture that, from the point of view of capital costs, may be

well at the reach of Small and Midsize Businesses (SMBs).

6.2 Future Work

After spending many months working with iCBD, and not only for the immediate end of

getting our masters degree, several ideas for future development have been popping up

along the way.

The first one is to replace the Master-Server model used in the replication system by a

peer-to-peer model, where replica nodes can “talk to each other”, allowing the transfer of

iMI versions directly between replicas. This scenario would be especially advantageous

in a circumstance where a Master Node was located in a geographic area far away from

the Replicas, or even hosted in a public cloud. With several Replica Nodes installed on

the same network, only one of the Replica nodes needed to receive the new version of

the iMI; then that same node would send it directly to the other Replicas, possibly in a

multicast or broadcast mode.

Another idea that was partially adopted in some services in the current implementa-

tion is the segmentation of iCBD’s multiple components into microservices, where each

microservice is able to operate autonomously and coordinate itself with others using mes-

sage exchange or any other interprocess communication mechanism. With this change,

we believe that it would be possible to make better use of the platform resources and,

even more relevant, microservices – implemented, e.g., as containers - do benefit from

platform support for launching services independently of their location, as well as simpli-

fying the development and deployment of new or updated platform services in parallel,

without affecting the platform as a whole – e.g., these new versions can be deployed “live”.

These approaches are usually referred to as DevOps.

72

Bibliography

[1] M. Adler and J. loup Gailly. zlib Home Site. 2018. url: https://zlib.net/ (visited

on 09/01/2018).

[2] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam. “The Evolution of

an x86 Virtual Machine Monitor.” In: SIGOPS Oper. Syst. Rev. 44.4 (Dec. 2010),

pp. 3–18.

[3] N. Alves. “Linked clones baseados em funcionalidades de snapshot do sistema de

ficheiros.” Master’s thesis. Universidade NOVA de Lisboa, 2016.

[4] Amazon Web Services. Amazon Simple Storage Service (S3). 2017. url: https:

//aws.amazon.com/s3/ (visited on 02/10/2017).

[5] Amazon Web Services. Amazon Machine Images (AMI). 2018. url: https://docs.

aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html (visited on 07/02/2018).

[6] Amazon Web Services. Amazon WorkSpaces - Virtual Desktops in the Cloud. 2018.

url: https://aws.amazon.com/workspaces (visited on 02/05/2018).

[7] Amazon Web Services (AWS) - Cloud Computing Services. 2017. url: https://aws.

amazon.com/ (visited on 02/05/2017).

[8] A. Aneja. Designing Embedded Virtualized Intel ® Architecture Platforms with the
right Embedded Hypervisor. Tech. rep. 2011, pp. 1–14. url: https://www.intel.

com/content/dam/www/public/us/en/documents/white-papers/ia-embedded-

virtualized-hypervisor-paper.pdf.

[9] AppDelivery Solutions - Desktop Virtualization. 2017. url: https://appds.eu/Home/

DesktopVirt (visited on 02/05/2017).

[10] G. Brandl. Sphinx - Python Documentation Generator. 2018. url: http://www.

sphinx-doc.org/en/master/ (visited on 09/01/2018).

[11] J. P. Buzen and U. O. Gagliardi. “The Evolution of Virtual Machine Architecture.”

In: Proceedings of the June 4-8, 1973, National Computer Conference and Exposition
(1973), pp. 291–299.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber. “Bigtable: A distributed storage system for struc-

tured data.” In: 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA (2006), pp. 205–218.

73

https://zlib.net/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/workspaces
https://aws.amazon.com/
https://aws.amazon.com/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-embedded-virtualized-hypervisor-paper.pdf
https://appds.eu/Home/DesktopVirt
https://appds.eu/Home/DesktopVirt
http://www.sphinx-doc.org/en/master/
http://www.sphinx-doc.org/en/master/

BIBLIOGRAPHY

[13] H. Chirammal, P. Mukhedkar, and A. Vettathu. Mastering KVM Virtualization.

Packt Publishing, 2016. isbn: 9781784396916.

[14] Citrix Bids Adieu to XenClient. 2015. url: http://vmblog.com/archive/2015/09/

24/citrix-bids-adieu-to-xenclient.aspx (visited on 02/07/2017).

[15] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. Distributed Systems: Con-
cepts and Design. 5th. USA: Addison-Wesley Publishing Company, 2011. isbn:

0132143011, 9780132143011.

[16] B. Das, Y. Z. Zhang, and J. Kiszka. Nested Virtualization - State of the art and future
directions. Tech. rep. 2013, pp. 1–29. url: https://www.linux-kvm.org/images/3/

33/02x03-NestedVirtualization.pdf.

[17] T. P. S. Foundation. zlib — Compression compatible with gzip. 2018. url: https:

//docs.python.org/3/library/zlib.html (visited on 09/01/2018).

[18] Google. Google Cloud Platform - Cloud Storage. 2017. url: https://cloud.google.

com/storage/ (visited on 02/10/2017).

[19] Google. snappy. 2018. url: https://github.com/google/snappy (visited on

09/01/2018).

[20] Google Cloud Platform. 2017. url: https : / / cloud . google . com/ (visited on

02/05/2017).

[21] Gordon McMillan. Socket Programming HOWTO. 2018. url: https : / / docs .

python.org/3/howto/sockets.html (visited on 09/01/2018).

[22] IBM Corporation. Inside the Linux boot process. 2018. url: https://www.ibm.com/

developerworks/library/l-linuxboot/index.html (visited on 07/04/2018).

[23] IBM Corporation. Linux initial RAM disk (initrd) overview. 2018. url: https:

/ / www . ibm . com / developerworks / library / l - initrd / index . html (visited on

07/04/2018).

[24] A. M. D. Inc. AMD-V Nested Paging. Tech. rep. 2008, pp. 1–19. url: http://

developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf.

[25] V. Inc. VDI : A New Desktop Strategy. Tech. rep. 2006, pp. 1–19. url: https:

//www.vmware.com/pdf/vdi_strategy.pdf.

[26] V. Inc. Virtualization overview. Tech. rep. 2006, pp. 1–11. url: http://www.vmware.

com/pdf/virtualization.pdf.

[27] V. Inc. Understanding Memory Resource Management in VMware ESX Server. Tech.

rep. 2009, pp. 1–20. url: https://www.vmware.com/content/dam/digitalmarketing/

vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf.

[28] Iotic-Labs. py-lz4framed. 2018. url: https : / / github . com / Iotic - Labs / py -

lz4framed (visited on 09/01/2018).

74

http://vmblog.com/archive/2015/09/24/citrix-bids-adieu-to-xenclient.aspx
http://vmblog.com/archive/2015/09/24/citrix-bids-adieu-to-xenclient.aspx
https://www.linux-kvm.org/images/3/33/02x03-NestedVirtualization.pdf
https://www.linux-kvm.org/images/3/33/02x03-NestedVirtualization.pdf
https://docs.python.org/3/library/zlib.html
https://docs.python.org/3/library/zlib.html
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://github.com/google/snappy
https://cloud.google.com/
https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html
https://www.ibm.com/developerworks/library/l-linuxboot/index.html
https://www.ibm.com/developerworks/library/l-linuxboot/index.html
https://www.ibm.com/developerworks/library/l-initrd/index.html
https://www.ibm.com/developerworks/library/l-initrd/index.html
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://www.vmware.com/pdf/vdi_strategy.pdf
https://www.vmware.com/pdf/vdi_strategy.pdf
http://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/pdf/virtualization.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/perf-vsphere-memory_management.pdf
https://github.com/Iotic-Labs/py-lz4framed
https://github.com/Iotic-Labs/py-lz4framed

BIBLIOGRAPHY

[29] Irmen de Jong. Pyro 4.x - Python remote objects. 2018. url: https://github.com/

irmen/Pyro4 (visited on 09/01/2018).

[30] S. Jain. Considerations for implementing a desktop virtualization strategy. Tech. rep.

2014, pp. 1–8. url: https://www.intel.com/content/dam/www/public/us/en/

documents/white-papers/practical-considerations-desktop-virtualization-

paper.pdf.

[31] Kernel.org - Linux Kernel Organization, Inc. Compression - btrfs Wiki. 2018. url:

https://btrfs.wiki.kernel.org/index.php/Compression (visited on 09/01/2018).

[32] Kernel.org - Linux Kernel Organization, Inc. Design notes on Send/Receive - btrfs
Wiki. 2018. url: https://btrfs.wiki.kernel.org/index.php/Design_notes_on_

Send/Receive (visited on 09/01/2018).

[33] Kernel.org - Linux Kernel Organization, Inc. Manpage/btrfs-receive - btrfs Wiki.
2018. url: https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-receive

(visited on 09/01/2018).

[34] Kernel.org - Linux Kernel Organization, Inc. Manpage/btrfs-send - btrfs Wiki. 2018.

url: https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-send (visited

on 09/01/2018).

[35] P. Lopes. Proposta de Candidatura ao programa P2020. Tech. rep. DI-FCT/NOVA,

Reditus S.A, 2015, pp. 1–26.

[36] P. Lopes, N. Preguiça, P. Medeiros, and M. Martins. “iCBD: Uma Infraestru-

tura Baseada nos Clientes para Execução de Desktops Virtuais.” In: Proceedings
CLME2017/VCEM 8º Congresso Luso-Moçambicano de Engenharia / V Congresso de
Engenharia de Moçambique (2017), pp. 13–18.

[37] E. Martins. “Object-Base Storage for the support of Linked-Clone Virtual Ma-

chines.” Master’s thesis. Universidade NOVA de Lisboa, 2016.

[38] P. Mell and T. Grance. “The NIST definition of Cloud Computing.” In: NIST Special
Publication 145 (2011), p. 7.

[39] Microsoft Cloud Computing Platform and Services. 2017. url: https : / / azure .

microsoft.com/ (visited on 02/05/2017).

[40] Microsoft Cloud Platform. Desktop virtualization and Virtual Desktop Infrastructure.

2018. url: https : / / www . microsoft . com / en - us / cloud - platform / desktop -

virtualization (visited on 02/05/2018).

[41] Microsoft Remote Desktop Services (RDS) Explained. 2010. url: https://technet.

microsoft.com/en-us/video/remote-desktop-services-rds-explained.aspx

(visited on 02/07/2017).

[42] Microsoft Security TechCenter - Microsoft Security Updates. 2017. url: https://

technet.microsoft.com/en-us/security/bulletins.aspx (visited on 01/29/2018).

75

https://github.com/irmen/Pyro4
https://github.com/irmen/Pyro4
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/practical-considerations-desktop-virtualization-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/practical-considerations-desktop-virtualization-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/practical-considerations-desktop-virtualization-paper.pdf
https://btrfs.wiki.kernel.org/index.php/Compression
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_Send/Receive
https://btrfs.wiki.kernel.org/index.php/Design_notes_on_Send/Receive
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-receive
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-send
https://azure.microsoft.com/
https://azure.microsoft.com/
https://www.microsoft.com/en-us/cloud-platform/desktop-virtualization
https://www.microsoft.com/en-us/cloud-platform/desktop-virtualization
https://technet.microsoft.com/en-us/video/remote-desktop-services-rds-explained.aspx
https://technet.microsoft.com/en-us/video/remote-desktop-services-rds-explained.aspx
https://technet.microsoft.com/en-us/security/bulletins.aspx
https://technet.microsoft.com/en-us/security/bulletins.aspx

BIBLIOGRAPHY

[43] A. Moreira. python-snappy. 2018. url: https://github.com/andrix/python-

snappy (visited on 09/01/2018).

[44] G. J. Popek and R. P. Goldberg. “Formal Requirements for Virtualizable Third

Generation Architectures.” In: Communications of the ACM 17.7 (1974), pp. 412–

421.

[45] M. Portnoy. Virtualization Essentials. 1st. Alameda, CA, USA: SYBEX Inc., 2012.

isbn: 1118176715, 9781118176719.

[46] Remote Desktop Protocol. 2017. url: https : / / msdn . microsoft . com / en - us /

library/aa383015(v=vs.85).aspx (visited on 02/07/2017).

[47] M. Righini. Enabling Intel Virtualization Technology Features and Benefits. Tech. rep.

2010, pp. 1–9. url: https://www.intel.com/content/dam/www/public/us/

en/documents/white-papers/virtualization-enabling-intel-virtualization-

technology-features-and-benefits-paper.pdf.

[48] O. Rodeh, J. Bacik, and C. Mason. “BTRFS: The Linux B-Tree Filesystem.” In: ACM
Transactions on Storage 9.3 (2013), pp. 1–32.

[49] A. Ronacher. Flask. 2018. url: http://flask.pocoo.org/ (visited on 09/01/2018).

[50] A. Ronacher. Jinja 2. 2018. url: http://jinja.pocoo.org/ (visited on 09/01/2018).

[51] A. Ronacher. Werkzeug. 2018. url: http://werkzeug.pocoo.org/ (visited on

09/01/2018).

[52] D. N. S. Shepler M. Eisler. Network File System (NFS) Version 4 Minor Version 1
Protocol. RFC 5661. Internet Engineering Task Force (IETF), 2010, pp. 1–617. url:

https://tools.ietf.org/html/rfc6143.

[53] M Satyanarayanan. “A Survey of Distributed File Systems.” In: Annu. Rev. Comput.
Sci. 4.4976 (1990), pp. 73–104.

[54] SwiftStack. OpenStack Swift. 2017. url: https://www.swiftstack.com/product/

openstack-swift (visited on 02/10/2017).

[55] J. L. T. Richardson. The Remote Framebuffer Protocol. RFC 6143. Internet Engi-

neering Task Force (IETF), 2011, pp. 1–39. url: https://tools.ietf.org/html/

rfc6143.

[56] A. S. Tanenbaum and M. v. Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2006. isbn:

0132392275.

[57] C. Tsaousis. netdata. 2018. url: https://github.com/netdata/netdata (visited on

09/01/2018).

[58] VMware Horizon. 2017. url: http://www.vmware.com/products/horizon.html

(visited on 02/07/2017).

76

https://github.com/andrix/python-snappy
https://github.com/andrix/python-snappy
https://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa383015(v=vs.85).aspx
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/virtualization-enabling-intel-virtualization-technology-features-and-benefits-paper.pdf
http://flask.pocoo.org/
http://jinja.pocoo.org/
http://werkzeug.pocoo.org/
https://tools.ietf.org/html/rfc6143
https://www.swiftstack.com/product/openstack-swift
https://www.swiftstack.com/product/openstack-swift
https://tools.ietf.org/html/rfc6143
https://tools.ietf.org/html/rfc6143
https://github.com/netdata/netdata
http://www.vmware.com/products/horizon.html

BIBLIOGRAPHY

[59] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C Maltzahn. “Ceph: A

Scalable, High-Performance Distributed File System.” In: Proceedings of USENIX
Symposium on Operating Systems Design and Implementation (2006), pp. 307–320.

[60] What Files Make Up a Virtual Machine? 2006. url: https://www.vmware.com/

support/ws55/doc/ws_learning_files_in_a_vm.html (visited on 02/05/2017).

[61] Workspot. The Workspot Desktop Cloud. 2018. url: https://www.workspot.com/

daas-2-0/ (visited on 02/05/2018).

[62] XenApp & XenDesktop. 2017. url: https://www.citrix.co.uk/products/xenapp-

xendesktop/ (visited on 02/07/2017).

[63] C. Zikmund. Key Considerations in Choosing a Zero Client Environment for View
Virtual Desktops in VMware Horizon. Tech. rep. 2014, pp. 1–12. url: https://www.

vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-

top-five-considerations-for-choosing-a-zero-client-environment.pdf.

[64] J. Ziv and A. Lempel. “A universal algorithm for sequential data compression.” In:

IEEE Transactions on Information Theory 23.3 (1977), pp. 337–343. issn: 0018-9448.

doi: 10.1109/TIT.1977.1055714.

77

https://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
https://www.vmware.com/support/ws55/doc/ws_learning_files_in_a_vm.html
https://www.workspot.com/daas-2-0/
https://www.workspot.com/daas-2-0/
https://www.citrix.co.uk/products/xenapp-xendesktop/
https://www.citrix.co.uk/products/xenapp-xendesktop/
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-top-five-considerations-for-choosing-a-zero-client-environment.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-top-five-considerations-for-choosing-a-zero-client-environment.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/vmware-top-five-considerations-for-choosing-a-zero-client-environment.pdf
https://doi.org/10.1109/TIT.1977.1055714

A
n
n
e
x

I
iCBD-Replication Documentation

79

iCBD-Replication Documentation
Release 1.0.0

Luis Silva

Nov 19, 2018

ICBD REPLICATION MODULE

1 API documentation 3
1.1 icbdrep.ImageRepo module . 3
1.2 icbdrep.KeepAlive module . 4
1.3 icbdrep.MasterNode module . 5
1.4 icbdrep.NameServer module . 6
1.5 icbdrep.ReplicaNode module . 6
1.6 icbdrep.icbdrepd module . 8
1.7 lib.benchmarkinglib module . 8
1.8 lib.btrfslib module . 9
1.9 lib.compressionlib module . 10
1.10 lib.icbdSnapshot module . 12
1.11 lib.restapilib module . 13
1.12 lib.serializerslib module . 14
1.13 lib.sshlib module . 14
1.14 lib.utillib module . 14
1.15 exceptions.ImageRepoException module . 15
1.16 exceptions.ReplicasException module . 15
1.17 tests.benchLibTests module . 15
1.18 tests.pyroNSTests module . 16
1.19 tests.utilTests module . 16
1.20 Indices and tables . 16

Python Module Index 17

Index 19

i

ii

iCBD-Replication Documentation, Release 1.0.0

This site covers iCBD-Replication usage & API documentation. For basic info on what iCBD-rep is, including its
public changelog & how the project is maintained, please see the git repo.

ICBD REPLICATION MODULE 1

iCBD-Replication Documentation, Release 1.0.0

2 ICBD REPLICATION MODULE

CHAPTER

ONE

API DOCUMENTATION

We maintain a set of API documentation, autogenerated from the python source code’s docstrings (which are typically
very thorough.) and for the RESTfull API (TODO: FUTURE)

1.1 icbdrep.ImageRepo module

class icbdrep.ImageRepo.ImageRepo(config)
Bases: object

addImage(image_name: str)
Add an image name to the repository And checks if in that directory are already present some snapshots

Args: image_name: name of the image to be added

Returns: None

Raises: DirNotFoundException, BTRFSPathNotFoundException, ImageAlreadyExistsException

addSnapshot(image_name: str, snap_number: str)→ None
Add a snapshot to a image

Args: image_name: the name of the image to receive a snapshot snap_number: the snapshot

Returns: None

Raises: BTRFSSubvolumeNotFoundException, SnapshotAlreadyExistsException

deleteImage(image_name: str)→ None
Deletes a given image from the repository

Args: image_name: the name of the image to be deleted

Returns: None

Raises: ImageNotFoundException

deleteSnapshot(image_name: str, snap_number: str)→ lib.icbdSnapshot.icbdSnapshot
Deletes a given snapshot of an image

Args: image_name: the image to which the snapshot refers to snap_number: the snapshot number

Returns: None

Raises: SnapshotNotFoundException

getImagelist()→ typing.List[str]
Get the list of the VM images present in the repo

Returns: a list of strings with the images names

3

iCBD-Replication Documentation, Release 1.0.0

getImagepath(image_name: str)→ str
Returns the path to the given image.

Args: image_name: the name of the image

Returns: a string with the path to the image

Raises: ImageNotFoundException

getLastSnapshot(image_name: str)→ lib.icbdSnapshot.icbdSnapshot
Get the last snapshot from the given image.

Args: image_name: name of the image

Returns: an obj icbdSnapshot

Raises: ImageNotFoundException

getSnapshot(image_name: str, snap_number: str)→ lib.icbdSnapshot.icbdSnapshot
Gets a specific snapshot given its number and the image name

Args: image_name: the name of the image snap_number: the number of the snapshot

Returns: an icbdSnapshot object

Raises: SnapshotNotFoundException

getSnapshotlist(image_name: str)→ typing.List[lib.icbdSnapshot.icbdSnapshot]
Get the list of snapshots present in the repo for the given image. If there are no snapshots it returns a empty
list.

Args: image_name: The image name that contains the snapshots

Returns: a list with the snapshots present in the repo

Raises: ImageNotFoundException

hasImage(image_name: str)→ bool
Check if a given image name is present in the repository

Args: image_name: the image name to be checked

Returns: True if present, otherwise False

hasSnapshot(image_name: str, snap_number: str)→ bool
Check if a snapshot is present in the given image

Args: image_name: the name of the image that should contain the snapshot snap_number: the snapshot

Returns: True if the snapshot is present, otherwise False

1.2 icbdrep.KeepAlive module

class icbdrep.KeepAlive.KeepAlive(interval=10, tries_num=3)
Bases: threading.Thread

keepAlive(pyro_bind: bool)→ None
Check a replica state and updates NS if needed.

Args: pyro_bind: boolean True to use of the _pyroBind or False to use the ping method

Returns: None

4 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

run()
The main method of the class. This is triggered in the thread.start() call

Returns: None

stopKeepAlive()→ None
Stop the execution of the keep alive thread. This should be part of the shutdown process.

Returns: None

1.3 icbdrep.MasterNode module

class icbdrep.MasterNode.MasterNode(node_config, ns_config, interactive_mode_flag: bool)
Bases: threading.Thread

addImage(image_name: str, node: int)→ None
Add an image to the node repository

Args: image_name: the name of the image to be added node: the node where the image will be added

Returns: Node

delete_snapshot(image_name: str, snap_number: str, node: int)→ None
Deletes a snapshot from a given image in a node.

Args: image_name: the image name snap_number: the snapshot number node: the node to do the deletion

Returns: None

exeCommand(line: str)→ None
Receives a command line and interprets the content. Separating the various fields of the string into argu-
ments, and calls the appropriated function.

Args: line: a line with the command to execute

Returns: None

getReplicasFromNS() -> (<class ’int’>, typing.Dict[int, Pyro4.core.Proxy])
Get a list of the replicas present in the system (Name Server) and saves them to the replicas proxy list

Returns: the number of found replicas

interactiveMode()→ None
When in interactive mode, the server runs with a prompt, so that individual commands can be typed in

Returns: None

listImages(node: int)→ None
List the collection of images available in a node.

Args: node: The node to list. (Master or one of the Replicas)

Returns: None

listReplicas()→ None
List the replicas present in the system and prints to the console.

Returns: None

listSnapshots(node: int, image_name: str)→ None
List the colection of snapshots of a given image in a node.

Args: node: The node to list (Master or one of the replicas) image_name: The image the snapshots refer
to

1.3. icbdrep.MasterNode module 5

iCBD-Replication Documentation, Release 1.0.0

Returns: None

registerInNS()→ Pyro4.core.Daemon
Register the server in the Name Server

Returns: the registered daemon

run()
The main method of the class. This is triggered in the thread.start() call

Returns: None

send(node: int, image_name: str, snapshot_number: str, blocking: bool, ssh: bool = False, compres-
sion: str = None)→ None

Send Command - Instructs the replica to listen for a transfer, and sends the snapshot in the btrfs path

Args: node: the number of the node image_name: the name of the image snapshot_number: the number
of the image blocking: if the function should block

Returns: None

stopMaster()→ None
WARNING!! Don’t use this! Only for testing and should be deprecated!

Returns: None

1.4 icbdrep.NameServer module

class icbdrep.NameServer.NameServer(config)
Bases: threading.Thread

run()
The main method of the class. This is triggered in the thread.start() call

Returns: None

stopNS()→ None
This function closes both the broadcast and name servers. This is called in the shutdown procedure.

Returns: None

1.5 icbdrep.ReplicaNode module

class icbdrep.ReplicaNode.ReplicaNode(rep_id: int, node_config, ns_config)
Bases: object

addImage(image_name: str)→ bool
Add an image to the node’s repository

Args: image_name: the name of the image to be added.

Returns: a boolean with the sucess of the operation

deleteSnapshot(image_name: str, snap_number: str)→ lib.icbdSnapshot.icbdSnapshot
Delete a snapshot from the repo and FS

Args: image_name: the name of the image snap_number: the number of the snapshot

Returns: the snapshot which as deleted

6 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

getImagesList()→ typing.List[str]
Get the list of images present in the replica

Returns: a list of strings

getLastSnapshot(image_name: str)→ lib.icbdSnapshot.icbdSnapshot
Return the last snapshot of the given image.

Args: image_name: the name of the image

Returns: an obj icbdSnapshot

getName()→ str
Get the replica name

Returns: a string with the name

getReplicaBtrfsAddress()→ typing.Tuple[str, int]
Return the IP and PORT address for the btrfs transfer.

Returns: A tuple with an IP and PORT

getReplicaID()→ int
Get the replica ID number. This should be a integer that originates from the

Returns: the replica ID

getSnapshotList(image_name: str)→ typing.List[lib.icbdSnapshot.icbdSnapshot]
Return the list of snapshots stored in the repo for the given image name. Case there are no snapshots the
list returned is empty. Case the image in args ins’t in the repo return None.

Args: image_name: Image name to get the snapshot list.

Returns: a list with the snapshots.

ping()→ str
Responds to a ping request with “pong”

Returns: “pong”

poisonPill()→ None
Shutdown message to the replica

Returns: None

prepareReceive(image_name: str, snap_number: str)→ bool
This function should precede the receive() call. Checks if the node wants the image in question or if the
snapshot is already present.

Args: image_name: the name of the image snap_number: the name of the snap

Returns: a bool that indicates if the replica will accept the receive

receive(image_name: str, snap_number: str, compression: str = None)
Receives a snapshot

Returns: None

1.5. icbdrep.ReplicaNode module 7

iCBD-Replication Documentation, Release 1.0.0

1.6 icbdrep.icbdrepd module

1.7 lib.benchmarkinglib module

class lib.benchmarkinglib.Benchmark(name)
Bases: object

addRun(run: lib.benchmarkinglib.Run)

get_name()

mean()

median()

stdev()

class lib.benchmarkinglib.Run(interfaceName, runNumber=-1, imageName=’default’)
Bases: object

getBtrfsTransferBytes()
Returns:

getBtrfsTransferPackets()
Returns:

getBtrfsTransferRuntime()
Returns:

getGlobalTransferRuntime()
Returns:

getIcbdBootTransferBytes()
Returns:

getIcbdBootTransferPackets()
Returns:

getIcbdBootTransferRuntime()
Returns:

getIscsiTargetTransferBytes()
Returns:

getIscsiTargetTransferPackets()
Returns:

getIscsiTargetTransferRuntime()
Returns:

startTimmer(transferType)
Start a timmer for one of the transfer counters.

Args: transferType: the type of the transfer to start counting time

Returns: call the appropriated function

stopTimmer(transferType)
Stop a timmer for one of the transfer counters.

Args: transferType: the type of the transfer to start counting time

Returns: call the appropriated function

8 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

class lib.benchmarkinglib.linuxNetworkTraffic
Bases: object

static getInterfaceStats(interfaceName)

Args: interfaceName:

Returns:

1.8 lib.btrfslib module

class lib.btrfslib.BtrfsFsCheck
Bases: object

static isBtrfsPath(path: str)
Check if a given path is in fact present in a BTRFS tree

!!Caution!! : This function does not takes into account the fact that the path might not be a valid one.

Args: path: the path to be checked

Returns: true if present, otherwise falses

static isBtrfsSubvolume(path: str)
Check if the given path is a BTRFS subvolume / snapshot.

Args: path: the path to be checked

Returns: True if a subvolume, otherwise false

static searchForSnapshots(path: str)→ typing.List[str]
Search the directory , and gets the snapshots that are already present

Args: path: the directory to be searched

Returns: a List with the name of the snapshot

class lib.btrfslib.BtrfsTool
Bases: object

static delete(path: str)→ None
Wrapper for the BTRFS Tools subvolume delete command.

The method receives a path and calls the btrfs subvolume delete for that path.

Args: path: the path to the subvolume to delete

Returns: None

static receive(dst_path: str, src_port: int, compression: str = None)
Wrapper for the BTRFS Tools receive() command.

This method opens a socket and listens for a connection Then receives a snapshot and redirect it to the
stdin of the BTRFS receive

Args: dst_path: the path of the image to place the snapshot src_port: the port to listening for the transfer

Returns: None

static send(src_path: str, dst_ip: str, dst_port: int, parent: str = None, compression: str = None)
Wrapper for the BTRFS Tools send() command.

This method is BLOCKING, it will wait for the conclusion of the send command. It uses regular sockets
to send to an endpoint the data from the snapshot.

1.8. lib.btrfslib module 9

iCBD-Replication Documentation, Release 1.0.0

Args: src_path: the path of the snapshot to be send dst_ip: the IP of the destiny socket dst_port: the Port
the destiny is listening

Returns: None

static sendNonBlock(src_path: str, dst_ip: str, dst_port: int, parent: str = None, compression:
str = None)

Wrapper for the BTRFS Tools send() command.

This method is NON BLOCKING, it will NOT wait for the conclusion of the send command. It uses
regular sockets to send to an endpoint the data from the snapshot.

Args: src_path: the path of the snapshot to be send dst_ip: the IP of the destiny socket dst_port: the Port
the destiny is listening

Returns: None

static sendSSH(src_path: str, dst_ip: str, dst_port: int, parent: str = None, compression: str =
None)

Wrapper for the BTRFS Tools send() command.

This method is BLOCKING, it will wait for the conclusion of the send command. It uses regular sockets
to send to an endpoint the data from the snapshot.

Args: src_path: the path of the snapshot to be send dst_ip: the IP of the destiny socket dst_port: the Port
the destiny is listening

Returns: None

static setReadOnly(path: str, state: bool)→ None
Wrapper for the BTRFS Tools property set read only command.

This method sets the the read only property for the given subvolume in the path.

Args: path: the path to the subvolume state: a boolean of the state of the read only

Returns: None

1.9 lib.compressionlib module

class lib.compressionlib.compressionLib
Bases: object

static checkCompression(compression: str)→ bool
Check if the given compression algorithm is available to use in the lib.

Args: compression: A string with the algorithm to check

Returns: A bool representing the availability of the chosen algo.

class lib.compressionlib.g_snappy
Bases: object

static compressStream(in_stream, out_stream, blocksize=65536)→ None
Uses the Google snappy compress function to compress a stream of bytes.

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, com-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a stream of bytes out_stream: a compressed stream blocksize: [optional] the size used
for the buffer in bytes

10 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

Returns: None

static compress_native(in_stream, out_stream, blocksize=65536)→ None
Wrapper for the snappy native stream compression

Args: in_stream: a stream of bytes out_stream: a compressed stream blocksize: [optional] the size used
for the buffer in bytes

Returns:

static decompressStream(in_stream, out_stream, blocksize=65536)→ None
Uses the Google snappy decompress function to handle a compressed stream.

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, decom-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a compressed stream out_stream: the original stream of bytes blocksize: [optional] the
size used for the buffer in bytes

Returns:None

static decompress_native(in_stream, out_stream, blocksize=65536)→ None
Wrapper for the snappy native stream decompression

Args: in_stream: a compressed stream out_stream: the original stream of bytes blocksize: [optional] the
size used for the buffer in bytes

Returns:

class lib.compressionlib.lz4
Bases: object

static compressStream(in_stream, out_stream)→ None
Uses the lz4 compress function to compress a stream of bytes

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, com-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a bytes input stream to be compressed out_stream: the compressed stream

Returns: None

static decompressStream(in_stream, out_stream)→ None
Uses the lz4 decompress function to decompress a stream of bytes

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, decom-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a compressed stream out_stream: the original bytes

Returns: None

class lib.compressionlib.z_lib
Bases: object

static compress2(in_stream, out_stream)
!!IN TESTING!! !!DONT USE THIS!!

Args: in_stream: out_stream:

Returns:

1.9. lib.compressionlib module 11

iCBD-Replication Documentation, Release 1.0.0

static compressStream(in_stream, out_stream, blocksize=32768)→ None
Uses the zlib compress function to compress a stream of bytes.

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, com-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a stream of bytes out_stream: a compressed stream blocksize: [optional] the size used
for the buffer in bytes

Returns: None

static decompress2(in_stream, out_stream)
!!IN TESTING!! !!DONT USE THIS!!

Args: in_stream: out_stream:

Returns:

static decompressStream(in_stream, out_stream, blocksize=32768)→ None
Uses the zlib decompress function to handle a compressed stream.

Takes an incoming file-like object and an outgoing file-like object, reads data from “in_stream”, decom-
presses it, and writes it to “out_stream”. “in_stream” should support the read method, and “out_stream”
should support the write method.

Args: in_stream: a compressed stream out_stream: the original stream of bytes blocksize: [optional] the
size used for the buffer in bytes

Returns: None

1.10 lib.icbdSnapshot module

class lib.icbdSnapshot.icbdSnapshot(mount_point: str, image_name: str, snapshot_number:
str, icbd_boot_package_path: str, iscsi_target_folder:
str)

Bases: object

getICBDBootPackagePath()
Get a string with the full path to the iCBD Boot Package of the Image.

Returns: a string with the path

getISCSITarget()
Get a string with the path to the ISCSI target for this snapshot.

Returns: a string with the path

getImagePath()→ str
Get a string with the formatted path, but without the snapshot number. This should be used as a destiny
path

Returns: a string with the path in the format {/mountpoint/imagename}

getMountpointPath()→ str
Get a string with only the mount point of the snapshot

Returns: the mountpoint

getPath()→ str
Get a string with the full path of the snapshot, including the mountpoint and image name. Format: {mount-
point/imagename/snapshotnumber}

12 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

Returns: a string with the path

1.11 lib.restapilib module

class lib.restapilib.RestAPI(port: int = 5009)
Bases: object

iCBD-Replication Rest API Class

This instantiate the micro-framework Flack to provide a simple HTTP API for interacting with the system.

Note that every communication with this API uses JSON files. Responses are in JSON and an example can be
found in the documentation of each method.

api = <flask_restful.Api object>

app = <Flask 'lib.restapilib'>

deleteImageVersion(replica, imi, version)
Delete a version of an iMI in a Replica Json response example:

Endpoint path : <IP>:<Port>/api/replicas/<replica>/imis/<imi>/versions/<version>/delete/

Returns:

listImageVersionsByReplica(replica, imi)
List the version of an iMI that are present in a Replica Json response example:

Endpoint path : <IP>:<Port>/api/replicas/<replica>/imis/<imi>/versions

Returns:

listImagesByReplica(replica)
List all iMIS present in a replica. Json response example:

Endpoint path : <IP>:<Port>/api/replicas/<replica>/imis

Returns:

listReplicas()
List all the replicas registered in the system. Json response example:

Endpoint path : <IP>:<Port>/api/replicas

Returns:

listSystemImages()
List all the iMIs present in the Master Node This will list all iMIs available to be transfered to any replica.

Json response example:

Endpoint path : <IP>:<Port>/api/master/imis

Returns:

listSystemImagesVersions(imi)
List all the versions of an iMIs present in the Master Node

Json response example:

Endpoint path : <IP>:<Port>/api/master/imis/<imi>/versions

Returns:

1.11. lib.restapilib module 13

iCBD-Replication Documentation, Release 1.0.0

root()
Default root route endpoint. Mainly for testing

Endpoint path : <IP>:<Port>/api

Returns: a simple test string

sendImageVersionToReplica()
List all the versions of an iMIs present in the Master Node

Json response example:

Endpoint path : <IP>:<Port>/api/master/send?imi={imi}&version={version}&replica={replica}

Returns:

subscribeImage(replica, imi)
Replica subscribe to a iMI Json response example:

Endpoint path : <IP>:<Port>/api/replicas/<replica>/imis/subscribe/<imi>

Returns:

unsubscribeImage(replica, imi)
Replica unsubscribe to a iMI Json response example:

Endpoint path : <IP>:<Port>/api/replicas/<replica>/imis/unsubscribe/<imi>

Returns:

1.12 lib.serializerslib module

class lib.serializerslib.icbdSnapshotSerializer
Bases: object

static icbdSnapshot_class_to_dict(obj: lib.icbdSnapshot.icbdSnapshot)

static icbdSnapshot_dict_to_class(class_name, dict)

1.13 lib.sshlib module

class lib.sshlib.sshTunnel(host, local_port, remote_port)
Bases: object

createTunnel(host, local_port, remote_port)

1.14 lib.utillib module

class lib.utillib.icbdUtil
Bases: object

logHeading(string)
Big header for logger –[“string”]———————

Args: string: a string to be placed inside the big header

Returns: the string encapsulated in the header

14 Chapter 1. API documentation

iCBD-Replication Documentation, Release 1.0.0

prettify(obj)
Return pretty representation of obj. Useful for debugging.

Args: obj: the object to prettify

Returns: a pretty representation of obj

1.15 exceptions.ImageRepoException module

exception exceptions.ImageRepoException.BTRFSPathNotFoundException(message)
Bases: Exception

Raise when a BTRFS Path is not in the File System

exception exceptions.ImageRepoException.BTRFSSubvolumeNotFoundException(message)
Bases: Exception

Raise when a BTRFS Subvolume is not in the File System

exception exceptions.ImageRepoException.DirNotFoundException(message)
Bases: Exception

Raise when a Directory is not in the File System

exception exceptions.ImageRepoException.ImageAlreadyExistsException(message)
Bases: Exception

Raise when a Images already is present in the repo

exception exceptions.ImageRepoException.ImageNotFoundException(message)
Bases: Exception

Raise when a Images is not found

exception exceptions.ImageRepoException.SnapshotAlreadyExistsException(message)
Bases: Exception

Raise when a Snapshot already is present in the repo

exception exceptions.ImageRepoException.SnapshotNotFoundException(message)
Bases: Exception

Raise when a Snapshot is not found

1.16 exceptions.ReplicasException module

exception exceptions.ReplicasException.ReplicaNotFoundException(message)
Bases: Exception

Raise when a replica is not found

1.17 tests.benchLibTests module

tests.benchLibTests.dummyFunc()

tests.benchLibTests.main()

tests.benchLibTests.startCompleteRun()

1.15. exceptions.ImageRepoException module 15

iCBD-Replication Documentation, Release 1.0.0

1.18 tests.pyroNSTests module

class tests.pyroNSTests.NamingTrasher(nsuri, number)
Bases: threading.Thread

list()

listprefix()

listregex()

lookup()

register()

remove()

run()

tests.pyroNSTests.main()

tests.pyroNSTests.randomname()

1.19 tests.utilTests module

class tests.utilTests.TestMount(methodName=’runTest’)
Bases: unittest.case.TestCase

Our basic test class

isBTRFS(path, assertVal)

isSubvolume(path, assertVal)

test_isBtrfsSet()

test_isSubvolumeSet()

1.20 Indices and tables

• genindex

• modindex

• search

16 Chapter 1. API documentation

PYTHON MODULE INDEX

e
exceptions.ImageRepoException, 15
exceptions.ReplicasException, 15

i
icbdrep.ImageRepo, 3
icbdrep.KeepAlive, 4
icbdrep.MasterNode, 5
icbdrep.NameServer, 6
icbdrep.ReplicaNode, 6

l
lib.benchmarkinglib, 8
lib.btrfslib, 9
lib.compressionlib, 10
lib.icbdSnapshot, 12
lib.restapilib, 13
lib.serializerslib, 14
lib.sshlib, 14
lib.utillib, 14

t
tests.benchLibTests, 15
tests.pyroNSTests, 16
tests.utilTests, 16

17

iCBD-Replication Documentation, Release 1.0.0

18 Python Module Index

INDEX

A
addImage() (icbdrep.ImageRepo.ImageRepo method), 3
addImage() (icbdrep.MasterNode.MasterNode method),

5
addImage() (icbdrep.ReplicaNode.ReplicaNode method),

6
addRun() (lib.benchmarkinglib.Benchmark method), 8
addSnapshot() (icbdrep.ImageRepo.ImageRepo method),

3
api (lib.restapilib.RestAPI attribute), 13
app (lib.restapilib.RestAPI attribute), 13

B
Benchmark (class in lib.benchmarkinglib), 8
BtrfsFsCheck (class in lib.btrfslib), 9
BTRFSPathNotFoundException, 15
BTRFSSubvolumeNotFoundException, 15
BtrfsTool (class in lib.btrfslib), 9

C
checkCompression() (lib.compressionlib.compressionLib

static method), 10
compress2() (lib.compressionlib.z_lib static method), 11
compress_native() (lib.compressionlib.g_snappy static

method), 11
compressionLib (class in lib.compressionlib), 10
compressStream() (lib.compressionlib.g_snappy static

method), 10
compressStream() (lib.compressionlib.lz4 static method),

11
compressStream() (lib.compressionlib.z_lib static

method), 11
createTunnel() (lib.sshlib.sshTunnel method), 14

D
decompress2() (lib.compressionlib.z_lib static method),

12
decompress_native() (lib.compressionlib.g_snappy static

method), 11
decompressStream() (lib.compressionlib.g_snappy static

method), 11

decompressStream() (lib.compressionlib.lz4 static
method), 11

decompressStream() (lib.compressionlib.z_lib static
method), 12

delete() (lib.btrfslib.BtrfsTool static method), 9
delete_snapshot() (icbdrep.MasterNode.MasterNode

method), 5
deleteImage() (icbdrep.ImageRepo.ImageRepo method),

3
deleteImageVersion() (lib.restapilib.RestAPI method), 13
deleteSnapshot() (icbdrep.ImageRepo.ImageRepo

method), 3
deleteSnapshot() (icbdrep.ReplicaNode.ReplicaNode

method), 6
DirNotFoundException, 15
dummyFunc() (in module tests.benchLibTests), 15

E
exceptions.ImageRepoException (module), 15
exceptions.ReplicasException (module), 15
exeCommand() (icbdrep.MasterNode.MasterNode

method), 5

G
g_snappy (class in lib.compressionlib), 10
get_name() (lib.benchmarkinglib.Benchmark method), 8
getBtrfsTransferBytes() (lib.benchmarkinglib.Run

method), 8
getBtrfsTransferPackets() (lib.benchmarkinglib.Run

method), 8
getBtrfsTransferRuntime() (lib.benchmarkinglib.Run

method), 8
getGlobalTransferRuntime() (lib.benchmarkinglib.Run

method), 8
getICBDBootPackagePath()

(lib.icbdSnapshot.icbdSnapshot method),
12

getIcbdBootTransferBytes() (lib.benchmarkinglib.Run
method), 8

getIcbdBootTransferPackets() (lib.benchmarkinglib.Run
method), 8

19

iCBD-Replication Documentation, Release 1.0.0

getIcbdBootTransferRuntime() (lib.benchmarkinglib.Run
method), 8

getImagelist() (icbdrep.ImageRepo.ImageRepo method),
3

getImagepath() (icbdrep.ImageRepo.ImageRepo
method), 3

getImagePath() (lib.icbdSnapshot.icbdSnapshot method),
12

getImagesList() (icbdrep.ReplicaNode.ReplicaNode
method), 6

getInterfaceStats() (lib.benchmarkinglib.linuxNetworkTraffic
static method), 9

getISCSITarget() (lib.icbdSnapshot.icbdSnapshot
method), 12

getIscsiTargetTransferBytes() (lib.benchmarkinglib.Run
method), 8

getIscsiTargetTransferPackets()
(lib.benchmarkinglib.Run method), 8

getIscsiTargetTransferRuntime()
(lib.benchmarkinglib.Run method), 8

getLastSnapshot() (icbdrep.ImageRepo.ImageRepo
method), 4

getLastSnapshot() (icbdrep.ReplicaNode.ReplicaNode
method), 7

getMountpointPath() (lib.icbdSnapshot.icbdSnapshot
method), 12

getName() (icbdrep.ReplicaNode.ReplicaNode method),
7

getPath() (lib.icbdSnapshot.icbdSnapshot method), 12
getReplicaBtrfsAddress() (icb-

drep.ReplicaNode.ReplicaNode method),
7

getReplicaID() (icbdrep.ReplicaNode.ReplicaNode
method), 7

getReplicasFromNS() (icbdrep.MasterNode.MasterNode
method), 5

getSnapshot() (icbdrep.ImageRepo.ImageRepo method),
4

getSnapshotlist() (icbdrep.ImageRepo.ImageRepo
method), 4

getSnapshotList() (icbdrep.ReplicaNode.ReplicaNode
method), 7

H
hasImage() (icbdrep.ImageRepo.ImageRepo method), 4
hasSnapshot() (icbdrep.ImageRepo.ImageRepo method),

4

I
icbdrep.ImageRepo (module), 3
icbdrep.KeepAlive (module), 4
icbdrep.MasterNode (module), 5
icbdrep.NameServer (module), 6
icbdrep.ReplicaNode (module), 6

icbdSnapshot (class in lib.icbdSnapshot), 12
icbdSnapshot_class_to_dict()

(lib.serializerslib.icbdSnapshotSerializer
static method), 14

icbdSnapshot_dict_to_class()
(lib.serializerslib.icbdSnapshotSerializer
static method), 14

icbdSnapshotSerializer (class in lib.serializerslib), 14
icbdUtil (class in lib.utillib), 14
ImageAlreadyExistsException, 15
ImageNotFoundException, 15
ImageRepo (class in icbdrep.ImageRepo), 3
interactiveMode() (icbdrep.MasterNode.MasterNode

method), 5
isBTRFS() (tests.utilTests.TestMount method), 16
isBtrfsPath() (lib.btrfslib.BtrfsFsCheck static method), 9
isBtrfsSubvolume() (lib.btrfslib.BtrfsFsCheck static

method), 9
isSubvolume() (tests.utilTests.TestMount method), 16

K
KeepAlive (class in icbdrep.KeepAlive), 4
keepAlive() (icbdrep.KeepAlive.KeepAlive method), 4

L
lib.benchmarkinglib (module), 8
lib.btrfslib (module), 9
lib.compressionlib (module), 10
lib.icbdSnapshot (module), 12
lib.restapilib (module), 13
lib.serializerslib (module), 14
lib.sshlib (module), 14
lib.utillib (module), 14
linuxNetworkTraffic (class in lib.benchmarkinglib), 8
list() (tests.pyroNSTests.NamingTrasher method), 16
listImages() (icbdrep.MasterNode.MasterNode method),

5
listImagesByReplica() (lib.restapilib.RestAPI method),

13
listImageVersionsByReplica() (lib.restapilib.RestAPI

method), 13
listprefix() (tests.pyroNSTests.NamingTrasher method),

16
listregex() (tests.pyroNSTests.NamingTrasher method),

16
listReplicas() (icbdrep.MasterNode.MasterNode

method), 5
listReplicas() (lib.restapilib.RestAPI method), 13
listSnapshots() (icbdrep.MasterNode.MasterNode

method), 5
listSystemImages() (lib.restapilib.RestAPI method), 13
listSystemImagesVersions() (lib.restapilib.RestAPI

method), 13
logHeading() (lib.utillib.icbdUtil method), 14

20 Index

iCBD-Replication Documentation, Release 1.0.0

lookup() (tests.pyroNSTests.NamingTrasher method), 16
lz4 (class in lib.compressionlib), 11

M
main() (in module tests.benchLibTests), 15
main() (in module tests.pyroNSTests), 16
MasterNode (class in icbdrep.MasterNode), 5
mean() (lib.benchmarkinglib.Benchmark method), 8
median() (lib.benchmarkinglib.Benchmark method), 8

N
NameServer (class in icbdrep.NameServer), 6
NamingTrasher (class in tests.pyroNSTests), 16

P
ping() (icbdrep.ReplicaNode.ReplicaNode method), 7
poisonPill() (icbdrep.ReplicaNode.ReplicaNode method),

7
prepareReceive() (icbdrep.ReplicaNode.ReplicaNode

method), 7
prettify() (lib.utillib.icbdUtil method), 14

R
randomname() (in module tests.pyroNSTests), 16
receive() (icbdrep.ReplicaNode.ReplicaNode method), 7
receive() (lib.btrfslib.BtrfsTool static method), 9
register() (tests.pyroNSTests.NamingTrasher method), 16
registerInNS() (icbdrep.MasterNode.MasterNode

method), 6
remove() (tests.pyroNSTests.NamingTrasher method), 16
ReplicaNode (class in icbdrep.ReplicaNode), 6
ReplicaNotFoundException, 15
RestAPI (class in lib.restapilib), 13
root() (lib.restapilib.RestAPI method), 13
Run (class in lib.benchmarkinglib), 8
run() (icbdrep.KeepAlive.KeepAlive method), 4
run() (icbdrep.MasterNode.MasterNode method), 6
run() (icbdrep.NameServer.NameServer method), 6
run() (tests.pyroNSTests.NamingTrasher method), 16

S
searchForSnapshots() (lib.btrfslib.BtrfsFsCheck static

method), 9
send() (icbdrep.MasterNode.MasterNode method), 6
send() (lib.btrfslib.BtrfsTool static method), 9
sendImageVersionToReplica() (lib.restapilib.RestAPI

method), 14
sendNonBlock() (lib.btrfslib.BtrfsTool static method), 10
sendSSH() (lib.btrfslib.BtrfsTool static method), 10
setReadOnly() (lib.btrfslib.BtrfsTool static method), 10
SnapshotAlreadyExistsException, 15
SnapshotNotFoundException, 15
sshTunnel (class in lib.sshlib), 14

startCompleteRun() (in module tests.benchLibTests), 15
startTimmer() (lib.benchmarkinglib.Run method), 8
stdev() (lib.benchmarkinglib.Benchmark method), 8
stopKeepAlive() (icbdrep.KeepAlive.KeepAlive method),

5
stopMaster() (icbdrep.MasterNode.MasterNode method),

6
stopNS() (icbdrep.NameServer.NameServer method), 6
stopTimmer() (lib.benchmarkinglib.Run method), 8
subscribeImage() (lib.restapilib.RestAPI method), 14

T
test_isBtrfsSet() (tests.utilTests.TestMount method), 16
test_isSubvolumeSet() (tests.utilTests.TestMount

method), 16
TestMount (class in tests.utilTests), 16
tests.benchLibTests (module), 15
tests.pyroNSTests (module), 16
tests.utilTests (module), 16

U
unsubscribeImage() (lib.restapilib.RestAPI method), 14

Z
z_lib (class in lib.compressionlib), 11

Index 21

A
n
n
e
x

II
iCBD Installation Guide

105

iCBD Installation Protocol
Version 1.0.1 - Last Updated 9 Oct 2018

Luis Silva - lmt.silva (at) campus.fct.unl.pt

In this document, we will detail all the steps needed to entirely install from scratch and start the
iCBD Management Platform.

Pre-Requisites

What is needed:

3 x CentOS 7 Minimum Install VM

2 Hard Drives (the extra for BTRFS)
1 or more NICs (Depending on the VM)

iCBD install files for each VM

Some iCBD VM images

Attention - CentOS 7 Kernel Version! The Kernel 3.10.0-693.5.2.el7.x86_64 on CentOS 7
has manifested a problem with a core component of the coreutils tool command, the cp when
used with option --reflink=always . To circumvent the issue is advised to use an older
Kernel, such as 3.10.0-514.2.2.el7.x86_64 as we confirmed is working. This until Red Hat
releases a new kernel with the bug fix.

Introduction

This tutorial assumes a fresh minimal install of a CentOS 7 Operating System. The installation
procedure will cover all configurations needed for the implementation of VMs that will take a
role in the platform. Some of the settings are specific for one of the roles, in this case, there will
be a note in the step description.

 iCBD-imgs iCBD-rw iCBD-home iCBD-CacheXX

CPUs (cores) 8 4 4 4

RAM (GB) 32 8 8 32

Hard Drives 2 2 2 2

NICs 3 1 1 2

iCBD Roles

The iCBD Management Platform consists of a minimum of three VM's, but for a more complex
typology, we can mix in some cache servers and some clients. So we can have the following
roles:

iCBD-imgs - Primary repository of VM images and facilitator of the administration process
iCBD-rw - Provides read/write space to the iCBD clients
iCBD-home - Hosting of Home accounts to be used by iCBD clients
iCBD-cache - Hosting of VM images closest to the clients
iCBD-Client - A VM shell that don't have a hard disk and will boot from network

iCBD Networks

Also, there is the need to define multiple networks. Here, as we are using the VMware platform,
there is the ability to design a Distributed VSwitch with various Port Groups, each one
symbolising an individual network. The networks are:

On the iCBD-DSwitch (This distributed virtual switch only works inside the cluster)

iCBD-Net
iCBD-Adm-Net
iCBD-Rep
iCBD-CacheXX-Net

On the DI-DSwitch (Outside access to DI networks and Internet)

DMZ-PRIV-DI
DMZ-PUB-DI
R-ENSINO-PRIV-DI

In the next table is showed the characteristics of each VM given its role. These properties mirror
what is implemented in the Cluster at DI - FCT NOVA. Then we present two tables: one with the
sizes used for the hard drives, and the other including the networks for the NICs of each VM.

VM Hardware by Role

Hard Drives by Role

 iCBD-imgs iCBD-rw iCBD-home iCBD-CacheXX

Hard Drive 1 (Root FS) 16 GB 16 GB 16 GB 16 GB

Hard Drive 2 (BTRFS) 600 GB 300 GB 100 GB 600 GB

 iCBD-imgs iCBD-rw iCBD-home iCBD-CacheXX

NIC 1 DMZ-PRIV-DI (Internet) iCBD-Net iCBD-Net iCBD-Net

NIC 2 iCBD-Net X X iCBD-CacheXX-Net

NIC 3 iCBD-Adm-Net X X X

NICs by Role

First Step

Let's start:

The first thing we need is a vanilla VM with CentOS 7 minimal install. This VM will be our basis.
Many of the procedures that we will need to implement are more conveniently executed from a
terminal in your machine, so probably is a good idea to configure an SSH access to the VM.
Anyway, you will need to SSH to the VM in the future, so it's better to start this way.

Setup a static IP and configure SHH

Setup a static IP address.

Depending on the machine it may be that there is more than one network card installed. In the
case of the iCBD-imgs this is true. So, I leave here the configuration prepared in this machine.

The VM iCBD-imgs as 3 NICs :

NIC1

Port Group: DMZ-PRIV-DI
DVSwitch: DSwitch1 (DI-FCT Networks)
Used: Outside access
Config File - vi /etc/sysconfig/network-scripts/INTERFACE_NAME

HWADDR=00:50:56:96:A3:52 # Interface MAC Address

TYPE=Ethernet

BOOTPROTO=none

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=no

IPV6_FAILURE_FATAL=no

NIC2

Port Group: iCBD-Net
DVSwitch: iCBD-DSwitch
Used: Main internal network. Platform clients connect were.
Config File - vi /etc/sysconfig/network-scripts/INTERFACE_NAME

This NIC will be connected to a bridge, so this is the config for the interface, and then is
shown the config for the bridge.

The Bridge config:

NAME=ens192

ONBOOT=yes

IPADDR=10.170.137.98 # External IP

NETMASK=255.255.255.0

NM_CONTROLLED=no # Doesn't let the Network Manager change the

config

PREFIX=24

GATEWAY=10.170.137.254 # Gateway for the .137 network

DNS1=10.130.10.25 # FCT DNS1

DNS2=10.130.10.26 # FCT DNS1

DOMAIN=ensino.priv.di.fct.unl.pt

HWADDR=00:50:56:96:2E:9C

TYPE=Ethernet

#BOOTPROTO=none

#DEFROUTE=yes

#IPV4_FAILURE_FATAL=yes

#IPV6INIT=no

#IPV6_FAILURE_FATAL=no

NAME=ens224

ONBOOT=yes

#IPADDR=10.0.2.251

#PREFIX=24

BRIDGE=br0

#NETMASK=255.255.255.0

#NM_CONTROLLED=no

ZONE=internal

NIC3

Port Group: iCBD-Adm-Net
DVSwitch: Standard Switch
Used: Internal network for the administration machines
Config File - vi /etc/sysconfig/network-scripts/INTERFACE_NAME

SSH access without password

A configuration with password-less SSH access it's highly recommended since you will be
connecting to the different servers a lot. A lot!

Still, the next step for your own machine is optional. But since in a later moment, it will be
necessary to configure this between the servers and the physical machines the instructions are
already here.

For some reference take a look at the next table. Each row represents a particular VM, and the
columns indicate the VM keys that should be present in the ~/.ssh/authorized_keys .

DEVICE=br0

STP=yes

TYPE=Brige

BOOTPROTO=none

DEFROUTE=yes

IPV4_FAILURE_FATAL=yes

IPV6INIT=no

NAME="Brige br0"

ONBOOT=yes

BRIDGIN_OPTS=priority=32768

IPADDR=10.0.2.251

PREFIX=24

ZONE=internal

HWADDR=00:50:56:96:74:85

TYPE=Ethernet

BOOTPROTO=none

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=no

IPV6_FAILURE_FATAL=no

NAME=ens161

ONBOOT=yes

IPADDR=10.0.3.1

NETMASK=255.255.255.128

NM_CONTROLLED=no

PREFIX=24

 iCBD-imgs iCBD-rw iCBD-home iCBD-CacheXX Your Machine

iCBD-imgs √ √ √ √

iCBD-rw √ √ √ √

iCBD-home √ √ √ √

iCBD-CacheXX √ √ √ √, other caches √

To generate an RSA key pair to work with version 2 of the SSH protocol, type the following
command at a shell prompt: ssh-keygen -t rsa

Transfer your public key to ~/.ssh/authorized_keys

Need the command ? cat ~/.ssh/id_rsa.pub | ssh user@server "mkdir -p ~/.ssh &&
cat >> ~/.ssh/authorized_keys"

Note: If you are cloning the main VM as a template for the other services, don't forget to create
a new RSA key and add it to the remaining servers.

Install packages

Now we need to start building the environment with all the necessary tools to run iCBD.

So first run yum update , to make sure that all already installed packages are up to date.

Next we need to install all of these packages:

yum install net-tools

yum install hdparm

yum install Xorg

yum install gdm

yum install qemu-kvm

yum install virt-manager

yum install gcc

yum install kernel-headers

yum install kernel-devel

yum install epel-release

yum install htop

yum install httpd

yum install ntp

yum install firefox

yum install open-vm-tools

yum install open-vm-tools-desktop

yum install exportfs

yum install vnc

yum install xinetd

yum install tigervnc-server-applet

Setup a RSA key for the apache user

In the iCBD-imgs and iCBD-Cache roles the apache user will need to execute some ssh
connections. For that the password-less login is paramount.

Since the we generated a RSA pair for the root user we will use them also for the apache user.

Simply execute the following:

yum groupinstall fonts

yum groupinstall "X window system"

yum install kde-workspace

yum install ksysguard

yum install tftp

yum install tftp-server

yum install target-cli **

yum install iscsi-initiator-utils

yum install scsi-target-utils

yum install firewall-config

yum install tcpdump

yum install libvirt

yum install qemu

yum install rsync

yum install php

yum install wget

yum install bind-utils

yum install spice-protocol

yum install spice-server

yum install iotop

yum install iftop

yum install libguestfs

yum install libguestfs-tools

yum install traceroute

yum install strace

yum install nmap

yum install whois

yum install ed

yum install sysstat

yum install rsh

yum install pure-ftpd

mkdir /usr/share/httpd/.ssh

cp /root/.ssh/id_rsa /usr/share/httpd/.ssh/

chown -R apache:apache /usr/share/httpd/.ssh/

chmod 0700 /usr/share/httpd/.ssh/

chmod 0600 /usr/share/httpd/.ssh/id_rsa

Setup a graphical environment

It's easier to perform much of the day to day operations if we have a graphical user interface.
And given the today's available resources for a development environment, it helps. If you are
setting up a production server, then it should be done with scripts..

To activate KDE just run systemctl set-default graphical.target

In the next restart, you will have a graphical interface instead of a console.

Update date & time

Make sure the time & date are updated

and to confirm running date and compare with our machine.

Disable SELinux

The Security-Enhanced Linux functionality enters into conflict with many components of the
iCBD platform, this way there is the need for disabling it. vi /etc/sysconfig/selinux

Check if the flag is set to SELINUX=enforcing , if so change it either to permissive or
disabled 1

Ending Step One

Do a reboot , just to load everything up, including KDE.

Second Step

Now we start to lay the groundwork for the iCBD directories and much-needed mounts. In this
sense, we need to start working with the BTRFS File System.

Format a second hard drive with BTRFS

You can check the available disks with ls -l /dev | grep sd

systemctl enable ntpd.service

ntpdate pool.ntp.org

systemctl start ntpd.service

Let's assume that you have an empty disk ready to being formatted with BTRFS underneath
/dev/sdb

To format the disk with BTRFS do a mkfs.btrfs /dev/sdb

The above command makes use of the whole disk. But the mkfs.btrfs tool as multiple
configurations and you can first create some partitions or even multiple disks in a RAID
configuration and then format them in BTRFS. But for simplicity sake (and even taking into
account some compartmentalisation issues) let's use the whole disk.

For some follow up on the matter of structuring the disks and multiple partitions there are
numerous articles and tutorials on the web. 2

Now you should see that there is a BTRFS file system in the OS.

Use btrfs filesystem show to make sure.

Third Step

Now the fun stuff. Mounts!

Caution: From this point on, it is necessary to pay close attention to the mounts, double
checking them, as it is enough to fail one and the whole platform may not work.

Mounting the base for the iCBD BTRFS volume

The iCBD needs a "couple" of mount points, but every one of them will be under /var/lib/ .
Those will differ from server to server, given the task that it will perform. But this step is
universal to every machine.

Let's create a temporary mount for the BTRFS disk we created earlier: Execute mkdir
/mnt/btrfs and then mount /dev/sdb /mnt/btrfs .

As we are going to mount the root of the BTRFS file system under /var/lib there is the need
to copy all files and directories first.

Create a sub-volume that will house the lib files btrfs subv create /mnt/btrfs/Lib , then
copy everything to the new sub-volume cp -a /var/lib/. /mnt/btrfs/Lib/

Next mount the sub-volume mount -o subvol=Lib /dev/sdb /var/lib and check if the
mount was sucessful ls -lah /var/lib/

Case it looks ok, edit the fstab file to make this change permanent: vi /etc/fstab Add the
line /dev/sdb /var/lib btrfs subvol=Lib 0 0

(The arguments are separeted by a tab and the numbers by a space

/dev/sdb[TAB]/var/lib[TAB]btrfs[TAB]subvol=Lib[TAB]0[SPACE]0)

and reboot .

Fourth Step - iCBD-imgs

More sub-volumes!

These next steps are specific to the iCBD-imgs VM, that takes care of the administrations of the
images, but also possesses the capability to serve them to the clients. In a future point, we will
see the details for the other kind of roles.

Creating the iCBD sub-volumes

Let's create all the following sub-volumes:

The mouting of all this sub-volumes will come later.

Fifth Step - iCBD-imgs

In this installation package there should be a iCBD-imgs_2017-11-17_bkk.tgz file. This file is
a backup of iCBD-Core and can be used to install.

Transfer the file to the VM, you can use a SSH feature for this:

scp iCBD-imgs_2017-11-17_bkk.tgz user@host:/var/lib/icbd

Navigate to /var/lib/icbd/ on the VM and unzip the file directly to the folder tar -xvzf
iCBD-imgs_2017-11-17_bkk.tgz .

After this, you can clean up the folder by removing the file: rm iCBD-imgs_2017-11-
17_bkk.tgz .

Atention - This backup does not contain the folder /var/lib/icbd/mounts/tftpboot

Now the remaining mounts I promised. Edit the fstab and add this lines:

btrfs subv create /var/lib/icbd

btrfs subv create /var/lib/icbd/.snap

btrfs subv create /var/lib/icbd/shared-vms

mkdir /var/lib/icbd/mounts

btrfs subv create /var/lib/icbd/mounts/vmware

btrfs subv create /var/lib/icbd/mounts/livirt

btrfs subv create /var/lib/icbd/mounts/tftpboot

btrfs subv create /var/lib/icbd/nfs_home

btrfs subv create /var/lib/icbd/nfs_root

btrfs subv create /var/lib/icbd/rw

btrfs subv create /var/lib/icbd/iso

btrfs subv create /var/lib/icbd/tmp

btrfs subv create /var/lib/icbd/icbd

Save and reboot

Sixth Step - iCBD-imgs

Update the hosts file

Update hosts file. Remember, if any changes here done to this file before the last group of
mounts this is now without effect. There is a sample hosts file in the install package. This
server will serve as DHCP it's important that the IP's of the architecture are well defined.

Install the VMware Player.

/var/lib/icbd/mounts/vmware /var/lib/vmware none rbind 0 0

/var/lib/icbd/mounts/etc/iscsi /etc/iscsi none rbind 0 0

/var/lib/icbd/mounts/etc/tgt /etc/tgt none rbind 0 0

/var/lib/icbd/mounts/etc/httpd /etc/httpd none rbind 0 0

/var/lib/icbd/mounts/etc/xinetd.d /etc/xinetd.d none rbind 0 0

/var/lib/icbd/mounts/tftpboot /var/lib/tftpboot none rbind

0 0

/var/lib/icbd/mounts/etc/hosts /etc/hosts none bind 0 0

/var/lib/icbd/mounts/etc/exports /etc/exports none bind 0 0

/var/lib/icbd/mounts/etc/dnsmasq.conf /etc/dnsmasq.conf none bind

 0 0

/var/lib/icbd/icbd /var/lib/tftpboot/icbd none rbind 0 0

/var/lib/icbd/bin /var/lib/icbd/exports/bin none rbind 0 0

/var/lib/icbd/include /var/lib/icbd/exports/include none rbind

0 0

/var/lib/icbd/client /var/lib/icbd/exports/client none rbind 0

0

/var/lib/icbd/icbd /var/lib/icbd/exports/icbd none rbind 0 0

/var/lib/icbd/tmp /var/lib/icbd/exports/tmp none rbind 0 0

/var/lib/icbd/iso /var/lib/icbd/exports/iso none rbind 0 0

/var/lib/icbd/shared-vms /var/lib/icbd/exports/shared-vms none

rbind 0 0

/var/lib/icbd/nfs_home /var/lib/icbd/exports/nfs_home none rbind

0 0

/var/lib/icbd/nfs_root /var/lib/icbd/exports/nfs_root none rbind

0 0

/var/lib/libvirt/images /var/lib/icbd/exports/images none rbind

0 0

Also, since we are working with virtualization, maby it's a good time to install one hypervisor.
Go to the VMware site and download VMware Workstation 12.

If there is the need for some help in the installation process, check this link to the VMware KB.

Add line to sysctl

vi /etc/sysctl.conf and add the line net.ipv4.ip_forward=1

Then exe the command sysctl net.ipv4.ip_forward=1

Activate NAT

Add direct rules to firewalld. Add the —permanent option to keep these rules across restarts.

Source: https://www.centos.org/forums/viewtopic.php?t=53819

Firewall configuration

Open the firewall configuration GUI.

We need to configure the firewall to let a bunch of services let through. The profile we are going
to use is the one named internal .

Then in this profile on the tab Services tick the following names:

firewall-cmd --direct --add-rule ipv4 nat POSTROUTING 0 -o eth_ext -j

MASQUERADE

firewall-cmd --direct --add-rule ipv4 filter FORWARD 0 -i eth_int -o

eth_ext -j ACCEPT

firewall-cmd --direct --add-rule ipv4 filter FORWARD 0 -i eth_ext -o

eth_int -m state --state RELATED,ESTABLISHED -j ACCEPT

dhcp

dhcpv6-client

dns

ftp

http

https

iscsi-target

mdns

mountd

nfs

ntp

rpc-bind

rsyncd

samba

And in the Masquerading tab tick the showed box.

Lastly in the options dropdown select the option Runtime to Permanent , this way the
changes are saved.

Sixth Step - iCBD-imgs

We are close to the end of the configurations on the iCBD-imgs server!

Launch the need services

There are some key services that need to be running in order to the platform work.

Make sure that these services are successfully running:

Check with systemctl status -l [service_name]

Don't forget to enable them for when a restart occur:

Other Roles Services

samba-client

squid

ssh

tftp

tftp-client

systemctl start vmware

systemctl start vmware-workstation-server

systemctl start libvirtd

systemctl start dnsmasq

systemctl start tftp * NO NEED

systemctl start tgtd

systemctl start nfs-server

systemctl start httpd

systemctl start ntpd

systemctl enable vmware-workstation-server

systemctl enable libvirtd

systemctl enable dnsmasq

systemctl enable tftp

systemctl enable tgtd

systemctl enable nfs-server

systemctl enable httpd

systemctl enable ntpd

iCBD-rw
iCBD-rw sub volumes

iCBD-rw Services

iCBD-rw fstab

iCBD-home
iCBD-home sub volumes

btrfs subv create /var/lib/Home

btrfs subv create /var/lib/icbd

btrfs subv create /var/lib/icbd/.snap

btrfs subv create /var/lib/icbd/nfs_home

btrfs subv create /var/lib/icbd/nfs_root

btrfs subv create /var/lib/icbd/nfs_rw

btrfs subv create /var/lib/icbd/nfs_tmp

btrfs subv create /var/lib/icbd/rw

mkdir /var/lib/icbd/mounts

btrfs subv create /var/lib/icbd/mounts/tftpboot

systemctl start tgtd

systemctl start nfs-server

/dev/sdb /var/lib btrfs subvol=Lib 0 0

/dev/sdb /home btrfs subvol=Home 0 0

/var/lib/icbd/nfs_home /var/lib/icbd/exports/nfs_home none rbind 0 0

/var/lib/icbd/nfs_root /var/lib/icbd/exports/nfs_root none rbind 0 0

/var/lib/icbd/rw /var/lib/icbd/exports/rw none rbind 0 0

/var/lib/icbd/mounts/etc/hosts /etc/hosts none bind 0 0

/var/lib/icbd/mounts/etc/exports /etc/exports none bind 0 0

/var/lib/icbd/mounts/tftpboot /var/lib/tftpboot none rbind 0 0

/var/lib/icbd/mounts/etc/tgt /etc/tgt none rbind 0 0

/var/lib/icbd/mounts/etc/httpd /etc/httpd none rbind 0 0

/var/lib/icbd/mounts/etc/tgt/macs.d /var/lib/icbd/exports/macs.d

none rbind 0 0

btrfs subv create /var/lib/icbd

btrfs subv create /var/lib/icbd/.snap

btrfs subv create /var/lib/icbd/nfs_home

btrfs subv create /var/lib/icbd/nfs_root

btrfs subv create /var/lib/icbd/exports/nfs_home

btrfs subv create /var/lib/icbd/exports/nfs_root

iCBD-home fstab

iCBD-home Services

iCBD-Cache

In the file /etc/hosts there is the need to change one line. Where is

10.0.2.251 imgs.icbd.local boot.icbd.local root.icbd.local adm-s.icbd.local

now we should have two lines:

10.0.2.251 imgs.icbd.local

10.1.2.251 boot.icbd.local root.icbd.local adm-s.icbd.local

The second IP is the subnet to be used on the second NIC of the cache server, and only to
communicate with clients.

iCBD-cache sub volumes

iCBD-cache fstab

/dev/sdb /var/lib btrfs subvol=Lib 0 0

/var/lib/icbd/mounts/etc/exports /etc/exports none bind 0 0

systemctl start nfs-server

btrfs subv create /var/lib/icbd

btrfs subv create /var/lib/icbd/.snap

btrfs subv create /var/lib/icbd/shared-vms

mkdir /var/lib/icbd/mounts

btrfs subv create /var/lib/icbd/mounts/vmware

btrfs subv create /var/lib/icbd/mounts/livirt

btrfs subv create /var/lib/icbd/mounts/tftpboot

btrfs subv create /var/lib/icbd/nfs_home

btrfs subv create /var/lib/icbd/nfs_root

btrfs subv create /var/lib/icbd/rw

btrfs subv create /var/lib/icbd/iso

btrfs subv create /var/lib/icbd/tmp

btrfs subv create /var/lib/icbd/icbd

/dev/sdb /var/lib btrfs subvol=Lib 0 0

/var/lib/icbd/mounts/vmware /var/lib/vmware none rbind 0 0

/var/lib/icbd/mounts/etc/iscsi /etc/iscsi none rbind 0 0

iCBD-cache Services

Change Log

/var/lib/icbd/mounts/etc/tgt /etc/tgt none rbind 0 0

/var/lib/icbd/mounts/etc/httpd /etc/httpd none rbind 0 0

/var/lib/icbd/mounts/etc/xinetd.d /etc/xinetd.d none rbind 0 0

/var/lib/icbd/mounts/tftpboot /var/lib/tftpboot none

rbind 0 0

/var/lib/icbd/mounts/etc/hosts /etc/hosts none bind 0 0

/var/lib/icbd/mounts/etc/exports /etc/exports none bind 0 0

/var/lib/icbd/mounts/etc/dnsmasq.conf /etc/dnsmasq.conf none

bind 0 0

/var/lib/icbd/icbd /var/lib/tftpboot/icbd none rbind 0 0

/var/lib/icbd/bin /var/lib/icbd/exports/bin none rbind 0 0

/var/lib/icbd/include /var/lib/icbd/exports/include none rbind 0 0

/var/lib/icbd/client /var/lib/icbd/exports/client none rbind 0 0

/var/lib/icbd/icbd /var/lib/icbd/exports/icbd none rbind 0 0

/var/lib/icbd/tmp /var/lib/icbd/exports/tmp none rbind 0 0

/var/lib/icbd/iso /var/lib/icbd/exports/iso none rbind 0 0

/var/lib/icbd/shared-vms /var/lib/icbd/exports/shared-vms

none rbind 0 0

/var/lib/icbd/nfs_home /var/lib/icbd/exports/nfs_home none rbind 0 0

/var/lib/icbd/nfs_root /var/lib/icbd/exports/nfs_root none rbind 0 0

/var/lib/libvirt/images /var/lib/icbd/exports/images none rbind 0 0

home.icbd.local:/nfs_home /var/lib/icbd/nfs_home nfs4 _netdev,rw

 0 0

home.icbd.local:/nfs_root /var/lib/icbd/nfs_root nfs4 _netdev,rw

 0 0

data.icbd.local:/rw /var/lib/icbd/rw nfs4 _netdev,rw 0 0

data.icbd.local:/rw /var/lib/icbd/exports/rw nfs4 _netdev,rw

 0 0

data.icbd.local:/macs.d /etc/tgt/macs.d nfs4 _netdev,rw 0 0

systemctl start libvirtd

systemctl start dnsmasq

systemctl start tftp *NO NEED - USE DNSMASQ*

systemctl start tgtd

systemctl start nfs-server

systemctl start httpd

systemctl start ntpd

Change Log
2017-11-21 — Version 0.0.1 — Creation of this document.

2017-12-01 — Version 0.0.1 — Created the base structure for the description of the installation
steps.

2017-12-10 — Version 0.0.1 — Added much of the content for the installation of the three main
VMs. Some organisation is needed!

2017-12-12 — Version 0.0.1 — Step One formatted and updated.

2017-12-16 — Version 0.0.1 — Reference added.

2017-12-18 — Version 0.0.1 — Step Two edited.

2018-01-12 — Version 0.0.1 — Every step was edited

2018-01-14 — Version 1.0.0 — All steps tested in the installation of one physical cache server

2018-01-30 — Version 1.0.1 — Some clarifications on the introduction and on the cache server.

2018-08-15 — Version 1.0.1 — Removed email from Reditus

2018-10-09 — Version 1.0.1 — Added instructions on setting up RSA keys for the apache user.

References

CentOS 7 Documentation - Enable or Disable SELinux

HowToForge - A Beginners Guide To btrfs

A
n
n
e
x

III
Bug on Btrfs affecting CoreUtils tool

III.1 Bug Report

The bug was reported in both CentOS Bug Tracker and Red Hat Bugzilla on 4 of December

of 2017.

Description of problem: In a CentOS 7 VM with kernel 3.10.0-693.5.2.el7.x86_64

including a mounted disk formatted with Btrfs and btrfs-progs v4.9.1. When executing

a copy of files with the command ‘‘cp --reflink=always’’ the command fails with the

indication ‘failed to clone someFile’: Operation not supported”

Issue: The above-mentioned copy fails, but in the files are created with zero bytes in

the destination folder. While trying to find the cause, it seems to be some bug in the ioctl

operation. A strace log of the copy operation can be found in the uploaded files.

This problem only manifests itself in the kernel 3.10.0-693.5.2.el7.x86_64. If the

same operation is executed in the system with the kernel 3.10.0-514.2.2.el7.x86_64 all

goes well. More evidence that this is probably a bug introduced in this version of the

kernel can be found in the git repository in the first commit of the new kernel 1. In the

file “SPECS/kernel.spec” line 15011 2 that some changes were made in the ioctl - “[fs]
btrfs: fix uninit variable in clone ioctl (Bill O’Donnell) [1298680]”

As a workaround, an older version of the kernel can be used, but this is not optimal,

as future releases may have the same problem.

How reproducible: It is always reproducible. Happens every time.

1https://git.centos.org/commit/rpms!kernel.git/d6bfd60741b14479a15b43acaa1ea5a8d73df543
2https://git.centos.org/blob/rpms!kernel.git/d6bfd60741b14479a15b43acaa1ea5a8d73df543/SPECS!kernel.spec#L15011

123

ANNEX III . BUG ON BTRFS AFFECTING COREUTILS TOOL

Steps to Reproduce:

1. In a Btrfs mount execute:

2. dd if=/dev/urandom of=testb bs=1024k seek=1024 count=128

3. cp --reflink=always testb testb_copy

Actual results: The copy operation returns with “failed to clone ‘testb’: Operation not

supported” and creates a zero bytes file in the destination of the copy.

Expected results: A clone of the file, looking precisely the same as the original with the

same size.

III.2 Resolution

On 5 of April of 2018, the problem was acknowledged by Red Hat, and a patch was

provided. However, also informed that the fix would not be included in later RHEL7

releases, due to Red Hat deciding to deprecate Btrfs as of RHEL7.5.

124

III .2. RESOLUTION

execve("/usr/bin/cp", ["cp", "--reflink=always", "testb", "test_reflink"], [/* 33 vars */]) = 0
(...)
access("/etc/selinux/config", F_OK) = 0
open("/usr/lib/locale/locale-archive", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=106070960, ...}) = 0
mmap(NULL, 106070960, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f43ee219000
close(3) = 0
open("/usr/share/locale/locale.alias", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=2502, ...}) = 0
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x7f43f59db000
read(3, "# Locale name alias data base.\n#"..., 4096) = 2502
read(3, "", 4096) = 0
close(3) = 0
munmap(0x7f43f59db000, 4096) = 0
open("/usr/lib/locale/UTF-8/LC_CTYPE", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
geteuid() = 0
stat("test_reflink", {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
stat("testb", {st_mode=S_IFREG|0644, st_size=1207959552, ...}) = 0
stat("test_reflink", {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
open("testb", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=1207959552, ...}) = 0
open("test_reflink", O_WRONLY|O_TRUNC) = 4
fstat(4, {st_mode=S_IFREG|0644, st_size=0, ...}) = 0
ioctl(4, BTRFS_IOC_CLONE or FICLONE, 3) = -1 EOPNOTSUPP (Operation not supported)
open("/usr/lib64/charset.alias", O_RDONLY|O_NOFOLLOW) = -1 ENOENT (No such file or directory)
write(2, "cp: ", 4) = 4
write(2, "failed to clone 'test_reflink' f"..., 43) = 43
write(2, ": Operation not supported", 25) = 25
write(2, "\n", 1) = 1
close(4) = 0
close(3) = 0
lseek(0, 0, SEEK_CUR) = -1 ESPIPE (Illegal seek)
close(0) = 0
close(1) = 0
close(2) = 0
exit_group(1) = ?
+++ exited with 1 +++

Listing 5: Strace of the cp --reflink=always command

125

ANNEX III . BUG ON BTRFS AFFECTING COREUTILS TOOL

--- a/fs/btrfs/super.c
+++ a/fs/btrfs/super.c
@@ -2191,7 +2191,7 @@ static struct file_system_type btrfs_fs_type = {

.name = "btrfs",

.mount = btrfs_mount,

.kill_sb = btrfs_kill_super,
- .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
+ .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_HAS_FO_EXTEND,
};
MODULE_ALIAS_FS("btrfs");

Listing 6: Btrfs patch on a/fs/btrfs/super.c

126

A
n
n
e
x

IV
iCBD Cluster Rack Diagram

127

ANNEX IV. ICBD CLUSTER RACK DIAGRAM

Figure IV.1: iCBD Cluster Rack Diagram

128

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Context
	Motivation
	Project Presentation
	iCBD Project
	Previous Work

	Problem Stating and Main Contributions
	Replication and Caching - The Problem
	Main Expected Contributions

	Document Structure

	Research Context
	Virtualisation
	Hypervisors
	Virtual Desktop Infrastructure
	Virtual Machine Image Storage

	Storage
	Storage Challenges
	File Systems
	Snapshots

	Caching
	Replication

	iCBD - Infrastructure for Client-Based Desktop
	The Concept
	The Architecture
	iCBD Machine Image
	Boot Services Layer
	Administration Layer
	Client Support Layer
	Storage Layer

	Implementation of the iCBD-Replication and Cache Server
	Motivation and System Architecture
	Implementation of a Replication Module
	Requirements
	System Overview
	Communications between nodes
	Name Server
	Image Repository
	Master Node
	Replica Node

	Deploying an iCBD Platform with a Cache Server
	The iCBD infrastructure at DI - FCT NOVA
	Roles in the Platform
	Installing iCBD Core Services

	Evaluation
	Experimental Setup
	Metodology
	Replication Service Benchmark
	Cache Server Performance Benchmark

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography
	iCBD-Replication Documentation
	iCBD Installation Guide
	Bug on Btrfs affecting CoreUtils tool
	Bug Report
	Resolution
	iCBD Cluster Rack Diagram

