2,353 research outputs found

    Enabling limited traffic scheduling in asynchronous ad hoc networks

    Get PDF
    We present work-in-progress developing a communication framework that addresses the communication challenges of the decentralized multihop wireless environment. The main contribution is the combination of a fully distributed, asynchronous power save mechanism with adaptation of the timing patterns defined by the power save mechanism to improve the energy and bandwidth efficiency of communication in multihop wireless networks. The possibility of leveraging this strategy to provide more complex forms of traffic management is explored

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Multihop Routing in Ad Hoc Networks

    Full text link
    This paper presents a dual method of closed-form analysis and lightweight simulation that enables an evaluation of the performance of mobile ad hoc networks that is more realistic, efficient, and accurate than those found in existing publications. Some features accommodated by the new analysis are shadowing, exclusion and guard zones, and distance-dependent fading. Three routing protocols are examined: least-delay, nearest-neighbor, and maximum-progress routing. The tradeoffs among the path reliabilities, average conditional delays, average conditional number of hops, and area spectral efficiencies are examined.Comment: 6 pages, 6 figures, to appear in IEEE Military Commun. Conf. (MILCOM), 201

    The impact of wakeup schedule distribution in synchronous power save protocols on the performance of multihop wireless networks

    Get PDF
    By definition, the operation of an asynchronous power save protocol permits an arbitrary distribution of nodes' wakeup schedules. This wakeup schedule distribution creates an uncoordinated pattern of times at which nodes will attempt to transmit. Intuitively, we would expect that some patterns will be more (or less) favorable than others for a given traffic pattern. We investigate the impact of this wakeup pattern on network capacity and present simulation data showing that the capacity associated with the best wakeup patterns is significantly larger than that of the worst. This result not only gives insight to the behavior of such protocols, but also acts as a feasibility study showing the potential benefit of mechanisms by which nodes adapt their wakeup schedules to obtain improved performance

    Continuum percolation of wireless ad hoc communication networks

    Full text link
    Wireless multi-hop ad hoc communication networks represent an infrastructure-less and self-organized generalization of todays wireless cellular networks. Connectivity within such a network is an important issue. Continuum percolation and technology-driven mutations thereof allow to address this issue in the static limit and to construct a simple distributed protocol, guaranteeing strong connectivity almost surely and independently of various typical uncorrelated and correlated random spatial patterns of participating ad hoc nodes.Comment: 30 pages, to be published in Physica
    • …
    corecore