7,422 research outputs found

    A Comparison of Approaches for Measuring Cross-Lingual Similarity of Wikipedia Articles

    Get PDF
    Wikipedia has been used as a source of comparable texts for a range of tasks, such as Statistical Machine Translation and CrossLanguage Information Retrieval. Articles written in different languages on the same topic are often connected through inter-language-links. However, the extent to which these articles are similar is highly variable and this may impact on the use of Wikipedia as a comparable resource. In this paper we compare various language-independent methods for measuring cross-lingual similarity: character n-grams, cognateness, word count ratio, and an approach based on outlinks. These approaches are compared against a baseline utilising MT resources. Measures are also compared to human judgements of similarity using a manually created resource containing 700 pairs of Wikipedia articles (in 7 language pairs). Results indicate that a combination of language-independent models (char-ngrams, outlinks and word-count ratio) is highly effective for identifying cross-lingual similarity and performs comparably to language-dependent models (translation and monolingual analysis).The work of the first author was in the framework of the Tacardi research project (TIN2012-38523-C02-00). The work of the fourth author was in the framework of the DIANA-Applications (TIN2012-38603-C02-01) and WIQ-EI IRSES (FP7 Marie Curie No. 269180) research projects.Barrón Cedeño, LA.; Paramita, ML.; Clough, P.; Rosso, P. (2014). A Comparison of Approaches for Measuring Cross-Lingual Similarity of Wikipedia Articles. En Advances in Information Retrieval. Springer Verlag (Germany). 424-429. https://doi.org/10.1007/978-3-319-06028-6_36S424429Adafre, S., de Rijke, M.: Finding Similar Sentences across Multiple Languages in Wikipedia. In: Proc. of the 11th Conf. of the European Chapter of the Association for Computational Linguistics, pp. 62–69 (2006)Dumais, S., Letsche, T., Littman, M., Landauer, T.: Automatic Cross-Language Retrieval Using Latent Semantic Indexing. In: AAAI 1997 Spring Symposium Series: Cross-Language Text and Speech Retrieval, Stanford University, pp. 24–26 (1997)Filatova, E.: Directions for exploiting asymmetries in multilingual Wikipedia. In: Proc. of the Third Intl. Workshop on Cross Lingual Information Access: Addressing the Information Need of Multilingual Societies, Boulder, CO (2009)Levow, G.A., Oard, D., Resnik, P.: Dictionary-Based Techniques for Cross-Language Information Retrieval. Information Processing and Management: Special Issue on Cross-Language Information Retrieval 41(3), 523–547 (2005)Mcnamee, P., Mayfield, J.: Character N-Gram Tokenization for European Language Text Retrieval. Information Retrieval 7(1-2), 73–97 (2004)Mihalcea, R.: Using Wikipedia for Automatic Word Sense Disambiguation. In: Proc. of NAACL 2007. ACL, Rochester (2007)Mohammadi, M., GhasemAghaee, N.: Building Bilingual Parallel Corpora based on Wikipedia. In: Second Intl. Conf. on Computer Engineering and Applications., vol. 2, pp. 264–268 (2010)Munteanu, D., Fraser, A., Marcu, D.: Improved Machine Translation Performace via Parallel Sentence Extraction from Comparable Corpora. In: Proc. of the Human Language Technology and North American Association for Computational Linguistics Conf (HLT/NAACL 2004), Boston, MA (2004)Nguyen, D., Overwijk, A., Hauff, C., Trieschnigg, D.R.B., Hiemstra, D., de Jong, F.: WikiTranslate: Query Translation for Cross-Lingual Information Retrieval Using Only Wikipedia. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 58–65. Springer, Heidelberg (2009)Paramita, M.L., Clough, P.D., Aker, A., Gaizauskas, R.: Correlation between Similarity Measures for Inter-Language Linked Wikipedia Articles. In: Calzolari, E.A. (ed.) Proc. of the 8th Intl. Language Resources and Evaluation (LREC 2012), pp. 790–797. ELRA, Istanbul (2012)Potthast, M., Stein, B., Anderka, M.: A Wikipedia-Based Multilingual Retrieval Model. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 522–530. Springer, Heidelberg (2008)Simard, M., Foster, G.F., Isabelle, P.: Using Cognates to Align Sentences in Bilingual Corpora. In: Proc. of the Fourth Intl. Conf. on Theoretical and Methodological Issues in Machine Translation (1992)Steinberger, R., Pouliquen, B., Hagman, J.: Cross-lingual Document Similarity Calculation Using the Multilingual Thesaurus EUROVOC. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 415–424. Springer, Heidelberg (2002)Toral, A., Muñoz, R.: A proposal to automatically build and maintain gazetteers for Named Entity Recognition using Wikipedia. In: Proc. of the EACL Workshop on New Text 2006. Association for Computational Linguistics, Trento (2006

    ZusammenQA: Data Augmentation with Specialized Models for Cross-lingual Open-retrieval Question Answering System

    Get PDF
    This paper introduces our proposed system for the MIA Shared Task on Cross-lingual Open retrieval Question Answering (COQA). In this challenging scenario, given an input question the system has to gather evidence documents from a multilingual pool and generate from them an answer in the language of the question. We devised several approaches combining different model variants for three main components: Data Augmentation, Passage Retrieval, and Answer Generation. For passage retrieval, we evaluated the monolingual BM25 ranker against the ensemble of re-rankers based on multilingual pretrained language models (PLMs) and also variants of the shared task baseline, re-training it from scratch using a recently introduced contrastive loss that maintains a strong gradient signal throughout training by means of mixed negative samples. For answer generation, we focused on languageand domain-specialization by means of continued language model (LM) pretraining of existing multilingual encoders. Additionally, for both passage retrieval and answer generation, we augmented the training data provided by the task organizers with automatically generated question-answer pairs created from Wikipedia passages to mitigate the issue of data scarcity, particularly for the low-resource languages for which no training data were provided. Our results show that language- and domain-specialization as well as data augmentation help, especially for low-resource languages

    Crosslingual Document Embedding as Reduced-Rank Ridge Regression

    Get PDF
    There has recently been much interest in extending vector-based word representations to multiple languages, such that words can be compared across languages. In this paper, we shift the focus from words to documents and introduce a method for embedding documents written in any language into a single, language-independent vector space. For training, our approach leverages a multilingual corpus where the same concept is covered in multiple languages (but not necessarily via exact translations), such as Wikipedia. Our method, Cr5 (Crosslingual reduced-rank ridge regression), starts by training a ridge-regression-based classifier that uses language-specific bag-of-word features in order to predict the concept that a given document is about. We show that, when constraining the learned weight matrix to be of low rank, it can be factored to obtain the desired mappings from language-specific bags-of-words to language-independent embeddings. As opposed to most prior methods, which use pretrained monolingual word vectors, postprocess them to make them crosslingual, and finally average word vectors to obtain document vectors, Cr5 is trained end-to-end and is thus natively crosslingual as well as document-level. Moreover, since our algorithm uses the singular value decomposition as its core operation, it is highly scalable. Experiments show that our method achieves state-of-the-art performance on a crosslingual document retrieval task. Finally, although not trained for embedding sentences and words, it also achieves competitive performance on crosslingual sentence and word retrieval tasks.Comment: In The Twelfth ACM International Conference on Web Search and Data Mining (WSDM '19

    Multiple Retrieval Models and Regression Models for Prior Art Search

    Get PDF
    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend

    Explicit versus Latent Concept Models for Cross-Language Information Retrieval

    Get PDF
    Cimiano P, Schultz A, Sizov S, Sorg P, Staab S. Explicit versus Latent Concept Models for Cross-Language Information Retrieval. In: Boutilier C, ed. IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press; 2009: 1513-1518

    Multilingual search for cultural heritage archives via combining multiple translation resources

    Get PDF
    The linguistic features of material in Cultural Heritage (CH) archives may be in various languages requiring a facility for effective multilingual search. The specialised language often associated with CH content introduces problems for automatic translation to support search applications. The MultiMatch project is focused on enabling users to interact with CH content across different media types and languages. We present results from a MultiMatch study exploring various translation techniques for the CH domain. Our experiments examine translation techniques for the English language CLEF 2006 Cross-Language Speech Retrieval (CL-SR) task using Spanish, French and German queries. Results compare effectiveness of our query translation against a monolingual baseline and show improvement when combining a domain-specific translation lexicon with a standard machine translation system

    Using Cross-Lingual Explicit Semantic Analysis for Improving Ontology Translation

    Get PDF
    Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge
    corecore