12 research outputs found

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Prototype system development for wireless vehicle speed monitoring

    Get PDF
    Vehicle speed monitoring and management of the associated data in an intelligent and efficient way is an important issue in modern transportation system in order to reduce road accidents. The aim of this work is to develop an automatic wireless system for monitoring vehicle speed on the road, identify a speeding vehicle and imposing penalty for the speeding offenders. In this work, a prototype system has been developed in a laboratory environment to generate random speed data using a mechanical wheel, measure the speed data with a Shimmer wireless sensor and transfer the data wirelessly to a client computer for further analysis. Software has been developed using a Java based socket programming technique to monitor the vehicle speed in a server computer and to send the data associated with a speeding vehicle to a remotely placed client computer. The graphical user interface (GUI) can visually display the speed of a vehicle at any particular time. The functionality of the software has been tested by simulating different traffic scenarios with low and high speed limits (40 and 60 km/hr respectively). To do that a high or low speed limit can be set in the GUI. The mechanical wheel is run at different speeds and the GUI continuously displays the speed. If the vehicle speed is higher than the set speed limit for the road, the system automatically detects it and generates a report with the time of speeding, vehicle number, vehicle speed etc. to be saved in the client computer in order to take further necessary actions for the speeding offender

    Investigating the Pavement Vibration Response for Roadway Service Condition Evaluation

    Get PDF
    Dynamic response of pavement provides service condition information and helps with damage prediction, while limited research is available with the simulation of pavement vibration response for evaluating roadway service condition. +is paper presents a numerical model for the analysis of the pavement vibration due to the dynamic load created by a passing vehicle. A quarter vehicle model was used for the determination of the vehicle moving load. Both random and spatial characteristics of the load were considered. The random nonuniform moving load was then introduced in a 3D finite element model for the determination of the traffic-induced pavement vibration. The validated numerical model was used to assess the effects of dynamic load, material properties, and pavement structures on pavement vibration response. Numerical analyses showed that the vibration modes changed considerably for the different roadway service conditions. The vibration signals reflect the level of road roughness, the stiffness of the pavement materials, and the integrity of pavement structure. The acceleration extrema, the time-domain signal waveform, the frequency distribution, and the sum of squares of Fourier amplitude can be potential indexes for evaluating roadway service condition. This provides recommendations for the application of pavement vibration response in early-warning and timely maintenance of road

    Vehicle Engine Classification Using of Laser Vibrometry Feature Extraction

    Full text link
    Used as a non-invasive and remote sensor, the laser Doppler vibrometer (LDV) has been used in many different applications, such as inspection of aircrafts, bridge and structure and remote voice acquisition. However, using LDV as a vehicle surveillance device has not been feasible due to the lack of systematic investigations on its behavioral properties. In this thesis, the LDV data from different vehicles are examined and features are extracted. A tone-pitch indexing (TPI) scheme is developed to classify different vehicles by exploiting the engine’s periodic vibrations that are transferred throughout the vehicle’s body. Using the TPI with a two-layer feed-forward 20 intermediate-nodes neural network to classify vehicles’ engine, the results are encouraging as they can consistently achieve accuracies over 96%. However, the TPI required a length of 1.25 seconds of vibration, which is a drawback of the TPI, as vehicles generally are moving whence the 1.25 second signals are unavailable. Based on the success of TPI, a new normalized tone-pitch indexing (nTPI) scheme is further developed, using the engine’s periodic vibrations, and shortened the time period from 1.25 seconds to a reasonable 0.2 seconds. Keywords: LDV, Machine Learning, Neural network, Deep learning, Vehicle classificatio

    Developing intelligent software interface for wireless monitoring of vehicle speed and management of associated data

    Get PDF
    The aim of this work is to develop an intelligent wireless system for monitoring vehicle speed, identify speeding vehicles and imposing penalty for the speeding offenders. A prototype system has been developed in a laboratory environment to generate random speed data using a mechanical wheel (acts as a vehicle), measure the speed data with a Shimmer wireless sensor and transfer the data wirelessly to a server computer for further analysis. Software interface has been developed using Java based socket-programming to monitor the vehicle speed in a server computer and to send the data associated with a speeding vehicle to a remotely placed client computer. The functionality of the software has been tested by experimenting different traffic scenarios. If the vehicle speed is higher than the set speed limit for the road, the system automatically detects it and generates a report with the time of speeding, vehicle number, vehicle speed, etc. The report is saved in a central database (client computer) in order to take further necessary actions for the speeding offender. The experimental evaluation results show that the system can measure and monitor the vehicle speeds wirelessly and manage the speeding data automatically

    A Survey and Comparison of Low-Cost Sensing Technologies for Road Traffic Monitoring

    Get PDF
    Abstract This paper reviews low-cost vehicle and pedestrian detection methods and compares their accuracy. The main goal of this survey is to summarize the progress achieved to date and to help identify the sensing technologies that provide high detection accuracy and meet requirements related to cost and ease of installation. Special attention is paid to wireless battery-powered detectors of small dimensions that can be quickly and effortlessly installed alongside traffic lanes (on the side of a road or on a curb) without any additional supporting structures. The comparison of detection methods presented in this paper is based on results of experiments that were conducted with a variety of sensors in a wide range of configurations. During experiments various sensor sets were analyzed. It was shown that the detection accuracy can be significantly improved by fusing data from appropriately selected set of sensors. The experimental results reveal that accurate vehicle detection can be achieved by using sets of passive sensors. Application of active sensors was necessary to obtain satisfactory results in case of pedestrian detection

    Enabling Low Cost WIFI-Based Traffic Monitoring System Using Deep Learning

    Get PDF
    A traffic monitoring system (TMS) is an integral part of Intelligent Transportation Systems (ITS) for traffic analysis and planning. However, covering huge miles of rural highways (119,247 miles in U.S.) with a large number of TMSs is a very challenging problem due to the cost issue. This paper aims to address the problem by developing a low-cost and portable TMS called DeepWiTraffic based on COTs WiFi devices. The proposed system enables accurate vehicle detection (counting) and classification by exploiting the unique WiFi Channel State Information (CSI) of passing vehicles. Spatial and temporal correlations of CSI amplitude and phase data are identified and analyzed using a deep learning technique to classify a vehicle into five different types: motorcycle, passenger vehicle, SUV, pickup truck, and large truck (a vehicle with more than three axles according to the FHWA classification). The principal component analysis (PCA) technique is exploited to reduce the dimension of the subcarriers and remove the device specific noise. The CSI phase data of a received signal are preprocessed by applying a linear transformation and the correlations of CSI phase information of multiple subcarriers are taken into account for effective vehicle classification. A convolutional neural network (CNN) is designed to extract optimal features of the preprocessed CSI amplitude and phase data. A huge amount of CSI data of passing vehicles as well as ground truth video data are collected for about 120 hours to validate the performance of the proposed proof-of-concept system. The results show that the average detection accuracy of 99.4%, and the average classification accuracy of 91.1% (Motorcycle: 97.2%, Passenger Car: 91.1%, SUV: 83.8%, Pickup Truck: 83.3%, and Large Truck: 99.7%) can be achieved with a very small cost of less than $1,000

    Lora-based traffic flow detection for smart-road

    Get PDF
    This paper presents a wireless traffic flow detection system, mainly focused on conditions in which the traffic flow is slow or stopped, which increases the risk of highway accidents. To achieve this goal, a Low Power Wide Area Network (LPWAN) based on LoRa called Short LoRa has been developed. This LoRa sub-network complies with the European Telecommunications Standards Institute (ETSI) harmonized standard for its compatibility in Europe countries. In addition, the development of the devices has allowed them to also work on a LoRaWAN network. The introduced development has been compared to a reference system mounted with laser barriers that provided a high accurate comparison. Field tests of the system have been carried out and the data obtained in the measurement has been analyzed with two different methods, and both of them were valid for the application. The results can determine vehicle speed with adequate precision at low speeds. The attenuating behavior of the communication signal is also analyzed through the Radio Signal Strength Indicator (RSSI). The relationship between vehicle speed, gate distances and RSSI attenuation has been studied. The system is proven to have efficient results in detecting traffic flow under the conditions for which it has been developed

    Improved California Truck Traffic Census Reporting and Spatial Activity Measurement

    Get PDF
    UC-ITS-2019-37The Federal Highway Administration (FHWA) vehicle classification scheme is designed to serve various transportation operational and planning needs. Many transportation agencies rely on Weigh-In-Motion and automatic vehicle classification sites to collect vehicle classification count data. However, these systems are not widely deployed due to high installation and operations costs. One cost-effective approach investigated by researchers has been the use of single inductive loop sensors as an alternative to obtain FHWA vehicle classification data. However, most models do not accurately classify under-represented classes, even though many of these minority classes pose disproportionally adverse impacts on pavement infrastructure and the environment. As a consequence, previous models have not been able to adequately classify under-represented classes, and the overall performance of the models are often masked by excellent classification accuracy of the majority classes, such as passenger vehicles and five-axle tractor trailers. This project developed a bootstrap aggregating (bagging) deep neural network (DNN) model on a truck-focused dataset obtained from Truck Activity Monitoring System (TAMS) sites, which leverage existing inductive loop sensor infrastructure coupled with deployed inductive loop signature technology, and already deployed statewide at over ninety locations across all Caltrans Districts. The proposed method significantly improved the model performance on truck-related classes, especially minority classes such as Classes 7 and 11 which were overlooked in previous research studies. Remarkably, the proposed model is also capable of distinguishing classes with overlapping axle configuration, which is generally a challenge for axle-based sensor systems
    corecore